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Abstract—Embedded visual AI is a growing trend in applica-
tions requiring low latency, real-time decision support, increased
robustness and security. Visual object detection, a key task in
visual data analytics, has enjoyed significant improvements in
terms of capabilities and accuracy due to the emergence of
Convolutional Neural Networks (CNNs). However, such com-
plex paradigms require heavy computational resources that
prevent their deployment on resource-constrained devices, and
in particular, impose significant constraints in possible hardware
accelerators geared towards such applications. In this work
therefore, we investigate how a combination of techniques can
lead to efficient visual AI pipelines for resource-constrained
object detection. In particular we leverage an efficient search
strategy based on a combination of pre-processing mechanisms,
that reduce the processing demands of deep network as a counter
measure for potential accuracy reduction caused by quantization.
The proposed approach enables the detection of objects in higher
resolution frames using quantized models, while maintaining
the accuracy of full-precision CNN-based object detectors. We
illustrate the impact on the accuracy and average processing time
using quantization techniques and different tiling approaches
on efficient object detection architectures; as a case study, we
focus on Unmanned-Aerial- Vehicles (UAVs). Through the pro-
posed methodology, hardware accelerator demands are thereby
reduced, leading to both performance benefits and associated
power savings.

I. INTRODUCTION

Advances in deep-learning-based scene understanding, and
convolutional neural networks (CNNs) in particular, provide
remarkable opportunities for computer vision based applica-
tions [1][2][3]. In such scenarios, vision systems are deployed
on resource-constrained embedded devices that support high-
resolution cameras for applications beyond photography, such
as environmental and infrastructure monitoring applications,
search and rescue, and surveillance amongst others [4][5][6].

Deep learning algorithms are computationally very inten-
sive, and not suitable for on-board processing on such de-
vices such as remotely operated vehicles (ROVs) due to bat-
tery/power constraints and are usually processed via the cloud.
For certain scenarios however, where the system operates
in remote areas with limited connectivity, this can result in
unwanted response latencies which can degrade performance,
a potentially catastrophic scenario in safety-critical applica-
tions. Thus, processing information at the edge can not only
eliminate unwanted lag issues but also partially handle security
problems since the data is not transmitted and sensitive data
cannot be intercepted.

The problem is amplified especially when considering dis-
tant objects; for example, detecting objects on ground using
top-view images from unmanned aerial vehicles (UAVs) fly-
ing in higher altitudes is even more challenging due to the

very small size that the objects appear at. Moreover, in a
contradicting manner, deep learning based detectors usually
operate on lower resolutions to reduce the computation for on-
board processing, which is not feasible for detection at higher
altitudes since there is significant information loss due to
image downsizing. That, in turn, degrades detection accuracy.
Evidently, there is a need for processing high resolution
images more efficiently, and particularly when targeting small
sized objects. Existing deep learning based object detection
algorithms have achieved state of the art results [7][8][9].
However, they are not suitable for on-board processing on
UAV platforms because of computational constraints, power
consumption, memory limitations and lack of custom hardware
[10]. Recent works for implementing CNN-based techniques
on resource constrained devices, employ techniques such as
quantization [11], network pruning [12], compression [13]
and efficient network design [14]. These have focused on
decreasing the computational complexity of the CNN itself
while maintaining the full precision/network accuracy. These
methods work mostly on small and fixed image sizes and do
not consider applications which necessitate processing higher
resolution images. There is still however a lot of room for
improvement in CNN architecture engineering as well as data
reduction techniques to further increase the efficiency for such
applications.

Our contribution therefore, focuses on combining different
methods for efficiently realizing deep convolutional neural
network for object detection on a resource constrained device.
We consider a typical visual pipeline [15] and introduce
an intelligent data selection technique from our previous
works[16], [17], to operate in combination with quantized
single-shot detector. Specifically, in this work, we study the
effect of quantization [11] on the proposed visual pipeline. We
observe that the quantization process coupled with aggressive
resizing of larger images to fit a smaller receptive field
degrades accuracy. By incorporating however, an intelligent
selection process that does not decrease the image resolution,
the original accuracy is maintained while there is an overall
improvement in inference time. We validate our studies via
experiments carried out on a Jetson TX2, showing that the
proposed combination of approaches managed to improve
accuracy over 20% while maintaining comparable inference
time.

