
  

Scheduling Strategies for Mobile Devices in BOINC 

Arturo García, Mariela Curiel 

Facultad de Ingeniería. Pontificia Universidad Javeriana (PUJ) – Bogotá, DC – 

Colombia 

{arturogarciap,mcuriel}@javeriana.edu.co 

Abstract. Executing tasks on mobile devices brings some challenges that 

must be addressed, such as device heterogeneity, limited CPU power, 

limited memory, short battery life, mobility, and intermittent disconnections. 

BOINC (Berkeley Open Infrastructure for Network Computing), the 

platform chosen in our research project that aims to process medical 

images using mobile phones, does not completely solve these challenges. In 

this sense, this article's objective is to present the modifications to BOINC's 

scheduling strategy to consider the characteristics of mobile devices and 

possible disconnections. The article describes BOINC-MGE (BOINC - 

Mobile Grid Extension), a BOINC extension that incorporates two new task 

scheduling algorithms to ensure the completion of tasks while efficiently 

using the mobile devices' energy. The strategies are tested using an image 

segmentation algorithm.  

 
 Keywords: Mobile computing, BOINC, task scheduling, smartphones, volunteer computing, 

replication.  

1. Introduction 

The amount of people using mobile devices around the world has increased significantly 

in recent years. In particular, some authors consider that smartphones are one of the best 

inventions available for this generation. Its accelerated adoption suggests that this 

technology will continue to develop as users become aware of all the things they can do 

with only a couple of clicks. On the other hand, due to the recent advances in processors 

with low power consumption, devices such as tablets and smartphones can handle 

computationally intensive applications; hence, they could be considered the future 

computing platforms (Mengistu & Che, 2019). Some examples of the use of 

smartphones as computing platforms can be found in (Hirsch et al., 2017), (Duan et al., 

2014), and (Arslan et al., 2015). 

 In the same address, several researchers have worked in incorporating mobile 

devices into the grid (e.g. (Furthmüller. & Waldhorst, 2010) (Hijab & Avula, 2011)). 

Particularly, a Mobile Grid is a specific grid where users can connect using their mobile 

devices (smartphones, tablets, etc.), mainly for two purposes: 1) to obtain access to the 

resources provided by the grid, and/or 2) to place their mobile devices as computing 

platforms available to all users of the traditional grid; being this one the use case which 

we are interested in our research. 



  

 The research project, from which derives the work presented in this article, is 

oriented to the distributed processing of medical images on mobile devices. In this 

project, BOINC was selected as the execution platform due to its complying with the 

following requirements: the possibility of running tasks on mobile devices using 

Android, support for the execution of programs written in C/C ++, the availability of its 

source code and technical documentation. C++ support was important since this is the 

language used by most of the imaging processing libraries. 

 BOINC is a platform for volunteer computing, and although it allows the use of 

mobile devices as execution platforms, some challenges of task execution are not fully 

resolved yet. These challenges are mainly due to user mobility, wireless connections, 

and limitations in battery power. These elements can cause intermittence, leading to an 

interruption of the running tasks and their subsequent rescheduling.  

 In this article, we describe the inclusion of two new scheduling algorithms in 

BOINC. These algorithms allow an adequate selection of mobile devices to complete 

the tasks since they consider the battery's current state and several users disconnect 

scenarios. Since we select the algorithms from those existing in the literature, we also 

describe the main types of scheduling strategies proposed in the area.  The results 

obtained emphasize the importance of using scheduling strategies that consider mobile 

devices' characteristics when thinking about them as execution platforms. 

 The rest of this paper is structured as follows: Section 2 details the research's 

main concepts. Section 3 discusses some related work and how they differ or align with 

our research. Section 4 presents the new scheduling strategies for BOINC-MGE. Section 

5 briefly describes how those strategies were included in the BOINC model. In Section 

6, we present the experimental results obtained after comparing the native BOINC 

algorithms with the new ones. In Section 7, we discuss other options or features not 

covered in our research and how they can extend our work. Lastly, conclusions and 

future work are described. 

2. Background  

A basic explanation of the main concepts used in this article is provided in this section.  

2.1 Grid Concepts  

A Grid is a collection of heterogeneous distributed computing resources for solving 

large-scale computational and data-intensive problems. The rise of wireless technology 

and mobile devices has increased the number and types of resources to be integrated into 

the grid. As a result, the grid concept has been enriched, and new categories have 

emerged (Kurdi et al., 2008). 

 One of these new categories is the Accessible Grid, whose resources are 

available regardless of their physical capabilities and geographical locations. Accessible 

Grids consist of a group of mobile or fixed devices with wired or wireless connectivity 

and predefined or ad hoc infrastructure (Hijab & Avula, 2011). Wireless, mobile, and ad 

hoc grids belong to this category. In Wireless Grids, wireless devices can be either 

resource providers, which contribute to data processing and/or storage, or only be mere 

consumers of grid services (Furthmüller. & Waldhorst, 2010). Mobile Grids' concept is 

very similar to the Wireless Grids concept; in fact, many authors used both terms 



  

indistinguishably. (Furthmüller. & Waldhorst, 2010) define a mobile grid as a grid that 

includes at least a mobile device. Finally, some researchers strictly define Ad Hoc 

Grids as grid environments without fixed infrastructures, i.e., all their components are 

mobile (Marinescu et al., 2003). 

 Volunteer computing is a type of distributed computing in which people, so-

called volunteers, provide computing resources to projects, which use the resources to 

do distributed computing and/or storage. Volunteers are usually public members in 

possession of their own personal computing resources (desktops, laptops, smartphones, 

etc.) with an Internet connection. Organizations can also act as volunteers and provide 

their computing resources. BOINC is an open grid framework that has been used mainly 

for voluntary grid computing projects (Anderson, 2004). Examples of volunteer 

computing projects with BOINC are SETI@home, ClimatePrediction.net, 

Rosetta@home, and Einstein@home. 

2.2 Scheduling Strategies   

Many factors make the scheduling of tasks on mobile devices challenging. Some of 

these factors came from their characteristics, such as battery constraints or wireless 

connections. The battery power is limited and supports several charging-discharging 

cycles, which means that resources are available for several discrete time periods 

(Hirsch et al., 2018). On the other hand, wireless networks make communication 

feasible, even while mobile devices are moving. However, wireless communications 

may be partially or totally interrupted at any time. Finally, mobile devices are used by 

people, which brings at least two important consequences when being selected as 

execution platforms: First, users move and can disconnect. Additionally, the devices 

cannot be considered dedicated platforms; hence running applications should make 

reasonable use of the resource. 

Thus, the scheduling task has at least two purposes: the completion of tasks despite lack 

of battery or disconnections and making fair use of the devices' energy. 

 In (Curiel, 2016) scheduling strategies, in the context of mobile grids, are 

classified into two groups: preventive and reactive, as shown in Figure 1.  

 

Figure 1. Task scheduling strategies classification (Curiel, 2016) 

  Preventive scheduling tries to ensure the task culmination by selecting the most 

reliable resource for execution or redundant resources (replication). A suitable resource 

selection can be obtained through mathematical models, which may be fed by historical 



  

or current data about, for example, the status of the devices (CPU and memory 

utilization, CPU load, battery level, etc.) or mobility patterns, among others.  On the 

other hand, task replication is beneficial in unreliable environments for workload with a 

low number of tasks and short execution times. Sometimes, however, the replication is 

initiated after a fault, and the strategy becomes reactive. 

