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Abstract: In this paper, general definition of neutrosophic random variables is introduced and its 

properties are presented. Concepts of probability distribution function, cumulative distribution 

function, expected value, variance, standard deviation, mean deviation, rth quartiles, moments 

generating function and characteristic function in crisp logic are generalized to neutrosophic logic. 

Many solved problems and applications are presented which show the power of the study and show 

the ability of applying the results in various domains including quality control, stochastic modeling, 

reliability theory, queueing theory, decision making, electrical engineering, … etc.  
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1. Introduction 

Neutrosophic logic is an extension of intuitionistic fuzzy logic by adding indeterminacy 

component (𝐼) where 𝐼2 = 𝐼, … , 𝐼𝑛 = 𝐼, 0 ∙ 𝐼 = 0 ;  𝑛 ∈ 𝑁 and 𝐼−1 is undefined [1], [2]. Neutrosophic 

logic has wide applications in many fields including decision making [3], [4], [5], machine learning 

[6], [7], intelligent disease diagnosis [8], [9], communication services [10], pattern recognition [11], 

social network analysis and e-learning systems [12], physics [13], [14], … etc. 

In probability theory, F. Smarandache defined the neutrosophic probability measure as a 

mapping 𝑁𝑃: 𝑋 → [0,1]3  where 𝑋  is a neutrosophic sample space, and defined the probability 

function to take the form 𝑁𝑃(𝐴) = (𝑐ℎ(𝐴), 𝑐ℎ(𝑛𝑒𝑢𝑡𝐴), 𝑐ℎ(𝑎𝑛𝑡𝑖𝐴)) = (𝛼, 𝛽, 𝛾) where 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1 

and 0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 3 [15], also researchers introduced many neutrosophic probability distributions 

like Poisson, exponential, binomial, normal, uniform, Weibull, …etc. [2], [16], [17], [18].  Researchers 

also presented the concept of neutrosophic queueing theory in [19], [20] that is one branch of 

neutrosophic stochastic modelling. Researchers also studied neutrosophic time series prediction and 

modelling in many cases like neutrosophic moving averages, neutrosophic logarithmic models, 

neutrosophic linear models, … etc. [21], [22], [23]. 

Neutrosophic logic has solved many decision-making problems efficiently like evaluating green 

credit rating, personnel selection, … etc. [24], [25], [26], [27].  

In this paper we will suggest a generalization to classical random variable to deal with imprecise, 

uncertainty, ambiguity, vagueness, enigmatic adding the indeterminacy part to its form, then we will 

find several characteristics of this neutrosophic random variable including expected value, variance, 

standard deviation, moments generating function and characteristic function and study its 

properties.  

This extension lets us build and study many stochastic models in the future that help us in 

modelling, simulation, decision making, prediction and classification specially in the cases of 

incomplete data and indeterminacy.  
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2. Terminologies  

We present here some basic definitions and axioms of neutrosophic logic and neutrosophic 

probability.  

 

2.1 Some definitions 

Definition 1 [28]:  Let 𝑋 be a non-empty fixed set. A neutrosophic set 𝐴 is an object having the 

form {𝑥, (𝜇𝐴(𝑥), 𝛿𝐴(𝑥), 𝛾𝐴(𝑥)): 𝑥 ∈ 𝑋} , where 𝜇𝐴(𝑥) , 𝛿𝐴(𝑥)  𝑎𝑛𝑑 𝛾𝐴(𝑥)  represent the degree of 

membership, the degree of indeterminacy , and the degree of non-membership respectively of each 

element 𝑥 ∈  𝑋 to the set 𝐴 . 

Definition 2 [29]: Let 𝐾 be a field, the neutrosophic file generated by 〈𝐾 ∪ 𝐼〉 which is denoted 

by 𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 

Definition 3 [2]: Classical neutrosophic number has the form 𝑎 + 𝑏𝐼  where a,b are real or 

complex numbers and 𝐼 is the indeterminacy such that 0 ∙ 𝐼 = 0 and 𝐼2 = 𝐼 which results that 𝐼𝑛 =

𝐼 for all positive integers 𝑛. 