II. RELATED WORK

There are mainly two mainstream approaches for such
detectors: 1) Region-based Detectors [18][2] and 2) Single-
Shot Detectors [19][9]. Region-based detectors such as Faster



RCNN [18] are two staged approaches, that first propose re-
gions for processing and then perform detection which makes
them compute intensive for embedded platforms. Single-shot
detectors, like YOLO [19], employ a single CNN for the whole
task, which is more amicable for real-time execution [20]. In
our visual pipeline, we adopt a YOLO-like custom single shot
detector, which is highly optimized for low latency with low
memory footprint [21].

Furthermore, using CNN based object detectors in resource-
constrained devices such as UAVs, has been of high interest in
recent years. In [22], the authors use UAV on-board sensors in
order to intelligently decrease the number of region proposals
on an existing CNN. Although there is a significant speed-up
of the performance, the detector achieves just 2.3 frames-per-
seconds on Jetson TX2. In [23], a framework based on YOLO
is trained to recognize airplanes in fixed sized aerial images
of 448× 448. However, the computational budget and latency
of the detector is not addressed and the system is assumed to
run on a workstation. Works such as [24] use cloud computing
to achieve real-time object detection for a UAV but moving
the computation to the cloud can introduce unpredictable lag
which can hinder the application performance. [25] embeds a
light weight super resolution model to enhance image quality
acquired from UAVs at higher altitudes but assumes the target
is equipped with a Qualcomm neural processing chip which
does not support all existing convolutional operations resulting
in decreased accuracy. [26] integrates concepts of R-CNN
[18] and YOLO [19] proposing a new model and an inducing
layer to optimize the model and speed up convergence. Works
such as [27], use a sliding-window-based detector and use
a fixed region of interest to remove false positives reducing
the necessary computations. However, this still does not solve
the problem of having to scale the detection process to larger
resolution images. To this end, in designing custom resource-
constrains accelerators typically designers are focusing on
decreasing the computational complexity of the CNN by
adopting quantization.

Quantization is an approach used to speed up neural net-
works, by employing integer and/or lower-precision arithmetic
for fast inference with tolerable accuracy loss. Quantizing
neural networks can reduce weights, activations and some-
times gradients down to 8 or even 1 bit representation hence
shrinking the model size and accelerate inference especially in
customized hardware accelerators [28]. Compressing a neural
network by quantization not only reduces memory require-
ments but also power since the network is doing millions of
multiplications and additions at much lower precision and the
on- and off-chip data movement is reduced with the use of
lower-bit quantized data. In this work, we are using an 8-bit
quantization technique on both the input image and the weights
of the CNN.

III. PROPOSED VISUAL PIPELINE

A. Efficient Object Detector Architecture

In our previous work [21], we developed a specialized CNN
architecture, referred to as DroNet1, designed for resource
constrained devices, to accelerate the inference with minimal
impact on the achieved accuracy. To this end, we designed dif-
ferent structures with respect to the number of filters, number
of layers, image size, number of convolution and pooling lay-
ers and explored the impact on the performance. The proposed
model, was able to outperform the Tiny-YOLOv2, a smaller
version of the state-of-the-art YOLOv2 [29] detector using the
proposed weighted score metric, which combines the frames-
per-seconds, the Intersection Over Union(IoU), the sensitivity
and the precision. The proposed architecture makes use of 3×3
and 1 × 1 convolutions, it progressively reduces the feature
maps size by a factor of 2 and uses less filters at early layers.
DroNet demonstrates that by designing a network from the
beginning based on the application requirements, rather than
adapting an existing network, can be more beneficial. To this
end, we adapt the DroNet architecture and with the addition
of shortcut connections, we take feature maps from earlier in
the network and merge them with up-sampled features using
concatenation, to further improve the detection accuracy for
smaller objects. The proposed architecture is called DroNetV3
which is based on improvements also presented in YOLOV3
[30]. Furthermore, we analyze the impact on the performance
for both accuracy and processing time, in combination with
quantization and tiling techniques applied on both DroNet and
DroNetV3, as described in Section IV.