  The use of model-based preventive strategies in mobile grids can be observed in 

the following works: (Vaithiya & Bhanu, 2010), (Liu & Li, 2009), (Chandak et al., 

2011), (Hirsch et al., 2016), (Datta et al., 2014), (Ghosh & Das, 2010), (Birje et al., 

2011), (Birje et al., 2014).  Some works such as (Guo et al., 2019), (Chunlin & Layuan, 

2010), and (Li & Li, 2010) focus mainly on the problem of energy limitation.  

 On the other hand, the work described in (Chin et al., 2009), (Litke et al., 2009), 

and (Du & Yu, 2010) are based on preventive replication to achieve the completion of 

tasks. Replication has also been used in other systems for volunteer computing.  For 

example, the work described in (Mcgough & Forshaw, 2018) is about task replication in 

high throughput systems. Authors developed two forms of task replication: i) Fixed 

replication count, and ii) Replication counts determined through Reinforcement 

Learning. 

 In this work, we implemented 2 preventive strategies: one is based on the model 

proposed in (Rodriguez et al., 2010), and the other is a modification of task replication 

proposed in (Mcgough & Forshaw, 2018). 

 

  Reactive scheduling strategies act after the tasks have been assigned to the 

resources. In this case, at least two scenarios may be possible: 1) Reallocation of tasks 

when resources fail or are about to fail (e.g. (Lee et al., 2010) and (Adeyelu et al., 2013) 

) and 2) Reallocation of tasks to do load balancing among different nodes and thus 

maximize the number of tasks that can be completed. For example, (Rodriguez et al., 

2014) explain the job-stealing technique to increase throughput by balancing the load 

and battery consumption. 
 

The work described in (Hirsch et al., 2018) refers to scheduling strategies in 

smart mobile devices as resource allocation (RA) mechanisms. Authors emphasize the 

need to provide resource allocation mechanisms to deal with resource heterogeneity and 

dynamic availability that is not present in traditional distributed computing 

environments. The concept of “Smart Mobile Devices (SMD) singularities” is 

presented as the aspects that contribute to resource heterogeneity and dynamic 

availability.  Three singularities are defined:   

 User mobility (UM):  It refers to the fact that mobile device location depends on 

the mobility of its owner. This singularity strongly affects the quantification of mobile 

devices’ communication resources and it can cause higher delays, error rates, and 

frequent spurious disconnections. 

 Lack of ownership (LO): this singularity refers to mobile devices' non-

dedicated nature, which causes that resources such as memory or CPU time are shared 

with other processes and applications of the mobile device owner. Due to this non-

dedicate nature of mobile devices, it is expected that external tasks not to (heavily) 



  

degrade the performance of owners’ applications or experience. This problem is also 

present for desktop PCs of volunteer computing, e.g., BOINC. 

 Exhaustible Resources (ER): It is related to the fact that the energy availability 

of their batteries limits resources provided by smart mobile devices. This poses a new 

challenge to RA mechanisms since finite energy is a new heterogeneity dimension when 

quantifying a mobile device's resources.  

 Based on singularities, (Hirsch et al., 2018) also propose a classification of 

scheduling or RA strategies by combining UM-ER, LO-UM, and ER-LO singularities. 

Also, they propose two resource allocation strategies addressing independently 

heterogeneity derived from UM singularity and ER singularity. 

BOINC-MGE component addresses all the previously mentioned singularities. 

Since it considers the battery power, it can be placed in the category ER-LO. Also, the 

modified RL REPL (Reinforcement Learning REPLication) scheduling strategy 

addresses the possible disconnections patterns that could come due to user mobility 

(UM) singularity. 

2.3 BOINC 

BOINC is a software infrastructure initially designed for volunteer computing, but it can 

also be used for grid computing (Anderson, 2004). It was originally developed at the 

University of California at Berkeley, and there are currently projects using BOINC in 

several fields such as physics, nuclear medicine, climatology, and astronomy, among 

others.  BOINC takes advantage of a huge computing capacity, initially using personal 

computers worldwide, and since 2012 the processing power of mobile devices through 

an Android application.  

  A BOINC project belongs to an organization or research group interested in 

using the features that volunteer or distributed computing offers. The project is 

identified in BOINC by a master URL, which is also the website's home page. Users that 

want to bring their resources to a specific project uses its URL to register on it.  

 A project can optionally be composed of multiple applications (Basic Concepts – 

BOINC, n.d.). An application includes several programs with a specific version for 

different operating systems, a set of workunits, and results. A workunit describes the 

calculation to be performed. A workunit description has several useful parameters for 

the scheduling algorithm. These parameters are estimations of a) the amount of floating-

point operations per second (FLOPS) that the CPU performs; b) the maximum amount 

of RAM that can be consumed; c) the maximum amount of disk space that can be used 

and, d) the total execution time.  

 Each calculation has results. A result consists of a reference to a workunit and a 

list of references to output files. In some cases, when task replication is used, and 

multiple instances of a given workunit are created, several results can be obtained. The 

use of replication in BOINC is described later. 

 Besides, a BOINC project has other processes that help the generation of tasks 

and their subsequent validation: the work_generator consists of a process that runs 

continuously on the server and is responsible for generating the workunits that will 

eventually be distributed by the scheduler to the devices. On the other hand, the 



  

assimilator and validator are responsible for verifying that the devices' results are 

correct and can be absorbed and marked as finalized by BOINC. 

 The workunits are sent and executed by the BOINC clients (also referred to in 

this paper as execution nodes or computing devices), which are the devices that 

volunteer users provide, being them personal computers and/or Android mobile phones. 

Task Scheduling in BOINC 

The task scheduling process is associated with the volunteer computing model of 

BOINC. When a volunteer is registered in a project, the scheduling policy executed on 

the client (in this case, a mobile device with Android) periodically makes requests to the 

task scheduler running on the server. 

 The task scheduler on the server responds to requests sent by computing devices. 

The selection of the workunits that will be sent to the volunteers is made through a 

scheduling policy based on a scoring function. The scoring function P(N, W) seeks to 

send to the execution node N the workunits W for which the value of the function 

P(N,W) is a maximum. The function used by default in BOINC (Anderson & Reed, 

2009) combines parameters related to i) the expected amount of floating-point 

operations per second (FLOPS) of the application version available for node N; ii) RAM 

and application storage requirements; iii) the number of replicas to be sent and iv) 

homogeneous redundancy class to which N belongs (Taufer et al., 2005). The use of 

replicas is explained in the next section. 

 

Figure 2. Task scheduling process in BOINC 

 Figure 2 shows the process of requesting and assigning tasks to volunteer 

devices in BOINC. The process starts when a client (an Android device in this case) 

requests tasks for execution. The BOINC SERVER received the request, which checks 

if the volunteer user associated with the client has enough privileges to access the 

project for which it is requesting tasks. After all validations and restrictions configured 

by the project administrator have been passed, the server passes the request to the 

scheduler using an internal call to the send_work_score routine, which in turn 

implements the scoring function described above. After selecting the tasks to be sent, 

the add_results_to_reply routine is executed to add the tasks into the assigned_tasks 

array. The group of selected tasks is returned to the BOINC SERVER where they are 

formatted into a response HTTP/XML message that is sent back to the client to be 

executed. When the tasks are finished, the client returns the result to the server and asks 

for new tasks, repeating all the same process. The task scheduler is implemented using 

the C++ programming language, and it is the component marked in the diagram as 

BOINC SCHEDULER. In BOINC-MGE, this component is replaced by another 



  

mechanism that integrates scheduling strategies that solve battery and disconnection 

challenges present in mobile grids. 