Definition 4 [15]: The neutrosophic probability of event A occurrence is 𝑁𝑃(𝐴) =

(𝑐ℎ(𝐴), 𝑐ℎ(𝑛𝑒𝑢𝑡𝐴), 𝑐ℎ(𝑎𝑛𝑡𝑖𝐴)) = (𝑇, 𝐼, 𝐹) where 𝑇, 𝐼, 𝐹  are standard or nonstandard subsets of the 

nonstandard unitary interval ] −0,1+[  . 

Among this paper, we will denote probability density function by PDF, probability mass function 

by PMF, cumulative distribution function by CDF, moments generating function by MGF, characteristic 

function by CF. 

3. Neutrosophic Random Variables 

In [15] Smarandache defined the neutrosophic random variable that it is a variable that may have 

and indeterminate outcome, in the following definition we are going to represent this indeterminacy 

by mathematical formula, then we are going to find the properties of neutrosophic random variable. 

Definition 3.1: Neutrosophic Random Variable 

Consider the real valued crisp random variable 𝑋 which is defined as follows: 

𝑋: Ω → 𝑅 

Where Ω is the events space. We define neutrosophic random variable 𝑋𝑁 as the following:  

𝑋𝑁: Ω → 𝑅(𝐼) 

And: 

𝑋𝑁 = 𝑋 + 𝐼 

Where 𝐼 is indeterminacy. 

3.1: PDF and CDF of neutrosophic random variables   

Consider the neutrosophic random 𝑋𝑁 = 𝑋 + 𝐼, Where CDF of 𝑋 is 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) then: 
𝐹𝑋𝑁

(𝑥) = 𝐹𝑋(𝑥 − 𝐼) (1) 
𝑓𝑋𝑁

(𝑥) = 𝑓𝑋(𝑥 − 𝐼) (2) 

Proof: 
𝐹𝑋𝑁

(𝑥) = 𝑃(𝑋𝑁 ≤ 𝑥) = 𝑃(𝑋 + 𝐼 ≤ 𝑥) = 𝑃(𝑋 ≤ 𝑥 − 𝐼) = 𝐹𝑋(𝑥 − 𝐼) 

By taking the derivative according to 𝑥 we get: 

𝑓𝑋𝑁
(𝑥) =

𝑑𝐹𝑋𝑁
(𝑥)

𝑑𝑥
=

𝑑𝐹𝑋(𝑥 − 𝐼)

𝑑𝑥
∙

𝑑(𝑥 − 𝐼)

𝑑𝑥
 = 𝑓𝑋(𝑥 − 𝐼) 

3.2: Expected value of neutrosophic random variable 

Consider the neutrosophic random variable 𝑋𝑁 = 𝑋 + 𝐼 , we can find its expected value as 

follows: 

𝐸(𝑋𝑁) = 𝐸(𝑋) + 𝐼 (3) 

Proof: 
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 If 𝑋 is continuous then: 

𝐸(𝑋𝑁) = 𝐸(𝑋 + 𝐼) = ∫(𝑥 + 𝐼)𝑓(𝑥)𝑑𝑥 = ∫ 𝑥𝑓(𝑥)𝑑𝑥 + 𝐼 ∫ 𝑓(𝑥)𝑑𝑥 =

 

𝑥

 

𝑥

𝐸(𝑋) + 𝐼

 

𝑥

 

Where ∫ 𝑓(𝑥)𝑑𝑥 =
 

𝑥
1 because it is a pdf 

If 𝑋 is discrete then: 

𝐸(𝑋𝑁) = 𝐸(𝑋 + 𝐼) = ∑(𝑥 + 𝐼)𝑓(𝑥)

𝑥

= ∑ 𝑥𝑓(𝑥)

𝑥

+ 𝐼 ∑ 𝑓(𝑥)

𝑥

= 𝐸(𝑋) + 𝐼 

Properties of expected value of a neutrosophic random variable 

1. 𝐸(𝑎𝑋𝑁 + 𝑏 + 𝑐𝐼) = 𝑎𝐸(𝑋𝑁) + 𝑏 + 𝑐𝐼 ; 𝑎, 𝑏, 𝑐 ∈ 𝑅 

Proof: straight forward. 

