

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under
the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and
operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D5.2 – WP 5 Scientific Report and
Prototype Description – Y2

Work Package WP5 – WP5 Scientific Report and Prototype Description

Lead Author (Org) Amaryllis Raouzaiou (ATC)

Contributing Author(s)
(Org)

Amaryllis Raouzaiou (ATC), Anestis Sidiropoulos (ATC), Richard
McCreadie (GLA), Iadh Ounis (GLA), Graham Macdonald (GLA), Christos
Doulkeridis (UPRC), Giannis Poulakis (UPRC), Jean-Didier Totow (UPRC),
Maria Kanakari (UPRC), George Kousiouris (UPRC), Sophia Karagiorgou
(UBI), Gina Chatzimarkaki (UBI), Marta Patiño (UPM)

Due Date 29.11.2019

Date 29.11.2019

Version 1.0

Dissemination Level
X PU: Public (*on-line platform)
 PP: Restricted to other programme participants (including the Commission)
 RE: Restricted to a group specified by the consortium (including the Commission)
 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 2 of 114 bigdatastack.eu

Versioning and contribution history
Version Date Author Notes

0.0 18.09.2019 Amaryllis Raouzaiou (ATC) Initial ToC

0.1 14.10.2019 Anestis Sidiropoulos (ATC) Sections 5 and 9
updated

0.2 09.11.2019 Richard McCreadie (GLA), Iadh Ounis
(GLA), Graham Macdonald (GLA)

Section 8, GLA
Contribution

0.3 15.11.2019 Christos Doulkeridis (UPRC), Giannis
Poulakis (UPRC)

Section 6

0.4 18.11.2019 Amaryllis Raouzaiou (ATC) Sections 1, 2, 3 and 4

0.5 18.11.2019 George Kousiouris (UPRC) Section 8

0.6 21.11.2019 Sophia Karagiorgou (UBI), Gina
Chatzimarkaki (UBI)

Section 7

0.7 22.11.2019 Marta Patiño (UPM) Section 9, UPM
contribution

0.8 25.11.2019 Richard Mccreadie (GLA) Section 8

0.9 29.11.2019 Amaryllis Raouzaiou (ATC) Revisions and edits
after the internal review
of the document.

1.0 29.11.2019 Amaryllis Raouzaiou (ATC) Final version

Disclaimer
This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack Consortium.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 3 of 114 bigdatastack.eu

Table of Contents
 1 Executive Summary .. 8

2 Introduction ... 9
2.1 Relation to other deliverables .. 9
2.2 Document structure ... 9

3 Solution Architecture ... 10
3.1 Vision .. 10
3.2 Platform Roles ... 11
3.3 Example Scenario ... 12
3.4 Design ... 13

4 Implementation and Experimentation .. 15
4.1 Experimental Settings ... 15
4.2 Implementation Roadmap ... 16

5 Process Modelling framework ... 19
5.1 Requirements .. 19
5.2 Design Specifications .. 22
5.3 Experimentation Outcomes ... 24
5.4 Integration Highlights ... 27
5.5 Next steps ... 27

6 Process Mapping ... 28
6.1 Requirements .. 29
6.2 System Architecture .. 32
6.3 Implementation and Integration Highlights .. 36
6.4 Experimental Evaluation .. 38
6.5 Next steps ... 44

7 Data Toolkit ... 45
7.1 Requirements .. 45
7.2 Design Specifications .. 47
7.3 Implementation and Integration Highlights .. 51
7.4 Experimentation Outcomes ... 51
7.5 Next steps ... 52

8 Application Dimensioning Workbench ... 53
8.1 Requirements .. 54
8.2 Design Specifications .. 64
8.3 Implementation and Integration Highlights .. 73
8.4 Experimentation Outcomes ... 91
8.5 Next Steps ... 101

9 Adaptable Visualizations ... 102
9.1 Requirements .. 102
9.2 Design Specifications .. 106
9.3 Experimentation Outcomes ... 107
9.4 Integration Highlights ... 111
9.5 Next steps ... 111

10 Conclusions .. 112
References .. 113

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 4 of 114 bigdatastack.eu

List of tables
Table 1 – BigDataStack Platform roles relevant to Dimensioning, Modelling &

Interaction Services ... 12
Table 2 – Implementation Roadmap for Dimensioning, Modelling & Interaction

Services .. 18
Table 3 – System Requirement (1) for Process Modelling Framework 19
Table 4 – System Requirement (2) for Process Modelling Framework 20
Table 5 – System Requirement (3) for Process Modelling Framework 20
Table 6 – System Requirement (4) for Process Modelling Framework 20
Table 7 – System Requirement (5) for Process Modelling Framework 20
Table 8 – System Requirement (6) for Process Modelling Framework 21
Table 9 – System Requirement (7) for Process Modelling Framework 21
Table 10 – System Requirement (8) for Process Modelling Framework 21
Table 11 – System Requirement (9) for Process Modelling Framework 22
Table 12 – System Requirement (10) for Process Modelling Framework 22
Table 13 – System Requirement (1) for Process Mapping 30
Table 14 – System Requirement (2) for Process Mapping 30
Table 15 – System Requirement (3) for Process Mapping 30
Table 16 – System Requirement (4) for Process Mapping 31
Table 17 – System Requirement (5) for Process Mapping 31
Table 18 – System Requirement (6) for Process Mapping 32
Table 19 – System Requirement (7) for Process Mapping 32
Table 20 – Meta Features based on Statistics and Information Theory used for

Algorithm Selection ... 34
Table 21 – Meta-Features used, based on the characteristics of the distance

distribution of instances ... 35
Table 22 – Hyperparameter Tuning Evaluation .. 43
Table 23 – Comparison of the two methods for a single dataset (In terms of

Silhouette Coefficient) that comprise Exhaustive Search in the Analytics
Repository. .. 44

Table 24 – Execution Specifications of the two Methods ... 44
Table 25 – System Requirement (1) for Data Toolkit ... 46
Table 26 – System Requirement (2) for Data Toolkit ... 46
Table 27 – System Requirement (3) for Data Toolkit ... 47
Table 28 – System Requirement (4) for Data Toolkit ... 47
Table 29 – List of ADW related parts and their functionality 54
Table 30 – System Requirement (1) for Pattern Generator 54
Table 31 – System Requirement (2) for Pattern Generator 55
Table 32 – System Requirement (3) for Pattern Generator 55
Table 33 – System Requirement (4) for Pattern Generator 55
Table 34 – System Requirement (5) for Pattern Generator 56
Table 35 – System Requirement (6) for Pattern Generator 56
Table 36 – System Requirement (1) for ADW Core ... 57
Table 37 – System Requirement (2) for ADW Core ... 57
Table 38 – System Requirement (3) for ADW Core ... 58
Table 39 – System Requirement (4) for ADW Core ... 58
Table 40 – System Requirement (5) for ADW Core ... 59

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 5 of 114 bigdatastack.eu

Table 41 – System Requirement (6) for ADW Core ... 59
Table 42 – System Requirement (7) for ADW Core ... 59
Table 43 – System Requirement (8) for ADW Core ... 60
Table 44 – System Requirement (9) for ADW Core ... 60
Table 45 – System Requirement (10) for ADW Core ... 61
Table 46 – System Requirement (11) for ADW Core ... 61
Table 47 – System Requirement (12) for ADW Core ... 61
Table 48 – System Requirement (13) for ADW Core ... 62
Table 49 – System Requirement (14) for ADW Core ... 62
Table 50 – System Requirement (1) for OASA .. 63
Table 51 – System Requirement (2) for OASA .. 64
Table 52 – System Requirement (3) for OASA .. 64
Table 53 – System Requirement (4) for OASA .. 64
Table 54 – ADW Core API calls for Test Setup and Results Ingestion 78
Table 55 – ADW Core API for Test Monitoring ... 84
Table 56 – ADW Core API for Data Filtering .. 86
Table 57 – ADW Core API ... 91
Table 58 – Statistics for the various test cases .. 94
Table 59 – Comparative Table of Features between ADW Bench and other tools 101
Table 60 – System Requirement (1) for Adaptable Visualizations 102
Table 61 – System Requirement (2) for Adaptable Visualizations 102
Table 62 – System Requirement (3) for Adaptable Visualizations 103
Table 63 – System Requirement (4) for Adaptable Visualizations 103
Table 64 – System Requirement (5) for Adaptable Visualizations 103
Table 65 – System Requirement (6) for Adaptable Visualizations 104
Table 66 – System Requirement (7) for Adaptable Visualizations 104
Table 67 – System Requirement (8) for Adaptable Visualizations 104
Table 68 – System Requirement (9) for Adaptable Visualizations 105
Table 69 – System Requirement (10) for Adaptable Visualizations 105
Table 70 – System Requirement (11) for Adaptable Visualizations 105
Table 71 – System Requirement (12) for Adaptable Visualizations 105
Table 72 – System Requirement (13) for Adaptable Visualizations 106
Table 73 – System Requirement (14) for Adaptable Visualizations 106

List of figures
Figure 1 – BigDataStack core platform capabilities .. 10
Figure 2 – Dimensioning Phase ... 11
Figure 3 – Dimensioning, Modelling and Interaction Services of BigDataStack 14
Figure 4 – Interaction Mechanisms .. 14
Figure 5 – RETE framework visual example .. 23
Figure 6 – Process Modeller User Interface ... 24
Figure 7 – Process Modeller Services .. 25
Figure 8 – Service Name and available attributes .. 25
Figure 9 – Linking Services in process Modeller .. 26
Figure 10 – Process Modelling Use Case Graph 1 .. 26
Figure 11 – Process Modelling Use Case Graph 2 .. 26

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 6 of 114 bigdatastack.eu

Figure 12 – Process Modelling Use Case Graph 3 .. 27
Figure 13 – Training phase of the component/ update procedure of the Analytics

Repository (AR) ... 32
Figure 14 - Process Mapping System Architecture .. 35
Figure 15 - Testing of Process Mapping for simple Synthetic Data 38
Figure 16 - Algorithm Selection Evaluation .. 41
Figure 17 - Top-N accuracy of Algorithm Selection, neighbours and distance metric

chosen from the best setting of Figure 13 ... 42
Figure 18 - Data toolkit Main Dashboard .. 48
Figure 19 - Creation of new Components ... 48
Figure 20 - New Component configuration 1 .. 48
Figure 21 - New Component configuration 2 .. 49
Figure 22 - New Application Instance configuration ... 50
Figure 23 - Constraints over interacting services ... 50
Figure 24 - New Application Instance creation ... 51
Figure 25 - ADW Design Benchmark Run System Use Case 66
Figure 26 - ADW Create Model System Use Case .. 66
Figure 27 - ADW Request Prediction System Use Case .. 67
Figure 28 - Overall ADW Design Diagram .. 68
Figure 29 - ADS-Pattern Generation Architecture .. 69
Figure 30 - Benchmark Design Architecture ... 70
Figure 31 - Model Creation Architecture ... 70
Figure 32 - Openshift Application Simulator Adapter Diagram 72
Figure 33 - Annotate Playbook Architecture ... 73
Figure 34 - Potential testing/load injection models ... 75
Figure 35 - ADW Bench Setup UI .. 77
Figure 36 - Node-RED implementation flow of the Setup Test UI 77
Figure 37 - JSON specification of the REST API test submission 78
Figure 38 - Semaphore-like behaviour for test combinations blocking 80
Figure 39 - ADW Bench Data Model .. 82
Figure 40 - Test Monitoring .. 83
Figure 41 - Node-RED flow for Test Monitoring ... 83
Figure 42 - Result filtering UI .. 84
Figure 43 - Node-RED implementation flow for Data Input and Filtering 85
Figure 44 - Trace driven report and status tab ... 85
Figure 45 - Example of Jmeter execution coordination in Docker Swarm 88
Figure 46 - Jmeter Adapter for Docker Swarm Node-RED implementation 88
Figure 47 - Link to Openshift Adapter Node-RED flow ... 89
Figure 48 - Indicative Playbook JSON Structure and Population 90
Figure 49 - Post Playbook Node-RED flow and Result .. 90
Figure 50 - ADW Bench Baseline times under anticipated normal conditions of

execution (1 submitted test setup every 10 seconds with 10 test combinations to
be launched) ... 92

Figure 51 - Various stress testing cases for ADW Bench based on request frequency
and test setup size .. 93

Figure 52 - ADW Bench Response Times under small job granularity and high
frequency .. 93

Figure 53 - Total memory usage comparison with transformer memory usage 95

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 7 of 114 bigdatastack.eu

Figure 54 – TaskManager CPU usage when running a 100% Load Transformer 96
Figure 55 – TaskManager Memory usage over time as we vary Transformer Memory

Usage .. 97
Figure 56 – Base architecture for visualizing big data .. 106
Figure 57 – Monitoring QoS violations and performance of the Deployments 107
Figure 58 – Predictive maintenance Component ... 108
Figure 59 – Analytics Dashboard Component .. 108
Figure 60 – Danaos CEP query ... 109
Figure 61 – Detail of one the Danaos queries .. 109
Figure 62 – Visualization of CEP queries ... 110
Figure 63 – Detailed visualization of the CEP queries execution 111

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 8 of 114 bigdatastack.eu

1 Executive Summary
BigDataStack delivers a complete high-performant stack of technologies addressing the needs
of data operations and applications. The main objective of the dimensioning, modelling and
interaction services building block of the BigDataStack environment, is to provide all the
interaction mechanisms, including the Process Modelling framework, the Data Toolkit, the
Dimensioning Workbench, and the Visualization environment. These are required in order to
exploit the added-value services of the “underlying” BigDataStack offerings: the data-driven
infrastructure management and the Data as a Service.

The current deliverable is the second (i.e. updated) deliverable that focuses on the
aforementioned interaction services building block of BigDataStack. It contains an updated
description of all the components (in terms of design specifications), along with the progress
done until now (in terms of software prototypes, integration and initial evaluation outcomes),
as well as the expected progress until M34.

The main updates of D5.2 are:

1. Updated design specifications of the components, including updated requirements as
well as experimentation outcomes.

2. Extended description of the “Adaptable Visualisations” component – the
corresponding task had not started by the time D5.1 was delivered.

3. Description of the scenario that was presented during the interim review of the
project and demonstrates the integration of WP5 components.

An updated and final version of this report is planned for M34 (D5.3).

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 9 of 114 bigdatastack.eu

2 Introduction
2.1 Relation to other deliverables
The current deliverable, the second BigDataStack deliverable concerning Dimensioning,
Modelling and Interaction Services (D5.3 is scheduled for M34 and D5.1 was delivered in
M11) is related to several other BigDataStack deliverables in a direct or indirect way.

D2.1 (State of the art and Requirements analysis - I) and its updated versions D2.2
(Requirements & State of the Art Analysis - II) and D2.3 (Requirements & State of the Art
Analysis - III) identify and specify the technical requirements for BigDataStack both through
use case (UC) providers and technology providers, while D2.5 (Conceptual model and
Reference architecture - II), the updated version of D2.4, provides information about the key
functionalities of the overall architecture and the interactions between the main building
blocks and their components.

We should also underline that the Requirement Tables of the corresponding components of
the Dimensioning, Modelling and Interaction Services (Tables 3-19, 25-28, 30-53 and 60-73)
are compiled together with the rest of requirements of BigDataStack in D2.3 (Requirements
& State of the Art Analysis - III); they are included in this document for the reader’s
convenience.

Finally, D3.2 (WP3 Scientific Report and Prototype description – Y2) and D4.2 (WP4 Scientific
Report and Prototype description – Y2) are the deliverables which, in combination with D5.2,
present the current technical status (dealing with Data-driven Infrastructure Management
and Data as a service respectively) of BigDataStack project.

2.2 Document structure
Section 3 gives an overview of the various components, while Section 4 provides information
for the experimental setting and implementation roadmap. Sections 5 to 9 follow the data
flow in the dimensioning, modelling and interaction services’ block of BigDataStack
architecture and are dedicated to each one of the different components, namely Process
Modelling framework, Process Mapping, Data Toolkit, Application Dimensioning Workbench
and Adaptable Visualizations. Section 10 contains the conclusions of the current deliverable.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 10 of 114 bigdatastack.eu

3 Solution Architecture
This section describes the technical solution for the Dimensioning, Modelling & Interaction
Services of BigDataStack, based on D2.5. Firstly, it gives a general overview of the
BigDataStack capabilities (context, goal, main functions or services); secondly, it enumerates
the platform roles interacting with these services; and finally, it describes the design of the
proposed solution.

3.1 Vision
BigDataStack offerings are depicted through a full stack aiming to facilitate the needs of data
operations and applications (all of which tend to be data-intensive) in an optimized way. The
BigDataStack core platform capabilities are depicted in Figure 1 and further analysed in D2.5.

Figure 1 – BigDataStack core platform capabilities (extracted from D2.4)

These six BigDataStack core platform capabilities are envisioned to achieve the business goals
or expectations from the different stakeholders. Dimensioning Workbench, Process
Modelling, Data Toolkit and Data Visualization are the four core offerings of BigDataStack
platform that are discussed in this deliverable.
The goal of Data Visualization is to present graphs and reports of data and analytics outcome
in an adaptive and interactive way, while the Data Toolkit facilitates BigDataStack users build
operational analytic workflows by means of data pipelines through Directed Acyclic Graphs
(DAGs). In the case of Process Modelling, the goal is to provide a framework that allows for
declarative and flexible modelling of process analytics, while the Dimensioning Workbench
enables the dimensioning of applications in terms of predicting the required data services,
their interdependencies with the application micro-services and the necessary underlying
resources.
These capabilities are mainly engaged in Entry and Dimensioning Phases of BigDataStack (see
D2.5).