Replication in BOINC  

In volunteer computing, anyone with a device (smartphone, tablets, or PCs) can be a 

participant, and this means that it cannot be granted that all of them are reliable or well-

intentioned. Additionally, since BOINC is open source and easily accessible on the 

Internet, there exists the risk of receiving invalid results from one or more of the 

execution nodes. To mitigate this risk, BOINC implements a replication mechanism in 

which the same workunit is sent to several clients. Then, through a quorum system, the 

server verifies that the result returned by a device matches with the results coming from 

other execution nodes for the same workunit. Each project enables this mechanism by 

indicating the number of replicas to be generated and the number of results required in 

the quorum to mark a workunit as completed. Thus, replication in BOINC is 

implemented mainly to validate the results sent by volunteers rather than increase task 

completion probabilities. 

 There is also adaptive replication, which consists of determining whether a 

device is reliable or not depending on the amount of consecutive satisfactory results that 

it returns to the server and the time it takes to execute the workunit compared with the 

execution time limit established by the system administrator. When sending a workunit 

for the first time, the server's scheduler determines whether the device is reliable. If so, 

no extra replicas of the workunit are generated. Otherwise, the number of replicas 

indicated by the administrator are generated. Also, the required quorum value is set 

equal to the number of generated replicas. Two conditions are required to mark a device 

as reliable: a) the device must have at least 10 consecutive executions without errors, 

and b) the execution time of a workunit does not have to exceed the average of all other 

tasks previously completed by the device.  

 This is the type of replication recommended by BOINC because it tries to reduce 

the number of replicas generated over time. 

3. Related Work 

Our research project aims to parallelly process large medical images in a distributed 

system consisting mainly of mobile devices. The use of mobile devices provides 

ubiquity and has the additional advantage that health centers can save money, space, and 

energy.  

 Instead of starting the system from scratch, we decided to evaluate the existing 

technologies at the beginning of the project to take advantage of the grid systems' 

functionalities. When evaluating the technology, one of the important requirements was 

the support of the C++ language since that is the language used by the ITK (Insight 

Toolkit) library, widely used in medical image processing. 

 Even though smartphones have been used for image processing and many other 

health-related applications, e.g. (Masciantonio & Surmanski, 2017) (Agu et al., 2013) 

(Rajendran, 2019), in our search of state of art, we have not found another project that 

addresses parallel processing of images using smartphones in a distributed architecture. 

The work from (Has et al., 2015) and (Kitrungrotsakul et al., 2015) describe sequential 



  

algorithms deployed in client/server architectures, where the server performs most of the 

work. 

 Regarding systems designed specifically for the use of smartphones as 

distributed computing platforms, we can mention the following works: 

 The system's goal described in (Arslan et al., 2015) is to use mobile devices at 

night while they are charging their battery. This project, like ours, seeks to reduce space 

and energy using smartphones. However, the system was developed for the execution of 

business applications. They use a greedy algorithm that considers the CPU and 

bandwidth available on each smartphone for scheduling tasks on devices. The authors 

also design a process migration strategy to deal with disconnections of mobile devices. 

Tasks assignment differs from the BOINC model: while in BOINC, volunteers must 

download an app to receive jobs, in the system described in (Arslan, 2014) the 

placement of tasks on the phones is automatically performed by the system. 

 CANDIS (Schildt et al., 2013) is a system similar to the one described above, 

designed for executing business applications. It uses a volunteer computing model 

where tasks are assigned to a cloud system's smartphones during working hours, while 

they are charging. As in our case (due to the way BOINC works), the system is not 

exclusive to smartphones since it allows the incorporation of desktop computers or 

servers. Every time a client registers at the server, it appends its computational 

capability and resources. Based on this data, the server can determine the size of 

workunits it sends to each client. The article also presents a simulation showing that 

CANDIS has the potential to reduce energy costs. CANDIS assumes a billing model 

where the consumer can shift energy usage to cheaper times, for example, during the 

night hours. 

 The work described in (Wagner, 2020) also implements a volunteer computing 

model for mobile devices' distributed computation. The system is tested with an 

application to identify genes associated with the development of kidney cancer. The 

scheduling strategy considers the phones' characteristics (e.g., slow or fast) to assign 

tasks. The scheduling policy is reactive concerning disconnections; when a phone is 

disconnected, its work is reassigned to another client. 

 (Kumar et al., 2019) describes a system to execute a DNA sequence similarity 

algorithm. The authors argue that task assignment in BOINC is complicated. Therefore 

they offer a simpler platform that assigns jobs automatically to volunteers and does not 

require any explicit changes or setups in the smartphones.  Unlike our project, this paper 

also explores storage in mobile devices. Regarding task scheduling, the server sets 

deadlines for each device and ensures that the results are returned within that deadline. 

Tasks that fail to meet their deadlines are re-allocated to other devices. 

  The project described in (Salem, 2019) is a system developed to execute 

machine learning algorithms on a Smartphones-Based Network. The user can choose 

when the system can use their device and the percentage of usage. The scheduling 

algorithm uses this information, as well as the number of cores, threads, processes, and 

characteristics of the graphics card, to do the task assignments. The article does not 

mention strategies for disconnection cases. The application used as proof of concept is 

written in JavaScript.  



  

 The main difference between the previous works and ours is the type of 

application they were designed. These systems only support applications written in 

JAVA or JavaScript. In our project, BOINC allows programs written in various 

programming languages, particularly C++, which is one of the research project's main 

requirements. As in our case, systems described in (Arslan et al., 2015), (Kumar et al., 

2019) and (Wagner, 2020) also consider strategies for the completion of tasks when 

devices are disconnected. Our project includes a simple prediction model compromised 

of two components that can be combined or used individually. While running on a 

scenario with high stability (i.e., no disconnections), the battery-aware component can 

be used. On the other hand, when disconnections are expected, adaptative replication 

can be enabled. Other works described here only face one or another scenario, not both. 

4. New scheduling strategies in BOINC-MGE 

As mentioned previously, we included two new scheduling algorithms in BOINC that 

consider the battery's current state and several scenarios of user disconnections. One of 

the algorithms is based on predictive models and the other on replication. One of the 

most important factors in selecting the strategies was their affinity to the BOINC model.  

 Several alternatives were considered and later evaluated using multiple criteria 

that weighted the easiness of implementation, the detail provided by the authors about 

the algorithms, the adaptability to the scheduling and deployment model of BOINC, and 

the evidence presented by the authors to validate their effectiveness. We focus our 

research on preventive strategies since implementing reactive ones would require more 

modifications to the current model of BOINC. Within this group, we also wanted to 

address the SMD singularities described before as much as possible. To address ER-LO 

SMD singularities, we searched and evaluated model-based strategies like the ones 

presented by (Rodriguez et al., 2010), (Huang et al., 2005), (Huang et al., 2006), (Li & 

Li, 2010), (Alenawy & Aydin, 2005), (Xie et al., 2006) and (Kim et al., 2007). 

