$$
r
$$

Reporter: Matheus Pessôa
Team Brazil: Andrius D., André Juan, Gustavo Saraiva, Henrique Ferreira, Lucas Maia, Lucas Tonetto, Matheus Pessôa, Ricardo Gitti

Problem 8-Candle Lighthing trick

The problem

Team
 Brazil

Candle Lighting Trick
o "It is possible to relight a candle that has just been blown out by lighting the smoke that is created in the process. Indeed, the smoke contains vaporized wax which is the substance that burns in the flame in the first place. What is the maximum distance (between the match and the candle) from which one can relight the candle? Identify the important parameters and find how they influence this maximal distance."

Physical processes

Chemical compounds of candle and smoke

Team Brazil

Experiments
Gonclusion

Candle

Smoke

- Contains different compounds of paraffin
- Dynamically important to the problem

Ember
$350^{\circ} \mathrm{C} \sim 430^{\circ} \mathrm{C}$

- Luminous spots keep paraffin wax melt and evaporation
- Helps in relighting

How a candle Works- Convection process

Introductiono Flame heats the air and it starts to rise. o Cooler air rushes at the bottom to replace it. o When cooler air is heated, it too rises up and is replaced by cooler air at the base of the flame. o Continual cycle of upward moving air around the flame (a convection current) giving the flame its elongated or teardrop shape.

Candle characteristics

Team Brazil

Heat of the flame melts the wax near the wick. This liquid wax is then drawn up the wick by capillary action. The heat of the flame vaporizes the liquid wax turns it into a hot gas. Molecules are drawn up into the flame and react with oxygen from the air to create heat, light, water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Conditions for relighting

Team Brazil

- We need a limiar value of wax to relight the candle!
- It is related to time and height, since concentration is a function of time and space
- A value above a threshold for concentration L is reached in an optimal instant t
- Therefore, there is a maximum height value $z_{\max }$

Gonclusion

Physical modelling for smoke concentration

- Air density variation in function of temperature

Team
 Brazil

$$
\Delta \rho=-\rho_{0} \beta \Delta T
$$

ρ is the density of the fluid in convection; ΔT is the temperature difference between two local points with their respective densities and β is the coefficient of thermal expansion, which for the air equals $3.43 \times 10-3 K-1$.

Lower temperatures
Higher temperatures

Physical modelling for smoke concentration

Team
 Brazil

- Convection process
- Movement of air masses or particles considering different temperatures on a fluid
- The convection-diffusion process is described by

$$
\frac{\partial \phi}{\partial t}=\nabla \cdot(D \nabla \phi)-\nabla(v \phi)+R
$$

- Considering $\mathrm{D}>0$ and $\mathrm{R}>0$ constants, with $v=v_{z}, v_{z}>0$:

$$
\frac{\partial \phi}{\partial t}=D \nabla^{2} \phi-v_{z} \frac{\partial \phi}{\partial z}+R
$$

$$
\begin{aligned}
& D=\text { mass diffusivity coefficient } \\
& v=\text { relative velocity field of the diffusing quantity } \\
& R=\text { describes any sources or sinks }
\end{aligned}
$$

\square Physical modelling for smoke concentration

- Applying separation of variables, with

Team
 Brazil

$$
\phi(x, y, z, t)=\chi(x) \Upsilon(y) \zeta(z) \tau(t)
$$

- We reach a solution for the behavior of concentration for each Direction and time
$\phi(x, y, z, t)=\phi_{0} \exp \left(c_{1} t-\sqrt{\frac{c_{3}}{D}} x-\sqrt{\frac{c_{2}-c_{3}}{D}} y\right) \exp \left(-\frac{1}{2}\left(\frac{v_{z}}{D}-\sqrt{\left(\frac{v_{z}}{D}\right)^{2}-\frac{4\left(c_{2}-c_{1}\right)}{D}}\right) z\right)$
- This solution will be used to simulate the phenomenon qualitatively

\square Characteristic solution

Team Brazil
 Candle Lighting Trick

- Matches qualitative expectations!
- Smoke concentration decreases with time and distance from the source in an exponential rate

Simulation for concentration in time

- Different cut planes for different heights and wax concentration in time

- Diffusion more rapidly in upward direction!
- Behavior is the same for radial directions