During the Entry Phase:
1. Data Owners ingest their data in the BigDataStack-supported data stores through a

unified API.
2. Given the stored data, Business Analysts design processes utilising the intuitive

graphical user interface provided by the Process Modelling framework through the

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 11 of 114 bigdatastack.eu

Visualisation component, and the available list of “generic” processes. The compiled
business workflow is mapped to concrete executable tasks. These mappings are
performed by a mechanism incorporated in the Process Modelling framework, the
Process Mapping component.

3. The graph of services is made available to Data Scientists through the Data Toolkit,
where they can also specify their preferences for specific tasks, for example, what the
response time of a recommendation algorithm should be.

4. Data Scientists are also able to ingest a new executable in case a task has not been
successfully mapped by the Process Mapping mechanism.

The output of the Entry Phase is a playbook descriptor that is passed to the Application
Dimensioning Phase in order to identify the resource needs for the services.
During the Dimensioning Phase (Figure 2):

1. The input from the Data Toolkit is used to define the composite application needs
with relation to the required data services;

2. The identified/required data services are dimensioned (as well as all the application
components, regarding their infrastructure resource needs), by exploiting a load
injector generating different loads, to benchmark the services and analyse their
resources and data requirements (e.g. volume, generation rate, legal constraints,
etc.).

Figure 2 - Dimensioning Phase

The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that
describes the mapping of the input parameters (such as workload and Quality of Service -
QoS) to needed resource parameters (such as the bandwidth, latency etc.).

3.2 Platform Roles
Table 1 lists the BigDataStack roles relevant to the Dimensioning, Modelling & Interaction
Services (see the complete list of roles in Deliverable D2.1).

Id Name Description

ROL-02 Data Scientist The process model is made available to the data scientist
through the Data Toolkit. BigDataStack offers the Data Toolkit
to enable data scientists both to easily ingest their analytics
tasks, and to specify their preferences and constraints to be
exploited during the dimensioning phase regarding the data
services that will be used (for example preferences for the data
cleaning service).

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 12 of 114 bigdatastack.eu

ROL-03 Business
Analysts

BigDataStack offers the Process Modelling Framework allowing
business users to model their functionality-based business
processes and optimize them based on the outcomes of
process analytics that will be triggered by BigDataStack. The
business analyst can search processes from the list of available
processes, create a flow of processes and set objectives for the
overall flow or per process. The visual analytical reports are
made available to the business analyst through the
visualization layer.

ROL-04 Application
Engineers and
Application
Service
Owners

The updated model is made available to the application owner
/ engineer through the Application Dimensioning Workbench.
BigDataStack offers the Application Dimensioning Workbench
to enable application owners and engineers to experiment
with their applications and dimension it in terms of its data
needs and data-related properties.

Table 1 – BigDataStack Platform roles relevant to Dimensioning, Modelling & Interaction Services

The UI platform has different views depending on the user role, so, apart from the
Administrator, who has access to the full UI view, three more roles have been defined:

o ROL-03-Business Analyst (Process Modeller View)
o ROL-02-Data Analyst (Data Toolkit View)
o ROL-04-Application Owner/Engineer (BenchMarking, Dimensioning Workbench,

Analytics View)

3.3 Example Scenario
In this section, we provide an example scenario to illustrate how the Dimensioning, Modelling
& Interaction Services of BigDataStack are envisaged to function and how business analysts,
application engineers and data scientists benefit from its functionalities.

Let us assume that we have a stock pricing application for a large European grocery retailer.
The application’s role is to set the prices for all goods in the consortium’s online stores,
including adding one-day flash sales to promote regular engagement from customers. There
is an important constraint for data scientist devising the big data analytics algorithms and the
application engineers deploying and executing those as compute tasks: it needs to run each
night after 9pm and needs to be finished before 4am, so that the online storefronts have time
to update their pricing before morning traffic.

The application itself is comprised of three main services: the price modelling service, the
price application service and the store-front update service. The price modelling service needs
to run first as a large batch operation, ingesting all sales from the previous twelve months and
updating the internal model about product stock and popularity. This means the model
update process will require access to historical big data. Once that service has finished, the
price application service runs over all current stock, updating the item prices and adding sales
where appropriate. As items are processed, these are sent directly to the store-front update
service, which remotely updates the various consortium’s store-front databases.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 13 of 114 bigdatastack.eu

To make the example more concrete we consider the following assumptions concerning the
Dimensioning, Modelling & Interaction Services:

a) The BigDataStack infrastructure is deployed on an opaque cloud provided by a public
vendor, where compute resources can be requested on demand.

b) The cloud environment is relatively stable in terms of performance and, for the sake
of simplicity, we have a unique size of allocable server.

c) The benchmarking phase gives hints (estimates) on the expected computation time
depending on different variables, including the opaque cloud configuration, the
application deployment configuration and even the day of the week/month, but with
some non-negligible uncertainty.

d) The historical big data is stored in a secure datastore managed by BigDataStack,
including the specification of what data needs to be processed by what service (e.g.,
the price modelling service needs the last twelve months’ sales information).

Using BigDataStack User Interface (Adaptable Visualisations), the Application Engineer
uploads the application to the BigDataStack platform and the Business Analyst specifies the
main workflow of their application via the Process Modelling, while the Data Scientist uses
the Data Toolkit to create the so-called Playbook that contains all the information related to
the preferences of the application (e.g. Service Level Objective (SLO) of end-to-end completion
time < 7 hours, agreed to be accomplished between 9pm and 4am). The Application Engineer
can now pass the Playbook to the Application Dimensioning Workbench, where it is
converted into multiple CDP (Candidate Deployment Pattern) Playbooks, each one describing
a potential deployment configuration (what compute and memory resources to request).
Each of these configurations will undergo a brief benchmarking step, where the resource
usage of the application is estimated. The resultant set of CDP Playbooks with benchmarking
information is passed to Data-driven Infrastructure Management to optimize its decision-
making models.

3.4 Design
The conceptual view of Dimensioning, Modelling & Interaction Services consists of four main
blocks, as summarized in the following paragraphs:

1. Process Modelling
The Process Modelling Framework allows for declarative and flexible modelling of
process analytics, while the Process Mapping component targets the problem of
identifying or recommending the best algorithm from a set of candidate algorithms. It
is accessed through BigDataStack User Interface (Adaptable Visualisations
component) by the Business Analyst.

2. Data Toolkit
The main objective of the Data Toolkit is to design and support data analysis
workflows. It facilitates Business Analysts and Data Scientists in building operational
analytic workflows, interacting with Process Modelling component. It can be accessed
by both Business Analyst and Data Scientist through BigDataStack UI.

3. Dimensioning Workbench
The Application Dimensioning Workbench (ADW) aims to provide insights regarding
the required infrastructure resources for the data services and application

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 14 of 114 bigdatastack.eu

components (micro-services), linking the used resources with load and expected QoS
levels.

4. Adaptable Visualizations
Adaptable Visualizations component is the main User Interface of BigDataStack.
Different roles have been defined, controlling the access to the interface. Graphs are
created, saved or loaded though the UI, while reports of data and analytics outcome
are presented in an adaptive and interactive way.

As it is depicted in Figure 3, typical Big Data flow starts from the Process Modelling Block
(Process Modelling and Process Mapping), then the defined processes/graphs are further
concretized through the Data Toolkit and its output will be passed to the Dimensioning
Workbench. The graphs, the analytics insights and all the relevant information feed the
Adaptable Visualisations component.

Figure 3 – Dimensioning, Modelling and Interaction Services of BigDataStack

Figure 4 illustrates the building block that provides all the interaction mechanisms.

Figure 4 – Interaction Mechanisms

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 15 of 114 bigdatastack.eu

4 Implementation and Experimentation
This section describes how the use cases are being supported through the components of
WP5, along with the implementation roadmap towards the project conclusion.

4.1 Experimental Settings
This section introduces the use cases and the scenarios we are using to validate the different
implementation increments (releases) of the Dimensioning, Modelling & Interaction Services.
Connected Consumer (CC) and Real-time Ship Management (RSM) are the two use cases
with which we are testing the different components presented in this deliverable.

4.1.1 Setting 1

The Connected Consumer (CC) use case, provided by ATOS, deals with a multi-sided market
ecosystem (see deliverable D2.1 section 4.2). Some of the highlights of the use case are
(please refer to D2.1 for the full description):

• The main challenge is to predict which consumers are the most loyal or which
potential buyers are more likely to purchase a certain product or service.

• Eroski1, one of the largest distribution companies in Spain with more than 35.000
workers, is collaborating with ATOS in the definition and test of a use-case related to
the grocery business. It is also contributing with real data for the development of the
project. The goal of this scenario is to provide data insights to EROSKI to better
understand how to create and offer added-value services to their consumers.

• CC use case aims to predict both which products and which promotions are more likely
to be interesting for the customers at the right time. From the analysis of different
data sources provided by Eroski, the goal is first to predict the list of products that
customers with recurrent purchases will need in the current purchase period (trend).
Afterwards, add to this prediction those products that can be interesting for the user
based on other similar user’s behaviour (cross-selling). Finally, thanks to a deep
knowledge of the customer profile, the goal is also to incorporate those promotions
that can be interesting for each customer.

All the components of Dimensioning, Modelling and Interaction Services are involved in the
different stages of CC.
The Business Analyst uses Process modelling framework to define the graph that represents
the requested application and includes both application and data services.
This graph is loaded by the Data Scientist, who is using the Data Toolkit in order to concretize
the analytic tasks.
The application is then analysed through the Application Dimensioning Workbench,
deployment patterns have been generated and the deployer of BigDataStack has been utilized
to perform the actual deployment on the infrastructure and obtain the analytics results
through the recommendation engine that has been implemented.
These results / recommendations along with the first steps of the process have been displayed
through the Visualization module.

1 https://www.eroski.es/

https://www.eroski.es/

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 16 of 114 bigdatastack.eu

4.1.2 Setting 2

The Real-time Ship Management (RSM), provided by DANAOS, deals with the maintenance
and spare parts inventory planning & dynamic routing (see deliverable D2.1 section 4.1).
Some of the highlights of the use case are (please refer to D2.1 for the full description):

• Two key challenges in the ship management domain: (i) predictive maintenance
combined with spare parts inventory planning, and (ii) dynamic routing.

• DANAOS, a leading international maritime player with more than 60 containerships,
transporting millions of containers, sailing millions of miles to thousands of ports, and
consuming millions of tons of fuel oil, which is a partner of BigDataStack, provides the
consortium with real data in order to test the various components.

• Two different but complementary scenarios have been defined in the framework of
RSM: (i) monitoring and predictive maintenance and (ii) requisition of a spare part and
dynamic routing to the closest port where this part is available.

All the components of Dimensioning, Modelling and Interaction Services are involved in the
different stages of RSM.
Adaptable Visualisations component offers the UI to all the users of BigDataStack, providing
different functionalities according to their role. The Business Analyst logs in the BigDataStack
platform and, using the Process Modelling Framework, creates a workflow graph or updates
an available one, through the definition of the business processes and the associated
objectives.
The processes included in this workflow graph will be further concretized through the Data
Toolkit. Using the Data Toolkit, the Data Scientist can define the data ingestion and the
necessary curation tasks for DANAOS dataset (weather data, tracks from vessels) and
configure the runtime resources.
The output of this step is a Playbook representing the grounded workflow for each process.
It will be passed to the Dimensioning Workbench to identify the necessary resources for each
node of the graph. The Pattern Generator subcomponent of the Application Dimensioning
Workbench (ADW) is not explicitly linked to the particular UC; it forms part of the underlying
application deployment backbone that supports all UCs of BigDataStack in order to identify
how to deploy the user’ s application onto the cloud infrastructure. On the other hand,
although Dimensioning core applies to the generic data services included in BigDataStack, it
can be adapted to a specific UC, specifically with relation to aspects of workload.

4.2 Implementation Roadmap
Table 2 summarises the plan for Dimensioning, Modelling & Interaction Services (M26 and
M34 are the tentative dates of the next planned integration meetings).

 M24 M26 M34

Process Modelling
Framework

• Enrich the pallet of
the available
processes to model

• Define constraints
between available
nodes/processes

• The business analyst
able to set apply
constraints per node
/ process of the
workflow

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 17 of 114 bigdatastack.eu

• The business analyst
able to apply
constraints /
parameters per edge
(i.e. connections
between processes of
the workflow).

• Enriched and
complete collection
of services fulfilling
all Process Modelling
Scenarios

Process Mapping • Extend/complete the
functionality of
Process Mapping for
clustering

• Integrate with
Process Modelling
Framework.

• (Design) Extend
functionality to other
ML tasks, e.g.,
classification.

• (Development)
Extend functionality
to other ML tasks,
e.g., classification.

• Support for MLib of
Apache Spark

Data Toolkit • Data serialization in
the support of
diverse data
objects/formats
(early prototype).

• Data serialization in
the support of
diverse data
objects/formats
(early prototype).

• Data serialization in
the support of
diverse data
objects/formats
(mature prototype).
This will enable data
transformations
within a data analytic
pipeline to be
realized through a
message queuing
system.

Application
Dimensioning
Workbench

• integration with the
Openshift Application
Simulator adapter

• Inclusion of data
services in the
benchmarking graph
and initialization of
benchmarking runs.

• Finalization of model
creation and online
availability for
predictions at the
graph level.

Adaptable
Visualisations

• Integration of Data
Toolkit Component.
Additional login to
Data Toolkit will be
bypassed once the
user is authenticated
via JWT in the BigDS
web platform

• Authentication of the
user performed once
upon logging in the
platform. Any
additional
authentication for
individual
components should
happen in the
background without

• Interactive UI
adapted to different
devices and displays
(proper operation,
good user
experience).

• ADW: Application
owner imports a
playbook produced
by the Data Toolkit

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 18 of 114 bigdatastack.eu

further user
interaction.

Component and
choose Manual Mode
Deployment to get
Deployment
Recommendations
(automatically
deployed and
monitored).

• ADW: Application
owner can redeploy
functionality

• ADW: the user can
retrieve the logs for
each application

• ADW: Application
owner can trigger
certain decision
provided by the
Dynamic
Orchestrator

• ADW: Application
Simulator Capabilities
(part of Data Toolkit
or Adaptive
Visualizations)

• Dashboards: All use
cases vizualized.

Table 2 – Implementation Roadmap for Dimensioning, Modelling & Interaction Services

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 19 of 114 bigdatastack.eu

5 Process Modelling framework
The Process Modelling Framework allows for declarative and flexible modelling of process
analytics. Functionality-based process modelling is then concretized to technical-level process
mining analytics, while a feedback loop is implemented towards overall process optimization
and adaptation.

The Process Modelling Framework is a straightforward way to provide the ability to produce
high-level graphs that describe Business Processes.

5.1 Requirements
The anticipated functionalities / requirements are described in the following tables (Table 3 -
Table 12), that are compiled together with the rest of requirements of BigDataStack in D2.3.

 Id2 Level of detail3 Type4 Actor5 Priority6

REQ-PMF-01 System and
Software

USE ROL-03 MAN

Name UI/UX experience

Description The system should guide the users to complete the business diagram /
flow with easy steps. It should clearly indicate what connections –
interactions are possible and provide comprehensive error messages.

Additional
Information

N/A

Status Fulfilled

Table 3 – System Requirement (1) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-02 System and
Software

FUNC ROL-02
ROL-03

MAN

Name Multi-user support

Description Multiple users should be able to use the Process Modelling Framework and
create diagrams at the same time. It should also support different roles:
business analysts and data analysts. A business analyst will define a process
in a higher level and a data analyst will provide the concrete
implementations.

Additional
Information

N/A

2Identifier: To be used in D2.2 to allow for the correct traceability of requirements.
3Level of detail: Following the use of ISO/IEC/IEEE 29148:2011, we use the following levels: Stakeholder, System and Software (i.e.,
technology details).
4Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and Feel Requirements), USE
(Usability Requirements), PERF (Performance Requirements), ENV (Operational/Environment Requirements), and SUP (Maintainability and
Support Requirements).
5Actor: It needs to be either one of the BigDataStack platform roles identified in Section 3.2 or a system actor, e.g. another component or
service.
6Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable requirement), OPT (optional
requirement), ENH (possible future enhancement).

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 20 of 114 bigdatastack.eu

Status Fulfilled

Table 4 – System Requirement (2) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-03 System and
Software

FUNC ROL-03 MAN

Name Process workflow creation

Description A business analyst should be able to create a process workflow in a higher
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow.

Additional
Information

N/A

Status Fulfilled

Table 5 – System Requirement (3) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-04 System and
Software

FUNC ROL-02 MAN

Name Process workflow configuration

Description The data analyst should be able to configure a process workflow with all the
required details. The data analyst will set up the nodes parameters and
define the rules for moving from one node to another.

Additional
Information

N/A

Status Fulfilled

Table 6 – System Requirement (4) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-05 System and
Software

FUNC ROL- 02 MAN

Name Process workflow export

Description The data analyst should be able to export/edit/import the process workflow
in BigDataStack format.

Additional
Information

The default format of the export will be in JSON. It will include information
regarding the flows and their interconnections. Alternative export formats
(YAML, Dockerfile) will be considered based on the requirements of other
components.

Status Fulfilled

Table 7 – System Requirement (5) for Process Modelling Framework

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 21 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-PMF-06 System and
Software

FUNC ROL-03 MAN

Name Support for end-to-end (in terms of process workflow) objectives

Description The business analyst should be able to defile end-to-end objectives. These
objectives do not apply to a single process, but to the workflow as a whole.