Similarly, to address UM singularity, we considered replication strategies that can be 

used to increase task finalization probability even when one or more users disconnects. 

However, since we want to keep the overhead at minimal levels, we look for strategies 

that aim to keep the task replicas as low as possible. We evaluated in this category the 

strategies proposed by (Du & Yu, 2010), (Chin et al., 2009), (Mcgough & Forshaw, 

2018), and the adaptive replication mechanism included in BOINC 

(AdaptiveReplication – BOINC, n.d.). 

  After the evaluation process SEAS (Simple Energy-Aware Scheduler) 

(Rodriguez et al., 2010) was selected as the strategy based on predictive models and a 

slightly modified version of RLREPL (Mcgough & Forshaw, 2018) as the strategy based 

on replication. 

4.1 SEAS – Simple Energy-Aware Scheduler 

As established in previous paragraphs, it is important to consider the battery conditions 

before selecting a mobile device to execute tasks. SEAS (Rodriguez et al., 2010) has a 

simple yet effective battery estimation model to achieve this goal. The model uses an 

algorithm that does not require to know several battery physical parameters, which are 

only known by manufacturers. On the other hand, the model differentiates from other 



  

complex strategies because it does not rely on the resolution of differential equations 

that would require the use of much computational time (Boovaragavan et al., 2008) and 

affect the overall system performance. Furthermore, SEAS's model uses real-time 

collected information about battery consumption, which means that it can predict battery 

discharge rate even if the mobile device is not used exclusively to execute the tasks that 

are sent by the BOINC server.  

 The SEAS algorithm consists of measuring the current battery charge (bc) and 

the current time (ct), and then wait until a change in the battery status charge occurs. 

When a change happens, the algorithm measures the new battery charge (nbc) and the 

new current time (nct) and uses this information to calculate the current discharge rate 

(dr) as follows: 

 

 

 By assuming that discharge rate is constant, the remaining time (rt) available for 

computing before battery exhaustion can be calculated as: 

 

 However, because the conditions of use of a device change over time (Shen et 

al., 2002), the discharge rate is not always constant. Therefore, SEAS proposes to keep a 

record of the previous estimations (rt) and use a historical average to determine the 

available time of the device. Based on these previous estimations and the execution time 

of previous tasks on the device, BOINC can determine the number of tasks to be sent so 

that they can be completed before the device is disconnected due to a lack of battery. 

4.2 RL REPL – Reinforcement Learning Replication 

(Mcgough & Forshaw, 2018) present the use of replication technic for an HTC (High 

Throughput Computing) system. Authors aim to determine for a given task t, submitted 

at time st, the number of extra replicas to be submitted into the HTC system. They used 

Reinforcement Learning (Andrew, 1998) (RL) to train an agent used to estimate the 

number of replicas expected to return the best reward (the chance that a task will 

complete within the QoS bounds).  

 RL is an unsupervised machine learning approach that can learn the "best" action 

to perform given the system's specific state. Contrary to other machine learning 

approaches, RL does not require big sets of historical data to train the agent since the 

training comes from rewards (positive feedback) given after choosing the right action 

and punishments (negative feedback) after choosing the wrong action, while real-time 

data collected from the system is used. RL adapts itself to any given environment, and 

due to its continuous training, RL also adapts to environmental changes. 

 The proposed strategy uses the reward function Rt (s,a), obtained after executing 

the task t with several replicas at a given time s. 



  

 

 Where the first term in the reward function is used to indicate that the chosen 

action was good or not, and the second term (if present) helps to steer the replication 

task towards the minimum value; k is a parameter that allows quantifying how good the 

number of replicas selected was; -k indicates that the worst option for replicas was 

selected and +k is the best possible option.  on the other hand, is the proportional 

amount of energy expended in the task's execution by the generated replicas. Moreover, 

 quantified as a fraction of k, is defined as:  

 

 Being a the number of replicas, dt the execution time of a task t, Wt the energy 

wasted running task t, δ ∈[0,k] the impact we want wasted energy to have on σt, and E 

the average energy consumption rate for the selected resource when performing 

computational work. 

 For each task to be executed, different numbers of replicas are considered and 

evaluated. The options evaluated correspond to those numbers of replicas for which it 

has been possible to finish previous work. The one with the best reward is taken from all 

the possible options, thus minimizing the total amount of energy consumed. 

 However, reinforcement learning techniques consist of two stages: an 

exploratory one where new options are sought that generate better profits, and an 

exploitative one, which is used most of the time and aims to generate the number of 

replicas that offer the best reward. Exploratory choices are made by generating a random 

number of replicas. We do not know if an alternative that was evaluated as bad in the 

past suddenly became the best option due to environmental changes.  

4.3 RL SEAS REPL - Reinforcement Learning SEAS Replication 

The strategy implemented in this work is a modification of the RL REPL (Mcgough & 

Forshaw, 2018) strategy. It uses the predictions performed by the SEAS (Rodriguez et 

al., 2010) strategy to generate results more aligned with the state of the battery 

consumption of the devices connected to BOINC. 

 In Equation 3, the σt parameter is used to measure the total amount of energy 

wasted. We propose to rewrite it to compute the amount of energy consumed from a 

particular mobile node using the discharge rate as defined by the SEAS strategy 

multiplied by the total time taken to complete the job. Since we are using replication, we 

multiply this by a, the total number of replicas generated. Equation 3, is then defined as 

follows: 



  

 

  To get the total time expended executing a task, we added some extra features in 

BOINC to measure every task's initial and final time of execution. Also, when 

summarizing the total amount of energy wasted, we use the actual data measured and 

reported by every mobile node. 

 Equation 5 is then used as the new reward function in our reinforcement learning 

model. When using this strategy, the BOINC-MGE scheduler checks if replication is 

configured and, if so, then decides whether to use an exploratory (20% of the time) or an 

exploitative (80% of the time) approach. When using the first one, a random number of 

replicas between 1 and N is generated; when using the exploitative approach, it uses the 

reward function to check which number of replicas previously generated was better 

considering the amount of energy wasted and the completion of tasks. 

 The maximum number of replicas N to be generated is determined and 

configured by the grid project administrator in BOINC-MGE. Ideally, it should be set to 

a number that does not exceed the actual number of mobile nodes available in the grid 

project. When the number of nodes is unknown (for example, because the project is 

open for anyone to join at any moment), some experiments should be performed, and 

choose a value that generates the best results. 

 For the 20% to 80% distribution to decide the current approach in the RL 

algorithm, we choose these odds as they are the ones recommended by (Mcgough & 

Forshaw, 2018) 

 The next section briefly describes how we integrate the selected new strategies 

into BOINC. 

5. Integrating the new scheduling strategies into BOINC 

To integrate the selected scheduling strategies into the BOINC platform, the server-side 

scheduling routine based on scoring was replaced by a new one, which in turn exposes a 

new API that allows the incorporation of new strategies without knowing the entire 

interaction performed between the scheduling routine and the BOINC-SERVER 

internals. The scheduling strategies were actually written on top of this new API, which 

requires to write only two routines, one that is used to decide which task have to be sent 

to the devices and another one to calculate the number of replicas that need to be 

generated for every task selected in the first routine. We use the SEAS algorithm in the 

former one and the RL SEAS REPL algorithm in the latter. 

