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Abstract

Software contributions to academic research are relatively invisible, especially to the

formalized scholarly reputation system based on bibliometrics. In this paper we introduce a

gold-standard dataset of software mentions from the manual annotation of 4,971 academic

PDFs in biomedicine and economics. The dataset is intended to be used for automatic

extraction of software mentions from PDF format research publications by supervised

learning at scale. We provide a description of the dataset and an extended discussion of its

creation process, including improved text conversion of academic PDFs. Finally, we reflect

on our challenges and lessons learned during the dataset creation, in hope of encouraging

more discussion about creating datasets for machine learning use.
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Softcite Dataset: A Dataset of Software Mentions in Biomedical and Economic

Research Publications

Introduction

Software is crucial to contemporary scholarship because it is a key element of the

“knowledge infrastructure” supporting research (Edwards et al., 2013; Howison & Bullard,

2016; Mayernik et al., 2017). Yet, like other infrastructural work (Star & Ruhleder, 1996),

the creation and maintenance of research software has been found to be relatively invisible,

especially to the formalized scholarly reputation system built on bibliometrics (Howison

et al., 2015; Howison & Herbsleb, 2011; Mayernik et al., 2017). This is because practices of

mentioning software in publications are diverse, hard to observe, and hard to use for

software creators to demonstrate their impact. While other measures of impact such as

downloads or “forks” of code repositories are sometimes used, they are difficult to compare

to bibliometrics and their relationship to actual use in research is less clear than mentions

in publications.

Invisibility leads to the under-acknowledgement of software as meaningful academic

contributions, and thus reduces incentives for researchers and funders to undertake

software work. As a result the quality of software degrades and the effectiveness of

scholarly funding and scholarship is undermined.

To support increased visibility of software in the research literature we present the

Softcite dataset, a “gold-standard” corpus of software mentions intended for training and

testing supervised machine learning models for software entity recognition at scale. The

software mentions are annotated within full-text open access biomedical and economic

academic articles converted directly from PDFs.

This article is organized in five sections. First, we review existing work on software

visibility and entity extraction. Second, we describe our annotated corpus, introducing its

data sources, creation, format, and content. Third, to enhance provenance, we provide

details of our process. Fourth, we reflect on our project, pointing to challenges and lessons

learned. Finally, we discuss future work.
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Related Work

Existing work seeks to make software more visible in research literature by (1)

changing authoring and publishing practices, and (2) identifying software in currently

published literature using text processing and entity recognition.

Changing authoring and publishing practices involves disseminating clear standards

for formal software citation as well as changing the behaviors of researchers and publishers.

For example, leveraging FORCE11’s experience in promoting data citation, the FORCE11

Software Citation Working Group1 and the subsequent Software Citation Implementation

Working Group2 have been leading this effort (e.g., Chue Hong, Allen, Gonzalez-Beltran,

et al., 2019; Chue Hong, Allen, Gonzalez-Beltran, et al., 2019; Smith et al., 2016).

Mozilla Science, GitHub, Zenodo, and Software Heritage facilitate archiving and

identification of software releases (Di Cosmo, 2020; Di Cosmo, Gruenpeter, & Zacchiroli,

2019) to support new software citation practices. Digital repositories and registries such as

HAL (Hyper articles en Ligne), Astrophysics Source Code Library (ASCL), and swMath

catalogue software, provide metadata and links to software (Allen & Schmidt, 2014;

Di Cosmo, Gruenpeter, Marmol, et al., 2019; Greuel & Sperber, 2014). swMath also tracks

citations to the software (Greuel & Sperber, 2014). The Research Resource Identification

initiative (RRID) provides unique identifiers for research resources including software

(A. E. Bandrowski & Martone, 2016; A. Bandrowski et al., 2016). Innovative venues such

as the Journal of Open Research Software (JORS), the Journal of Open Source Software

(JOSS), and ACM Transactions on Mathematical Software, publish peer-reviewed

“software papers”.

A third approach to changing current practices is to show how to cite software.

Software creators can declare the preferred citation requests using ecosystem specific forms

(e.g., the R CITATION file), or general schema such as CodeMeta and CITATION.cff, or

through free-form statements on websites. A specialized search engine, CiteAs.org,

(“CiteAs.org”, n.d.) helps users find these statements.