Additional
Information

N/A

Status Fulfilled

Table 8 – System Requirement (6) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-07 System and
Software

FUNC ROL-03 MAN

Name Process constraints

Description The business analyst should be able to set apply constraints per node /
process of the workflow

Additional
Information

N/A

Status Not Fulfilled

Table 9 – System Requirement (7) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-08 System and
Software

FUNC ROL-03 MAN

Name Edge constrains

Description The business analyst should be able to apply constraints / parameters per
edge (i.e. connections between processes of the workflow).

Additional
Information

N/A

Status Not Fulfilled

Table 10 – System Requirement (8) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-09 System and
Software

FUNC ROL-02
ROL-03

MAN

Name Save and Edit capabilities of the graph

Description The user should be able to export /import/edit/save the generated graph.

Additional
Information

N/A

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 22 of 114 bigdatastack.eu

Status Fulfilled

Table 11 – System Requirement (9) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-10 System and
Software

FUNC ROL-02
ROL-03

MAN

Name Arsenal of Services

Description The component should provide an enriched and complete collection of
services which will fulfill all Process Modelling Scenarios

Additional
Information

N/A

Status Not Fulfilled

Table 12 – System Requirement (10) for Process Modelling Framework

5.2 Design Specifications
The Process Modelling Component was initially implemented by utilizing as a baseline Node-
RED. Subsequently taking the UI/UX into account a migration and refactoring was performed
towards the VueJS framework by using ReteJS library.

Rete7 is a modular framework for visual programming. Rete allows you to create node-based
editor directly in the browser. It is possible to define nodes and workers that allow users to
create instructions for processing data in your editor without a single line of code.

7 https://github.com/retejs/rete

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 23 of 114 bigdatastack.eu

Figure 5 – RETE framework visual example

Using the capabilities provided by ReteJS library the following scenarios were implemented:

1. Provide a wide palette of available processes that can model the uses cases.
2. Create flow of processes.
3. Edit available fields depending on the type of the process. Fields can be:

a. Process Name
b. Process Attributes.

4. Define the overall objective of the Process Modeller graph to be generated.
5. Create a high-level graph of processes.
6. Export/edit/import/save of the generated graph in JSON format. This JSON file will

subsequently be used as input for the Data Toolkit Component.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 24 of 114 bigdatastack.eu

Figure 6 – Process Modeller User Interface

5.3 Experimentation Outcomes

5.3.1 Evaluation results

After integration of the Process Modeller Component in the end to end process provided by
BigDataStack environment, graphs were generated to reflect scenarios from the Business
Analyst perspective. For each graph, the relevant attributes were defined per process
(represented by a node) and the graph description was exported in JSON format. Generated
graphs were subsequently consumed by the Data Toolkit Component.
In terms of evaluation metrics and KPIs, the following objectives were fulfilled:

Good UI/UX experience

The process of creating/editing/import and export of the desired Process Modeling graph
is straightforward and consistent for the User.
The Business Analyst has the ability to choose services among an arsenal of available
services.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 25 of 114 bigdatastack.eu

Figure 7 – Process Modeller Services

Each one of the selected services is visually represented by a node. Furthermore, for each
service, the user can specify the name of the service and the attributes (attributes are
dependent on the type of the service).

Figure 8 – Service Name and available attributes

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 26 of 114 bigdatastack.eu

Subsequently, the user can create relations among the services by simple drag and drop
links.

Figure 9 – Linking Services in process Modeller

Upon completion of the graph, the user can define the Overall Objective and export the
graph using the horizontal menu on top of the Modeller

By pressing Export, the graph is converted in JSON format and downloaded locally.
Additional capability provided by the Modeler is importing a generated graph for further
Editing and Updates simply by pressing the Choose file button.

Successful modelling of the use cases
Process Modeler was used to produce graphs that correspond to the use cases. Among
others, the following graphs were generated to model the respective processes:

Figure 10 – Process Modelling Use Case Graph 1

Figure 11 – Process Modelling Use Case Graph 2

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 27 of 114 bigdatastack.eu

Figure 12 – Process Modelling Use Case Graph 3

Seamless integration with other components

Process Modeler Component is directly consumed and adapted to comply with the unified
BigDataStack platform.

5.3.2 Comparison with other approaches

In general, there are limited options on available Visual Programming Components.

In contrast with the initial Process Modelling Framework Prototype (Node-RED),
implementation of the Process Modeller using VueJS - ReteJS provided a more structured,
well-defined and user friendly component. User Experience is improved and the creation of a
Process Modeller Graph is more feasible.

5.4 Integration Highlights
The Process Modelling component was directly consumed by other BigDataStack components
in terms of integration. JSON files can be directly imported exported locally.

5.5 Next steps
Towards a complete Process Model Framework implementation, the following steps need to
be completed:

• Enrich the pallet of the available processes to model.
• Define constraints between available nodes/processes.
• Apply validation rules on Node attribute level and Node Connectivity level.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 28 of 114 bigdatastack.eu

6 Process Mapping
The Process Mapping component targets the problem of selecting the best algorithm along
with a set of values for the algorithm’s input parameters, from a set of candidate algorithms,
given a specific data analysis task, in an automatic way. Its role is to automatically map a step
of a process to a specific algorithmic instance from a given pool of algorithms, thereby
achieving so-called “process mapping”.

Obviously, covering all possible types of processes is a tedious task that goes beyond this
project. In fact, previous EU projects, most notably METAL [11] and MiningMart [12], have
focused on algorithm selection for specific problems. Instead, in the context of the Process
Mapping component, the focus will be on Machine Learning (ML) tasks, since this is very
important for the successful analysis of big data. Moreover, ML algorithm selection is
challenging, because the connection between an ML algorithm and the characteristics of the
data under analysis is still a challenge. Thus, our work focuses mainly on ML algorithms and
the automatic selection of the most appropriate algorithm for a given input dataset. This is
recently also known as “automated machine learning”.
In more concrete terms, the key functionality targeted by the Process Mapping component is
stated as follows. Given an ML task, a dataset, and a set of available ML algorithms that can
handle the given task, the Process Mapping component selects the ML algorithm with best
performance. Essentially, the problem can be cast as a search problem, where the search
space consists of the available ML algorithms, and the objective is to identify the best
performing algorithms.
At the time of this writing, the focus is on unsupervised learning, namely clustering. Also, the
optimization goal is the quality of the result, thus the best performing algorithm is indicated
by appropriate cluster quality indexes, which are evaluation metrics that assess the quality of
clustering.

In comparison to the deliverable D5.1 submitted on M11, the Process Mapping component
has significantly evolved in terms of new functionality and features, as listed below.

1) Pre-processing. A variety of pre-processing steps has been implemented for data
preparation, prior to the execution of task specific algorithms (e.g., normalization of
input data for clustering, handling of missing values, etc.).

2) Hyperparameter Tuning. A new subcomponent has been developed and included in
the overall architecture, which is responsible for Hyperparameter Tuning. Essentially,
this subcomponent couples the Model Selection subcomponent and its role is to
select appropriate values for the input parameters of the selected clustering
algorithm in an automatic way. Its functionality is based on Bayesian Optimization
methods.

3) Datasets additions. A more thorough experimental study has been conducted on a
bigger collection of datasets, in order to acquire deeper insight on how the
performance of clustering algorithms is affected by dataset characteristics and as a
result improve the overall performance of the Process Mapping component.

4) Larger collection of ML algorithms. Finally, the collection of ML algorithms has been
expanded (to the 7 clustering algorithms implemented in the Scikit-Learn library) to
broaden the available selection choices, aiming at more realistic application
scenarios.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 29 of 114 bigdatastack.eu

Related Work

Regarding the Combined Algorithm Selection and Hyperparameter optimization problem
CASH, state of the art solutions such as AutoML, AutoWeka, TPOT, etc., exist and base their
work on optimization techniques such as genetic and Bayesian optimization to name a few.
Although the frameworks mentioned provide solutions in the context of supervised learning
such as classification and regression, none of those frameworks provides solution for the
CASH problem in unsupervised learning. This is generally due to the lack of information to be
used for validation purposes, such as the true clusters of a dataset’s instances leading to
obscure objective functions to optimize. Although many indices based on Separation and
Compactness of clustering schemas, also called internal indices, have been developed to
overcome this difficulty, each comes with its own drawbacks and limitations. As a result, the
definition of a universal best index for clustering evaluation remains a difficult task.

Algorithm Selection as an individual problem has been previously tackled in the literature by
transferring knowledge through meta learning systems [10]. We refer to [13] for a survey of
the problem of meta-learning for algorithm selection, and also to recent notable works for
classification [14] and clustering [15] (the former having been the object of much more
extensive studies).

The most recent work of Ferrari and Castro [15] implements this procedure of Algorithm
Selection for clustering problems along with some novelties, such as extracting Meta Features
based on the distance distribution of instances. The Process Mapping component extends this
work significantly. It adds a Hyperparameter Tuning subcomponent that tries to automatically
find optimized values of input parameters, by inferring knowledge from the algorithm
selection process. More concretely, in the context of algorithm selection, this allows not only
the selection of an algorithm that produced the best results, but also the discovery of input
parameters to warm start the optimization procedure.

6.1 Requirements
The Process Mapping component is invoked from the output of the Process Modelling
framework. Recall that the Process Modelling framework is used to create process models
that contain different types of tasks, including data analysis tasks. In order to map steps of an
(abstract) process model to concrete implementations of corresponding algorithms, process
mapping is required. In particular, for data analysis or machine learning (ML) tasks, which
constitute the main target of our work, a given task can be implemented using different
alternative algorithms. Quite often, it is hard for data scientists to select the best performing
algorithm, and even more so for the non-expert user. Consequently, there is a need for a
system that identifies the most promising ML algorithm for the given task.

The anticipated functionalities / requirements are described in the following tables that have
been compiled together with other functional requirements of BigDataStack components and
have been recorded in Deliverable D2.3.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 30 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-DO-01 Stakeholder FUNC ROL-04 MAN

Name Compatibility with output of Process Modelling

Description The Process Mapping component is able to process the output of Process
Modelling, in order to select appropriate ML algorithm(s) for specific
Process steps.

Additional
Information

This requirement practically ascertains that the two components (Process
Modelling and Process Mapping) are compatible and that the output of the
first can be consumed by the second.

Status Not Fulfilled

Table 13 – System Requirement (1) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC ROL-04 MAN

Name Extraction of metadata

Description Given a dataset, extract a set of metadata that is sufficient in order to
discover similarities between datasets, in particular regarding the
underlying data distributions and other statistical properties.

Additional
Information

The metadata should cover at least statistical and information-theoretic
characterization of a given dataset.

Status Not Fulfilled

Table 14 – System Requirement (2) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-03 Stakeholder FUNC ROL-04 MAN

Name Build and maintain a meta-knowledge repository

Description Collect and store information about datasets, metadata, and the
performance of ML algorithms that have been executed on the datasets.
This information is referred to as meta-knowledge, because it is essentially
knowledge about the learning process. This meta-knowledge repository is
going to be used for meta-learning, which is defined as the study of
methods that exploit meta-knowledge to obtain efficient models and
solutions by adapting machine learning processes.

Additional
Information

The meta-knowledge repository is augmented with information about the
execution of ML algorithms on new datasets.

Status Fulfilled

Table 15 – System Requirement (3) for Process Mapping

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 31 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-DO-04 Stakeholder FUNC ROL-04 MAN

Name ML algorithm selection

Description Given a machine learning task, a dataset, and a set of available ML
algorithms that can handle the given task, select (or recommend) the subset
of ML algorithms with best performance.

Additional
Information

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and
an execution environment for running ML algorithms on different datasets
and evaluating their result quality.

Status Not Fulfilled

Table 16 – System Requirement (4) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-05 Stakeholder FUNC ROL-04 MAN

Name Hyperparameter Tuning

Description Given a specific machine learning algorithm (determined by algorithm
selection), automatically select optimal values for the input parameters.

Additional
Information

The Hyperparameter Tuning process is performed for (a) a given machine
learning task (e.g., clustering, classifications, etc.), and (b) the input
parameters of each algorithm. Its objective is to automatically compute
appropriate values for the input parameters, which will be used for the
invocation of the specific ML algorithm.

Status Not Fulfilled

Table 17 – System Requirement (5) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-06 Stakeholder FUNC ROL-04 MAN

Name Data retrieval from the storage engine

Description The Process Mapping component is able to connect to and query the
LeanXcale datastore of the storage engine, to retrieve input datasets or
filtered datasets.

Additional
Information

The two sub-tasks of Process Mapping, namely ML algorithm selection and
Hyperparameter Tuning, should be considered dataset-–-specific, i.e., they
are executed for a given input dataset. This requirement ascertains that the
Process Mapping component is able to access the datasets stored in the
LeanXcale datastore in order to provide an integrated solution at system
level.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 32 of 114 bigdatastack.eu

Status Not Fulfilled

Table 18 – System Requirement (6) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-07 Stakeholder FUNC ROL-04 MAN

Name Output recorded in the playbook

Description The output of the Process Mapping component is used to update the
playbook.

Additional
Information

The output of the Process Mapping component is written in a form that is
compatible with the playbook format, in order to enable the execution
engine to have all the necessary information for the invocation of the
selected machine learning algorithm.

Status Fulfilled

Table 19 – System Requirement (7) for Process Mapping

6.2 System Architecture
The component’s architecture is described in two subsections. The first one (6.2.1) presents
the process pipeline (Training phase) of creating a repository of information crucial for the
execution of Process Mapping. The second subsection (6.2.2) presents the process pipeline
(Selection phase) for providing solutions to new dataset entries given certain user inputs and
the information produced in the training phase.

Figure 13 - Training phase of the component/ update procedure of the Analytics Repository (AR)

6.2.1 Training Phase – Analytics Repository Creation Process

Before moving forward to explaining the individual subcomponents used in the Training
phase, it is important to clarify what the Analytics Repository consists of. The Analytics
Repository (AR) is a collection of various types of information required for the execution of

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 33 of 114 bigdatastack.eu

the individual processes of the Process Mapping component. This information is collected
and updated from executions of ML algorithms on previously seen datasets. Essentially, the
system follows a “learning-to-learn” approach, and exploits knowledge assembled from its
past usage in order to constantly improve its performance with time. As shown in Figure 13,
the collection of information in Analytics Repository falls into three distinct categories:

• Metafeature database (MFDB)
• Results of Exhaustive Search (ES Results)
• Machine Learning algorithms (ML Algorithms)

which are directly linked to the subcomponents as described next.

A. Data Preprocessing

The Data Preprocessing subcomponent is responsible for handling inconsistencies and
preprocessing of the input dataset (denoted 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛), in order to provide a transformed
version that is more suitable as input for the given analysis task. As an example, in the
specific case of clustering the Data Preprocessing is responsible for the following
transformations on the input dataset:

• Drops columns when they consist only of unique values.

• Drops columns with 30% or more missing values.

• Scales data into [0,1] range by applying Min-Max scaling/normalization.

• Replaces missing values with KNN strategies (regressor for continuous
attributes and classifier for discrete attributes).

It should be mentioned that no restrictive assumptions are made with respect to the
original input data. It is expected to consist of n rows (records) and m columns
(attributes) of numeric values. Obviously, both n and m may vary, depending on the
dataset at hand.

B. Meta Features Extraction

This subcomponent is responsible for the creation of data descriptors in the form of
numerical vectors that describe various features of the dataset. The Meta Features
Extraction subcomponent computes several characteristics of a dataset, also known
as meta-features, that capture information about the objects in the dataset, based on
Statistics, Information Theory and the distribution of pairwise distances of the objects
(Table 20-Table 21). This subcomponent is responsible for producing the information
that is stored in the MFDB (Meta Features Database) in the Analytics Repository (AR),
which is subsequently used for finding similar datasets to the dataset at hand.

C. Exhaustive Search

The Exhaustive Search subcomponent produces instances of a setting explored (ML
Algorithm and a set of values for input parameters) and the proper evaluation metric
that was observed for this setting with respect to the ML Task. This is achieved using
two of the most well-known exploration methods of Hyperparameter Tuning. The first
method that is used is a “brute-force” approach called Grid Search that searches every
possible combination of values of finite parametric spaces and is computationally
intensive. The second one, known as Random Search, randomly selects a handful of

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 34 of 114 bigdatastack.eu

combinations from those available for evaluation, is less time-consuming and has
proven to outperform Grid Search in certain cases (see 6.4.3).

Both of these methods need a defined search space which is drawn from ML
Algorithms in the Analytics Repository. This information, formatted in standard JSON,
is responsible for recording the Machine Learning algorithms that are currently
supported by the Process Mapping component, their input parameters and the search
spaces for the execution of Grid and Random Search. After the search space is set,
every combination of ML algorithm and input parameters is executed for a given
dataset in an Analytics Engine (practically a runtime for ML algorithms). The collection
of information derived from Exhaustive Search (ES Results) is later used for the
selection of ML models for new unseen datasets and provides a baseline for evaluating
results.

Table 20 - Meta Features based on Statistics and Information Theory used for Algorithm Selection

 Meta-Features Based on Information Theory

MA-1 Log2 of the No of Objects

MA-2 Log2 of the No of Attributes

MA-3 Percentage of Discrete Attributes

MA-4 Percentage of Outliers

MA-5 Mean Entropy of Discrete Attributes

MA-6 Mean Concentration between Discrete Attributes

MA-7 Mean absolute Correlation between continuous attributes.