 



  

 

Figure 3. BOINC-MGE task scheduling process 

 Figure 3 shows the new task scheduling process executed in BOINC-MGE. The 

selected SEAS and RL SEAS REPL scheduling strategies are implemented in the 

SCHEDULER STRATEGIES component, which is invoked by BOINC-MGE through 

the API in the BOINC-MGE SCHEDULER component. At least the send_work_host 

routine must be implemented to send tasks to the clients. The SEAS strategy was 

implemented on this routine, and it is always called when the BOINC-MGE extension is 

enabled in a volunteer project. The calc_num_replicas routine, on the other hand, is 

called only if replication is enabled in the volunteer project while BOINC-MGE is also 

enabled. The RL SEAS REPL strategy is implemented on this routine, and it uses the 

battery discharge rate estimations calculated by the SEAS strategy running in 

send_work_host routine. 

 The Android client application (BOINC-MGE APP in Figure 3) was also 

updated to add the ability to collect some metrics mainly related to the battery level 

status and to send them to the BOINC server using the request_tasks routine payload 

message, so they can be collected and used by the SEAS strategy to do its own 

estimations. 

6. Evaluation of BOINC-MGE scheduling strategies 

In this section, we present a performance evaluation of BOINC-MGE. The evaluation is 

composed of two parts: Firstly, we use factorial experimental designs to evaluate the 

two scheduling strategies. Lastly, we present some measurements at the server-side that 

allow observing the new implementation's resource usage. We start the section by 

describing the hardware-software platform and the application used for testing. 

6.1 The application 

A BOINC project used to execute tasks on mobile devices was initially set up, with an 

application (called canny_edge_app as shown in Figure 4). This application segments 

some images by extracting its edges using the well-known Canny Edge Algorithm 

(Canny, 1986). To make the application suitable for a distributed project, we decided to 

process large image files of more than 500MB. Those files were divided into shorter 

images used later as the input files for the tasks generated and sent to the mobile 

devices. 

 Additionally, the application incorporates a benchmark component used to force 

a high CPU usage within the devices while executing the task and to increase the 

processing time. The application developed and adapted takes on average 12 minutes to 

complete every task in the mobile phones used for testing. 



  

 

Figure 4 BOINC project application used for tests 

6.2 Executing Platform 

The BOINC server was installed and run in a Google Cloud virtual machine deployed in 

the United States using Linux Debian as the operative system, 1 vCPU (virtual CPU), 

and 1.8GB of RAM, and 20GB of disk space. 

 Five mobile devices were used in experimentation with the following 

characteristics: 

  4 Samsung Galaxy S4, ARM Octa-Core processor at 1.6GHz and a 2600 

mAh (Milliamp Hours) battery. 

  1 Motorola Moto G, ARM Quad-Core processor at 1.2 GHz and a 2070 

mAh battery. 

6.3 Evaluating the model-based scheduling strategy SEAS 

For the evaluation and validation of the SEAS strategy in BOINC, a  factorial 

experiment was carried out. This type of experiment allows measuring the impact that a 

certain number of factors have individually and jointly on one or several response 

variables. Each k factor has two possible levels, called HIGH and LOW levels. For each 

combination of factor and levels, a total of r repetitions of the experiment were 

performed to estimate experimental errors.  

 The SEAS strategy evaluation was performed using 2 factors and 3 repetitions 

per level (223), totaling 12 different experiments' executions. The response variables 

measured in each execution of the experiment are the total execution time (i.e., the total 

time spent since the scheduler sent the first sub-image until the reception of the last 

segment so the entire image can be reconstructed) and the average battery consumed by 

the devices after the completion of tasks. The objective is to evaluate the impact of the 

factors in each response variable. The two factors chosen were:  

 a) The amount of battery available in the devices.  The factor's HIGH level is 

when the devices have enough battery to finish all the assigned work. On the contrary, 

the LOW level is a scenario in which some devices enter the grid with low battery.  

 b) The use of the SEAS scheduling strategy. Its use corresponds to the factor's 

HIGH level, and the LOW level is the use of the normal BOINC scheduling strategy for 

the delivery of the work to the devices.  



  

6.4 Results  

Table 1 shows the results obtained for each experiment's combination in the response 

variable “average battery consumption”. BOINC-MGE (i.e., the use of the SEAS 

strategy) generates less consumption than its counterpart BOINC. This is because 

BOINC-MGE predicts which devices will end up disconnected in the scenario with 

battery limitation. Based on this prediction, BOINC-MGE avoids sending them tasks 

that will only be partially executed, resulting in an impact on the total battery consumed 

throughout the grid. 

 In the scenario where there is no battery limit, BOINC-MGE also uses its total 

remaining time prediction mechanism available on the devices and sends some tasks in 

advance to the execution nodes.  So the files needed for these tasks can be downloaded 

in parallel with the execution of other tasks. This allows to save the total processing 

time and therefore decreasing the total battery consumption.  

Table 1. Average battery consumption (%) for every factor combination 

 

 Concerning the total execution time, there is no significant difference between 

BOINC and BOINC-MGE when all the devices have enough battery to finish the work. 

However, when some of the devices have limited battery available, it becomes 

important to predict disconnections due to lack of battery. Based on this prediction, 

tasks are not delivered to devices close to disconnect, which avoids rescheduling and 

contributes to decreasing the total execution time. This is the SEAS strategy policy; 

therefore, total execution times are shorter when BOINC-MGE is used. Results can be 

seen in Figure 5, which shows the measurements obtained in the limited battery 

scenario. 

 

 

Figure 5.  Total time spent processing all tasks 



  

6.5 Evaluating the replication-based scheduling strategy ML SEAS REPL 

To evaluate the effectiveness of the replicas, it is necessary to create unreliable 

execution scenarios. To this end, with used a two-factor full factorial experimental 

design. Since each factor has 4 levels, and every factor-level combination was 

conducted only once, the total number of experiments was 16.  

 The factors were: 

a) The disconnection scenario, with 4 levels: the first one represents an ideal 

scenario where there are no disconnections. The other three scenarios have 

different disconnection frequencies: 

  Very unstable, with disconnections every 10 minutes.  

  Medium stability, with disconnections every 15 minutes.  

  Stable or Few disconnections, in which the devices are disconnected every 

30 minutes 

These values were not randomly selected; instead, we tried to simulate 4 

different scenarios by considering that the application's average execution time 

on any of the mobile phones is 12 minutes. Therefore, a “Very Unstable” 

scenario means that the mobile phone will be disconnected without completing 

the task assigned. “Medium Stability” means that the mobile phone would be 

able to complete and upload the result of at least one task before disconnecting. 

Similarly, “Stable” means that the node will fully complete and report at least 

two tasks, and the “Ideal” scenario means that the mobile phone will complete 

any task assigned without disconnecting. 

It is worth mentioning that the disconnection frequency is also the time a mobile 

device remains disconnected. Every x number of minutes, we disconnect several 

devices and reconnect others that were previously disconnected in the past. 

Since we only have 5 devices to perform our test and use from 1 to 3 replicas, 

we randomly select 2 devices to disconnect when our defined frequency is 

matched. 

b) The scheduling strategy, with 4 levels, one of them corresponding to the 

BOINC-MGE scheduling strategy, and the other three to different BOINC fixed 

replication configurations, with 1, 2, and 3 replicas, respectively. It is necessary 

to clarify that, although BOINC replicas were not designed to ensure the 

completion of tasks in unreliable scenarios, they can be used within BOINC 

projects with this aim. 

