
Sound thermometer

Reporter: Aleksandra Maslakova

Russia, Voronezh



The problem
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Devise a method to obtain the temperature of a fluid by listening 
to the sound emitted when it is poured into a cup. State the 
precision, accuracy and the limits of your method as well as the 
important parameters of the fluid.



Sound of pouring
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Hot Cold



Theoretical explanation
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Sound of pouring
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Sound emitters
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The main sound emitters are bubbles

Water Glycerin



Oscillations of bubbles in the water

𝑓 =
1

2𝜋𝑟

3𝛾𝑝0
𝜌

𝑓 – fundamental frequency
𝛾 – adiabatic coefficient of air

W. Moss, H. Yeh “Sounding Liquids: Automatic Sound Synthesis from Fluid Simulation”

𝑓𝑛
2 ≈

1

4𝜋2
(𝑛 − 1)(𝑛 + 1)(𝑛 + 2)

𝜎

𝜌𝑟3

𝑛 − number of harmonic 
𝜎 – surface tension
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Applicable for small bubbles (r < 1 mm)

Minnaert resonance: oscillations of air Oscillations of surface

𝑝0 – pressure of fluid
𝜌 – density of fluid
𝑟 – radius of bubble

𝑛 = 1 𝑛 = 3



Bubbles forming
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480 fps Column

𝐿

Collapse Bubble

𝑓′ =
𝑐

4𝐿

𝑓 =
1

2𝜋𝑟

3𝛾𝑝0
𝜌

𝑐 − speed of sound
Signal form

Frequency of 
resonator of column

𝑓𝑒𝑥𝑝
′ = 4782 Hz

𝑓𝑡ℎ𝑒𝑜𝑟
′ = 4000 − 5000 Hz

𝑓𝑒𝑥𝑝 = 1016 Hz

𝑓𝑡ℎ𝑒𝑜𝑟 = 800 − 1600 Hz
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Radius distribution
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radius, cm

𝑟

0.175 cm

Distribution of bubbles radiiBubbles of different radii
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Spectrum of sound
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Generated spectrum Real spectrum

Spectrum is partially continuous → sound is produced by bubbles

Software: Wolfram Mathematica, Audacity
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𝑓, 𝐻𝑧

𝐼, 𝑑𝐵

Average spectrum of the whole pouring

hot cold



Sound of walls
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𝑓,𝐻𝑧

𝑡, 𝑠
Rayleigh scattering on microbubbles

pouring



Sound of walls
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𝑓,𝐻𝑧

𝑡, 𝑠
Less bubbles → less scattering

pouring



Difference between hot and cold water
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Pouring into plastic cylinder
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This vessel has low Q value→ no peaks
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Sound of pouring

-45 dB-75 dB

𝑓,𝐻𝑧

𝑡, 𝑠
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-15 dB

Fundamental frequency
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Noise



Resonance chamber

water

air

𝐿

𝑑

Air between surface of water and top of cup resonates as a 
pipe with one sealed end.

𝑐 – speed of sound in the air
0.2𝑑 − end correction

Odd harmonics are generated
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𝑓, 𝐻𝑧

𝑓 =
𝑐

4𝐿 + 0.2𝑑

fundamental frequency

𝐼, 𝑑𝐵
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Speed of sound

𝑐 =
𝛾𝑅𝑇

𝑀

𝛾 =
7

5
−adiabatic coefficient

𝑅 −molar gas constant
𝑀 − molar mass 
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𝑐 −speed of sound

𝑇 −thermodynamic temperature
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Heating of air in the cup
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𝐿

Hot water heats air due to evaporation and convection

𝑓 =
𝑐

4𝐿 + 0.2𝑑

Speed of sound increases

Fundamental frequency of resonator is 𝑓 ~ 𝑇
𝑑



Method of measurement
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Experimental setup

microphone

vessel

tap

Water tank Heater
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Beginning of pouring Fundamental frequency𝑡 = 0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

𝑡, s

𝑎
,m

Flow has constant speed 
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Data processing
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We extract fundamental frequency from the sound

22Software: Wolfram Mathematica

𝑓,𝐻𝑧

𝑡, s
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We find speed of sound from 𝑓 =
𝑐

4𝐿+0.2𝑑

𝐿, m

𝑐, m/s

𝑡, s

𝑓,𝐻𝑧

𝑐 = 387,04 m/s



Results analysis (water)
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We calculate temperature from 𝑐 =
𝛾𝑅𝑇

𝑀



Investigation of accuracy and 
working range
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Conditions for the jet to form bubbles
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𝑡𝑐 =
𝜌𝑅3

𝜎
𝑡𝑣 =

𝜂𝑅

𝜎

𝑡 > max[𝑡𝑐 , 𝑡𝑣]

The minimal time for dividing into droplets

𝜌 – density of water 𝑅 – hydraulic radius

Characteristic time of Rayleigh-Plateau 
instability growth

𝜂 – dynamic viscosity



Sources of errors
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Systematic errors

Random errors

Q value of resonance chamber Irregularity of water surface

Heat conduction Heat loss

Width of peak



Quality factor of resonance chamber
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Johan Liljencrants, “Q value of a pipe resonator ”
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Δ𝑓

Δ𝑓 =
𝑓

𝑄

𝑓
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𝑄 = 32
𝐿

𝜋𝑑

2

The more the Q factor, the more accurate is frequency determination

water

air

𝐿

𝑑

𝑑/𝐿

𝑄



Random errors due to Q factor of vessel
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d = 95mm
Qstart = 21.8

d = 31mm
Qstart = 207.5
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Irregularity of surface
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Δ𝐿

Δ𝐿

𝐿



Systematic error due to heat conduction
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Works for slowly evaporating fluids

Measured temperature is lower

Fluid heats walls and air slowly
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Conclusions

• Sound is produced by bubbles and filtered by resonator in the cup

• We can hear difference between hot and cold water because of 
scattering of sound on bubbles in water

• We can find temperature by measuring peak frequency and calculating 
the speed of sound

• The main limitation of our method is presence of bubbles during 
pouring

• Accuracy is ±5,306°C for water

• Systematic error due to heat conduction is -12% for water and -23% 
for glycerin solution
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Thank you for your attention
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