Plot!
$\phi(x, y, z, t)=\phi_{0} \exp \left(c_{1} t-\sqrt{\frac{c_{3}}{D}} x-\sqrt{\frac{c_{2}-c_{3}}{D}} y\right) \exp \left(-\frac{1}{2}\left(\frac{v_{z}}{D}-\sqrt{\left(\frac{v_{z}}{D}\right)^{2}-\frac{4\left(c_{2}-c_{1}\right)}{D}}\right) z\right)$

Methodology

Methodology

- Obtained experimental data
- Flame height before and after relighting
- Time to relight the candle
- Distance from the source
- All of these for different diameters \& wick types

Candle Lighting Trick

Team Brazil

\square Physical considerations

Team Brazil
\section*{Candle Lighting Trick}

Introduction

Experiments

Gonclusion

Distribution of all experimental results

What can influence the maximum height?

Team Brazil

Gonclusion

6/9/2018

- Candle diameter
- $(17.5 \pm 0.5) \mathrm{mm}$
- $(42.0 \pm 0.5) \mathrm{mm}$
- $(50.06 \pm 0.5) \mathrm{mm}$
- $(57.0 \pm 0.5) \mathrm{mm}$

Important approximation to rule out external interferences!

Results for different candle diameters

Flame height [mm]
Diameter 17.6 mm

Flame
height

Time for relighting

Candle diameter

- Diameter and average distance from the source

Team Brazil

Parabolic fiting function

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& a=-(0.14 \pm 0.02) \mathrm{cm} \\
& b=(11 \pm 2) \mathrm{cm} \\
& c=-(85 \pm 22) \mathrm{cm}
\end{aligned}
$$

Average behavior for distance in function of diameter

Candle diameter

- Diameter and average distance from the source

Team
 Brazil

Candle Lighting Trick

Parabolic fitting function

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& a=-(0.14 \pm 0.02) \mathrm{cm} \\
& b=(11 \pm 2) \mathrm{cm} \\
& c=-(85 \pm 22) \mathrm{cm}
\end{aligned}
$$

Diameter as an optimization parameter

Average behavior for distance in function of diameter

Candle diameter

TPam	- Diameter an average distance fro
Brazil	
Candle	
Lighting Trick	Optimal candle for greater distances Diameter $=(38 \pm 8) \mathrm{mm}$ Maximum height $=(116 \pm 24) m m$
Introduction	
Experiments	
conclusion	
6992018	

Candle diameter

- Relation between time and distance

Team Brazil

Candle Lighting Trick

Introduction
Experiments
Gonclusion

Dispersion for distance in function of time with different diameters

What can influence the maximum height?

Team Brazil

- Paper wick

Distance

Flame height

Time for
relighting

\square Experimental considerations

Team Brazil

Candle Lighting Trick

Introduction

Experiments

Gonclusion

- We analysed the points dispersion
- No apparent correlation between flame height or time for distance in any of the different wicks

Dispersion for different wick materials (paper and cotton)

(b)

\square What can influence the maximum height?

Team Brazil
 Candle Lighting Trick

Relation between average distance and combined parameters

Summary

Team Brazil
 Candle Lighting Trick

Intronuction
Experiments
Eonclusion

How does a candle work

Optimal candle (diameter)

Simulation

Different types of wick

Statistical experimental approach

Combined parameters

References

Team
Brazil
Candle Lighting Trick

$\square A p p e n d i x$

Other experimental setups

Team Brazil
 Candle
 Lighting Trick

Experiments

Gonclusion

Candles and gravity

Team Brazil
 Candle Lighting Trick
 Introduction
 Experiments
 Candle at normal gravity

 Candle at microgravity environment

Conclusion

\square Evolution of the flame \& properties

The oxygen-rich blue zone is where the hydrocarbon molecules vaporize and start to break apart into hydrogen and carbon atoms.

The dark or orange/brown region has relatively little oxygen. This is where the various forms of carbon continue to break down and small, hardened carbon particles start to form. As they rise, along with the water vapor and carbon dioxide created in the blue zone, they are heated to approximately 1000 degrees Centigrade.

At the bottom of the yellow zone, the formation of the carbon (soot) particles increases. As they rise, they continue to heat until they ignite to incandescence and emit the full spectrum of visible light. Because the yellow portion of the spectrum is the most dominant when the carbon ignites, the human eye perceives the flame as yellowish. When the soot particles oxidate near the top of the flame's yellow region, the temperature is approximately $1200^{\circ} \mathrm{C}$.

