Origami-Launcher

Lucia Härer Team FAUltiere Germany

Task

Folded paper structures such as the **Miura-ori origami** can be programmed to exhibit a wide range of elastic properties depending on their crease and defect patterns. **Design and build an origami cannon** to **vertically** launch a standard **Ping-Pong ball** using only a **single uncut sheet of A4 paper (80g/m²)**. How is the height of the ball elevation related to the folding pattern? Optimize your design to achieve the **maximum height** possible.

Overview

1. Models for folding patterns

Goal: Find **energy** $E(\Delta h)$ **stored folding pattern** when compressed by Δh

ZIG-ZAG FOLDING

model as **spring**: $F = -K\Delta h \Rightarrow E = \frac{K}{2}\Delta h^2$

A4 paper is folded lenghtwise (3 times), then creases are added

1. Models for folding patterns

MIURA-ORI

- is a mechanical meta-material
- Specific pattern is **parameterized** by l_1 , l_2 , α and number on unit cells **N**
- State is **fully described** by θ

https://de.wikipedia.org/wiki/Miura-Faltung#/media/File:Miura-ori.gif

Z. Y. Wie et al.; Geometric Mechanics of Periodic Pleated Origami; PRL 110 215501, (2013)

1. Models for folding patterns

Model **single crease** as **torsional spring** $\vec{r} \times \vec{F} = -D\vec{\Delta\theta}$ $F = -D\frac{l}{r}\Delta\theta \Rightarrow E = \frac{1}{2}Dl\Delta\theta^2$

Sum up energy over full unit cell

$$
E = ND(l_1 \Delta \theta^2 + l_2 \Delta \beta^2)
$$

\n
$$
\Rightarrow E(h) = 2D \frac{LH}{\sin \alpha} \left[\frac{1}{l_2} (\sin^{-1} \frac{h}{H} - \sin^{-1} \frac{h_0}{H})^2 + \frac{1}{l_1} (\sin^{-1} \eta - \sin^{-1} \eta_0)^2 \right]
$$

\nwhere $\eta = \frac{h \cos \alpha}{\sqrt{H^2 - h^2 \sin^2 \alpha}}$

Changed variables:
 $\beta \mapsto \theta, \theta \mapsto h$ $N \mapsto L$, H(dimensions of A4 paper, $L = 29.7$ cm, $H = 21$ cm)

What Miura-Ori pattern can store **the most energy**? $E(h) = 2D \frac{LH}{\sin \alpha} \left[\frac{1}{l_2} (\sin^{-1} \frac{h}{H} - \sin^{-1} \frac{h_0}{H})^2 + \frac{1}{l_1} (\sin^{-1} \eta - \sin^{-1} \eta_0)^2 \right]$

 \cdot $E(h) \sim \frac{1}{l_1}, \frac{1}{l_2}$ \rightarrow Choose small l_1 and l_2 \cdot $E(h) \sim \frac{1}{\sin \alpha} \rightarrow$ Choose small α

Selected patterns for experiment:

material: paper A4, 80
$$
[\frac{g}{m^2}]
$$

2. Spring constant (single crease)

Determine D to complete model for $E(h)$ \rightarrow measure spring constant of a single crease

Setup measures only force in z-Direction

3. Energy stored in folding pattern

MIURA-ORI

Compare modelled $E(h)$ to measurement (measure $\vec{F}(h)$ and integrate)

→ model **agrees** with experimental data

Height [mm]

3. Energy stored in folding pattern

ZIG-ZAG FOLDING

Energy [mJ] for $h = 2$ cm

Determine K $\left[\frac{N}{m}\right]$ by fitting $F = -K\Delta h$

4. Take-off velocity

Estimate take-Off velocity from $E(h)$ obtained by experiment

Consider losses due to **expansion** and **jumping of pattern**

$$
E_{\text{start}} = E - E_{\text{expand}} - E_{\text{jump}} = E - Mgh_{\text{jump}} - \frac{1}{2}Mg\Delta l = \frac{1}{2}mv_0^2
$$

where m mass of the mass M mass of the pattern

5. Trajectory

Determine **maximal jumping height** h_{max} by modelling the trajectory

Assume **Newtonian air resistance**

$$
m\dot{v} = -mg + Rv^2 \Rightarrow v(t) = -v_{\infty} \tanh(\frac{gt}{v_{\infty}} - \operatorname{artanh}(\frac{v_0}{v_{\infty}}))
$$

With the critical velocity $v_{\infty} = -\sqrt{\frac{mg}{R}}$

and $R=\frac{1}{2}c_w A \rho$

$$
v(t) \stackrel{!}{=} 0 \Rightarrow h_{\text{max}} = -\frac{v_{\infty}^2}{g} \ln \sqrt{1 - \frac{v_0^2}{v_{\infty}^2}}
$$