MA8 Mean skewness of continuous attributes

MA9 Mean kurtosis of continuous attributes

 Meta-Features based on the distance distribution of Instances

MD-1 Mean of distances vector

MD-2 Variance of distances vector

MD-3 Standard Deviation of distances vector

MD-4 Skewness of distances vector

MD-5 Kurtosis of the distances vector

MD-6-
14

Percentage of distance values in each of ten intervals that equally
comprise range [0,1]

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 35 of 114 bigdatastack.eu

Table 21 - Meta-Features used, based on the characteristics of the distance distribution of instances

6.2.2 Selection Phase – Process Mapping “In Action”

Figure 5 presents the architecture design of the Process Mapping component. The input is
provided as a dataset (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛) and a specific analysis Task (T), e.g. Clustering, Classification, etc.
A Machine Learning algorithm is then selected (or recommended) along with specified values
for the input parameters. Based on the ordering presented in Figure 14, a comprehensive
explanation of each process of the overall architecture follows.

Figure 14 - Process Mapping System Architecture

A. Model Selection

The main purpose of this process is to select or recommend a set of ML algorithms for
the input dataset 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 and analysis task T. The idea behind this process is that similar
datasets should have similar solutions for a given task T. In order to define similarity
among datasets, several characteristics, known as meta-features, are extracted from
each dataset and create a feature vector which allows for the calculation of similarity
measures between datasets. The feature vector consists of measurements based on
Statistics and Information-Theory (Table 20) and the distribution of pairwise distances
of the instances (Table 21).

When this process is initiated, the meta features of the dataset are extracted and its
similarity is computed against the meta features of instances of the Metafeature DB
(MFDB), corresponding to previously seen datasets, located in the analytics
repository. Then the most similar dataset is found along with the algorithm that

MD-15-
19

Percentage of distance values with absolute z-score in four intervals of
range [0, inf)

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 36 of 114 bigdatastack.eu

produced the best result, based on the Exhaustive Search that occurred during the
training phase.

B. Parameter Tuning
After the Model Selection has concluded its operation, the Process Mapping
component is able to return a specific ML algorithm that is considered suitable for the
dataset at hand. However, it is yet unclear what values should be used for its input
parameters. For instance, in the case of K-means the number of returned clusters
should be provided as input. As another example, in the case of DBSCAN, two input
parameters must be set: MinPts and Eps.
To address this problem, the Hyperparameter Tuning process is responsible for the
optimized selection of the input parameter values. It is based on Bayesian
Optimization, a state-of-the-art method that searches the global optima of an
objective function f(x) through a surrogate model of the f(x) due to cheaper
evaluations.

Depending on the hypothesis for the surrogate model, two approaches can be
distinguished: (a) Gaussian Process Bayesian Optimization and (b) Bayesian
optimization with Tree Parzen estimator. The former employs Gaussian processes to
model the target function because of their expressiveness, smooth and well calibrated
uncertainty estimates and closed-form computability of the predictive distribution.
Typical downsides of this approach include cubical scaling due to the increase in the
number of data points and poor scalability to high dimensions. The latter, instead of
modeling the probability 𝑝𝑝(𝑦𝑦|𝜆𝜆) of observations y given the configurations λ, models
density functions 𝑝𝑝(𝜆𝜆|𝑦𝑦 < 𝑎𝑎) and 𝑝𝑝(𝜆𝜆|𝑦𝑦 ≥ 𝑎𝑎). Given a percentile α the observations
are divided in good and bad observations and simple 1-d Parzen Windows are used to

model the two distributions. The ratio 𝑝𝑝�𝜆𝜆�𝑦𝑦 < 𝑎𝑎�
𝑝𝑝�𝜆𝜆�𝑦𝑦 ≥ 𝑎𝑎�

 is related to the expected

improvement acquisition function and is used to propose new hyperparameter
configurations. Bayesian optimization with TPE is conceptually simple and can be
naturally parallelized [16]. In the implementation of Process Mapping, the Tree Parzen
Estimator was selected due to its inherent ability to handle both categorical and
discrete values.

For Bayesian Optimization to build the surrogate model, a number of evaluations of
the objective function are needed to initiate the procedure. With respect to the
previous subcomponent, we select a parametric space close to the parameters already
suggested, in order to speed up and improve the overall performance for scenarios
with limited resource budget. For float parameters the new space is defined as [x-0.15,
x+0.15] and for integers x+-2. For the specific case where the number of clusters is
required as input parameter, the search space is defined as [2,

𝑖𝑖𝑖𝑖𝑡𝑡(�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
2

)] where Nsamples is the number of instances of the input dataset.

6.3 Implementation and Integration Highlights
Implementation Changes

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 37 of 114 bigdatastack.eu

In order to accommodate the requirements of the Process Mapping component, the
programming language used for implementation of the proof-of-concept prototype
presented in M11 was Java. At the current stage of the project, our prototype is based on
Python as programming language. This choice complements many improvements of the
component, as it supports a wide variety of tools for Data Science. More specifically, Python
libraries such as Scikit-Learn offer a large pool of implemented ML algorithms that can be
used in the process of algorithm selection. Furthermore, state of the art optimization
techniques are widely supported in many open source Python projects, thus enabling the
addition of Hyperparameter Tuning in the Process Mapping component. Last, but not least,
in the context of Big Data, Python is supported by all modern frameworks for distributed
storage and parallel processing (e.g., MongoDB, Spark, etc.). This feature enables handling
and processing of big volumes of data, which in turn broadens the applicability of our
prototype in use cases related to Big Data.

System Integration with Process Modelling Framework

The output of Process Modeller, a JSON formatted file that contains information about the
processes the Business Analyst chose for her analytics Task via the graphical user interface,
can be ingested by the Process Mapping component before it is (in turn) recorded in the
playbook of the Data Toolkit component. After its execution, the Process Mapping is able to
include the selected algorithm and a set of values for the input parameters in this JSON
formatted file, and later record it in the playbook. This procedure is instantiated if the Process
Mapping is activated as part of the process design procedure by the Business Analyst.

Proof-of-concept
To visually demonstrate the functionality of the Process Mapping component, the procedure
has been tested on synthetic data of two dimensions. The data was produced with the use of
scikit-learn, a well-known Python library in the Data Science domain. A set of two hundred
instances was created pseudo-randomly, centered around four centers with standard
deviation of 1. This configuration is well suited for showcasing the performance of the
component in Clustering scenarios as the data belong by definition in visually distinct clusters.
Process Mapping was able to select the optimal setting (ML algorithm and a set of values for
input parameters) for clustering the synthetic data according to their structure in under 40
seconds. The original dataset and the clustering result are depicted in Figure 15.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 38 of 114 bigdatastack.eu

Figure 15 - Testing of Process Mapping for simple Synthetic Data

6.4 Experimental Evaluation
We conducted an experimental study to demonstrate the advantages of Process Mapping
using real-life datasets. As already mentioned, our prototype is implemented in Python.

Datasets. A collection of 45 datasets in total was used for the evaluation of clustering: 40 real-
life datasets were downloaded from the UCI Machine Learning Repository, while the other 5
from an open to the public collaborative dataset repository namely Data World. All of them
were pre-processed in order to form the dataset used in our evaluation. The datasets used
are the following:

UCI: Absenteism_at_work.txt, ae_train, buddymove_holidayiq, c1r4r_01, c1r4r_02, c1r5r_01,
c1r5r_02, c1r6r_01, c1r6r_02, c1r7r_01, c1r7r_02, Frogs_MFCCs, gesture_phase_a2_raw,
gesture_phase_b3_raw, gesture_phase_c3_raw, HTRU_2, l1n_01, l1n_02, l1n_03, l1_04,
l1_05, l1r_01, l1r_02, l1r_03, l1r_04, l1r_05, LG_G-Watch_1, movement_libras_1,
movement_libras_5, movement_libras_8, movement_libras_10, mturk_cluster_data,
mturk_data_feature, perfume_dataset, Sales_Transactions_Dataset_Weekly, SCADI,
seeds_dataset, turkiye-student-evaluation-generic, Wholesale_20customers_20data.

Data World: Indian_Premier_League, Customer_Segmentation, Historical_Public_Debt,
Asia_Economic_Outlook, Pokemon_Stats.

Algorithms. As already mentioned, we focus on a specific Machine Learning task (clustering)
and we use seven clustering algorithms in our evaluation, those provided by the scikit-learn
library, which is a library used quite extensively by many data scientists. In particular, the
clustering algorithms used in our evaluation are: AffinityPropagation, K-means,
SpectralClustering, Agglomerative, DBSCAN, Optics and Birch. Regarding Hyperparameter
Tuning, we evaluate Grid search, Random search and Bayesian Optimization.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 39 of 114 bigdatastack.eu

Metrics. For the evaluation of model selection, we use accuracy as main metric, which is
defined as the number of times model selection decided to suggest the algorithm that
performed best on the dataset at hand. The best algorithm is obtained offline by brute-force
evaluation of all clustering algorithms. Unfortunately, the evaluation of clustering is a long-
researched topic, and various cluster quality (validity) indexes have been proposed and are
used in practice, without a clear winner. Therefore, we employ three different cluster quality
indexes.

Silhouette Coefficient (SL): Validates the clustering performance based on the pairwise
difference of between and within-cluster distances. Higher Values indicate better Clustering.

1
𝑁𝑁𝑁𝑁

� {
1
𝑛𝑛𝑛𝑛
�

𝑏𝑏(𝑥𝑥) − 𝑎𝑎(𝑥𝑥)
max [𝑏𝑏(𝑥𝑥),𝑎𝑎(𝑥𝑥)]

 }
𝑥𝑥∈𝑐𝑐𝑖𝑖𝑖𝑖

Calinski - Harabasz Index (CH): Evaluates the cluster validity based on the average between
and within cluster sum of squares.

∑ 𝑛𝑛𝑖𝑖𝑑𝑑2(𝑐𝑐𝑖𝑖, 𝑐𝑐)/(𝑁𝑁𝑁𝑁 − 1)𝑖𝑖

∑ ∑ 𝑑𝑑2(𝑥𝑥, 𝑐𝑐𝑖𝑖)(𝑛𝑛 − 𝑁𝑁𝑁𝑁)𝑥𝑥∈𝐶𝐶𝑖𝑖𝑖𝑖

Davies – Bouldin Index (DB): For each cluster C, the similarities between C and all other
clusters are computed, and the highest value is assigned to C as its cluster similarity. Then the
DB index can be obtained by averaging all the cluster similarities. Smaller values of this index
indicate better clustering.

1
𝑁𝑁𝑁𝑁

� 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗≠𝑖𝑖{[
1
𝑛𝑛𝑖𝑖𝑖𝑖
� 𝑑𝑑(𝑥𝑥, 𝑐𝑐𝑖𝑖) +

1
𝑛𝑛𝑗𝑗
� 𝑑𝑑(𝑥𝑥,𝐶𝐶𝑗𝑗)]/𝑑𝑑(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗)

𝑥𝑥∈𝐶𝐶𝑖𝑖
}

𝑥𝑥∈𝐶𝐶𝑖𝑖

Composite Score (CS): A linear combination of the 3 indexes presented above, after scaling of
them in [0,1] range. Higher values indicate better clustering.

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐷𝐷𝐷𝐷. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑)/3

Evaluation Methodology. Our experimental methodology is structured as follows:

• First, we conduct an experiment in order to demonstrate the accuracy of Process
Mapping with respect to selection of appropriate clustering algorithm.

• Then, we demonstrate the advantage of Hyperparameter Tuning by evaluating both
the accuracy of the parameter values as well as the performance (in terms of running
time) of Hyperparameter Tuning.

• Lastly, we present evidence for including Random Search in the Exhaustive Search
section of the Analytics Repository by implementing it as a Hyperparameter Tuning
method for three test datasets and comparing it with Grid Search Results.

In the following, we present the results of the empirical evaluation using real-life data sets.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 40 of 114 bigdatastack.eu

In order to obtain a better understanding on performance, from the results of the Process
Mapping component, the evaluation process is distinguished in two main parts: Section 6.4.1
and Section 6.4.2. The former aims to evaluate the accuracy of model, while the latter aims
to clarify the performance and subsequently justify the need for Hyperparameter Tuning.
Finally, Section 6.4.3 justifies the inclusion of Random Search in our experimental evaluation.

6.4.1 Evaluation of Model Selection

First, the 45 datasets were split into training (75%) and testing (25%). The training dataset
was used to extract meta-features, which were stored in the MetaFeaturesDB. Then, we
executed all clustering algorithms over these datasets, and we evaluate the generated
clustering using different cluster quality indexes (SL, CH, DB), in order to obtain the best
performing clustering algorithm for each dataset. Thus, we can select the best performing
algorithm that serves as ground truth for the model selection problem based on different
cluster quality indexes. In addition, we use Composite Score (CS) which is the linear
combination of the three indices already mentioned.

Then, for each dataset of the test set, we extract the respective metafeatures and use a k-
nearest neighbor (kNN) classifier in order to find the k most similar datasets in the training
set. Similarity between metafeatures is computed in two different ways: using the Euclidean
distance or using the Cosine similarity. We varied the value of k from 1 to 10, and obtained
the algorithms that performed best for these k nearest neighbors (datasets) to the given
dataset. Then, we used majority voting in order to select the algorithm that is selected by the
Process Mapping component, i.e., we select the algorithm that performed best in most of the
k datasets.

Figure 16 presents the accuracy of model selection for different cluster validity indices: SL,
CH, DB and CS. Also, the charts depict the obtained accuracy when using the Euclidean
distance and the Cosine similarity. We observe a general trend, namely that accuracy
increases for higher values of k, although in some cases the accuracy drops. This is due to the
fact that higher values of k return more datasets that are deemed similar to the one at hand,
and (consequently) more algorithms are returned as candidates for selection. When the same
algorithm is returned many times, this is strong evidence that it is suitable for the dataset at
hand, and this is reflected in the increased accuracy values. However, in some cases (e.g.,
from k=1 to k=2), two different candidate algorithms are returned, and then the selection is
practically random, which may cause a decrease in accuracy values.

When comparing the absolute accuracy values obtained, we observe that the use of CH
(accuracy 88%) and DB (accuracy 87%) result in the highest values. This means that when we
perform model selection based on these cluster quality indexes, we obtain higher accuracy.
The SL metric performs worse than all others do, and the CS method is in between these two
extremes.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 41 of 114 bigdatastack.eu

Figure 16 - Algorithm Selection Evaluation

When considering the two alternative similarity measures (Euclidean and Cosine), we observe
that only in the case of DB, there is a clear winner, namely Cosine. In the other cases, the
results are mixed, although in most cases the use of the Euclidean distance returns higher
accuracy values.

Figure 17 shows how accuracy is affected when Process Mapping returns the top-N algorithms
(1, 2 or 3 algorithms), instead of a single algorithm. Recall that the pool of available algorithms
contains 7 algorithms, therefore we are interested to explore the accuracy values when
returning 2 or 3 algorithms, since this is always much better (in terms of saving time of the
data analyst) than following a brute-force approach that would execute all 7 algorithms and
pick the best performing one.

As can be seen in Figure 17, when using CH as cluster quality index and the top-2 or top-3
algorithms, we obtain very high accuracy values (95.5% and 98% respectively). This is strong
evidence about the merits of our approach, since it can be interpreted as follows: when using
CH and suggesting 2 or 3 algorithms, we manage to find the best performing algorithm in at
least 95% of the cases. DB and CS also achieve high accuracy values. SL manages to achieve
91.5% accuracy when selecting 3 algorithms.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 42 of 114 bigdatastack.eu

Figure 17 - Top-N accuracy of Algorithm Selection, neighbours and distance metric chosen from the best

setting of Figure 13

In summary, our Process Mapping approach achieves high accuracy values (88%) when using
the CH cluster quality index and selecting only 1 out of 7 available algorithms. Another
important finding is that if we can return 2 or 3 algorithms, instead of a single one, the use of
the remaining cluster indexes produces results of sufficiently high accuracy too. These results
demonstrate that model selection for clustering is indeed a well-performing solution, with as
few as 30 training datasets.

6.4.2 Evaluation of Hyperparameter Tuning

In this experiment, we evaluate the performance of the Hyperparameter Tuning
subcomponent, which relies on Bayesian Optimization. We compare the result obtained by
our approach against the result of Exhaustive Search (ES), using: (a) the number of times that
our selection led to better results compared to the best achieved in ES Results and (b) the
deviation of the rest from the best achieved in ES Results. Deviation is measured using the
Mean Absolute Error (MAE), which is the absolute difference of the scoring of the model
suggested after Bayesian Optimization from the best score obtained by Exhaustive Search.

𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) =
1

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=0

Low values of the MAE metric indicate that the expected performance of the parameters
selected from Hyperparameter Tuning will be approximately close to the best performing
parameters of Exhaustive Search. For experimentation purposes, the number of evaluations
is set to fifty (50) of the surrogate models, for every one of the 45 datasets.

61

88 87

7476,5

95,5
89 87,591,5

98
89,5 93

0

20

40

60

80

100

120

Silhouette Calinski-Harasbasz Index Davies-Bouldin Index CompositeScore

Algorithm Selection Accuracy based on Top-N scenarios

Top-1 Top-2 Top-3

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 43 of 114 bigdatastack.eu

Index MAE (When Bayesian OPT
Results are lower than ES)

No Instances Bayesian OPT
outperformed ES

Silhouette Coefficient 0.1134 14/45

Table 22 - Hyperparameter Tuning Evaluation

Table 22 demonstrates the ability of Bayesian Optimization to select parameters, that (a)
outperform traditional Hyperparameter Tuning methods, or (b) underperform only by a
negligible amount compared to the best solutions of ES.

The MAE value 0.1134 can be described as approximately how much lower will be the scoring
of the cluster schema selected by our Hyperparameter Tuning compared to the best scoring
clustering schema of an offline Exhaustive Search. Taken into consideration the range of
Silhouette Coefficient [-1, 1], 0.11 is reasonable difference in evaluation metric, for results
produced in a much more timely manner than ES Results.