While these efforts aim to change citation practices moving forward, a second

strategy seeks to work with existing publications and to identify software mentions within

them.
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Some efforts focus on formal citations. For example, bibliometric services like the

Web of Science Data Citation Index (Park & Wolfram, 2019) have started to index

software citations in addition to data. Yet empirical studies show that less than half of

software mentions have formal citations (Howison & Bullard, 2016).

Accordingly, other efforts focus on identifying mentions in full-text. This approach

is called “named entity recognition” (NER). NER does not require change by authors and

publishers and thus complements efforts to disseminate new behaviors and new systems of

software citation and indexing. Krüger and Schindler (2020) reviews studies using NER

techniques to identify software, together with data and databases, categorizing 48 articles

into four main approaches: term search (12 studies, 1 on software), manual extraction (12

studies, 6 on software), rule-based extraction (16 studies, 5 on software), and supervised

learning (4 studies, 2 on software). We complement their review with newly identified

studies focusing on software recognition. In total, we found 18 studies identifying software

mentioned in research: term search (1 study), manual annotation (6 studies), rule-based

extraction (7 studies), and supervised learning (4 studies).

Term search (e.g., Russell et al. (2018)) utilizes known identifiers as search terms,

including URLs, DOIs, or software names. Results of term search have high precision,

identifying software consistently mentioned by widely-known and recognizable names, but

cannot discover previously unknown software entities, nor deal with variation or ambiguity

in naming, making recall unknown but likely low.

Rule-based extraction relies on syntactic heuristics specifying patterns common to

software mentions. For instance, leveraging the URL patterns specific to R package

management system, Li and Yan (2018) achieved a precision of .84 and a recall of .87 in

identifying mentions of R packages in 13,694 PLoS journal articles. Rules, once created,

scale well, but are limited to specific domains or specific software ecosystems (e.g., Greuel

and Sperber (2014), Hwang et al. (2019)).

Manual cataloging of mentions by humans performs better in identifying alternative

phrasing that mentions software in literature. It produces data with both high recall and

precision, but requires great commitment of time and engagement (Howison et al., 2015;

McLennan & Kennell, 2010). Accordingly, existing manually extracted datasets of software
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mentions are relatively small: 90 (Howison & Bullard, 2016), 40 (Nangia & Katz, 2017),

166 (Allen et al., 2018), and 85 articles (Duck et al., 2015).

Supervised machine learning is a promising solution to extend the usefulness of

manually annotated data. For example, Krüger and Schindler (2020) used a deep learning

model trained on the bootstrapped dataset generated by Duck et al. (2016) and achieved a

precision of .90 and a recall of .94. But, as in many applications, broadly generalizable

supervised learning models need large quantities of gold-standard data to build confidence

in results (Halevy et al., 2009).

The relatively small manually annotated datasets mean that current applications of

supervised learning in software NER often adopt so-called “weak” supervision strategies

such as bootstrapping. Bootstrapping relies on whitelists of software names, usually drawn

from external dictionaries, or small sets of “seed” mentions identified in a rule-based

fashion (e.g., Duck et al. (2015), Duck et al. (2016), Ozyurt et al. (2016), Pan et al. (2016),

Pan et al. (2015), Schindler et al. (2020)). These “seeds” are then used as examples to

train supervised learning models able to identify software beyond the seeds.

Bootstrapping is promising, nevertheless it is costly to evaluate its quality because

mentions are sparse within publications. While false positives can be identified by

examining only the text of the identified mentions themselves, checking for false negatives

requires manually reviewing large amounts of full-text. Sampling can help, checking

randomly selected sections of full-text for false negatives, however the effort is still

substantial, and at the limit approaches the cost of creating a gold-standard dataset.

Bootstrapping tends to offer good precision, but relatively low recall: e.g., Pan et al. (2015)

obtained an F-score of .58, and a recall of .42 assessed by re-coding a sample of full-text.

Combining approaches can yield improvements. For example, the Resource

Disambiguator for the Web (RDW) text mining pipeline boosts bootstrapped software

NER with regular expression search for URL and RRIDs, but lacking a true gold-standard

dataset, uses post-hoc inspection to estimate high recall (.86) and precision (.94) (Hsu

et al., 2019; Ozyurt et al., 2016).

Full supervision can significantly improve the scope and performance of NER, as

well as provide benchmarks for evaluating bootstrapping and other weak supervision
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approaches, but high cost is unavoidable. More full-text annotation of software mentions,

especially across disciplines, will boost efforts throughout the community.

NER is also limited by the availability of usable full-text of academic articles.