6. Measurement of jumping height

SETUP

- metal bars **restrict** movement of Ping-Pong ball **to z-direction**
	- bar diameter 1 cm, bars separated by 3 cm
	- standard Ping-Pong ball: $m = 2.7$ g, $d = 40$ mm
- pattern is compressed to $h = 2$ cm, ball is released

MEASUREMENT

Trajectory analysis with Viana (colour tracking) \rightarrow determine h_{max} , v_0

6. Measurement of jumping height

RESULTS

- $\cdot h_{\text{max}}$ is **not** reached
- **Zig-Zag** springs produce **biggest heights** (absolute and percental)
- **qualitative** behaviour is **reproduced** for Miura-Ori patterns

6. Measurement of jumping height

DISCUSSION

- additional energy losses: **rotation** of the ball, **friction** (metal bars) if ball isn't launched completely vertically
- **mechanical instability:** patterns with **narrow** and/or long **base area**, stabilizing can lead to additional friction

Miura-Ori: small α

- \rightarrow narrow, long base area
- → paper is **not compressed uniformly**
- paper creases **wear out**

Summary

WHAT IS THE BEST FOLDING PATTERN?

- **Zig-Zag folding**: $h_{\text{max}} = 0.5 \text{ m}$ theoretically up to 2.95 m
- The more creased paper, the more energy can be stored \rightarrow Choose α , l_1 , l_2 small (Miura-Ori), but: **buckling, uneven compression**

MATHEMATICAL MODELS

- \cdot $E(h)$: **agrees** with experiment crease = torsion spring
- h_{max} : theoretical heights **not reached**, qualitative behaviour confirmed Newtonian air resistance, expansion and jumping

References

- M. Schenk, S. D. Guest: "Origami Folding: A Structural Engineering", 5OSME, 2010
- *Z. Y. Wie et al.; Geometric Mechanics of Periodic Pleated Origami; PRL 110 215501, (2013)*
- *Quantamagazine.org/the-atomic-theory-of-origami-20171031/*

Out of plaine deformation

Other flat-folded patterns: eggbox

POISSONS RATIO

- $e_{\rm trans}$ $n =$ e_{long}
- Miura-Ori: negative for inplane deformation
- Eggbox: positive for inplane deformation

(a) overview of folded textured sheets

(b) close-up of unit cells

Defects

Defects **increase rigidity** and can be described as **excitations in as lattice** (quasiparticles)

Quantamagazine.org/the-atomic-theory-of-origami-20171031/

$$
E(h) = 2D \frac{LH}{\sin \alpha} \left[\frac{1}{l_2} (\sin^{-1} \frac{h}{H} - \sin^{-1} \frac{h_0}{H})^2 + \frac{1}{l_1} (\sin^{-1} \eta - \sin^{-1} \eta_0)^2 \right]
$$

30.04.2018 21

Derivation of $E(h)$

Z. Y. Wie et al.; Geometric Mechanics of Periodic Pleated Origami; PRL 110 215501, (2013)

30.04.2018 22

Flat folded origami

Maekawa Theorem

At every vertex in flat-folded origami, the difference between the number of mountain and valley creases is always two.

Kawasaki's theorem

Origami can only be flat-folded if the alternating sum of the angles at a single vertex adds to zero.

Naturalorigami.wordpress.com/2016/06/27/themaekawa-theorem

Trajectory analysis with Viana

Trajectory analysis with Viana

Additional ideas

Alternative model for torsional spring

Obtain energy **stored in single crease** by integration

Sum up all creases of the pattern

Measurement: $E_{\text{crease}} = 78.23 \frac{\mu J}{cm}$

similarities of energies in Zig-Zag patterns

$$
F = -K\Delta h = -K(h - h_0)
$$

\n
$$
h = r \sin \frac{\theta}{2} \Rightarrow F = -Kr(\sin \frac{\theta}{2} - \frac{\theta_0}{2}) \sim r
$$

\n7 creases: $F_{tot} = 7F$, $r = \frac{L}{7}$
\n9 creases: $F_{tot} = 9F$, $r = \frac{L}{9}$
\n \Rightarrow factors cancel out

→ factors cancel out

$$
E_{\text{start}} = E - E_{\text{expand}} - E_{\text{jump}} = E - Mgh_{\text{jump}} - \frac{1}{2}Mg\Delta l = \frac{1}{2}mv_0^2
$$

Energy loss due to expansion

 $E = \int F dh$

$$
F = -m(h)g = \frac{M}{l}hg \Rightarrow E = \int_0^l \frac{M}{l}hg \ dh = \frac{1}{2}\frac{M}{l}gl^2 = \frac{1}{2}Mgl
$$