In addition, for 14 out of 45 datasets the Bayesian Optimization method was also able to
achieve higher Scorings than ES, showing its capability to outperform Grid Search and Random
Search.

6.4.3 Random Search in Analytics Repository

The inclusion of Random Search as a method for optimizing input parameters of a given ML
algorithm stems from the inherent ability of the method to achieve better results compared
to Grid Search in certain cases. When the number of input parameters that account for the
optimization of a function is relatively small, either because the respective algorithm requires
the definition only of a few or because only a handful of them are responsible for the variance
of an objective function, Random Search is able to achieve better results most of the times in
a less computational intensive manner [17].

In Table 23 the results of the two methods are compared, to provide a better understanding
of the advantages of Random Search and validate its inclusion in our approach.

MODEL GS_Parameters
Suggested

SC (Grid
Search) RS_ParametersSuggested

SC
(Random
Search)

RS>Gs

Affinity
Propagation damping: 0.5 0.3032 damping:

0.9222286448558172 0.3550 True

Kmeans N_clusters: 3 0.5857 N_clusters: 2 0.5056 False

Spectral
Clustering

N_clusters: 2,

Gamma: 0.5
0.5741

N_clusters:2

Gamma: 1.407633
0.5056 False

Agglomerative

N_clusters:3,

Affinity: Euclidean,

Linkage: Ward

0.58524

N_clusters:2,

Affinity: Cosine,

Linkage: linkage

0.50555 False

DBSCAN Eps: 0.2, 0.36372 Eps: 0.41511246, 0.58526 True

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 44 of 114 bigdatastack.eu

Min_samples: 5 Min_samples: 7

Optics Cluster_method: “xi”,
min_samples: 6 0.11201 Cluster_method: dbscan,

min_samples: 2 0 False

Birch
N_clusters: 3,

Threshold: 0.3
0.58524

N_clusters:210,

Threshold: 0.361893
0.58636 True

Table 23 - Comparison of the two methods for a single dataset (In terms of Silhouette Coefficient) that
comprise Exhaustive Search in the Analytics Repository.

The results of Table 23 are produced by running Grid Search and Random Search to optimize
the input parameters of seven different algorithms for the ML task of clustering for a given
dataset. In 3 out of 7 cases Random Search is producing better results in terms of the
Silhouette Coefficient. Those cases include a few input parameters to be specified, some of
them being real-valued. This indicates that in order to produce results that will later be
referenced for comparison both of these methods should be used. It is worth mentioning at
this point that Random Search is much faster (its execution time is more than 7 times smaller
than Grid Search), as Random Search evaluates much fewer models than Grid Search (Table
24).

METHOD Execution Time (in minutes) Sets of Input
Parameters Explored

Random Search 0.67 50

Grid Search 4.66 1639

Table 24 - Execution Specifications of the two Methods

6.5 Next steps
Next steps and planned activities of Process Mapping component are the following:

• Extend the functionality of the component for supporting the algorithm selection and
Hyperparameter Tuning for other ML tasks (e.g., classification).

• Support of the MLib of the Apache Spark framework, for parallel execution of the ML
Algorithms.

• System integration in the BigDataStack architecture, using an appropriate
demonstrator.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 45 of 114 bigdatastack.eu

7 Data Toolkit
Today’s current processing infrastructure capacity and price and the availability of large
amount of data have enabled the development of new and more complex applications.
However, in order to fully exploit such opportunity, a team should deal with different
expertise, coming from the business domain and coupled with diverse programming skills and
infrastructure maintenance capabilities. Sometimes, one wants just to test a hypothesis about
the data having the role of a Business Analyst. Other times, one knows the technical details,
having the role of a Data Scientist, and needs to concretize the parameters of an analysis task.
To both engage Business Analysts and Data Scientists and let them collaboratively join their
forces, we introduce the Data Toolkit in the BigDataStack project.

The Data Toolkit enables the end-users design, implement, experiment, test and deploy data
processing tasks coupled with machine learning capabilities in order to set up more complex
and data-intensive applications. The Data Toolkit also provides the means to visually design
and define the analytic workflows through a higher level of abstraction and graphical user
interfaces which are used in order to set the required parameters, objectives and
dependencies for these machine learning applications.

7.1 Requirements
The Data Toolkit facilitates Business Analysts and Data Scientists build operational analytic
workflows by means of data pipelines through Directed Acyclic Graphs (DAGs). The data
pipelines consist of a group of processing tasks, which can be instantiated through the
respective microservices. The graphs consist of nodes and edges with properties where the
end-user can define the starting and ending stage and the intermediate processing stages that
she wants to perform towards the realization of her analytic task. The pipelines enable to
define the set and the sequence of the stages required to be executed in order to set up end-
to-end Big Data analytics based on a framework agnostic manner. These pipelines comprise
the entire data orchestration lifecycle coupled with the corresponding executables. This
means that the end user will be only aware and will take care of the conceptualisation of her
analytics functionality and the desired objectives to be achieved in an agnostic way (i.e. REST
APIs for data curation, transformation, analytic task such as classification, clustering, etc.). For
instance, a Business Analyst has access to a higher level of abstraction (i.e. BPMN like),
services and the respective UIs of her Big Data analytics and end-to-end application
objectives. At the same time, a Data Scientist, having the experience, the technical
information and knowledge to specify more details in the workflow set up, she has also the
ability to define connection details and interfaces to the services, specific algorithm selection
from a set of relative algorithms (through an algorithms taxonomy), parameters configuration
for the analytics algorithms and/or performance metrics. The Data Toolkit enables end-users
to design point-to-point Big Data pipelines through drag-and-drop tools and intuitive UIs with
the ability to define, configure and parameterize nodes, edges and properties in order to
realize the operation, iteration and execution of the required pipelines in an ordered way.
The expected outcomes are to:

• Create and handle valid data workflows by means of a managed graph creation
process, which combine stream and batch data with the capabilities to define the

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 46 of 114 bigdatastack.eu

required parameters, transformations and configuration settings per node and per
edge.

• Facilitate end-users to reduce the time that is required to design, develop and produce
executable analytic pipelines.

• Continuously monitor and manage pipelines performance, which is important
especially in configuration of multiple analytic tasks with diverse requirements and in
different business domains.

The tables that are following (Table 25 - Table 28) describe the requirements engineering
method and have been compiled together with the rest of requirements of BigDataStack in
D2.3.

 Id Level of detail Type Actor Priority

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN
Name Describe data mining and analysis processes through data workflows

Description This is a support regarding the description of data mining and analysis
processes, interconnected to each other in terms of input/output data
streams/objects. The corresponding metadata and an algorithms taxonomy
for the categorisation of the analytic processes, type of data and connection
details will be used to facilitate the description of individual nodes.

Additional
Information

The playbook must be represented in the form of a descriptor (e.g. through
a Yaml file) that can be incorporated into the Dimensioning Workbench as
well as the Dynamic Orchestrator.

Status Fulfilled

Table 25 – System Requirement (1) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN
Name Express data workflows through graphs using nodes and edges

Description Data workflows are represented in the form of an analysis application graph
that includes the set of individual processes as nodes of the graph along
with their binding/dependencies in the form of virtual links (i.e. edges). The
links may include properties representing constraints, KPIs or objectives,
which are desirable at specific analytic stage.

Additional
Information

N/A

Status Fulfilled

Table 26 – System Requirement (2) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-03 Software FUNC ROL-03 MAN
Name Validate graph through chain-ability constraints

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 47 of 114 bigdatastack.eu

Description This requirement resolves chain-ability constraints through different nodes
in the data workflows. The target is to produce a valid graph ensuring that
the services interdependencies have been correctly specified. This is the
reason why a set of checks will be performed to meet these prerequisites.
If these prerequisites are not met, the graph is not considered valid, and
therefore the application descriptor via the Yaml file cannot be produced.

Additional
Information

N/A

Status Fulfilled

Table 27 - System Requirement (3) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-04 Software FUNC ROL-03 MAN
Name Link valid graphs with viable executables for Big Data analytic processes

Description This step links the graph with the actual executable image. In order to cope
with the problem of vendor lock-in format of the executable, the container
format has been chosen. To this end, the actual container pulling will be
performed.

Additional
Information

N/A

Status Not Fulfilled

Table 28 - System Requirement (4) for Data Toolkit

7.2 Design Specifications
The UI of the Data toolkit is provided as a web-based application and the created application
graph can be exported as a yaml file and sent to the OpenShift container application platform
of the BigDataStack project for execution. This yaml file can be also used by the Dimensioning
Workbench and the Dynamic Orchestrator. From the UI of the Data Toolkit, the user can
access the main Dashboard which contains an overview of the resources used, historical data
and services logs, as presented in Figure 18. She can also access the Components, the
Applications and the Instances.

The Application Definition and Management UI provides a dedicated page with forms that
can be used to define the Components. The definition of the Components through the UI
allows the configuration of the services, the requirements deployment, the definition of the
type of the component (if it is a component or a function), the container image it uses, its
interfaces, and other helpful parameters, as depicted in Figure 19, Figure 20 and Figure 21.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 48 of 114 bigdatastack.eu

Figure 18 - Data toolkit Main Dashboard

Figure 19 - Creation of new Components

Figure 20 - New Component configuration 1

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 49 of 114 bigdatastack.eu

Figure 21 - New Component configuration 2

After the user creates all the needed Components of her data pipeline, the configuration of
the application can be performed from the graph editor. As seen in Figure 22, the graph editor
can be used to configure the Application and the application Components. Through the graph
editor, the user defines the connections between the Components, by connecting the
appropriate, matching interfaces of the components. Execution requirements can be also
defined, and custom health checks can be added to ensure that the service is deployed
properly. She can also specify the minimum and maximum requirements on how two services
are interacting (i.e. Hard/Soft constraints), as presented in Figure 23. For example, a new
Application Instance has been created namely “App Inst” having a front-end interface coupled
with a back-end database, as presented in Figure 24.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 50 of 114 bigdatastack.eu

Figure 22 - New Application Instance configuration

Figure 23 - Constraints over interacting services

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 51 of 114 bigdatastack.eu

Figure 24 - New Application Instance creation

7.3 Implementation and Integration Highlights
The UI of the Data Toolkit has been developed using React, while the back-end services have
been developed in JAVA. React is a powerful JavaScript library for building user interfaces and
is used to couple the back-end services of the Data Toolkit with the front-end functionalities
delivered to the end user. The several back-end functionalities developed in JAVA are exposed
as microservices through REST APIs. Therefore, the front-end UIs interact with the back-end
services through REST APIs.

Also, the Data Toolkit gets as input a JSON file produced by the Process Modelling framework
which represents the high-level application graph defined by the Business Analyst. The Data
Scientist uses the Data Toolkit to configure and set the several parameters, requirements,
constraints and objectives regarding her analytics application. The output of the Data Toolkit
is produced in a yaml file which contains the necessary information to execute the analytics
application in the OpenShift container application platform over the Dynamic Orchestrator.

7.4 Experimentation Outcomes
The Data Toolkit as it does not introduce or advance any methodology or algorithm, it has not
been experimented over existing approaches. The comparative analysis performed includes
the literature review, deployment of proof-of-concept of similar frameworks and workflow
engines in order to perform a gap analysis and identify the features which are good to
incorporate in the Data Toolkit.

The efficient execution of analytics workflows and the management of resources are recently
realised through automated workflow engines providing a collection of functionalities and
abilities to configure and extend their settings. In the context of the BigDataStack project,
optimization and automation of workflows on different frameworks as presented in the
following have be examined for performance, along with tasks scheduling on resources to
meet resource constraints/performance constraints/time constraints. Depending on the
workflow and the frameworks in use, we also explored the abilities of the framework’s
scheduler to optimize the workflow and guarantee analytics efficiency and time performance.

The StreamSets DataOps Platform8 operationalizes data flows and enables continuous data
delivery by addressing the entire design-deploy-operate lifecycle of data pipelines. It supports
functionalities which facilitate to design simple pipelines or complex data flows comprising
dozens of pipelines in a single topology using a cloud-based visual UI with pre-built origins,

8 https://streamsets.com/

https://streamsets.com/

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 52 of 114 bigdatastack.eu

destinations and transformations. Pipelines are executed in memory on standalone systems
or scalable distributed systems using YARN, Mesos or Kubernetes mechanisms.

Apache Airflow9 is a platform for programmatically author, schedule and monitor workflows.
It’s one of the mostly maintained project in the GitHub10 community. Apache Airflow makes
the workflow a little bit simple and organised by allowing to divide it into small independent
(not always) task units that are easy to organise and easy to schedule. The entire workflow
can be converted into a DAG with Airflow. Once the workflows are defined by the
corresponding code, they become more maintainable. With the feature rich user interface,
the workflow pipelines can be easily visualised, monitored and troubleshooted. Airflow also
provides a rich set of command line utilities, which can be used to perform complex
operations on DAG.

Spring Cloud Data Flow11 provides tools to create complex topologies for streaming and batch
data pipelines. The data pipelines consist of Spring Boot apps, built using the Spring Cloud
Stream or Spring Cloud Task microservice frameworks. Spring Cloud Data Flow supports a
range of data processing use cases, from ETL to import/export, event streaming, and
predictive analytics.

The Data Toolkit differentiates to the current offerings in the direction of simplicity and
reusability. It consists of a web-based application coupled with a set of microservices
developed in JAVA to support the required functionalities for the BigDataStack project. It can
be easily set up and fulfils the entire life cycle of designing, configuring and deploying complex
data-intensive analytics applications. Its ease of use lies within the simplicity where it does
not require over killing definitions and configurations to efficiently realize data pipelines. It
only requires designing, defining and configuring the connection details, the sequence and
constraints of the interacting microservices. The presented frameworks are either coupled
with programming languages specificities (i.e. Python, JAVA, etc.), or cannot be easily
parameterized and configured due to licensing restrictions. As a result, we focused on the
fulfilment of the BigDataStack requirements, including the loading of a high-level application
graph in JSON, easy to use UIs to further concretize the interacting services and the
production of a yaml file which can be easily deployed over any cloud-native environment.

7.5 Next steps
Towards a more complete Data Toolkit, the following steps need to be completed:

• Addition of more functionalities supporting and streamlining ML as a service
capabilities.

• Usage of an intermediate queueing system to address data transformation and
serialisation issues among different format in end-to-end analytic pipelines.

9 https://airflow.apache.org/
10 https://github.com/
11 https://spring.io/projects/spring-cloud-dataflow

https://airflow.apache.org/
https://github.com/
https://spring.io/projects/spring-cloud-dataflow

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 53 of 114 bigdatastack.eu

8 Application Dimensioning Workbench
The Application Dimensioning Workbench (ADW) component aims to provide information
regarding the necessary resources needed and respective QoS levels that would aid in making
informed decisions during the deployment and runtime management process of an
application. To this end, it needs to obtain baseline configurations, data samples and
performance models at the level of the base components (application level components and
data service components) and use these in order to populate potential combinations of
resources that would satisfy the end user. Overall, the subcomponents included or used as
part of the ADW are presented in Table 29. The ADW performs two main roles within
BigDataStack using these sub-components. Firstly, during initial installation of the
BigDataStack platform, the Openshift Application Simulator Adapter is used to collect initial
data points on the performance of the underlying infrastructure for different applications and
workloads. Second, when a user uploads a new application into BigDataStack, the Pattern
Generator and ADW Core can be used to benchmark that application to aid in subsequent
selection of resources for deployment for that application.

It is worth highlighting key pieces of terminology used in this section which are critical to
understand the functioning of the Application Dimensioning Workbench:

• BigDataStack Playbook: This is a description of a user’s application as provided from
the Data Toolkit component of BigDataStack. It specifies services to be deployed and
desired quality of service (QoS) for the application, but not how that application
should be deployed.

• Candidate Deployment Pattern Playbook: This is a description of how to deploy a
user’s application on the available cluster infrastructure, derived from a BigDataStack
Playbook. One BigDataStack Playbook can have multiple Candidate Deployment
Pattern Playbooks, representing the different ways that application might be
deployed.

• Dimensioned Deployment Playbook: This is a Candidate Deployment Pattern
Playbook with additional injected information about predicted quality of service and
resource usage of the application. Dimensioned Deployment Playbooks are used by
downstream components such as ADS-Ranking for deployment configuration
selection.

Component Name Purpose
Pattern Generator Create various candidate deployment combinations for

inspection, represented as Candidate Deployment Pattern
Playbooks.

ADW Bench (included in
ADW Core)

General load/benchmark management and execution
framework for simplifying and coordinating data acquisition
process and load injection

ADW Runtime (included
in ADW Core)

Used to understand the deployment descriptor structure of
the Pattern Generator suggestions, retrieve performance
data from the benchmarks and populate the anticipated QoS
fields. In effect, the ADW Runtime takes Candidate
Deployment Pattern Playbooks as input and outputs
Dimensioned Deployment Playbooks.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 54 of 114 bigdatastack.eu

Openshift Application
Simulator Adapter
(OASA)

This is a stand-alone component designed to collect initial
performance information from various user application types
on the cluster infrastructure, when BigDataStack is first
deployed.

Application Type
Experiment Plugin

These are plugins for the OASA that enable particular pre-
configured standard applications to be deployed.

Table 29 - List of ADW related parts and their functionality

8.1 Requirements
8.1.1 Pattern Generator

The aim of pattern generation is to define the different ways that a user’s application might
be deployed on available cloud infrastructure. Prior to pattern generation, the user has
defined in a conceptual manner what their application is comprised of and how the different
components of that application interact. It is the job of pattern generation to map this
conceptual view of the application into concrete specifications for how the application
components can be physically deployed.