However the default format for scholarly article publishing is the PDF. PDF is good at rich

content presentation but extremely challenging for machine processing. Increasingly

publishers are providing XML versions of article text, and XML is much more suitable for

machine processing, but coverage remains only partial and uneven across domains,

especially in combination with open access licensing, requiring contract negotiations. Thus,

existing NER in scholarly text are often limited to article abstracts or sections (e.g.,

Ozyurt et al., 2016; Schindler et al., 2020; Wei et al., 2020), rather than enabling full-scale

“distant reading” for bibliometric and text analysis of the literature (Mehta et al., 2017).

While XML is increasingly available from traditional publishers, we think it is unlikely that

standardized XML will ever achieve full coverage, especially considering the growth of open

access pre-print and institutional repositories. Further, different publishers provide

different XML formats, requiring pipelines to manage differences between them. Given all

above, we sought to create a gold-standard dataset of annotated software mentions directly

from PDF academic publications.

The Softcite dataset

We created the Softcite dataset, which is presented as a TEI/XML file with

paragraphs from articles automatically converted from PDF publications, as well as article

level metadata. In these paragraphs are annotations of 4,093 software mentions, together

with 2,541 annotations of their details including publisher, version, and URL. Below we

describe the data sources and their annotation, dataset format and content, and validation

through prototype NER training.

Annotation

To create this dataset we manually annotated 4,971 full-text research articles

published during the period 2000-2010: 2,521 from biomedicine and 2,450 from economics.

All articles were open access and obtained as PDFs.
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We chose biomedicine as a field where software is known to have made a large and

recent impact, including the formation of the new sub-field of bioinformatics. To increase

the diversity of publishers and citation practices in our dataset, we chose economics as a

contrast to biomedicine. Still more fields will be needed for enhancing cross-disciplinary

NER.

Biomedical articles were randomly selected from the PubMed Central (PMC) Open

Access (OA) Subset 3. PMC is a quality source of OA publications in biomedicine with

high coverage. We downloaded and randomly sorted the index of DOIs, enabling us to

expand our sample if needed.

Economic articles were retrieved from Unpaywall (“Unpaywall”, n.d.), which gives

access to the largest collection of open access articles via CrossRef DOIs (Piwowar et al.,

2018). We used the “subfield” attribute of the Classification of Scientific Journals (Eric,

2016) to identify a list of ISSNs that we queried in Unpaywall, pulling 5,000 random DOIs

for which Unpaywall had found an open access PDF link. Both collections included some

non-article PDFs (e.g., journal front-matter) which annotators skipped.

We employed 36 paid student annotators over two years. Annotators were trained

and then assigned PDF articles to read, copying quotes containing software mentions into

working files and applying our annotation scheme. As a group we first annotated the

biomedical articles, then switched to economics approximately half-way through our

annotation budget. Training effectiveness was assessed through a period of double

annotation, after which articles were annotated by a single person.

The entire dataset underwent review and curation by an author of this paper,

working in consultation with two other authors as expert annotators. Curation resolved

inconsistencies, including conceptual inconsistencies (such as whether web services like

Google were software) and fatigue inconsistencies (by inspecting all occurrences of

identified software names).

Further details of annotation, training, alignment, and curation are documented

later in this paper in detail sufficient to understand the provenance of the dataset (Gebru

et al., 2018; Thomer et al., 2018).

The annotation scheme represented in the final Softcite dataset is shown in
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Figure 1.

Figure 1

Final annotation scheme applied to the Softcite dataset

Publication as TEI/XML

The PDFs were converted to machine-readable text using GROBID (“GROBID”,

2008–2020), which uses machine learning to perform “structure-aware” text extraction from

PDFs (“Document engineering | science-miner”, n.d.). GROBID produces TEI/XML

representations of academic articles including title, author, DOI, section titles, figures,

tables, and in-text citations and bibliography items. We used Python (“Python”, n.d.)

scripts to align the full-text quotes from the annotators with the GROBID produced
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TEI/XML text.

The corpus file contains one TEI entry for every scholarly publication reviewed by

annotators, encoded following guidelines from the TEI consortium (TEI Consortium,

2020). Each article entry is a <TEI> element with metadata including title, article source

(PMC or economics), and publication identifier (DOI, PMCID, PMID). Each paragraph

containing at least one manually annotated software mention is encoded under the TEI

<body> element. These paragraphs thus contain both positive examples of software

mentions and nearby sentences without mentions that can be used as negative examples.