The response variables are the total execution time, and the average battery consumed 

by the devices after completing tasks.  

6.6 Results  

Figures 6 and 7 show the consolidated results grouped by scheduling strategy in each 

disconnection scenario. The dotted line shows the overall average measurement for the 

response variable. It can be observed that, for both response variables, the BOINC-MGE 

scheduling strategy generates better results, being in both cases below the overall 



  

average and of all the other replication options that BOINC offers. The graphs also 

show, as expected, that the best results are obtained when there are no device 

disconnections; this is since there no task rescheduling that could generate an increase in 

the total execution time and general battery consumption. 

 

 

Figure 6. Total time spent (minutes) finishing all tasks 

 In general, using BOINC-MGE decreases on average 1 hour and 28 minutes the 

total time required to complete all the work dispatched and reduces the total battery 

consumption per device by up to 17%. These results can be explained because the RL 

SEAS REPL strategy can be adapted to different disconnection scenarios. It efficiently 

generates the number of replicas necessary to ensure the completion of tasks while 

reducing battery consumption. 

 

Figure 7. Per device average battery consumption (%) 

6.7 Impact of BOINC-MGE in the server-side 

We made measurements on the server to compare the resource usage with respect to 

BOINC scheduling strategies. To carry it out, it was decided to execute a set of tasks 

using BOINC-MGE with its two scheduling strategies enabled and the default BOINC 

strategy that generates a single replica for each task sent to the devices. In both cases, 

RAM consumption and CPU usage were measured for the entire time the devices took 

to finish all the tasks assigned by the scheduler. 



  

 Regarding the CPU usage, there are no substantial differences between the two 

alternatives, as shown in Figure 8, since BOINC-MGE does not generate new processes 

in the operating system nor significantly increases the calculation operations performed 

in the server. 

 

Figure 8 CPU usage (%) in the server over time 

 Memory usage is observed in Figure 9. Although the memory consumption is 

similar in both models, BOINC-MGE consumes about 1% more memory than BOINC, 

which is equivalent to approximately 20MBs. However, given the current hardware 

features that web servers have, it is not a significant consumption. 

 

 

Figure 9 Memory consumed in the server over time 

7. Discussion 

From the obtained results, it is derived that by incorporating a simple analytical model 

in the scheduling strategy, it is possible to utilize the devices better. The model, 

parameterized with information from the devices, allowed BOINC-MGE to assign them 

a smaller or larger number of tasks depending on their battery status and disconnection 

patterns. The improvements of BOINC-MGE over BOINC were obtained in the total 

battery consumption and the total execution time. Nevertheless, our model could be 

extended for better accuracy, using other features such as network quality, network type, 

user behavior, etc.  



  

 To deal with disconnections, there are several strategies. One of them is the use 

of replication. There are preventive and reactive approaches. According to the summary 

presented in (Curiel, 2016), replication divides some authors' opinion: while some 

authors think that the strategy is right because it prevents underutilized resources, others 

seek new metrics that allow measuring the waste of resources due to replication.  As 

expected, in our case study, execution times were increased by 21% on average when 

using replication since it was enabled when having device disconnections. Battery 

consumption was similar because most of the battery consumption is performed when 

computing tasks. In this sense, the recommendation is to use replicas only in highly 

unstable environments. Additionally, we recommend using adaptive strategies such as 

the one implemented in this work, which efficiently generates only the number of 

replicas necessary to ensure the completion of tasks while reducing battery 

consumption. 

 Although we focus our research on disconnections and battery exhaustion in 

mobile devices, there are still some other challenges related to the UM, LO singularities 

described before. One of them is network bandwidth and network connection type for 

the specific case of mobile devices. The first one refers to the quality of the network that 

is going to be used to send input data to the task, as well as to receive the results after 

the task completion. Another challenge refers to the fact that mobile devices can be 

connected to the internet, whether using a cellular data network or a Wi-Fi one. In order 

to ensure the completion of jobs and reduce the impact on the user experience and 

resources.  An efficient mobile grid scheduler should also consider these two factors in 

the allocation and distribution routine. 

 Some articles addressing the subject are (Quintin & Wagner, 2012), (Lee et al., 

2013), (Jiang et al., 2016) and (Guo et al., 2019). However, they only focus on the use of 

network bandwidth to decide how to distribute tasks on the grid, and they do not 

integrate them with other strategies to make a fully capable mobile grid scheduler that 

aims to solve more mobile phone singularities. 

 We propose exploring these areas for future work and try to incorporate more 

features in the scheduler routines. Nevertheless, it is worth mentioning that BOINC and 

BOINC-MGE currently provide a mechanism in the Android application configuration 

to let the user decide whether to join a specific volunteer project using mobile cellular 

data connections. We think that this is not enough and can be highly improved. 

8. Conclusions 

In this paper, we have presented BOINC-MGE, an extension to BOINC that adds new 

scheduling algorithms focused on solving problems related to the execution of tasks on 

mobile devices.  These algorithms allow an adequate selection of mobile devices to 

complete the tasks while considering the current battery charge level and several 

scenarios of user disconnections. 

 We incorporated two state of the art algorithms, one based on a prediction model 

and another based on replications. An API was designed to make future incorporations 

of new scheduling strategies easier. 



  

  Additionally, a performance evaluation study was carried out through the 

execution of factorial experimental designs.  Through the experiments, we were able to 

verify that the use of a simple analytical model (the SEAS model) parameterized with 

the state of the battery allows making more efficient work assignments. The general 

battery consumption was improved, as well as the execution times.  Concerning the total 

execution times, we did not obtain a significant difference between BOINC and 

BOINC-MGE when all the devices have enough battery to finish the work. However, 

when some of the devices have limited battery available, the prediction of possible 

disconnections was crucial. Based on this prediction, tasks were not delivered to devices 

close to disconnect, thus avoiding rescheduling and contributing to the decrease of the 

total execution time. 

 In general, the use of replicas and the existence of intermittent scenarios, as 

expected, increase the execution times compared to an ideal scenario with no 

disconnections. However, in those cases, when using BOINC-MGE, the execution times 

decrease 1 hour 28 minutes on average, compared to BOINC. The total battery 

consumption per device was reduced by up to 17%. In the face of possible disconnection 

scenarios that require the use of replicas, the adaptive algorithm RL SEAS REPL only 

generates the number of replicas necessary to ensure the completion of tasks. Thus, if 

the context demands replicas, the best alternative is the use of an adaptive strategy that 

guarantees a more efficient use of resources.  

 Our results reinforce the fact that it is important to adapt scheduling strategies to 

mobile devices' characteristics when thinking about them as execution platforms. This 

will allow for better application performance and better use of the resources offered by 

volunteers. The above leads us to recommend the activation of BOINC-MGE in projects 

that incorporate mobile devices as computational resources.  

 The implemented models can still be refined to consider, for example, the 

characteristics of the interconnection network or user preferences. 

 In the context of our research project, some questions should still be solved. For 

example, what specific kind of medical imaging processing problems can it be used for? 

Is it convenient to continue with the volunteer computing model that BOINC has? How 

can image processing libraries be integrated into BOINC-MGE? 