Given the wide variety of hardware available on most cloud platforms, there are potentially
a very large number of deployment configurations for a user’s application. Each deployment
configuration may place application components on different machine types for instance. We
refer to a specific deployment configuration for a user application as a candidate deployment
pattern. In effect, pattern generation aims to produce a set of candidate deployment patterns
for a user’s application that span the range from low-cost/single machine deployments up-to
high-cost/high-performance computing deployments.

Later components within the Application Dimensioning Workbench and subsequently the
Realization system within BigDataStack will automatically analyse these candidate
deployment patterns, as well as examine their suitability given the user requirements and
preferences, with the end-goal of selecting the best one that will fit the user’s needs.

The anticipated functionalities / requirements are described in the following tables (Table 30-
Table 35), that are compiled together with the rest of the requirements of BigDataStack in
D2.3.

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-01 System and
Software

FUNC ROL-04 MAN

Name Ingest Playbook

Description The Data Toolkit sends to the Pattern Generation a Playbook containing
the graph of the user’s application. The Pattern Generation receives the
playbook and initiates creation of candidate deployment patterns.

Additional
Information

N/A

Status Requirement met in latest version.

Table 30 – System Requirement (1) for Pattern Generator

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 55 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-02 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory (File)

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon. Initial versions will load this information from a static
file.

Additional
Information

N/A

Status Requirement met in latest version.

Table 31 – System Requirement (2) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-03 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon.

Additional
Information

N/A

Status Scheduled for implementation in Tier 2.

Table 32 – System Requirement (3) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-04 System and
Software

FUNC ROL-04 MAN

Name Service-Hardware Mapping (1-1)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The first version
of this functionality produces only 1-1 mappings, i.e. one service is
mapped to one piece of hardware (e.g. machine).

Additional
Information

N/A

Status Requirement met in latest version.

Table 33 – System Requirement (4) for Pattern Generator

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 56 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-05 System and
Software

FUNC ROL-04 MAN

Name Service-Hardware Mapping (1-M)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The second
version of this functionality produces only one to many mappings, i.e. one
service can be mapped to multiple piece of hardware (e.g. spread over
multiple machines). This may be advantageous in cases such as were a
single ‘big’ machine is more expensive than multiple smaller machines.

Additional
Information

N/A

Status Scheduled for implementation in Tier 2.

Table 34 – System Requirement (5) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-06 System and
Software

FUNC ROL-04 DES

Name Service-Hardware Mapping (M-1/Pods)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The third version
of this functionality produces only many to one mappings, i.e. multiple
services can be co-located on a single piece of hardware. This may be
advantageous when services perform high-volume data transfers that
would be expensive over a network.

Additional
Information

N/A

Status Scheduled for implementation in Tier 2.

Table 35 – System Requirement (6) for Pattern Generator

8.1.2 ADW Core

The ADW Core functionality extends across two areas:
a) Initially gather a dataset that includes executions at least at the data service level, with

indicative differentiations related to deployment options and input workloads and
their measured influence on the observed QoS outputs of the service. This may be
later on used in order to further generalize based on a set of identified attributes.

b) Provide predicted QoS and resource usage predictions for individual candidate
deployment patterns (produced by the Pattern Generation component)

Requirements gathered and refined from D2.1 as well as the technical process in BigDataStack
are presented in the following tables (Table 36-Table 49) with relation to the ADW Core. These
tables are compiled together with the rest of the requirements of BigDataStack in D2.3.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 57 of 114 bigdatastack.eu

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-01 System PERF/
NONFUNC

ROL-02 MAN

Name Response Time and Workload

Description The service provided by the data applications (e.g. recommender system)
must have enough speed so consumers will not notice the time taken by the
request. This implies that the Data Scientist should be able to dictate what
are the required levels of QoS, selecting them from available metrics and
appropriate levels for them.

Additional
Information

This requirement poses initially the feature of metric selection and insertion
at the Data Toolkit layer, for the Data Scientist to express their desires. Then
the annotated Playbook gets passed to the following components (primarily
ADW). Inside the Application Dimensioning Workbench, an initial candidate
solution set is created, its estimated QoS level is enriched and the solution
set is returned to the Data Scientist for final selection. Workload features
(e.g. maximum/average etc. number of concurrent users) should also be
able to be specified in order for the system to estimate the anticipated QoS
levels for the desired range of application level workload.
This indicates that per category of data service or data service+analytics
function a suitable selection of workload and QoS metrics should be
performed and supported across the system (including also other
components like monitoring).

Table 36 – System Requirement (1) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-02 System NONFUNC
/ PERF

ROL-04 MAN

Name Scalability and configurability of stress tests for load injection

Description The system should have knowledge of a mapping between workload and
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the
data services that can easily scale to support the client sizes needed.
Furthermore, different parameters of workload should be able to be
determined.

Additional
Information

Given that different data services exist in the project ecosystem, different
baseline benchmarking tools should be identified per case. Following their
selection, they need to be configured based on the respective workload
parameters and scaled based on an abstracted generic approach (e.g.
Docker containerization and Docker swarm approach).

Status Completed

Table 37 – System Requirement (2) for ADW Core

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 58 of 114 bigdatastack.eu

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-03 System FUNC ROL-04 MAN

Name Dimensioning output

Description The Dimensioning workbench should provide a list of candidate
dimensioning suggestions along with the expected QoS levels towards the
ADS Deploy component (and eventually the Application Engineer role), for
the former to filter them based on an extra set of criteria and the latter to
perform the final selection.

Additional
Information

Upon reception of the Candidate Deployment Pattern Playbook with the
service graph, ADW needs to estimate QoS level based on the results
obtained through REQ-SYS-DW-02 and populate the respective fields. The
operation should be offered through a REST service interface for
automating the process and hiding complexities.

Status Partially completed at the level of understanding and populating the service
graph, pending part to integrate with performance measurements retrieval.

Table 38 – System Requirement (3) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-04 System FUNC ROL-04 MAN

Name Monitoring requirements for dimensioning

Description The Dimensioning workbench should have a means to obtain monitoring
information from the deployed data services and application components
for a given deployment to extract training data for the performance models.
The rationale of the requirement is that for every needed metric (workload
oriented e.g. number of current users, requests etc. or QoS oriented e.g.
response time, throughput) in the model the respective endpoint should
exist from which the monitoring component would extract metrics values.
This applies to both actual runtime and benchmarking phase.

Additional
Information

Relevant Tools affected: Data services, application components, triple
monitoring engine.

Status Completed (load injection clients report on such values).

Table 39 – System Requirement (4) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SO- ADW-01 Software FUNC ROL-04 MAN

Name Load injector dockerization

Description To support a generic load injection process as indicated by REQ-SY-DW-02,
“dockerization” of the respective load generators per type of service needs
to be performed. Thus, a specific Docker container image per needed load

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 59 of 114 bigdatastack.eu

generator tool needs to be provided, along with a unified process for
feeding the per case load description file based on the Docker API and
configuration process.

Additional
Information

N/A

Status Completed for Jmeter, Partially completed for YCSB.

Table 40 – System Requirement (5) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-02 Software FUNC ROL-04 MAN

Name Service structure specification

Description The service graph specification coming as input from the Process Modelling
and Data Toolkit should follow the Docker Compose specification, to be
understandable by the Dimensioning Workbench. Following, the
Dimensioning phase should add the respective candidate resource
deployment options as additional custom metadata in the file to be used by
the Deployment selection. The same applies for the benchmarking runs,
which should be based on the same format (even without the inclusion of
the PM and Data Toolkits). All requirements needed for deploying the
benchmarking environment should be described using this common agreed
standard.

Additional
Information

N/A

Status Completed

Table 41 – System Requirement (6) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-03 Software FUNC ROL-04 MAN

Name Representative nature of gathered data samples

Description In order to create representative and accurate performance models,
dataset creation from benchmarking should take into account different
conditions such as applied workloads, configuration aspects of the service,
deployment options etc. In this way different bottlenecks may be examined
and the final decision making can be adapted per case of service usage.

Additional
Information

N/A

Status Completed through the automation of the benchmarking configuration.

Table 42 – System Requirement (7) for ADW Core

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 60 of 114 bigdatastack.eu

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-04 Software FUNC ROL-04 ENH

Name Deployment time for stress tests

Description The overhead added by the benchmarking setup should be negligible and
not included in the measurement process.

Additional
Information

Since the deployment phase is done in a containerized manner, the time
used in instructions different than launching the benchmark or storing data
should not be significant.

Status Stress testing and benchmarking is performed prior to the deployment
process, therefore it is not included in the delays for that phase, only the
enquiries towards the results. Stress test deployment has been met through
the dockerization process of the benchmarks.

Table 43 – System Requirement (8) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-05 Software FUNC ROL-04 ENH

Name Benchmarking Workflow implementation

Description During the benchmarking phase, there should be a controlled manner in
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data
collection.

Additional
Information

Status Completed

Table 44 – System Requirement (9) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-06 Software Non
FUNC/USE

ROL-04 MAN

Name Trace driven simulation

Description Except for the parameter sweep definition of a stress test that is used in the
context of REQ-SO- ADW-03, the ADW user should also be able to define a
trace file with a time series of load aspects for the framework to undertake

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 61 of 114 bigdatastack.eu

its sequential implementation, simulating a historical fluctuation of demand
for the service.

Additional
Information

Trace definition should be made as simple as possible, for example through
uploading a trace file on a gitlab account. Trace file structure should also be
defined e.g. one row per setup.

Status Completed

Table 45 – System Requirement (10) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-07 Software Non
FUNC/SUP

ROL-04 DES

Name Subflow grouping of relevant implementation parts

Description The implemented flows created in the context of the ADW Core can become
quite complex and thus difficult to maintain or extend. Thus suitable
grouping and formulation into more clear and well defined reusable
subflows should be performed.

Additional
Information

This feature should be implemented primarily for the cases of platform
descriptor/coordination logic and/or baseline benchmark invocation and
incorporation. These are the two main extension points for the ADW load
injection.

Status Partially completed for configuration nodes, ongoing for cases of larger
subflows.

Table 46 – System Requirement (11) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-08 Software FUNC ROL-04 MAN

Name Enablement of parallel and isolated modes of execution

Description ADW Load injection can be configured to launch a variety of configurations
under the same test setup (e.g. in the parameter sweep definition of a test).
The test instances stemming from the parameter combinations should be
able to be performed in either a sequential, isolated mode, that guarantees
repetitiveness of an experiment under the same conditions or in a parallel
mode, in order to check aspects of multitenant applications.

Additional
Information

The tool logic should prevent different modes from being applied at the
same time, thus accession to the stress test cluster should be considered as
a race condition and handled appropriately.

Status Completed

Table 47 – System Requirement (12) for ADW Core

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 62 of 114 bigdatastack.eu

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-09 Software FUNC ROL-04 DES

Name Enhanced benchmark results filtering

Description Results acquired through the benchmarking may be queried in multiple, less
or more advanced forms. In the case of more advanced ones, setup of the
experiment and how closely it relates to a specific desired deployment
option should be considered, while an additional level of complexity may be
included if the query includes a given metric goal and relevant tolerance for
the returned results (in terms for example of a percentage coverage of the
goal).

Additional
Information

Definition of the aforementioned parameters should be included in the
available interfaces towards the platform so that they can be set by the user
(i.e. through a REST API, Data Toolkit annotations, the pattern generator
candidate patterns or the end user UI of the ADW tool).

Status Partially Completed

Table 48 – System Requirement (13) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-10 Software FUNC ROL-04 MAN

Name Functionality offered through REST APIs

Description In order to further automate the various processes such as result querying,
test setup submission etc., the main functionalities that relate to these
processes should be offered via a RESTful API, so that they can be included
in relevant software implementations.

Additional
Information

This functionality is in addition to the user interface built for ADW.

Status Completed

Table 49 – System Requirement (14) for ADW Core

8.1.3 Openshift Application Simulator Adapter and Application Type Plugins

The aforementioned ADW Core component enables the management and coordination of
benchmarking experiments on cloud infrastructures for different real user applications.
Indeed, this data is critical to provide effective selection of candidate deployment patterns
for the user’s application (see D3.1 and D3.2). However, early in the lifetime of an installation
of the BigDataStack platform, little data on how different application types will perform on
the underlying hardware will be available (since the users will not yet have tried deploying
their applications). This is an issue, since down-stream components such as ADS-Ranking need
to be initially trained/tuned for the particular hardware that BigDataStack has been deployed
upon, otherwise such component’s performance will be poor. Hence, it is important to
provide an alternative solution to tackle this ‘cold-start’ problem. This is a new addition to

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 63 of 114 bigdatastack.eu

WP5 T5.1, based on further analysis of the BigDataStack Realization components that was
carried out in year 2.

The Openshift Application Simulator Adapter (or OASA) is a stand-alone piece of software that
is developed within WP5 to deal with the cold-start issue by providing a turn-key solution for
collecting basic application performance information. Its role is to deploy a pre-defined set of
standard applications onto the cluster infrastructure and collect their performance
information under different resource constraints. For the purposes of BigDataStack, we aim
to deploy applications that resemble each of the application use cases of the project. In this
way, the underlying infrastructure can be interrogated to determine how suitable it is for
different applications and workloads. Subsequently, from this data, down-stream
components such as ADS-Ranking which need information about how different application
types are affected by the underlying infrastructure can undergo initial training. It is envisaged
that when the BigDataStack platform is first deployed, the OASA will be run once to collect
these initial data points.

The requirements for OASA are listed in the following tables (Table 50-Table 53):

 Id Level of
detail

Type Actor Priority

REQ-T5.1-AS-01 System FUNC ROL-04 DES

Name OpenShift Application Simulator Adapter

Description The application simulator needs to support a central control server that can
be deployed onto OpenShift. This control server may receive requests from
ADW Bench and maintain a queue of application deployment experiments
(loaded from a configuration file or provided through the request) that need
to be run. Then it will launch experiments and monitor their performance
(quality of service and resource usage metrics). It will support both storage
of the resultant metrics, as well as metric export in a format suitable for
down-stream training of ADS-Ranking.

Additional
Information

N/A

Status Requirement met

Table 50 – System Requirement (1) for OASA

 Id Level of
detail

Type Actor Priority

REQ-T5.1-AS-02 System FUNC ROL-04 DES

Name Simulation Type: Flink-Based Streaming Applications

Description The application simulator needs to be able to deploy different types of user
applications. This requirement represents the class of real-time streaming
applications, comprised of a series of transformers. These types of systems

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 64 of 114 bigdatastack.eu

are often used to support alerting use-cases. The Danaos use-case is an
example of this application type.

Additional
Information

N/A

Status Requirement met

Table 51 – System Requirement (2) for OASA

 Id Level of
detail

Type Actor Priority

REQ-T5.1-AS-03 System FUNC ROL-04 DES

Name Simulation Type: Supervised Training

Description The application simulator needs to be able to deploy different types of user
applications. This requirement represents the class of applications that
perform batch training of a machine learned model, e.g. using deep
learning. The EROSKI use-case contains an application of this type.

Additional
Information

N/A

Status Scheduled for implementation in Tier 1

Table 52 – System Requirement (3) for OASA

 Id Level of
detail

Type Actor Priority

REQ-T5.1-AS-04 System FUNC ROL-04 DES

Name Simulation Type: API Service

Description The application simulator needs to be able to deploy different types of user
applications. This requirement represents the class of applications that
return a data packet on request to a RESTful API. Examples of these types
of applications are web-sites and item classifiers. The GFT use-case is an
example of this application type.

Additional
Information

N/A

Status Scheduled for implementation in Tier 2

Table 53 – System Requirement (4) for OASA

8.2 Design Specifications
8.2.1 ADW Core System Use Cases

Following the analysis of the requirements in the previous section, we have created the set
of system use cases for the ADW subsystem. For each case the vertical separation refers to
aspects such as Generic Functionalities (high level actions that the component needs to
perform), specific sets of User Actions (i.e. selection from a relevant UI etc), the set of

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 65 of 114 bigdatastack.eu

Background Processes that need to be enacted following user preferences and any
Dependencies from external components (or internal subcomponents of ADW) that are
needed in order to complete the process.

Initially the ADW Core user needs to design a range of stress tests/benchmarks (Figure 25)
that are needed in order to cater for the data set collection, including the UI based insertion
of a set of needed information such as target service, examined workload etc. In order to aid
them in this direction, a set of predefined workloads may be created from which the users
may select the subset that they are mostly interested in. These predefined workloads may be
mapped to common use cases of the services and applications and/or tailored to the specific
use-cases of BigDataStack. To support application benchmarking, base load clients need to be
determined and dockerized in order to be used as load injectors. QoS metrics per
benchmarked element need also to be defined a priori and the service owner to define which
ones are of interest to maintain and correlate. Another aspect is the various configuration
options for the data services, e.g. modes of operation, deployment etc., that might change a
service’s performance profile. This needs to be investigated on a service level and should be
included in the test combinations.

Once the service is deployed, then the stress test (launch of the distributed clients) can be
performed. Therefore, there is an asynchronous step for benchmarking to wait until the setup
of the stress system is complete.

In a nutshell, the issues that need to be handled offline and/or in agreement with respective
parties include:

1) Predefined workloads (per data service and/or BigDataStack UC) and ways to feed
them as input during the stress test.

2) Configuration options that affect data service/algorithm performance and associated
BigDataStack Playbooks.

3) Dockerized base load clients for each tool needed by the BigDataStack data services
to emulate load.

4) Main QoS metrics per service and way of acquisition/storage in a given run.