B. Selective Tile Processing

Single-shot detectors based on small networks, suffer from
reduced accuracy due to the resizing step of the input image.
Resizing has a negative impact on the accuracy due to the
reduction of an objects’ resolution. In addition, it can po-
tentially distort objects of interest causing a miss-prediction
by the detector. In our previous work [16] we proposed an
efficient approach for processing an image, without resizing it
- the proposed technique works by dividing the input image
into smaller regions (tiles) based on the CNN input size and
the size of the image. The tiles are uniformly distributed
across the input image with a constant overlap between them.
This technique of course leads to a notable increase of the
number of images that need to be fed into the CNN for
processing. To solve the aforementioned problem, we proposed
two mechanisms that utilize statistical information gathered
over time in order to select only a few tiles for processing,
while keeping track of the activity in non-processed tiles.
The first mechanism, called Memory Mechanism, stores and
load the position of previously detected targets in an efficient
way using prior information gathered by previous processed
frames. With the use of Intersection Over Union (IoU) metric,
each bounding box is compared with each bounding box stored
in the memory and is categorized as new or already detected.

1https://github.com/gplast/DroNet.



Fig. 1: Quantization Speed-up on different Single-Shot detec-
tors running on NVIDIA Jetson TX2

Moreover, with the use of a memory buffer, an estimate of
the position of the objects is extracted in a frame without
having to again process the specific tile that contains the
object. The second mechanism is an Attention Mechanism,
which selects the tiles that need to be processed by the CNN
on the next frame, by combining both memory and attention
mechanism’s gathered information from previous frames, such
as the number of objects detected in each tile, and only few
tiles are selected for processing. Moreover, we give priority
to promising regions (i.e. with higher number of objects) or
to regions that has not been recently selected for processing.
To this end, by intelligently selecting regions of the image it
is feasible to use small, fast and efficient networks for object
detection, leading to real-time execution and high accuracy on
embedded devices.
C. Quantization

A CNN-based object detector requires a significantly large
number of multiplication and addition operations, that needs to
be executed in real-time. One way to reduce the computational
demands while at the same time increase the power efficiency
of CNN-based detectors is with the use of quantization.
Quantization is applied on both weights and the input of
the CNN to reduce the number of bits needed to represent
information and make use of integer or reduced-precision op-
erations. With the use of quantization, multiply-add operations
are transformed into lower-precision operations which lead
to large computational gains and higher performance. In this
work therefore, we are using 8-bit integer quantization on the
input and weights of the CNN. Our implementation is based
on Darknet, a C- and Cuda- based Neural Network framework
[31], with the use of DP4A instruction [32], which performs an
8-bit integer 4-element vector dot product with accumulation.
To this end, input and weight values are transformed from
32-bit floating point values, into 4× 8− bit integer values.

IV. EVALUATION OF QUANTIZATION AND TILING

A. Experimental Setup

We evaluate the impact of quantization on the performance
of four single-shot detectors. First, we present and compare
the speed-up achieved using quantization for YOLOV3 [30],
its smaller and faster version Tiny-Yolov3, DroNet and the

Fig. 2: Accuracy of different DroNetV3 configurations

enhanced DroNetV3. All networks are evaluated on Jetson
TX22,3 ARM-based CPUs, since DP4A is not supported by
Jetson’s GPU. Moreover, we further analyze a combination
of quantization and different selection techniques of tiling for
DroNetV3 with respect to Accuracy metric which shows the
percentage of the objects that were correctly detected and
classified compared to the ground-truth, the Intersection-Over-
Union (IoU) which shows the similarity between a predicted
object and its ground-truth and finally the Average Processing
Time (APT) which captures the average time spend at each
image for predicting the objects. All networks were trained
on the Titan Xp GPU for 200000 iterations, with an initial
learning rate of 0.001, momentum=0.9 and decay=0.0005, on
a constructed UAV-based pedestrian dataset consist of 1500
images and a total of 60000 pedestrians.