References 

AdaptiveReplication – BOINC. (n.d.). Retrieved April 30, 2018, from 

https://boinc.berkeley.edu/trac/wiki/AdaptiveReplication 

Adeyelu, A., Olajubu, E., Aderounmu, A., & Ge, T. (2013). A Model for Coordinating 

Jobs on Mobile Wireless Computational Grids. International Journal of Computer 

Applications, 84(13), 17–24. https://doi.org/10.5120/14636-1637 

Agu, E., Pedersen, P., Strong, D., Tulu, B., He, Q., Wang, L., & Li, Y. (2013). The 

smartphone as a medical device: Assessing enablers, benefits and challenges. 2013 

IEEE International Workshop of Internet-of-Things Networking and Control, IoT-

NC 2013. https://doi.org/10.1109/IoT-NC.2013.6694053 

Alenawy, T. A., & Aydin, H. (2005). Energy-constrained scheduling for weakly-hard 

real-time systems. Proceedings - Real-Time Systems Symposium. 



  

https://doi.org/10.1109/RTSS.2005.18 

Anderson, D. P. (2004). BOINC: A system for public-resource computing and storage. 

Proceedings - IEEE/ACM International Workshop on Grid Computing, 4–10. 

https://doi.org/10.1109/GRID.2004.14 

Anderson, D. P., & Reed, K. (2009). Celebrating diversity in volunteer computing. 

Proceedings of the 42nd Annual Hawaii International Conference on System 

Sciences, HICSS, 1–8. https://doi.org/10.1109/HICSS.2009.105. 

Andrew, A. M. (1998). Reinforcement Learning: An Introduction. In Kybernetes. 

https://doi.org/10.1108/k.1998.27.9.1093.3 

Arslan, M. Y., Singh, I., Singh, S., Madhyastha, H. V., Sundaresan, K., & 

Krishnamurthy, S. V. (2015). CWC: A distributed computing infrastructure using 

smartphones. IEEE Transactions on Mobile Computing. 

https://doi.org/10.1109/TMC.2014.2362753 

Basic Concepts – BOINC. (n.d.). Retrieved April 30, 2018, from 

https://boinc.berkeley.edu/trac/wiki/BasicConcepts 

Birje, M. N., Manvi, S. S., & Das, S. K. (2014). Reliable resources brokering scheme in 

wireless grids based on non-cooperative bargaining game. Journal of Network and 

Computer Applications. https://doi.org/10.1016/j.jnca.2013.07.007 

Birje, Manvi, & Bulla. (2011). Economical job scheduling in wireless grid. ICECT 2011 

- 2011 3rd International Conference on Electronics Computer Technology. 

https://doi.org/10.1109/ICECTECH.2011.5941835 

Boovaragavan, V., Harinipriya, S., & Subramanian, V. R. (2008). Towards real-time 

(milliseconds) parameter estimation of lithium-ion batteries using reformulated 

physics-based models. Journal of Power Sources. 

https://doi.org/10.1016/j.jpowsour.2008.04.077 

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on 

Pattern Analysis and Machine Intelligence. 

https://doi.org/10.1109/TPAMI.1986.4767851 

Chandak, A., Sahoo, B., & Turuk, A. K. (2011). Efficient task scheduling using mobile 

grid. International Conference on Recent Trends in Information Technology, 

ICRTIT 2011, 1255–1258. https://doi.org/10.1109/ICRTIT.2011.5972343 

Chin, S. H., Suh, T., & Yu, H. C. (2009). Genetic algorithm based scheduling method 

for efficiency and reliability in mobile grid. Proceedings of the 4th International 

Conference on Ubiquitous Information Technologies and Applications, ICUT 

2009, 1–6. https://doi.org/10.1109/ICUT.2009.5405741 

Chunlin, L., & Layuan, L. (2010). Controlling energy without compromising system 

performance in mobile grid environments. Computers and Electrical Engineering, 

36(3), 503–517. https://doi.org/10.1016/j.compeleceng.2009.12.004 

Curiel, M. J. H. (2016). Wireless grids: Recent advances in resource and job 

management. Handbook of Research on Next Generation Mobile Communication 

Systems, 293–320. https://doi.org/10.4018/978-1-4666-8732-5.ch012 



  

Datta, P., Dey, S., Paul, H. S., & Mukherjee, A. (2014). ANGELS: A framework for 

mobile grids. Proceedings - International Conference on 2014 Applications and 

Innovations in Mobile Computing, AIMoC 2014, 15–20. 

https://doi.org/10.1109/AIMOC.2014.6785513 

Du, L. J., & Yu, Z. W. (2010). Scheduling algorithm with respect to resource 

intermittence in mobile grid. 2010 6th International Conference on Wireless 

Communications, Networking and Mobile Computing, WiCOM 2010, 2–6. 

https://doi.org/10.1109/WICOM.2010.5600181 

Duan, L., Kubo, T., Sugiyama, K., Huang, J., Hasegawa, T., & Walrand, J. (2014). 

Motivating smartphone collaboration in data acquisition and distributed computing. 

IEEE Transactions on Mobile Computing, 13(10), 2320–2333. 

https://doi.org/10.1109/TMC.2014.2307327 

Furthmüller., & Waldhorst. (2010). A survey on grid computing on mobile consumer 

devices. Handbook of Research on P2P and Grid Systems for Service-Oriented 

Computing, 313–363. https://doi.org/10.4018/978-1-4666-0879-5.ch510 

Ghosh, P., & Das, S. K. (2010). Mobility-aware cost-efficient job scheduling for single-

class grid jobs in a generic mobile grid architecture. Future Generation Computer 

Systems, 26, 1356–1367. https://doi.org/10.1016/j.future.2009.05.003 

Guo, S., Liu, J., Yang, Y., Xiao, B., & Li, Z. (2019). Energy-Efficient Dynamic 

Computation Offloading and Cooperative Task Scheduling in Mobile Cloud 

Computing. IEEE Transactions on Mobile Computing, 18(2), 319–333. 

https://doi.org/10.1109/TMC.2018.2831230 

Has, M., Kaplan, A. B., & Dizdaroğlu, B. (2015). Medical image segmentation with 

active contour model: smartphone application based on client-server 

communication. 2015 Medical Technologies National Conference (TIPTEKNO), 

1-4. 

Hijab, M., & Avula, D. (2011). Resource discovery in wireless, mobile and ad hoc grids 

- Issues and challenges. International Conference on Advanced Communication 

Technology, ICACT, 502–505. 