Having a wide set of data for a given data service enables the more generic and abstract
mapping to individual deployment instances of a specific use case. Otherwise, benchmarking
needs to be performed for every single service graph, a process that is expected to be both
complicated and time consuming for the Data Scientist/Application Owner during the actual
deployment process.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 66 of 114 bigdatastack.eu

Figure 25 - ADW Design Benchmark Run System Use Case

Following the creation and acquisition of the relevant data set, the service owner may
initialize the process of predictive model creation (Figure 26) in order to create the
generalized predictive model per case. Based on a given name during the benchmarking
phase, they may collect all relevant data and feed them to the model creation process.

Figure 26 - ADW Create Model System Use Case

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 67 of 114 bigdatastack.eu

Once the previous phase has been completed, the acquired data and/or models may be
exploited in the context of a given service instance to be deployed with given QoS needs and
workload aspects. In this case the Data Scientist, in the Data Toolkit and/or in the ADS Ranking
UI, will insert the needed data services instances and indicate anticipated input workloads
and needed QoS levels (Figure 27). The annotated Candidate Deployment Pattern Playbook,
enriched by the Pattern Generator with the HW deployment options, will be fed into the ADW
Core, that will analyse the individual elements and provide the estimates (from the
benchmark history and/or models) that more closely resemble the given deployment
instance. Points of attention here include:

1) The metrics made available to the Data Scientist need to be in accordance with the
ones supported by the benchmarking and monitoring process.

2) The ADW Core needs also to annotate the initial input playbook with the anticipated
QoS levels per service element and forward it to the ADS Deploy component for final
selection and deployment.

The outputs of ADW Core are then the annotated playbooks, which are referred to as
Dimensioned Deployment Playbooks.

Figure 27 - ADW Request Prediction System Use Case

8.2.2 System Design

The design of the ADS-Dimensioning appears in the following figure, as updated during the
second year of the project. We summarize the design of the main sub-components shown in
this diagram in the remainder of this section.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 68 of 114 bigdatastack.eu

Figure 28 - Overall ADW Design Diagram

8.2.3 Pattern Generator

Pattern Generation is designed as an independent Apache Spark streaming service. The Data
Toolkit component of BigDataStack passes Pattern Generation a BigDataStack Playbook,
containing the conceptual view of the user’s application. This Playbook is passed through a
series of Spark transformation functions that perform the core service mapping functionality.
The final function within the Spark topology posts the created candidate deployment patterns
to a mailbox which can be read by the next component in the BigDataStack application
deployment pipeline.

The architecture of the Pattern Generation component is shown in Figure 29 below. Within
Figure 29, Spark transformers are shown in orange while non-spark components are shown
in blue. As we can see from Figure 29, Pattern Generation ingests Playbook objects via a
RESTful API, which directly passes that playbook into the main Spark processing pipeline via a
Spark receiver. Once a Playbook is ingested, it is first split into services, and each service is
mapped to different types of available hardware, where that hardware is specified in an
external directory. This directory may be loaded from file or directly populated from the
cluster infrastructure management system (OpenStack in our case). Once individual or groups
of services have been mapped to hardware, these service mappings are then re-combined
into what we refer to as an availability sheet, which contains all valid service to hardware
mappings. Finally, this availability sheet is used to produce a large number of unique
candidate deployment patterns, where one candidate deployment pattern contains a service
to hardware mapping for each service in the user’s application. These candidate deployment
patterns are then published for consumption by the next step in the BigDataStack application
deployment pipeline, the ADW Core.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 69 of 114 bigdatastack.eu

Figure 29 - ADS-Pattern Generation Architecture

8.2.4 Benchmarking and Model Creation of ADW Core

Initially, the ADW Core needs to create performance models for the elementary components
in a service graph of BigDataStack (or combinations of services and analytics algorithms). This
is needed in order to be able to reason on necessary resources needed per deployed instance
of the service. However, in order not to need tests prior to each and every deployment
request, an initial benchmarking phase is anticipated in order to gather a representative data
set with which a performance model can be created (thus abiding to requirements REQ-SO-
ADW-03, REQ-SY-DW-03 and REQ-SY-DW-01), but for every type of data service and for a
variety of workloads and service configurations.

Based on the envisioned system UCs presented, the service owner needs to design the
benchmark phase in order to cater for representative load cases. To this end, a tailored UI is
needed to enter the various parameters, implemented in Node-RED. The purpose of this is to
gather the parameters and wrap them to the necessary JSON format that is the input to the
ADW Core relevant RESTful endpoint. In order to minimize the inserted information, relevant
fields need to be included in a parameter range type of format (e.g. min/max value and step),
meaning that the back end wrapper needs to unwrap the various combinations and launch
the according configurations. This launch could be performed in either a sequential or parallel
mode, for reducing sampling time, if the available testbed resources are adequate. For
launching the stress test for the given configuration, two features are needed:

• Dockerization of relevant tools that can generate base load towards the component
(e.g. data service), along with capable configuration of the docker image to initialize
parameters per execution.

• Implementation of interfaces towards the execution platforms (e.g. ADS Deploy,
Openshift, Docker Swarm) in order to submit the request to deploy the respective
service and load clients.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 70 of 114 bigdatastack.eu

Ability to check the state and progress of a running test is also needed. The architecture
needed for this phase appears in Figure 30.

Figure 30 - Benchmark Design Architecture

Following the creation of a representative dataset, model creation needs to be triggered
based on the same REST interface layer of ADW Core. Acquisition of relevant data is based on
the component naming used. Once the models for each component (e.g. data service) are
created, they are ready to be used during the online phase for populating the various CDPs.
It is necessary to stress that model structure is based on the various configuration options
and workload aspects, so that they act as predictors, while the predicted output is the
relevant QoS metrics for each benchmarked element.

Figure 31 - Model Creation Architecture

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 71 of 114 bigdatastack.eu

8.2.5 Openshift Application Simulator Adapter and Application Type Plugins

The goal of the Openshift Application Simulator Adapter is to provide a turn-key solution for
sequentially deploying a series of standard applications and collect performance statistics
from them (which we refer to as running experiments), on top of Openshift. This is aimed at
dealing with the cold-start issue that is discussed in Section 8.1.3. To enable the adapter to
be generic, it is designed to be agnostic to the application types that it runs. In effect, the tests
can be considered to act as 'plugins' to the application simulator adapter, where each
experiment is a self-contained piece of software that performs the experiment. This allows
the application simulator to be lightweight, needing to hold only the list of experiments to
run and the logic for operationalizing deployment on OpenShift (represented as pre-
configured BigDataStack playbooks). Thus it has a dual nature, initially of adapting to the
Openshift and BigDataStack deployment process and finally to deploy specific application
level standard component categories (a kind of application level benchmark) that resemble
the ones found in BigDataStack. We discuss the different components of the application
simulator below.

Openshift Adapter Server: The adapter server is the primary component of the application
simulator. This is a containerized Java application that launches and monitors the application
level experiments. Upon launching of the adapter server, an OpenShift config map is first
mounted as a volume. This config map contains the configuration for each of the experiments
that are to be deployed. The adapter server will also mount a separate writable volume for
holding the outcome of each experiment. Once the volumes are mounted, the control server
will sequentially run each experiment. This involves the submission of the BigDataStack
playbook to the ADS-Deploy component, which operationalises the deployment of the
needed containers on the cluster infrastructure for the current experiment. Once all
experiments are complete, the adapter server exits and the volumes released.

Prometheus12: OpenShift itself maintains a Prometheus monitoring and time-series database.
The application simulator adaptor uses this database to store the performance information
for each experiment that is run. Metrics stored here can be considered to be of two types:

• Resource Usage: These are standard resource usage metrics that OpenShift monitors
by default for each running container on the cluster. These are: CPU Shares, Memory
and Disk Usage.

• Quality of Service: These are application-particular metrics that describe how
successful the deployment was. These may include factors such as Response Latency,
Completion Time and Throughput. It is the responsibility of each experiment to define
the quality of service metrics for that application.

Experiment Application Type Plugins (one or more): The application simulator needs to
deploy a series of experiments targeted at similar components with the applications in
BigDataStack. To that end it needs to have a packaged generic and standardized version of
such an application type. Each experiment is described by a BigDataStack Playbook, listing
the containers and metadata about the application type plugin. Experiments are typically
launched by OpenShift ‘Job’ objects, as they are finite containers. We describe the first of the
implemented experiments in Section 8.3.1.

12 https://prometheus.io/

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 72 of 114 bigdatastack.eu

Figure 32 - Openshift Application Simulator Adapter Diagram

8.2.6 Load Clients Plugins

When needing to create the necessary load for the various benchmarks and experiments,
relevant external tools such as Jmeter and YCSB are used. Even though some of them (e.g.
Jmeter) are also designed to work on a distributed manner in order to reach the necessary
stress levels, there is a significant amount of manual intervention for deployment,
configuration and load injection execution. To automate this process ADW Bench includes a
number of coordination actions (more details are provided in Section 8.3.2.5). A prerequisite
for such a process includes the creation or extension of dockerized versions of such tools in
order to be able to accept in a parametric manner the various needed configuration details.
An example of such a case can be found in our current version of the implementation of
Jmeter13. Additions are required in baseline dockerfile scripts in order to include relevant
startup scripts14 and other dependencies. Also startup scripts need to cover for changes in
container behaviour, specific requirements for collecting and forwarding the results as well
as passing and utilizing configuration parameters in the baseline tools such as Jmeter.

8.2.7 ADW Core Online Request prediction phase

Following the population of the playbook with the various CDPs, it gets published to the
relevant REST API offered by ADW Core. For each CDP, the ADW Core needs to populate it
with the respective expected QoS levels. Thus it needs to break down the input per CDP,
extract the service graph and start predicting the QoS level per service element. Given that
the service elements are interconnected, one element’s input will be the previous element’s
output. Thus the predicted output of the first stage will act as input to the following and so
on. For each prediction, the component needs to retrieve the relevant baseline model, apply
the inputs and get the result, propagating it as input to the next element of the graph. On

13 http://bigdatastack-tasks.ds.unipi.gr/gkousiou/adw/blob/master/adwdocker/jmeter_workloads/Dockerfile
14 http://bigdatastack-
tasks.ds.unipi.gr/gkousiou/adw/blob/master/adwdocker/jmeter_workloads/docker-entrypoint-new-cli.sh

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 73 of 114 bigdatastack.eu

completion, the various CDPs, annotated with the QoS levels, are then forwarded to the ADS
Ranking component to investigate and decide on the finally selected tradeoff.

Figure 33 - Annotate Playbook Architecture

8.3 Implementation and Integration Highlights
In the following sections, the main implementation and integration highlights of Y2 are
presented with relation to the various parts of ADW.

8.3.1 Application Type Experiment Plugin: Real-time Stream Processing

Experiment plugins are applications that can be deployed by the Openshift Application
Simulator Adapter component, allowing a particular type of application to be tested. The first
implemented experiment plugin is the real-time stream processing plugin. This plugin is
designed to simulate a stream processing application, i.e. an app that takes in a continuous
stream of data items, processes those items sequentially through a series of transformers,
and then publishes the outcome. Within the BigDataStack project, the Danaos Shipping use-
case, is an example of this type of application. There, sensor data from a series of ship-board
IoT sensors produce logging data about ship engine status and efficiency. These sensor feeds
are processed in real-time, first by transforming and aggregating them, and second by using
the merged information to predict whether a pattern as emerged that would indicate
component failure in the near future. The real-time stream processing experiment plugin aims
to simulate applications of this form.

The real-time stream processing plugin is implemented as an Apache Flink application.
Apache Flink is a framework designed to enable the development of streaming applications
for JVM-based languages, such as Java and Scala. Flink deployment consists of a JobManager
that manages the work, and one or more TaskManagers that execute tasks. The real-time

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 74 of 114 bigdatastack.eu

stream processing plugin first deploys a JobManager and one or more TaskManagers onto the
cluster infrastructure as containers. Once these containers have reached a running state and
have initialized, Flink applications can be submitted to the JobManager. To simulate real-time
streaming applications, like the Danaos shipping use-case, we deploy a configurable Flink
application with a defined set of properties. The Flink application is comprised of a sequence
of data transformers, where the number of transformers, which take an input data record,
simulates some computation on that record and then emits a new record to the next
transformer can be defined. The properties of these transformers can be configured for each
experiment. For each transformer, the following properties can be customised:

• The amount of CPU time needed to process each record

• The memory usage of the transformer

• The size of the output record

• Processing delay added for retrieving data from an external data store

Additionally, as streaming applications need a data source, a separate container is also
launched, which provides data load onto the Flink application. This load-generator can also
be configured in terms of:

• How many records to send to the application at one time (batch size)

• The duration between sending records (delay between batches)

By altering these configurables, we can simulate a range of different real-time stream
processing applications with different properties, and hence generate a range of data-points
on how well they perform on whatever cluster infrastructure BigDataStack is deployed upon.
Indeed, the Openshift Application Simulator Adapter can be configured to launch a range of
experiments using the real-time stream processing plugin, with the aim of collecting data-
points about real-time streaming applications of varying types without needing real user
applications.

8.3.2 ADW Core

ADW Bench aims at supporting different testing cases for a variety of business models and to
enable the acquisition of sufficiently large datasets that can be afterwards be used online
during the CDP population or during performance model training. As an example, Figure 34
includes the following indicative cases, from which the variety of implemented features
especially for the ADW Bench part is determined given that they are considered as
requirements for implementing these scenarios.

a) Generic Load Injection
In this case, ADW Bench may be used as the main environment for a Stress Testing as a Service
offering, testing at an existing and external application endpoint. Through the use of a
dedicated load generation cluster (or through the use of available public cloud resources if
the former is not available), relevant loads can be scaled and injected towards externally
deployed applications. In this mode ADW Bench does not actually control the applications but
only generates the necessary load needed for reaching anticipated scales through its
dockerized and coordinated client execution.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 75 of 114 bigdatastack.eu

b) Application Baseline Performance Model
In this case, an interested entity needs to create a baseline performance model for a given
application that captures dependencies of the application from different workloads,
parameters of execution, deployment etc. For this case, a number of different parameters
may be defined in a parameter sweep fashion and guarantees on the isolated execution of
the application should exist to avoid any interference effects that could tamper with the
results. Given that this requirement cannot be set in public Clouds (except for cases of
dedicated hosts in public Cloud offerings), this scenario is primarily targeted at private cloud
cases.

c) Application Multitenant Performance Model (Offering of the application as SaaS)
In this case, an interested entity needs to create a multitenancy performance model for a
given application that captures performance interference between this instance of the
application and other concurrently running applications or instances. Performance
interference in multitenant environments has been proven to cause significant QoS
degradation for the same amount of resources used when compared to a dedicated
deployment mode [21], hence this aspect is specifically important when one needs to
determine the pricing terms with which they will offer different QoS flavors of the SaaS
application, taking under consideration that they will need to cater for this underprovisioning
due to the multitenancy aspects.

d) Public Cloud Benchmarking
In this case an interested entity needs to measure/benchmark the performance of public (or
even private) Cloud platforms, in which case they need to utilize the dockerized version of an
application or benchmark in a repetitive manner and potentially through the usage of various
combinations. This is the mode that mostly resembles the mode available by other state of
the art tools, however it was decided to be included for completeness of ADW Bench and the
ability to act also as a generic benchmark framework.

Figure 34 - Potential testing/load injection models

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 76 of 114 bigdatastack.eu

However, the process of acquiring sufficiently large datasets in order to come to useful
conclusions is always a tiresome, error-prone and background needing task, that requires
experience around the measurement process, the used benchmark/load injector (and the
specific needs for action sequence coordination) as well as execution in a distributed manner
so that the produced artificial input reaches the scale of a realistic stress test without worrying
about client side bottlenecks. Even with this knowledge, one would have to iterate a
considerable number of manual steps (creation and configuration of distributed agents,
monitoring of test status etc.), thus limiting in effect the scale of the experiment in terms of
gathered test cases or “dataset lines”.

The aim of ADW Bench is to act as a benchmark/stress test management and execution
framework that targets at:

• abstracting this tedious process, thus reducing the knowledge barrier needed for the
execution of the test, through intuitive web UI driven setup and monitoring, hiding the
complexity of test setup, coordination needs, test execution, result gathering and
cleanup.

• Incorporating dockerized versions of benchmark executables of commonly used baseline
benchmarks (such as Apache Jmeter and YCSB) that can easily scale on a target execution
platform such as Docker Swarm or Openshift, thus reaching the necessary stress test load
generation, while respecting their requirements in terms of test setup and launch.

• Enabling on-demand spawning of these stress test clusters and the incorporation or not
of the benchmarked service as part of the benchmark setup where applicable.

• Enabling automation aspects in the form of parameter sweep definition experiments to
be incorporated either through the UI or through a REST based API that offers the same
functionalities and can be used to further automate the process. Parameters may refer
to the injected load, the type and size of resources used by the bundled application.

• Enabling the simple definition of a trace driven scenario that may follow a specific
variation of the load based on historical data and automation of the results acquisition
process for the defined sequence. Through this feature, various scenarios such as
scalability testing, endurance testing, stress testing and spike testing [25] can be easily
applied.

• Enabling the execution of the various combinations in either parallel or sequential mode,
in order to support the different business/technical cases requirements that were
described previously.

• Offering increased test reliability through the monitoring and report on the actually
executed tests, anticipated samples and acquired ones as well as mutual blocking of
combinations that may need either parallel or sequential mode concurrently.

• Applying a modular architecture and implementation that can lead to the extension
towards new baseline tests and target platforms incorporation.