Mentions of software and their attributes are encoded with <rs>, the TEI element standing

for “referencing string” used for entity markup4. Each <rs> element has a type attribute

indicating its category: software and details about the entity (publisher, version, and

url). Annotators have a unique, anonymized, identifier in the resp attribute (if the

annotation was modified during expert review, its resp attribute became

resp="#curator"). Figure 2 shows how software mentions identified in an article are

encoded as <TEI> elements in the Softcite TEI/XML corpus.

We provide clarity on the annotation and review status of each annotated article

using the <catRef> element. While all the software mentions in the dataset were validated

by expert reviewers to ensure they are gold-standard, originally all the articles were

annotated by one or more annotators. Thus, we have

<catRef target="#multiple_annotator"> or <catRef target="#unique_annotator">

to indicate article annotation status before expert review. Since all the included

paragraphs were validated by expert review, articles that contain software mentions also

have <catRef target="with_reconciliation_and_scripts">. Articles that did not

have mentions did not undergo expert review and do not have this label.

While many articles we annotated are gold Open Access and would allow full

redistribution for research use, to ensure the ability to expand the dataset on equal terms

with sources beyond gold OA, we distribute paragraphs as short quotations from

publications, instead of the publication full-text. For those interested in further text from

the papers, inside the TEI/XML corpus we document the version and configuration of

GROBID actually used to create the text in the corpus file.
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Figure 2

Annotated software mentions in TEI/XML originally from academic PDF

Dataset content

Mention density of articles

Software mentions are disproportionately distributed across the annotated articles.

71% (N=3,743) of the articles in our dataset do not mention any software at all; 94% of the

articles have fewer than ten software mentions. The farthest outlier is a biomedical article

containing 152 software mentions. Figure 3 shows numbers of articles with varying levels of

mention density (number of mentions per article). Overall, as Figure 4 suggests, biomedical
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articles have far more software mentions than economic articles in our dataset. (Figure 3 to

Figure 4 were produced using R (“The R Project for Statistical Computing”, n.d.) package

ggplot2 by Wickham (2016))

Figure 3

How many articles have software mentions in two annotated article sets

Mention details

In our dataset, less than half (44%) of the annotated software mentions include

details such as version, publisher, or URLs. Only 31% of the software mentions include a

software publisher, and only 27% have version. Only 17% have an URL associated with

the mention, pointing to issues with potential access. Software mentions in economic

articles contain even fewer software attributes than biomedical articles. Detailed counts of

software mentions with different attributes can be found in Figure 5 (made using R

package UpSetR by Conway et al. (2017)).
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Figure 4

Total number of software mentions in two annotated article sets

Dataset validation

We demonstrate the usefulness of the Softcite dataset by employing it for training a

baseline NER model via supervised learning. We implemented a linear CRF (Conditional

Random Field) model (Lafferty et al., 2001), a supervised learning approach for sequence

labelling. This baseline model trained with our dataset shows good performance

considering the results reported by prior studies using bootstrapping and rule-based

extraction, with similar precision and higher recall.

We report span-level precision, recall, and F-score of the CRF model using 10-fold

cross-validation on the Softcite dataset, both negative and positive examples included as

training data. Among all the annotation fields, we have obtained an average precision of

.86, recall of .76, and F-score of .81. The metrics for each annotation field are detailed in

Table 1.

Other state-of-art deep neural architectures, such as Bidirectional LSTM with a

CRF activation layer (BidLSTM-CRF) and elmo embeddings (Peters et al., 2018) can be

trained on our corpus to achieve better NER accuracy. Here we do not report our draft
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Figure 5

How different software attributes are mentioned along with software

results with those deep learning architectures, leaving “low hanging fruit” (Raymond, 1998)

to motivate uptake and build a user community around this dataset.

Dataset creation details

An overview of our dataset creation process is illustrated in Figure 6.
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Table 1

CRF-based NER results for software mentions on the Softcite dataset, averaged over 10

folds

Fields Precision Recall F-score

software 85.87 74.39 79.71

publisher 84.63 74.95 79.46

version 90.6 85.58 87.98

url 72.62 62.36 66.72

micro-average 86.27 76.23 80.94

In this section we discuss the creation process of the Softcite dataset. We provide

greater detail for three reasons.