2. If 𝑋𝑁 , 𝑌𝑁 are two neutrosophic random variables, then 𝐸(𝑋𝑁 ± 𝑌𝑁) = 𝐸(𝑋𝑁) ± 𝐸(𝑌𝑁) 

Proof: straight forward. 

3. 𝐸[(𝑎 + 𝑏𝐼)𝑋𝑁] = 𝐸(𝑎𝑋𝑁 + 𝑏𝐼𝑋𝑁) = 𝐸(𝑎𝑋𝑁) + 𝐸(𝑏𝐼𝑋𝑁) = 𝑎𝐸(𝑋𝑁) + 𝑏𝐼𝐸(𝑋𝑁) ; 𝑎, 𝑏 ∈ 𝑅 

Proof: straight forward. 

4. |𝐸(𝑋𝑁)| ≤ 𝐸|𝑋𝑁| 

Proof: 

If 𝑋 is continuous: 

|𝐸(𝑋𝑁)| = |∫(𝑥 + 𝐼)𝑓(𝑥)𝑑𝑥

 

𝑥

| ≤ ∫|(𝑥 + 𝐼)|𝑓(𝑥)𝑑𝑥

 

𝑥

= 𝐸|𝑋𝑁| 

Where |𝑓(𝑥)| = 𝑓(𝑥) because it is a PDF 

If 𝑋 is discrete: 

|𝐸(𝑋𝑁)| = |∑(𝑥 + 𝐼)𝑓(𝑥)

𝑥

| ≤ ∑|(𝑥 + 𝐼)|𝑓(𝑥)

𝑥

= 𝐸|𝑋𝑁| 

3.3: Variance of neutrosophic random variable 

Consider the neutrosophic random variable 𝑋𝑁 = 𝑋 + 𝐼, we can prove that its variance is equal 

to 𝑋’s variance, i.e.: 

𝑉(𝑋𝑁) = 𝑉(𝑋) (4) 

Proof: 

Whatever is 𝑋𝑁, discrete or continuous we can write: 

𝑉(𝑋𝑁) = 𝐸[𝑋𝑁 − 𝐸(𝑋𝑁)]2 = 𝐸[𝑋 + 𝐼 − 𝐸(𝑋) − 𝐼]2 = 𝐸[𝑋 − 𝐸(𝑋)]2 = 𝑉(𝑋) 

Example 3.1 

Let 𝑋 be a random variable with probability density function given as follows: 

𝑓𝑋(𝑥) = 2𝑥 ; 0 ≤ 𝑥 ≤ 1 

(a) We will find PDF of 𝑋𝑁 = 𝑋 + 𝐼 then proof that it’s a density function (it’s integral equals 

to one) 

(b) We will calculate the expected value of 𝑋𝑁. 

(c) We will calculate the variance of 𝑋𝑁. 

Solution: 

(a) 

Using equation (1): 
𝑓𝑋𝑁

(𝑥) = 𝑓𝑋(𝑥 − 𝐼) = 2(𝑥 − 𝐼); 0 ≤ 𝑥 − 𝐼 ≤ 1 

𝑓𝑋𝑁
(𝑥) = 2𝑥 − 2𝐼  ;   𝐼 ≤ 𝑥 ≤ 1 + 𝐼 
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Fig (1) 

Let’s prove that 𝑓𝑋𝑁
(𝑥) is a density function 

∫ (2𝑥 − 2𝐼)𝑑𝑥

1+𝐼

𝐼

= [𝑥2 − 2𝐼𝑥]𝐼
1+𝐼 = (1 + 𝐼)2 − 2𝐼(1 + 𝐼) − 𝐼2 + 2𝐼2 = 1 + 2𝐼 + 𝐼2 − 2𝐼 − 2𝐼2 − 𝐼2 + 2𝐼2

= 1 + 2𝐼 + 𝐼 − 2𝐼 − 2𝐼 − 𝐼 + 2𝐼 = 1 

(b) using equations (3), (4): 

