

The problem

When a drop of ink is injected inside especially still water, or dropped very close to its surface, it firstly forms a ring of ink which then divides into smaller rings (see video). The process repeats again and again and forms a tree-like structure of ink. What is the maximal number of ring divisions that one can see and how does it depend on the important parameters?

The observation

Literature review

Thomson "On the formation of vortex rings by drops falling into liquids and some allied phenomena", 1885

Qualitative explanation
Main physical parameters

Arecchi, "Fragment Formation in the Break-up of a Drop Falling in a
Miscible Liquid", 1989-2015
Experimental investigation

Shimokawa "Breakup and deformation of a droplet falling in a miscible solution", 2016
Numeric modelling

Experimental setup

Injection of drop

$$
\begin{gathered}
E_{\sigma} \rightarrow E_{\text {kinetic }} \\
\sigma S=\frac{m v^{2}}{2} \quad v=\sqrt{\frac{6 \sigma}{R \rho}} \\
\sigma \text { is the coefficient of surface tension } \\
R \text { is radius of the droplet } \\
\rho \text { is the density of ink } \\
v \text { is the velocity }
\end{gathered}
$$

When drop of ink enters the water, its surface energy converts into the kinetic energy

Formation of vortex ring

Ink in the drop begins to rotate due to shear stress. Some water begins flowing into the drop, so the vortex ring forms

Rotation in the drop

The dynamics for different Reynolds numbers

Reynolds number

$$
R e=\frac{\rho L v}{\mu}
$$

L is the characteristic size ρ is the density of the fluid v is the velocity of the fluid μ is the dynamic viscosity of the fluid

$$
\begin{aligned}
& R e_{\min } \simeq 1,5 \\
& R e_{\max } \simeq 500
\end{aligned}
$$

The dynamics of the ring

bottom view

Expansion due to pressure redistribution

Deceleration due to drag force

The equations of ring dynamics

Hydrodynamic impulse of the ring: $P=\rho \Gamma R^{2}$

$$
\text { Newton second law: } \frac{d P}{d t}=B-F_{d r a g}
$$

$\Gamma=\int \vec{v} d \vec{l}$-circulation of the ring
V - volume of the ring
B - buoyancy force
ρ - the density of ink
A - Atwood number
$v=\frac{d x}{d t}-$ velocity of the ring center of mass
C_{d}-drag coefficient

side view

Division of the ring. Rayleigh-Taylor instability.

Atwood number

$$
A=\frac{\rho_{1}-\rho_{2}}{\rho_{1}+\rho_{2}} \quad A \ll 1 \rightarrow \text { symmetric fingers }
$$

The rate of instability growth

Boundary conditions

$$
\lambda=\frac{2 \pi R}{m} \quad m-\text { number of mode }
$$

wave number: $k_{m}=\frac{m}{R}$

Number of mode vs ring radius

Distribution of mode numbers for fixed droplet radii

Big variance, because any asymmetry leads to the growth of instability

Method of calculation

Parameters of the system are substituted in the numeric model of ring dynamics

[^0]$$
u_{\max }(k) \text { - maximum growth rate }
$$

Initial ring

Iterations

The technique to estimate the number of divisions

$\tau_{i}: \begin{gathered}\text { time-lag between division and } \\ \text { formation of each ring }\end{gathered}$
$\tau_{d i f} \simeq \frac{a^{2}}{4 D}:$ characteristic time of diffusion
a is the core diameter
criteria of division for i-th stage

$$
\tau_{i}<\tau_{d i f}
$$

The technique to measure the diffusion coefficient.

$$
D\left(\frac{\partial^{2} C}{\partial r^{2}}+\frac{1}{r} \frac{\partial C}{\partial r}\right)=\left.\frac{\partial C}{\partial t} \quad \frac{\partial C}{\partial r}\right|_{r=R}=\max
$$

D - coefficient of diffusion
R - radius of front of diffusion
C - concentration

40 s

50 s
50 s

60 s

front radius vs time

$$
D=1.1 * 10^{-9} \mathrm{~m}^{2} / \mathrm{c}
$$ for secondary rings

time-lag between division and formation of each ring

$$
\tau \sim \frac{1}{u(k)} \quad \square \quad \tau \sim \frac{\rho v}{\Delta \rho g R}
$$

$$
\begin{aligned}
& v-\text { kinematic viscosity } \\
& A \text { - Atwood number } \\
& R \text { - radius of the ring }
\end{aligned}
$$

Fragmentation number. The criteria of ring division

The dimensionless ratio:

$$
F=\frac{\tau_{\text {diffusion }}}{\tau_{\text {growth }}}=\frac{R_{i} a_{i}^{2} \Delta \rho_{i} g}{D \rho v}
$$

the ring will divide

$$
F<F_{\text {crit }}
$$

the ring will dissolve

Experimental estimation of critical fragmentation number

We used 250 experimental situations:

Critical fragmentation number:

$$
F_{c} \approx 2 * 10^{4}
$$

Estimation of number of divisions

Volume of drop for N -th iteration

$$
V_{i+1} \approx V_{i} / m_{i} \quad V_{N}=\frac{V_{0}}{m_{0} * 2^{N}}
$$

The condition of division

$$
F_{N}=\frac{V_{0}}{m_{0} * 2^{N}} \frac{\Delta \rho g}{D \mu}<F_{C r i t}
$$

Number of division

$$
N \approx \log _{2}\left(\frac{V_{0}}{m_{0} * F_{\text {crit }}} \frac{\Delta \rho g}{D \mu}\right)+1
$$

V_{0} - initial volume of drop
m_{0} - number of divisions for the first iteration

Experimental test of the model

We varied the initial volume of drop (varying the nozzles in syringes)

Varied the difference of densities, dissolving the ink in water (the coefficient of diffusion was measured for each iteration)

The number of divisions was measured by video

The number of divisions was calculated theoretically for each set of parameters/

Experimental test of the model

examples of ink tree

Conclusions

- The conditions for the formation of vortex ring : characteristic Reynolds numbers in range 1.5-500).
- The simple model of vortex ring motion (through alteration of its hydrodynamic impulse) agrees well with experiment.
- The number of modes for ring was obtained analytically through the dispersion relation, considering the boundary conditions.
- The diffusion of the secondary rings was considered as the criteria of stopping of the division process
- The analytical expression for the number of divisions in the system agrees well with experimental data.

Thank you for your attention!

[^0]: v - kinematic viscosity
 A - Atwood number