First, machine learning is increasingly understood to be sensitive to the context of

its training data. Machine learning models trained on one dataset have been found to fail

in a deployment context unmatched with the training/testing data, potentially

reproducing, or even exacerbating unwanted social biases (Bender & Friedman, 2018;

Gebru et al., 2018; Jo & Gebru, 2020; Selbst et al., 2019). Explaining how a dataset is

created can help future users better harness the potential of the dataset, while facilitating

consideration of unintended social impacts.

Second, the annotation and curation of large datasets are not always treated as

“front-stage” research activities (Goffman, 1959), and are therefore less visible in

data-intensive research reporting. However, the very process of creating and curating labels

directly affects the validity and usability of the dataset, so reporting the “back-stage” data

generation process increases the transparency and accountability of the dataset while

providing methodological guidance for others.

Third, this account of dataset creation offers a human-readable rationale and

guidance on how the provenance metadata could be used, complementing the metadata in

the published dataset.
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Figure 6

The creation process of the Softcite dataset

Genesis of the Softcite project

Prior empirical research showed that software is rarely cited, and inconsistently

mentioned in scholarly literature (Howison & Bullard, 2016; Howison et al., 2015; Howison

& Herbsleb, 2011), motivating us to work towards automatic extraction of informal

software mentions. While other measures of impact and use are possible (e.g.,

downloads/installation data) mentions in publications link more directly to scientific

impact and provide a visible public acknowledgement of intellectual contribution. (Howison

et al., 2015). We used the manually extracted software mentions from Howison and Bullard
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(2016) as our starting point.

We recruited and trained a team of graduate and undergraduate students on

campus as annotators, paying $15 an hour. Several students from a local minority-serving

institution were recruited for the project; unanticipated constraints on their work

authorization documentation at our institution limited their contributions. Students

mostly have backgrounds in information/computer science or the natural sciences, with a

smaller number of students from the liberal arts or the social sciences. Students were

restricted to work 10 hours weekly to mitigate fatigue-induced errors and balance

contributions across annotators.

Training sessions were held in a large classroom. We provided tutorials on the

annotation scheme and infrastructure (detailed below). We identified and resolved

disagreements through group discussions as we improved the annotation scheme. The full

scheme used by the annotators includes illustrative examples and is available online 5 and

its history is visible in version control.

When annotators encountered a possible mention of software, we asked them to give

their best guess of the mentioned entity type and self-rate a certainty score indicating

their confidence about their guess. They were also encouraged to search the Web to validate

their guess and to write down their reasoning in a free-text field. This step helps address

the conceptual ambiguity of software: some entities are database systems, algorithms, or

web platforms that arguably are software or made of software systems, and was useful in

expert review. At first, we also instructed students to annotate software cited in the article

reference list, and identify if the reference entry points to a software publication, user guide,

project page, or project name, but, as detailed below, these were dropped as we were later

able to automatically extract in-line citations and their linked reference items.

Finally, during initial annotation we had students annotate whether software

appeared to have been used in the research, or whether it was mentioned for another

reason such as comparison or as a metaphor, using a software_was_used code.
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Collaboration infrastructure

Our workflow is illustrated in Figure 7. We worked as a distributed team with

periodic meetings for training and agreement discussions. We collected annotations via a

GitHub repository and each annotator had an individual fork in a home directory on our

server. We assigned PDFs via a command-line script, tracked in an MySQL (“MySQL”,

n.d.) database; the script generated a template file in RDF turtle format and a link to a

PDF article. The script assignment process enabled multiple annotators to be assigned to a

single article.

Annotators downloaded and read the PDF article then filled out the RDF template

in the Atom text editor (“Atom”, n.d.). They were required to identify the software

mention, then copy both the words denoting the software (e.g. the software name) as well

as the surrounding context (e.g. the sentence containing the name), paste them into the

RDF template, then indicate software attributes (e.g. the version), if any. Files were stored

on a shared server and edited using the remote-ftp (“remote-ftp”, n.d.) plugin.

Figure 7

The Softcite collaboration infrastructure

After annotation, annotators committed to their fork and pushed to GitHub,

creating pull requests to our central repository, which were then reviewed by a doctoral

student. We deployed Travis CI (“Travis CI”, n.d.) to check the syntax of incoming
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annotation work. All the collected annotations were parsed into a single RDF graph,

facilitating export to CSV files, which were then used for analysis and alignment with

TEI/XML text produced by GROBID.