𝐸(𝑋𝑁) = 𝐸(𝑋) + 𝐼 = ∫ 2𝑥2𝑑𝑥

1

0

+ 𝐼 =
2

3
+ 𝐼  

(c) 

𝑉(𝑋𝑁) = 𝑉(𝑋) = ∫ (𝑥 −
2

3
)

2

2𝑥𝑑𝑥 =
1

18

1

0

 

3.4: Mean deviation of neutrosophic random variable: 

The mean deviation of neutrosophic random variable denoted by 𝑀. 𝐷(𝑋𝑁) is: 

𝑴. 𝑫(𝑿𝑵) = 𝑴. 𝑫(𝑿) = 𝑬|𝑿 − 𝑬(𝑿)| (5) 

Proof: 

𝑀. 𝐷(𝑋𝑁) = 𝐸|𝑋𝑁 − 𝐸(𝑋𝑁)| = 𝐸|𝑋 + 𝐼 − 𝐸(𝑋 + 𝐼)| = 𝐸|𝑋 + 𝐼 − 𝐸(𝑋) − 𝐼| = 𝑀. 𝐷(𝑋) 

3.5: The rth quartile of neutrosophic continuous random variable: 

The rth quartile of neutrosophic random variable denoted by 𝑄𝑁
𝑟  is: 

∫ 𝒇𝑿𝑵
(𝒙)𝒅𝒙

𝑸𝑵
𝒓

−∞

=
𝒓

𝟒
; 𝒓 = 𝟏, 𝟐, 𝟑 (6) 

We call 𝑄𝑁
1 , 𝑄𝑁

2  and 𝑄𝑁
3  the neutrosophic first, second and third quartiles respectively. 

Example 3.2 

Let 𝑋𝑁  be the neutrosophic random variable defined in example 3.1, let’s calculate it’s 9 

quartiles. 

Solution: 

We have 
𝑓𝑋𝑁

(𝑥) = 2𝑥 − 2𝐼  ;   𝐼 ≤ 𝑥 ≤ 1 + 𝐼 

So, using equation (6): 

∫ (2𝑥 − 2𝐼)𝑑𝑥

𝑄𝑁
𝑟

𝐼

=
𝑟

4
; 𝑟 = 1,2,3 

For 𝑟 = 1 we get: 
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∫ (2𝑥 − 2𝐼)𝑑𝑥

𝑄𝑁
1

𝐼

=
1

4
 

[𝑥2 − 2𝐼𝑥]
𝐼

𝑄𝑁
1

=
1

4
 

𝑄𝑁
1 2

− 2𝐼𝑄𝑁
1 − 𝐼2 + 2𝐼2 =

1

4
 

𝑄𝑁
1 2

− 2𝐼𝑄𝑁
1 + 𝐼 =

1

4
 

Solving the neutrosophic equation respect to 𝑄𝑁
1  we get: 

Δ = 𝑏2 − 4𝑎𝑐 = 4𝐼 − 4 (𝐼 −
1

4
) = 4𝐼 − 4𝐼 + 1 = 1 

(𝑄𝑁
1 )1 =

−𝑏 − √Δ

2𝑎
=

2𝐼 − 1

2
= −

1

2
+ 𝐼 

Rejected because 𝐼 ≤ 𝑥 ≤ 1 + 𝐼. 

(𝑄𝑁
1 )2 =

−𝑏 + √Δ

2𝑎
=

2𝐼 + 1

2
=

1

2
+ 𝐼 

Accepted. 

For 𝑟 = 2 we get: 

𝑄𝑁
2 2

− 2𝐼𝑄𝑁
2 + 𝐼 =

2

4
=

1

2
 

Solving the neutrosophic equation respect to 𝑄𝑁
2  we get: 

Δ = 𝑏2 − 4𝑎𝑐 = 4𝐼 − 4 (𝐼 −
1

2
) = 4𝐼 − 4𝐼 + 2 = 2 

(𝑄𝑁
2 )1 =

−𝑏 − √Δ

2𝑎
=

2𝐼 − √2

2
= −

√2

2
+ 𝐼 

Rejected. 

