

PROBLEM N°8 CANDLE LIGHTING TRICK

Team Ecole polytechnique

It is possible to relight a candle that has just been blown out by lighting the smoke that is created in the process (see video). Indeed, the smoke contains vaporized wax which is the substance that burns in the flame in the first place. What is the **maximum distance** (between the match and the candle) from which one can relight the candle? **Identify the important parameters** and find **how they influence** this maximum distance.

Experimental setup

Important parameters

Characteristic of wax

Characteristics	Paraffin	Beeswax
Composition	Consists of mainly alkanes(C ₁₈ to C ₄₀)	Consists of esters(60%) and alkanes, alkanoic acids, alkenes
Density/gcm ⁻³	0.88 – 0.92	0.958 – 0.970
Boilling point/°C	380.0-390.0	369.0-371.0
Latent heat of vaporisation/ Jg^{-1}	~172	~242

Why can we light up the smoke?

There must be sufficient vapour concentration to light up the smoke

Minimum concentration

Type of wax	Minimum concentration to relight/ g/m^3
Paraffin	120
Beeswax	150

Behavior of the smoke

Similar behaviour for all different kinds of candles used

Paraffin wax, thin wick

Instability

Instability on the boundary between air and smoke

Squire instability

$$\omega_{i,max} \approx 0.2 \frac{\Delta U}{\delta}$$

Maximum distance
$$\approx \frac{2\pi\delta}{0,2}$$

$$\delta = 10^{-3} \sim 10^{-2} \, m$$

$$3cm < z_{max} < 30 \ cm$$

Source: François Charru. Instabilités hydrodynamiques

Cone shape and angle

Angle~ $12 - 20^{\circ}$

Theoretical model:Boussinesq plume

Assumption: No diffusion of wax vapour

Conservation of mass of wax vapour:

$$dz\pi r_i^2\rho_i = dz\pi r_f^2\rho_f$$

$$\rho_f = \rho_i \frac{r_i^2}{r_f^2} \approx 100 g/m^3$$

What is the initial concentration?

Maximum capillary length

Type of wax ,type of wick ,thickness of wick	Maximum capillary length/cm
Paraffin, cotton,0.3cm	2.1±.0.1
Paraffin,wool,0,3cm	4.0±.0.1
Paraffin, wool, 0.5cm	4.3±.0.1
Beeswax,cotton, 0,3cm	1.9±.0.1

Change of capillary height

Lucas-Washburn Law for porus medium :

$$Z = A\sqrt{t}$$

 $dV = \pi r^2 dZ$

flow rate at a particular height
$$= \frac{dV}{dt} \propto \frac{1}{z}$$

Burning rate

flow rate at a particular height
$$=$$
 $\frac{dV}{dt} = \frac{\pi r^2 A^2}{2z}$

burning rate at height
$$z = flow$$
 rate \times area $= \frac{\pi r^2 A^2}{2z} \times 2\pi r dz$

total burning rate =
$$\int_{a}^{l} \frac{\pi r^2 A^2}{2z} \times 2\pi r \, dz = \pi^2 r^3 A^2 \ln \frac{l}{a}$$

Temperature and initial concentration \propto total burning rate

Temperature and length of wick

Maximum concentration

Approximate length $\approx 0.3 - 0.4$ of maximum capillary length

Maximum height when $l = 0.3 - 0.4\,$ of maximun capillary length

 $z_f^2 \propto \frac{r^5}{tan\theta^2 \rho_f} \pi^2 A^2 \ln \frac{l}{a}$

 $dz\pi r_i^2 \rho_i = dz\pi r_f^2 \rho_f$

Type of wax

Prediction: Paraffin will have a larger height because it has a steeper gradient(A)

Type of wick

Prediction: Cotton will have a larger height because it has a steeper gradient(A)

$$z_f^2 \propto \frac{r^5}{tan\theta^2 \rho_f} \pi^2 A^2 \ln \frac{l}{a}$$

Data from paraffin wax

Thickness of the wick

Prediction: Wick with a larger radius will have a larger height

Data from paraffin wax

Can we do better?

Use the tube to minimise the angle

With a tube

Maximum length is 75cm

Conclusion

What is the **maximum distance** (between the match and the candle) from which one can relight the candle? Identify the **important parameters** and find how they **influence this maximum distance**.

Maximum height:75cm

$$z_f^2 \propto \frac{r^5}{tan\theta^2 \rho_f} \pi^2 A^2 \ln \frac{l}{a}$$

Maximum height for a particular candle is when $l \approx 0.3 - 0.4$ of maximum capillary length of the wick

Distance,z

Bibliographie

Sinaringati S, Putra N, Amin M, et al "THE UTILIZATION OF PARAFFIN AND BEESWAX AS HEAT ENERGY STORAGE IN INFANT INCUBATOR." *ARPN Journal of Engineering and Applied Sciences*, Jan. 2016, pp. 800–804.

Squire instability

 $\delta \sim 10^{-3} m$ $\Delta U \sim 0.1 \text{ à } 0.3 m. s^{-1}$

z_{max} < 11,2 *cm*

Source: François Charru. Instabilités hydrodynamiques

Kelvin-Helmoltz instability

$$\omega = k \sqrt{\frac{\rho_1 \rho_2 (U_1 - U_2)^2}{(\rho_1 + \rho_2)^2} + \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}} \cdot \frac{g}{k} + \frac{\sigma}{\rho_1 + \rho_2} k$$

 $\lambda < l$ $k > \frac{2\pi}{l}$ $\omega > C \frac{2\pi}{l}$

 $T < \frac{l}{C}$

Instability happens almost instantly which is not what we observe

Classical squire instability

 $\frac{2\alpha}{kh} > 10$

 $\omega \approx \frac{uk\sqrt{kh}}{\sqrt{2\alpha}}$

Instability happens almost instantly which is not what we observe

Type of wax

Type of wick

Data from paraffin wax

Thickness of the wick

Prediction: Wick with a larger radius will have a larger height

Data from paraffin wax

Thermal plume

Approximate length $\approx 0.3 - 0.4$ of maximum capillary length