We set up this infrastructure with the following considerations. First, the RDF

graph offered more flexibility to represent semantic relations between annotations than

other annotation tools. Second, initially our PDF-to-text conversion was unusable and

manual conversion via copy-and-paste from PDFs was a temporary solution. Third, we

intentionally adopted tools that afford more autonomy, avoiding dependencies on

third-party annotation tools or time-consuming tool development. Fourth, working with

version control, virtual machine, and data semantic technologies provided learning and

teaching opportunities. Finally, the shared server backed-up all in-progress annotations

meaning we were able to recover completed but uncommitted work left in individual forks.

Agreement assessment

We assessed inter-annotator agreement during training to identify needed

clarification in the annotation scheme, a measure commonly used for demonstrating

annotators’ ability to label categories consistently (Artstein & Poesio, 2008). Since our

entire dataset was reviewed by expert annotators, we did not rely on inter-annotator

agreement as a measure of quality for our published dataset. During the assessment period

we assigned 569 articles to multiple annotators.

In order to compare annotations from different annotators, we first needed to align

the RDF-encoded mentions and their context quotes with article full-text extracted from

PDFs to see if two annotators found a software mention at the same location. Initially, we

experimented with several pdf-to-text conversion tools, including the pdftotext

(“pdftotext”, n.d.) routine called from the Poppler package (“Poppler”, n.d.) and the

rOpenSci 6 package fulltext (Chamberlain, n.d.). However, the text output was too

inconsistent to allow successful alignment (e.g., headers, or lines from different columns

interleaved).

We thus turned to the PMC OA XML documents to assess agreement (the

availability of XML content was one reason that we had chosen to annotate articles from
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PMC first). We used R packages Biostrings (Pagès et al., 2017) and tidyverse (Wickham

et al., 2019) to identify overlapping quotes copied-and-pasted from PDF publications by

different annotators, by aligning them with the XML version of the same publications. We

were not able to align all quotes for several reasons including manual typos in annotated

quotes and inconsistent copy-and-paste outcomes from PDFs rendered in varied PDF

reader applications used by annotators. Counting overlap as agreement, we obtained a

percentage agreement of 65.4% in the annotations of PMC articles.

Our understanding at the time was that there were three sources of disagreement:

misalignment, fatigue, and annotation scheme clarity.

We anticipated that misalignment would improve with better PDF conversions.

Indeed, after we added an NLP expert to our team and began working with GROBID PDF

conversions (discussed below), we returned to our double-annotated articles and were able

to improve alignment substantially and recalculate percentage agreement as 75.5% (The

agreement statistic was computed using Java (“Java”, n.d.) library DKPro Agreement

(Meyer et al., 2014).) Even then, some misalignment remained. Manual inspection

suggested that annotators had sometimes manually typed rather than copied from the

PDF, and some issues remained with problematic fonts or layout as copy-and-paste does

not always convert PDF content faithfully.

We addressed fatigue from the outset by limiting annotators to 10-hour weekly work.

Nonetheless, we reasoned that the sparseness of software mentions and the reading level of

the material mean that some missing annotations of software mentions are unavoidable.

We did not think these false negatives would be systematic such that affect the machine

learning performance as long as false negatives were not included in the training/testing

data. To make this most likely, we eventually only include annotated text that has been

fully reviewed and thus reached the gold-standard quality, and indicate their review status

by marking them up with the <catRef target="with_reconciliation_and_scripts">

attribute in the TEI/XML dataset.

To improve the annotation scheme, we added examples to illustrate the conceptual

definitions and discussed them with the team. For example, when confusion arose among

annotators about whether a programming language is software, we gave examples such as
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“R” or “Perl”, confirming that they are software in our annotation scheme. However, as we

reasoned that we were unlikely to anticipate all conceptual issues in identifying software,

we encouraged annotators to record their certainty and to note their reasoning in a

free-text field, which we referred to during expert review.

Despite a desire for higher levels of agreement, we made the decision to shift to

single annotation. We reasoned that the dataset would be reviewed by experts and that

the best use of our resources would be to annotate more articles and gain the most

annotations to be reviewed. We anticipated greatly improved alignment when PDF

conversion improved and were simultaneously concerned that our trained annotators would

graduate, incurring more cost in training rather than producing more annotations.

Iterative refinement

Expert review and curation were conducted at the end of our student annotation

phase as we worked towards gold-standard annotation, simultaneously with alignment

improvement via GROBID PDF conversions. As we progressed we prototyped NER model

training to validate the usefulness of the dataset.