(𝑄𝑁
2 )2 =

−𝑏 + √Δ

2𝑎
=

2𝐼 + √2

2
=

√2

2
+ 𝐼 

Accepted. 

 

 

For 𝑟 = 3 we get: 

𝑄𝑁
3 2

− 2𝐼𝑄𝑁
3 + 𝐼 =

3

4
 

Solving the neutrosophic equation respect to 𝑄𝑁
3  we get: 

Δ = 𝑏2 − 4𝑎𝑐 = 4𝐼 − 4 (𝐼 −
3

2
) = 4𝐼 − 4𝐼 + 6 = 6 

(𝑄𝑁
3 )1 =

−𝑏 − √Δ

2𝑎
=

2𝐼 − √6

2
= −

√6

2
+ 𝐼 

Rejected. 

(𝑄𝑁
3 )2 =

−𝑏 + √Δ

2𝑎
=

2𝐼 + √6

2
=

√6

2
+ 𝐼 

Accepted. 

3.6: MGF of neutrosophic random variable 

Consider the neutrosophic random 𝑋𝑁 = 𝑋 + 𝐼 then its MGF will be: 
𝑀𝑋𝑁

(𝑡) = 𝑒𝑡𝐼𝑀𝑋(𝑡) (7) 

Proof: 

𝑀𝑋𝑁
(𝑡) = 𝐸(𝑒𝑡𝑋𝑁) = 𝐸(𝑒𝑡(𝑋+𝐼)) = 𝐸(𝑒𝑡𝑋𝑒𝑡𝐼) = 𝑒𝑡𝐼𝐸(𝑒𝑡𝑋) = 𝑒𝑡𝐼𝑀𝑋(𝑡) 

Properties: 

1. 𝑀𝑋𝑁
(0) = 1 

Proof: Straight forward. 

2. 
𝑑𝑀𝑋𝑁

(0)

𝑑𝑡
= 𝐸(𝑋𝑁) 
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Proof: 

𝑑𝑀𝑋𝑁
(𝑡)

𝑑𝑡
|𝑡=0 =

𝑑𝑒𝑡𝐼𝑀𝑋(𝑡)

𝑑𝑡
|𝑡=0 =

𝑑𝑒𝑡𝐼

𝑑𝑡
𝑀𝑋(𝑡)|𝑡=0 +

𝑑𝑀𝑋(𝑡)

𝑑𝑡
𝑒𝑡𝐼|𝑡=0 = 𝐼𝑒𝑡𝐼𝑀𝑋(𝑡)|𝑡=0 + 𝑀′𝑋(𝑡)𝑒𝑡𝐼|𝑡=0

= 𝐼𝑀𝑋(0) + 𝑀′𝑋(0) = 𝐼 + 𝐸(𝑋) = 𝐸(𝑋𝑁) 

3. 
𝑑𝑛𝑀𝑋𝑁

(𝑡)

𝑑𝑡𝑛 |𝑡=0 = 𝐸(𝑋𝑁
𝑛) 

Proof: Straight forward.  

4. If 𝑌𝑁 = (𝑎 + 𝑏𝐼)𝑋𝑁 + 𝑐 + 𝑑𝐼 then 𝑀𝑌𝑁
(𝑡) = 𝑒(𝑐+𝑑𝐼)𝑡𝑒𝑡(𝑎+𝑏)𝐼𝑀𝑋((𝑎 + 𝑏𝐼)𝑡) 

Proof:  

𝑀𝑌𝑁
(𝑡) = 𝐸(𝑒𝑡𝑌𝑁) = 𝐸(𝑒𝑡[(𝑎+𝑏𝐼)𝑋𝑁+𝑐+𝑑𝐼] ) = 𝐸(𝑒𝑡(𝑎+𝑏𝐼)(𝑋+𝐼) 𝑒(𝑐+𝑑𝐼)𝑡) = 𝑒(𝑐+𝑑𝐼)𝑡𝐸(𝑒𝑡(𝑎+𝑏𝐼)(𝑋+𝐼) )