B. Speed-up of Quantization

Fig. 1 shows the speed-up on the performance of all the
networks, tested with different input sizes for 100 iterations.
Fig. 1 shows that for large networks such as YOLOV3 and
Tiny-YoloV3 the speed-up is around 1.4 − 1.7× compared
to the smaller networks DroNetV3 and DroNetV2 which is
1 − 1.4×. This shows that the impact of quantization on the
performance depends mostly from the network architecture
(i.e. number of filters, size of filters, input size). It shows
also, that in some cases, and in particular for DroNet, the
quantization of the input can cause a significant performance
overhead, which is a result of the extra processing time
required for the quantization of the input image, leading to an
increase of the processing time. To this end, in our experiments
for DroNetV3 we use the input size with the highest speed-up
which is 352× 352.

C. Experimental Results: Quantization and Tiling

We further evaluate DroNetV3 using both tiling and quanti-
zation techniques, to investigate whether the objective of real-
time inference on resource-constrained devices is met. Table
I shows the collected results from different configurations of
the optimized architecture using the following notation: r -
resizing, t - tiling, 1 - selecting only one tile for processing,
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Fig. 3: Average Processing Time of different DroNetV3 con-
figurations

all - selecting all tiles for processing, STP - using Selective
Tile Processing [16], q - quantization. The input size for all
networks is 352 × 352 except in the case where the actual
image is fed in the CNN (DroNetV3, DroNetV3 q) to avoid
resizing it.

Fig. 2 shows the accuracy metric for different DroNetV3
configurations. Clearly resizing the input image can lead to a
significant drop on the accuracy but at the same time lead
to a decrease on the average processing time. Comparing
DroNetV3 and DroNetV3 r, we observe 20% drop on the
accuracy and after applying quantization another 8% drop.
This is expected since the resolution of the object is changing
significantly along with the reduction in precision from the
quantization techniques. On the other hand, resizing the image
can speed-up the inference time 9×, from 0.432s to 0.048s
as shown in Fig. 3.

The tiling approach, is a way to increase the resolution of
the objects, thus as shown in Fig. 2 all of the techniques that
are based on tiling, demonstrate increased accuracy compared
with the DroNetV3 r. Even in the case where quantization
is used, accuracy increased from 71% to 94% − 98% which
is an increase of 23% to 27%. DroNetV3 t 1 has the same
processing time as DroNetV3 r since the same amount of data
are processed by the CNN. We observe a small increase on
the processing time when using the DroNetV3 t stp since on
average the Attention Mechanism is selecting 2− 3 tiles per-
frame. Moreover, since quantization has small impact on the
accuracy when using the tiling approach, we also observe
that DroNetV3 t stp q can benefit from quantization with
respect to the processing time. Comparing DroNetV3 t stp
with DroNetV3 t stp q there is a reduction of the processing
time from 0.132s to 0.098s that is closer to the processing time
of DroNetV3 r. This shows that by quantizing and using the
STP technique, we are able to increase the accuracy without
affecting the processing time.

Moreover, the same applies for the IoU metric as shown in
Fig. 4. Avoid resizing the input image, either by feeding the
original image or using tiling leads to higher IoU, indicating
better localization of the detected objects. Quantization also af-
fects the IoU with a drop from 0.415 to 0.312 for DroNetV3 r
and DroNetV3 r q respectively. On the contrary, combining

Fig. 4: IoU of different DroNetV3 configurations

Model Accuracy APT IoU
DroNetV3 98.929 0.432 0.643
DroNetV3 r 79.643 0.089 0.415
DroNetV3 t 1 92.143 0.087 0.496
DroNetV3 t all 99.464 0.680 0.650
DroNetV3 t stp 96.071 0.132 0.563
DroNetV3 q 100.000 0.315 0.648
DroNetV3 r q 71.429 0.071 0.312
DroNetV3 t 1 q 94.643 0.068 0.494
DroNetV3 t all q 98.750 0.574 0.619
DroNetV3 t stp q 98.571 0.098 0.562

TABLE I: Accuracy, Average Processing Time(seconds) and
IoU of different configurations of DroNetV3

quantization and tiling has no impact on the IoU.

V. CONCLUSION

In this work we investigate the use of CNN architectures
targeting embedded devices, in combination with quantization
and tiling techniques for real-time object detection. We deter-
mine that with the use of quantization, we are able to decrease
the inference time, while maintaining the accuracy of the
original full-precision detector, by installing a tiling approach.
The combination of the two approaches also manages to
provide the same processing time as a slightly faster, quantized
network with image resizing, but with an increase of 20% to
90% in terms of its accuracy.
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