Expert annotators reviewed all the annotations in single-annotated articles. In

double-annotated articles, experts reviewed annotations from the annotator who found the

highest number of software mentions. This review process exposed further annotation

inconsistencies, reconciled iteratively through discussion creating rules implemented via

automatic scripts and manual edits.

As anticipated, some inconsistencies came from conceptual ambiguity from

examples not seen during training. We thus refined the scope of software entities to be

annotated. Originally annotators were encouraged to record possible but unlikely software

mentions and to categorize them as probable hardware, algorithm, or database, or

general-purpose web platform. These occurred infrequently and yielded results less relevant

to our goal of increasing software visibility in research. Thus we changed this step to

binary classification: software vs. non-software. Only the software category is included in

the final dataset, but others can be found in the original RDF annotations.

Other inconsistencies were syntactic, increasing unwanted variance in the dataset.
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To resolve such inconsistencies, we removed prefixes of software version numbers like

“ver.”, “v.”, or “version”; we also specified that the annotation of software publisher only

includes names of organizations or individuals, excluding information about individual

affiliation or organization geo-location that often follows. For example, for “GraphPad

Software, San Diego, CA, USA”, we only annotated “GraphPad Software”. Finally, we

included acronyms as part of the software mention to be annotated (e.g., “Statistical

Package for Social Sciences (SPSS)” as a whole string). Reducing syntactic variance in this

way helped the machine learning algorithm learn from the text patterns.

Other than consistency improvement, we also minimized false negatives using a

script to exhaustively search for any occurrences of validated software mention strings

across all the full-text paragraphs included in our corpus. Expert annotators reviewed

these string matches and added annotations for those confirmed to be software mentions.

For annotations edited and added during expert review, certainty scores were

dropped since they were judgments by the original annotator.

We also dropped manually annotated formal software in-text citations because

GROBID provided automatically recognized and marked-up in-text citations linked to

references in the bibliography. GROBID’s annotations were also reviewed during expert

review.

We adjusted the annotation categories to make them more consistent with actual

annotations. During annotation we used software_name, creator, and both

version_number and version_date. In the published data these became software,

publisher and a combined category version.

Finally, we found that expert review for software_was_used was problematic,

requiring reviews of greater article-level context. We therefore dropped

software_was_used code, retaining it in provenance. We plan to return to this code for

further review.

Both original certainty and manual annotations of software references linked to

their in-text citations and categorizations remain accessible in our RDF provenance. All

these changes implemented by expert reviewers are also recorded in Git log history and our

GitHub repository issues.
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Discussion

Interdisciplinary tensions in annotation practice

Corpus annotation is interdisciplinary. Initially, we followed content analysis

methodology to develop the annotation scheme and train annotators. Later we added a

machine learning specialist for dataset curation and corpus construction. Here we discuss

two interdisciplinary tensions.

First, we differed on the valuation of text annotated as negative examples.

Annotators read 4,971 full-text articles and found 3,743 articles that did not contain any

software mentions at all. Thus we identified substantial negative examples through content

analysis. However, for ML-based NLP, training data is expected to have balanced numbers

of positive and negative examples, with minor imbalances carefully used to fine-tune for

precision and recall. Thus a great deal of negative text annotated is not included in the

final corpus, despite the time and resources devoted to annotating them.

A second tension arose over inter-annotator agreement: while debated, 0.7-0.8 is

often thought acceptable in content analysis methodology (Landis & Koch, 1977;

Neuendorf, 2016). We initially accepted approximately these levels (although obscured by

alignment misses) when moving from double to single annotation. Our machine learning

specialist expected much higher agreement levels of 0.95 or more. This disparity in

expectation led to debates over the trade-off between additional percentages of agreement

and larger numbers of annotated examples. Either choice would incur high cost; and their

likely impact on machine learning performance was unclear to us. While an acceptable

level of agreement attests to the reliability of the scheme application during annotation, it

does not equal to the usefulness of the dataset for machine learning (Artstein & Poesio,

2008). For instance, agreement can be increased by simplifying annotation procedures and

decisions; the trade-off is a less sophisticated system. Disagreement can reflect the

complexity of the concepts; removing it from the dataset can create a false impression of a

system’s abilities or result in unreasonably high training costs. Guidance or evidence for

shaping the right trajectory of dataset annotation is scant.
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Uncertainty in provenance management

Provenance data is intended for dataset reuse (Pasquetto et al., 2019; Ribes, 2017;