= 𝑒(𝑐+𝑑𝐼)𝑡𝐸(𝑒𝑡(𝑎𝑋+𝑎𝐼+𝑏𝐼𝑋+𝑏𝐼2) ) = 𝑒(𝑐+𝑑𝐼)𝑡𝑒𝑡(𝑎+𝑏)𝐼𝐸(𝑒𝑡(𝑎+𝑏𝐼)X )

= 𝑒(𝑐+𝑑𝐼)𝑡𝑒𝑡(𝑎+𝑏)𝐼𝑀𝑋((𝑎 + 𝑏𝐼)𝑡) 

Theorem 3.5 CF of Neutrosophic Random Variable 

Consider the neutrosophic random 𝑋𝑁 = 𝑋 + 𝐼 then its CF will be: 

φ𝑋𝑁
(𝑡) = 𝑒𝑖𝑡𝐼𝜑𝑋(𝑡)  ; 𝑖 = √−1 (8) 

Proof: 

  φ𝑋𝑁
(𝑡) = 𝐸(𝑒𝑖𝑡𝑋𝑁) = 𝐸(𝑒𝑖𝑡(𝑋+𝐼)) = 𝐸(𝑒𝑖𝑡𝑋𝑒𝑖𝑡𝐼) = 𝑒𝑖𝑡𝐼𝐸(𝑒𝑖𝑡𝑋) = 𝑒𝑖𝑡𝐼𝜑𝑋(𝑡) 

Properties: 

1. φ𝑋𝑁
(0) = 1 

Proof: Straight forward. 

2. |φ𝑋𝑁
(𝑡)| ≤ 1, which means that CF always exists. 

Proof: 

|φ𝑋𝑁
(𝑡)| = |𝐸(𝑒𝑖𝑡𝑋𝑁)| ≤ 𝐸|𝑒𝑖𝑡𝑋𝑁| = 𝐸|cos 𝑡𝑋𝑁 + sin 𝑡𝑋𝑁| = 𝐸|1| = 1 

3. 
𝑑φ𝑋𝑁

(𝑡)

𝑑𝑡
|𝑡=0 = 𝑖𝐸(𝑋𝑁) 

Proof: 

 
𝑑φ𝑋𝑁

(𝑡)

𝑑𝑡
|𝑡=0 =

𝑑𝑒𝑖𝑡𝐼𝜑𝑋(𝑡)

𝑑𝑡
|𝑡=0 =

𝑑𝑒𝑖𝑡𝐼

𝑑𝑡
𝜑𝑋(𝑡)|𝑡=0 +

𝑑𝜑𝑋(𝑡)

𝑑𝑡
𝑒𝑖𝑡𝐼|𝑡=0

= 𝑖𝐼𝑒𝑖𝑡𝐼𝜑𝑋(𝑡)|𝑡=0 + 𝜑′𝑋(𝑡)𝑒𝑖𝑡𝐼|𝑡=0 = 𝑖𝐼𝜑𝑋(0) + 𝜑′𝑋(0) = 𝑖𝐼 + 𝑖𝐸(𝑋) = 𝑖(𝐼 + 𝐸(𝑋))

= 𝑖𝐸(𝑋𝑁) 

4. 
𝑑𝑛φ𝑋𝑁

(𝑡)

𝑑𝑡𝑛 |𝑡=0 = 𝑖𝑛𝐸(𝑋𝑁
𝑛) 

Proof: Straight forward.  

5. φ𝑋𝑁
(𝑡) = 𝑀𝑋𝑁

(𝑖𝑡) 

Proof: Straight forward. 

Example 3.3 

Let 𝑋𝑁 be the neutrosophic random variable defined in example 3.1 and let’s find: 

(a) 𝑀𝑋𝑁
(𝑡). 