Hirsch, M., Mateos, C., & Zunino, A. (2018). Augmenting computing capabilities at the 

edge by jointly exploiting mobile devices: A survey. Future Generation Computer 

Systems, 88, 644–662. https://doi.org/10.1016/j.future.2018.06.005 

Hirsch, M., Rodríguez, J. M., Mateos, C., & Zunino, A. (2017). A Two-Phase Energy-

Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids. Journal of 

Grid Computing, 15(1), 55–80. https://doi.org/10.1007/s10723-016-9387-6 

Hirsch, M., Rodriguez, J. M., Zunino, A., & Mateos, C. (2016). Battery-aware 

centralized schedulers for CPU-bound jobs in mobile Grids. Pervasive and Mobile 

Computing, 29, 73–94. https://doi.org/10.1016/j.pmcj.2015.08.003 

Huang, C. Q., Zhu, Z. T., Wu, Y. H., & Xiao, Z. H. (2006). Power-aware hierarchical 

scheduling with respect to resource intermittence in wireless grids. Proceedings of 

the 2006 International Conference on Machine Learning and Cybernetics, 

2006(August), 693–698. https://doi.org/10.1109/ICMLC.2006.258419 



  

Huang, Mohapatra, S., & Venkatasubramanian, N. (2005). An energy-efficient 

middleware for supporting multimedia services in mobile grid environments. ITCC 

2005: International Conference on Information Technology: Coding and 

Computing, Vol 2, 220–225. https://doi.org/10.1109/itcc.2005.77 

Jiang, J., Ma, S., Li, B., & Li, B. (2016). Symbiosis : Network-Aware Task Scheduling in 

Data-Parallel Frameworks. In IEEE INFOCOM 2016-The 35th Annual IEEE 

International Conference on Computer Communications. 1-9. 

Kim, K. H., Buyya, R., & Kim, J. (2007). Power aware scheduling of bag-of-tasks 

applications with deadline constraints on DVS-enabled clusters. Proceedings - 

Seventh IEEE International Symposium on Cluster Computing and the Grid, 

CCGrid 2007, 541–548. https://doi.org/10.1109/CCGRID.2007.85 

Kitrungrotsakul, T., Dong, C., Tateyama, T., Han, X.-H., & Chen, Y.-W. (2015). 

Interactive segmentation and visualization system for medical images on mobile 

devices. Journal of Advanced Simulation in Science and Engineering, 2(1), 96–

107. https://doi.org/10.15748/jasse.2.96 

Kumar, M., Bhat, R. R., Alavandar, S. R., & Ananthanarayana, V. S. (2019). Distributed 

Public Computing and Storage using Mobile Devices. 2018 IEEE Distributed 

Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2018 - 

Proceedings, 82–87. https://doi.org/10.1109/DISCOVER.2018.8674111 

Kurdi, H., Li, M., & Al-Raweshidy, H. (2008). A Classification of Emerging and 

Traditional Grid Systems. IEEE Distributed Systems Online. 9(3). 

Lee, Abe, H., Hirotsu, T., & Umemura, K. (2013). Performance implications of task 

scheduling by predicting network throughput on the internet. Proceedings - 12th 

IEEE International Conference on Trust, Security and Privacy in Computing and 

Communications, TrustCom 2013, 1089–1098. 

https://doi.org/10.1109/TrustCom.2013.132 

Lee, Chin, S. H., & Gil, J. M. (2010). Efficient resource management and task migration 

in mobile grid environments. Communications in Computer and Information 

Science, 78 CCIS, 384–393. https://doi.org/10.1007/978-3-642-16444-6_48 

Li, & Li. (2010). Energy constrained resource allocation optimization for mobile grids. 

Journal of Parallel and Distributed Computing, 70(3), 245–258. 

https://doi.org/10.1016/j.jpdc.2009.06.003 

Litke, A., Halkos, D., Tserpes, K., Kyriazis, D., & Varvarigou, T. (2009). Fault tolerant 

and prioritized scheduling in OGSA-based mobile Grids. Concurrency 

Computation Practice and Experience. https://doi.org/10.1002/cpe.1351 

Liu, L., & Li, C. (2009). Mobile grid task scheduling considering resource reliability. 

Proceedings - 1st International Symposium on Computer Network and Multimedia 

Technology, CNMT 2009. https://doi.org/10.1109/CNMT.2009.5374742 

Marinescu, D. C., Marinescu, G. M., Ji, Y., Bölöni, L., & Siegel, H. J. (2003). Ad hoc 

grids: Communication and computing in a power constrained environment. IEEE 

International Performance, Computing and Communications Conference, 

Proceedings, 113–122. https://doi.org/10.1109/pccc.2003.1203690 



  

Masciantonio, M. G., & Surmanski, A. A. (2017). Medical smartphone applications A 

new and innovative way to manage health conditions from the palm of your hand. 

University of Western Ontario Medical Journal. 86(2), 51-53, 2017. 

Mcgough, A. S., & Forshaw, M. (2018). Evaluation of Energy Consumption of 

Replicated Tasks in a Volunteer Computing Environment. In Companion of the 

2018 ACM/SPEC International Conference on Performance Engineering . 85–90. 

Mengistu, T. M., & Che, D. (2019). Survey and taxonomy of volunteer computing. 

ACM Computing Surveys, 52(3). https://doi.org/10.1145/3320073 

Quintin, J. N., & Wagner, F. (2012). WSCOM: Online task scheduling with data 

transfers. Proceedings - 12th IEEE/ACM International Symposium on Cluster, 

Cloud and Grid Computing, CCGrid 2012, 344–351. 

https://doi.org/10.1109/CCGrid.2012.21 

Rajendran. (2019). Image Analysis Using Smartphones for Medical Applications: A 

Survey. Intelligent Pervasive Computing Systems for Smarter Healthcare. 275-290.  

Rodriguez, J. M., Mateos, C., & Zunino, A. (2014). Energy-efficient job stealing for 

CPU-intensive processing in mobile devices. In Computing, 96(2). 

https://doi.org/10.1007/s00607-012-0245-5 

Rodriguez, J. M., Zunino, A., & Campo, M. (2010). Mobile Grid SEAS : Simple Energy-

Aware Scheduler. 54(2293), 3341–3354. 

Salem, H. (2019). Distributed Computing System on a Smartphones-Based Network. 

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 11771 LNCS(November), 313–

325. https://doi.org/10.1007/978-3-030-29852-4_26 

Schildt, S., Büsching, F., Jörns, E., & Wolf, L. (2013). CANDIS: Heterogenous mobile 

cloud framework and energy cost-aware scheduling. Proceedings - 2013 IEEE 

International Conference on Green Computing and Communications and IEEE 

Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-

IThings-CPSCom 2013, 1986–1991. https://doi.org/10.1109/GreenCom-iThings-

CPSCom.2013.372 

Shen, W. X., Chan, C. C., Lo, E. W. C., & Chau, K. T. (2002). Estimation of battery 

available capacity under variable discharge currents. Journal of Power Sources. 

https://doi.org/10.1016/S0378-7753(01)00840-0 

Taufer, M., Anderson, D., Cicotti, P., & Brooks, C. L. (2005). Homogeneous 

redundancy: A technique to ensure integrity of molecular simulation results using 

public computing. Proceedings - 19th IEEE International Parallel and Distributed 

Processing Symposium, IPDPS 2005, 2005. 

https://doi.org/10.1109/IPDPS.2005.247 

Vaithiya, S. S., & Bhanu, S. M. S. (2010). Scheduling tasks in mobile grid environment 

using mobility based resource prediction. 2010 1st International Conference on 

Parallel, Distributed and Grid Computing, PDGC - 2010, 89–94. 

https://doi.org/10.1109/PDGC.2010.5679600 

Wagner, J. (2020). A Prototype for Distributed Computing Platform. Technical Library. 



  

350. https://scholarworks.gvsu.edu/cistechlib/350  

Xie, T., Qin, X., & Nijim, M. (2006). Solving energy-latency dilemma: Task allocation 

for parallel applications in heterogeneous embedded systems. Proceedings of the 

International Conference on Parallel Processing, 12–19. 

https://doi.org/10.1109/ICPP.2006.66 

 