Simmhan et al., 2005). However, dataset reuse does not always happen (Chao, 2015),

making the return on investment unclear, especially when the opportunity cost is a smaller

overall dataset. The importance of data provenance has been acknowledged (Polyzotis

et al., 2017; Ribes, 2017), but discussions of its practices and reporting are rare. Research

in machine learning also increasingly addresses the importance of documenting the context

and process of dataset creation (Bender & Friedman, 2018; Gebru et al., 2018; Holland

et al., 2018) but guidance is still incomplete, perhaps unavoidably. Throughout the project

we had difficulties in determining the cost-benefit of maintaining high-resolution

provenance data. For example, a concrete question was: “To which granularity should we

implement and present provenance?” Some recommend documenting the demographics of

annotators (Bender & Friedman, 2018) as possibly affecting the bias and accountability of

the dataset; however, should we discuss the immigration status of annotators, even after

being made anonymous, as we did above? How can we balance uncertain future relevance

against the possibility of breaking confidentiality and placing participants at risk?

Additional guidance and discussion on what to be documented and disclosed as data

provenance would be helpful.

Reflections on pipelines for scholarly document processing

Publications on literature mining rarely describe their full pipeline for scholarly

document processing, yet our experience showed its importance.

We experienced substantial difficulties in working with annotations of text extracted

from PDFs and available XML of academic publications. While ineffective PDF conversion

was a barrier, the publication XML provided by publishers does not necessarily correspond

to the PDF publications. These issues extend beyond the PMC XML to formats like JATS

(Journal Article Tag Suite) that provide a more generalized encoding of journal

publications than the actual PDF presentations. However, reading the actual PDFs is

significantly easier for annotators, especially for article level context.

We found that the GROBID PDF conversion was substantially better than other
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options we had tried, and that it enables the direct addition of manually generated

annotations to texts extracted from PDFs. This capability obviates falling back to

publication abstracts or XML for text mining efforts; thus the opportunity is opened up for

exploiting conference proceedings, grey literature, and the full expanse of OA articles

instead of the limited overlap between OA PDF and XML, or unreliable contract

negotiations for XML access. GROBID also provides other opportunities such as

annotating PDFs via PDF coordinates. We note that GROBID is also part of the

underlying infrastructure for the recent widely-used CORD-19 dataset published by the

Allen Instituted of AI (Kohlmeier et al., 2020).

Similar software NER efforts, like the RRID initiative, do share their NLP

processing pipeline (Hsu et al., 2019). Sharing these adds validity to NER performance and

findings; detailed and critical discussions of scholarly pipelines would be beneficial.

Conclusion and Future Work

We provide a dataset of annotated software mentions from full-text academic

literature in biomedicine and economics directly converted from published PDFs with

reproducible infrastructure. It is the largest gold-standard dataset of software mentions to

date, includes provenance, and is formatted for immediately usefulness in NLP. These

properties make the Softcite dataset useful for supervised learning at scale.

Our future work lies in two directions: (1) collaborative expansion of software

mention datasets, and (2) application of a software knowledge base constructed with NER

models trained on the dataset.

First, we are working towards a community project to extend the size and scope of

similar datasets. The intended expansion involves the incorporation of existing annotated

corpora across research domains, collaborative annotation of articles in other academic

fields, and using the gold-standard to validate the bootstrapped datasets. We plan to

undertake further review of our dropped software_was_used code as part of this work.

Existing resources such as software items indexed by digital registries, including projects

such as the WoS Data Citation Index, ASCL, swMATH, and the RRID system, have the

potential to be utilized together with the Softcite dataset (including adding identifiers from
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those projects to the Softcite dataset). Improving these connections would enable further

generalization of the software NER models to other research fields such as natural sciences

and mathematics, through cross-domain training/validation, and seeding article selection

for expanding gold-standard annotations.

Second, we are deploying machine learning at scale trained on the Softcite dataset

to construct a knowledge base, processing tens of millions of open access PDFs. We intend

to make the knowledge base available for scientometric researchers to examine topics such

as diffusion and interdisciplinary influence. It will also be useful to develop systems for

research software developers and end-users, including metric and crediting system, citation

recommendation system, and information retrieval of research software. Particularly, we

plan to deploy the database in an existing system (“CiteAs.org”, n.d.), showing research

software developers how their work is mentioned in academic publications and motivating

them to make explicit requests for their preferred citations.

Named entity recognition of software in academic publications requires substantial

cost and effort, but holds the potential to improve visibility of key infrastructural work and

generate insights that, when carefully used, can advance scholarship.
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