(b) 𝐸(𝑋𝑁) Depending on properties of 𝑀𝑋𝑁
(𝑡) 

(c) Conclude φ𝑋𝑁
(𝑡) formula. 

Solution 

(a) Using equation (7): 
𝑀𝑋𝑁

(𝑡) = 𝑒𝑡𝐼𝑀𝑋(𝑡) 

But: 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥2𝑥𝑑𝑥

1

0

=
2(𝑡𝑒𝑡  −  𝑒𝑡  +  1)

𝑡2
 

So: 

𝑀𝑋𝑁
(𝑡) = 𝑒𝑡𝐼

2(𝑡𝑒𝑡  −  𝑒𝑡  +  1)

𝑡2
= 2

𝑡𝑒𝑡(1+𝐼) − 𝑒𝑡(1+𝐼) + 𝑒𝑡𝐼

𝑡2
 

(b) Using proved properties of 𝑀𝑋𝑁
(𝑡) we get:  
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𝑀′𝑋𝑁
(𝑡) = 2

𝑡2(𝑒𝑡(1+𝐼) + (1 + 𝐼)𝑒𝑡(1+𝐼)𝑡 − (1 + 𝐼)𝑒𝑡(1+𝐼) + 𝐼𝑒𝑡𝐼) − 2𝑡(𝑡𝑒𝑡(1+𝐼) − 𝑒𝑡(1+𝐼) + 𝑒𝑡𝐼)

𝑡4

= 2
𝑡(𝑒𝑡(1+𝐼) + (1 + 𝐼)𝑒𝑡(1+𝐼)𝑡 − (1 + 𝐼)𝑒𝑡(1+𝐼) + 𝐼𝑒𝑡𝐼) − 2(𝑡𝑒𝑡(1+𝐼) − 𝑒𝑡(1+𝐼) + 𝑒𝑡𝐼)

𝑡3

= 2
𝑡𝑒𝑡(1+𝐼) + (1 + 𝐼)𝑒𝑡(1+𝐼)𝑡2 − (1 + 𝐼)𝑡𝑒𝑡(1+𝐼) + 𝐼𝑡𝑒𝑡𝐼 − 2𝑡𝑒𝑡(1+𝐼) + 2𝑒𝑡(1+𝐼) − 2𝑒𝑡𝐼

𝑡3
 

 

𝑀′𝑋𝑁
(0) =

2

3
+ 𝐼 = 𝐸(𝑋𝑁) 

(c) Using the proved property that φ𝑋𝑁
(𝑡) = 𝑀𝑋𝑁

(𝑖𝑡) we get: 

φ𝑋𝑁
(𝑡) = 𝑀𝑋𝑁

(𝑖𝑡) = 2
𝑖𝑡𝑒𝑖𝑡(1+𝐼) − 𝑒𝑖𝑡(1+𝐼) + 𝑒𝑖𝑡𝐼

−𝑡2
 

4. Applications and Future Research Directions 

The results that are presented in this paper can be applied to define several concepts in 

neutrosophic probability theory that are not defined and not studied yet including stochastic 

processes, reliability theory models, quality control techniques, …etc. where all depend on the 

concept of neutrosophic random variables and it’s properties. Also, these results can be applied in 

stochastic modelling and random numbers generating which is very important in simulation of 

probabilistic models. 

We are looking forward to study the properties of neutrosophic probability distributions like 

Pareto, Gaussian, Gamma, Beta, … etc. when the distribution of random variables changes to 𝑋𝑁 =

𝑋 + 𝐼 i.e., when the random variable contains an indeterminant part so we can model and simulate 

many stochastic problems including arrivals and departures to services stations, lifetimes of units in 

manufacturing systems, loss models, …etc. 

5. Conclusions   

In this research, we firstly obtained a general definition of neutrosophic random variables, 

concepts of probability distribution function and cumulative distribution function. We focused on 

the neutrosophic representation and proved some properties. In addition, we showed the ability of 

applying the results in various domains including quality control, stochastic modeling, reliability 

theory, queueing theory, electrical engineering, …etc.  
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