Therefore, ADW Bench aims not to present yet another low or mid-level benchmark tool, but
to handle and coordinate such available ones (like Jmeter or YCSB) in order to automate their
launching against a target application or software stack and act either as a benchmarking tool
or as a load injection tool. Furthermore, it aims to decouple the test management from the

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 77 of 114 bigdatastack.eu

underlying baseline benchmark used, so that it is easier to reuse the higher layer management
framework with other baseline benchmarks or generic load injectors.

8.3.2.1 ADW Bench Setup

Setup of a test series is performed either through the UI or through a relevant REST API
interface. Necessary details include the name of the test (which implies if it is a simple load
service or a bundled data service), the type of the node used (with included naming
conventions to indicate the platform type, used afterwards for selecting the correct launch
adapter) and the type of the workload, which is the list of the uploaded available files in gitlab.
Furthermore, other parameters can be inserted in a parameter sweep fashion, for example
minimum, maximum and step nodes for the data service and client setups, operations per
second of the clients as well as switches to indicate if the execution is a tracedriven one, a
parallel or a sequential one. Finally details on the test setup name, endpoint of the target
platform and endpoint of the results database are included. The respective Node-RED
implementation on which the Setup UI is based is presented in Figure 36. The user can also
exploit historical data and retrieve previous test setups for the same type of service. Given
that in many cases the information in most fields may be repeated, this is a feature that is
expected to help users speed up the process by avoiding to repopulate identical fields.

Figure 35 - ADW Bench Setup UI

Figure 36 - Node-RED implementation flow of the Setup Test UI

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 78 of 114 bigdatastack.eu

The aforementioned process can also be applied programmatically for further automation
through the submission of the relevant JSON configuration file through a REST POST endpoint.
The JSON fields and structure appear in Figure 37.

Figure 37 - JSON specification of the REST API test submission

For the trace driven experiment case, the user is anticipated to have uploaded a relevant file
that includes the various trace steps as a sequence of the main workload aspect e.g. number
of users. Then the execution is performed in a stepwise manner and for each line of that
datafile. Result ingestion is expected to be performed on a tool specific case, through utilizing
a generic REST POST method. Thus the load injectors of each tool should be able to perform
such a call in order to push the acquired results in the backend results database. For each
client type used, there is a relevant table with the necessary fields, however this is transparent
to the end user since redirection to the respective table is performed by the tool and based
on the test setup configuration. The overall API calls related to the setup stage appear in Table
54.

Context Method Path Input Output

ADW
Bench
Setup

POST /launchTest JSON
configuration
file for
parameters
(tool selection,
workload
features)

Return
message for
test id

ADW
Bench
Data
Input

Post /pushResults JSON object
with results
from the load
clients of each
type

Table 54 - ADW Core API calls for Test Setup and Results Ingestion

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 79 of 114 bigdatastack.eu

8.3.2.2 Test Lifecycle Management

In this section it is necessary to clarify the various terms and concepts used in the remainder
of the document, for clarification purposes:

• A test setup is a complete experiment series that is defined by the application
owner/performance engineer in a single configuration/parameter sweep fashion. In
that sense, a single test setup may contain variations or ranges of the parameters
used, that will break eventually into multiple individual test executions or iterations in
a stepwise manner. Each test setup is assigned a unique ID.

• A test iteration is a single execution instance of the test, with a concretely specified
and unique combination of the input parameters, stemming from the ranges defined
in the test setup. Single in this case does not refer to the samples gathered (multiple
samples are gathered during the test execution), but to the existence of a single set of
test parameters (such as number of clients, target throughput etc.). Each test iteration
is also assigned a unique ID.

• Reporting of the test results is always performed at the lowest level of execution
granularity, thus the test iteration is stored in the tool’s database. This result includes
the benchmark input (type of load etc.) as well as the test iteration ID and the test
setup ID.

• In the case of the parallel execution of all iterations of a given test setup, one should
retrieve and accumulate results as well as load by grouping relevant result rows at the
test setup ID field, so that all parallel running instances are considered. This way the
multitenancy effect scenario can consider all concurrently running test instances at
the final stage of the dataset extraction (to train a multitenancy prediction model for
example).

• In the case of the sequential execution, only the specific iteration is running, so the
relevant test results should be grouped by the test iteration ID field in order to extract
the overall dataset (e.g. to train a prediction model that associates necessary
resources and expected QoS output based on given load inputs). Whether there will
be one or multiple result rows per test iteration ID depends on the benchmark used in
each case and whether multiple client nodes are used to generate the traffic load.
There are benchmarks like Jmeter that handle result acquisition from the distributed
slave nodes used, thus resulting in one row per test iteration ID. Others (like YCSB) do
not include this step, hence multiple result rows would appear in the database (one
for each reporting client node).

The rationale behind the needed semaphore-like behaviour has already been identified for
purposes of experiment isolation and similar conditions guarantee (sequential tests) or for
the need to investigate concurrent execution overheads in multitenant environments
(parallel tests). The implemented semaphore structure requires two elements:

• A global Boolean flag (for sequential purposes), that indicates if a sequential test is
already running.

• A global counter variable that indicates how many tests are being executed at the
moment.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 80 of 114 bigdatastack.eu

The blocking logic is as follows:

• Parallel tasks check the sequential flag before launching:
o If false they launch, increasing the counter by 1
o If true they sleep and check again after an interval
o On finish they reduce the counter by 1

• Sequential tasks check the counter:
o If 0 they launch, set the Boolean flag to true and increase the counter
o Otherwise they sleep and check again after an interval
o On finish they reset the Boolean flag to false and reduce the counter by 1

• When a sequential task finishes, all the sleeping (sequential or parallel) tasks race for
the resource, meaning the permission to launch. In this case:

o Either one of the sequential iterations gets it and starts executing while
blocking all remaining ones (sequential or parallel)

o Or one of the parallel gets it and all the pending parallel ones can be executed
o Selection of the winner is more or less random, depending on which task exits

the sleeping period first after the lock has been lifted. A discussion on the
tradeoff of this approach follows.

The behaviour of the system appears in the following figure for an indicative arrival and
execution scenario.

Figure 38 - Semaphore-like behaviour for test combinations blocking

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 81 of 114 bigdatastack.eu

Guarantee on atomicity of operations

For any semaphore like behavior to be successful, it is well known that the atomicity of the
test-and-set-lock operation (reading of a shared variable and changing its value without any
intermediate execution interrupt) needs to be guaranteed. Due to the fact that the nodejs
framework (in which our implementation is based) is single-threaded and a nodejs function
does not get interrupted by the framework until it completes or waits for a callback, the
atomicity of the global variables check and/or manipulation is guaranteed, if this is performed
inside the same function.

Tradeoff with relation to next task selection

As noted above, whenever the conditions for a new launch are met and we have a number of
parallel or sequential executions waiting in line, there is no way with the current
implementation (unless a relevant queue is created) to dictate which execution will follow. If
a parallel one happens to wake up, poll and get the token of execution then all waiting parallel
ones may start. If a sequential one is successful, then all parallel ones again have to wait. This
approach was followed for two reasons. Initially there is no specific requirement that a test
should finish before another test or within a given time constraint. Also it would be unfair for
the parallel tests (in one or more test setups) to wait for the finalization of potentially many
sequential iterations in another test setup just because that setup arrived a few moments
earlier (and given that the isolation requirement is only needed by this setup). Thus the
followed approach achieves a fairer trade-off, given that multiple parallel tests are more
probable to acquire the lock (and thus enable all parallel ones to be launched without further
wait) and is expected to reduce the overall waiting time in the system.

Tradeoff with relation to extension of isolation between different parallel setups

Another case of design decision relates to whether the system should enable isolation
between different parallel setups. Thus if a specific series test instances is already running in
parallel, whether another test setup (and all its children instances) could be launched before
the first parallel setup is complete or not. The decision in this case was to enable different
parallel setups to be executed, primarily due to the fact that one of the main business cases
of the tool is to enable a stress test creation framework against external targets. Thus blocking
concurrent parallel setups against different targets would significantly reduce the utilization
of the client creation cluster and significantly deteriorate the prospects of a Stress Testing as
a Service model, since even if one parallel setup was running even at a small part of the cluster
resources, all of the latter would be blocked.

In case one needs to launch parallel setups that are somehow isolated from one another with
the application bundled and running within the client cluster, then other forms of isolation
may be applied to achieve that goal (e.g. dictating to the container orchestrator that these
containers should not be collocated with other ones).

ADW Data Model

With relation to the data model used for storing state and test results, this appears in Figure
39. It consists of 6 tables with the following purposes:

• Mappings table holds the names of the container images to be used for each service

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 82 of 114 bigdatastack.eu

or type of load.
• Nodetypes table holds the resource types of each platform.
• Tests table holds the main test setup information along with all the configuration

details.
• *_results tables include one specific table for each type of measurement that holds

the case specific metrics and details.
• Workloads table holds details of workloads. Although given that this information is

retrieved from a relevant gitlab folder implies that the usage of this table is deprecated
to informative purposes only.

Figure 39 - ADW Bench Data Model

The database layer of ADW is based on sqlite, given the fact that only high level summary
results are maintained inside the tool and due to the fact that this type of database is very
portable and directly integrated into Node-RED. This enhances the portability aspects of the
tool and alleviates from the need to have an externally deployed DB.

8.3.2.3 Test Monitoring

After launching a test, one can monitor the progress of the various combinations included in
the setup. To do so, they can navigate to the respective UI tab and select the specific test
setup name. A text field can be used in order to filter from the available tests based on a given
partial naming pattern. Following, the status of the test(s) is presented, including information
on total, started and finished combinations (Figure 40). The main operation is also offered as
a REST API call (/testState). The relevant Node-RED flow appears in Figure 41 while the
available API calls are included in Table 55.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 83 of 114 bigdatastack.eu

Figure 40 - Test Monitoring

Figure 41 - Node-RED flow for Test Monitoring

Context Method Path Input Output

ADW
Bench
Test
Monitoring

GET /ServiceTestIDs/service_name Service name
(from available
enumeration of
available
services (aims
to return all
tests for that
service)

JSON array
with test ids
for that
service type

ADW
Bench
Test
Monitoring

GET /testStatePartial/:testname Partial name of
the testname
for filtering
related tests

Test state of
all tests
whose
testname

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 84 of 114 bigdatastack.eu

matches the
input
argument

ADW
Bench
Test
Monitoring

GET /testState/testname testname Return all
info. If all is
used as the
testname, all
test info is
returned

ADW
Bench
Test
Monitoring
Trace

GET /traceTests/ - Return all
tracedriven
tests

ADW
Bench
Test
Monitoring
Trace

GET /serviceConf/:servicename Name of the
test setup

Return of
configuration
object for the
test that
includes all
setup details

Table 55 - ADW Core API for Test Monitoring

8.3.2.4 Data Input and Filtering Layer

The Data Filtering Layer aims at initially creating an API in front of the results database as well
as implementing a set of post processing queries that aim to facilitate and enhance the result
filtering and querying process. Furthermore, it provides the necessary calls for the UI layer
(Figure 42) for presentation to the user, in parallel with the available REST calls. Filtering
options include the type of the service, the needed metric as well as needed QoS values, in
the sense of a target value and a percentage tolerance around it. For example, if a user enters
that she is interested in an average response time of 1000 msec for a given service, with a +-
50% percentage, all relevant results that have response times between 500 and 1500 msec
will be retrieved. The top ranked one will be presented in detail in the main UI panel, in which
key metrics of the experiment will appear (such as throughput, latency etc.), as a percentage
of the goal value, taking also under consideration of the metric is of ascending or descending
order.

Figure 42 - Result filtering UI

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 85 of 114 bigdatastack.eu

Figure 43 - Node-RED implementation flow for Data Input and Filtering

Specifically for the tracedriven experimentation case, and given that in this case one needs to
retrieve results in a complete trace setup and directly linked to the main workload parameter
specified, a relevant specific tab has been implemented (Figure 44). In this case, the user can
partially filter the available trace driven setups with a textual input, while the relevant trace
file is plotted (top graph) in conjunction with the QoS reported results (bottom graph) for
direct comparison purposes on the effect of a sudden spike in the load for example.
Furthermore, they can select another tracedriven setup (potentially with different resources
used) that is also plotted in the same bottom graph with the previously selected setup, in
order to enable quick comparisons between the two setups. The user can also select the
metric of the results to be portrayed.

Figure 44 - Trace driven report and status tab

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 86 of 114 bigdatastack.eu

Context Method Path Input Output

ADW
Bench
Data
Filtering

GET /stats/test/:testName/:testIteration Specific test
iteration from a
specific test setup

Various statistics
based on the
reported metrics of
each tool (including
goal ratios etc.)

ADW
Bench
Data
Filtering
Trace

GET /traceSteps/:testName/:metric Tracedriven
testname and
relevant metric

Ordered list by trace
steps with the result
of the metric

ADW
Bench
Data
Filtering
Trace

GET /traceStatePartial/:testname Partial naming to be
used for trace
driven tests filtering

Array of objects for
trace driven tests
that match the
naming convention

ADW
Bench
Data
Filtering

GET /distinct/:serviceName/:columnNa
me

Name of a
supported service
and metric

Returned list of
supported metrics
for results

ADW
Bench
Data
Filtering

GET /launchGroups/stats/:serviceNam
e

Name of a service
type

Accumulated results
for individual clients
of a service type,
grouped by test
setup id and test
iteration id

ADW
Bench
Data
Filtering

GET /launchGroups/stats/:serviceNam
e/:metric/:order

Name of a service
type, metric on
which to sort and
order (asc/desc)

Accumulated results
for individual clients
of a service type,
grouped by test
setup id and test
iteration id, sorted by
a relevant metric

ADW
Bench
Data
Filtering

GET /launchGroups/stats/:serviceNam
e/:metric/:order/:targetValue/:max
PercentFromGoal

Name of a service
type, metric on
which to sort and
order (asc/desc)

Accumulated results
for individual clients
of a service type,
grouped by test
setup id and test
iteration id, sorted by
a relevant metric and
based on a target
value and a percent
deviation

ADW
Bench
Data
Filtering

GET createDataset/service_name Service name (from
available
enumeration
[lxs,ibmos,cep] of
available services
(aims to return
dataset lines for that
service)

JSON array with
[conf, metrics]
objects

Table 56 - ADW Core API for Data Filtering

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 87 of 114 bigdatastack.eu

8.3.2.5 Execution and Platform Coordination and Layer

One of the key features of ADW Bench is the ability to follow a benchmarking process’s
necessary steps. Variations between available baseline tools include the existence or not (and
with what setup) of distributed versions of the tests, reporting performed overall for all clients
or not etc. As an example, the case of Apache Jmeter is presented for the case of Docker
Swarm as an execution platform. When using the specific benchmark (following the
acquisition of a case specific workload file), one needs to ensure that a correct sequence of
actions is enforced in order to maintain the test’s validity or to setup a coordinated
environment. Thus the following set of actions needs to be performed in the specific strict
sequence:

1) The user uploads on a gitlab account the Jmeter workload file and inputs in the UI
all the relevant test setup information. Upon launching, and provided that the
semaphore logic does not block the test setup’s execution, the automated process
may start.

2) Initially, the virtual helper resources needed for the execution of the test are
created, i.e. a shared virtual network so that the distributed client nodes can
discover and communicate with each other as well as a shared storage volume in
which data for the experiment may be stored or parameters shared (in this case
properties files and raw data for the measurements which need to be maintained
after the test end for archival purposes).

3) Afterwards, the main client nodes (server slaves) that are used to generate the
actual traffic towards the target endpoint are configured and launched.
Configuration includes aspects such as mounting the shared folder, joining the
virtual network etc. The Jmeter server slaves need to be started before the
coordinating Jmeter Master node, given that the latter is configured with the
returned IP addresses of the slaves, among other information (such as test id, test
iteration, target number of clients etc.). Hence the sequence is: start server slave
containers->obtain their IP-> launch master Jmeter container with the slave IPs as
arguments. At this point it needs to be stressed that it is not enough that the server
slave containers are started, the initialization phase needs also to have completed
(i.e. the servers are up and running and accepting requests). In this case there is a
dilemma on whether to wait until all slaves are up or accept the fact that in some
cases slaves may fail occasionally so the master should go ahead with the ones
available. Given that actual client numbers are reported in the end, it was decided
to proceed with the second option, since result reporting validity is guaranteed and
in order to be more resilient for cases of occasional failures without the need to
rollback a long running experiment.

4) The Jmeter master node now sends the load directives to the slaves and waits until
all of them have finished. In this case, suitable post processing logic needs to be
triggered in the master node in order to concentrate and create aggregate reports
(enriched with the test setup id, target clients, workload name etc.) that are to be
inserted in the tool’s main result database, along with the specific test
measurements. These are the primary results that are used in the filtering
processes of the tool, while the detailed raw data are kept in the shared volume in

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 88 of 114 bigdatastack.eu

case they are needed in the future. This approach is applied in order to maintain a
lightweight version of the results database in the main tool that will enable faster
retrievals and queries, as well as to create data rows that include all the necessary
information (test setup details and respective measurements acquired). Upon
finish, all the created resources (containers and virtual networks except for the
shared volume) are deleted in order to clean up the stress test cluster.

Calls to the Docker Swarm environment are performed through the relevant REST API of the
latter that enables all the various functionalities (storage and network creation, container
startup and deletion etc.). The respective flow that implements this functionality appears in
Figure 46.

Figure 45 - Example of Jmeter execution coordination in Docker Swarm

Figure 46 - Jmeter Adapter for Docker Swarm Node-RED implementation

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 89 of 114 bigdatastack.eu

Similar adapters are currently being developed for AWS Elastic container service APIs for the
Jmeter case as well as the YCSB tool case. An example of interconnection with the Openshift
adapter appears in Figure 47.

Figure 47 - Link to Openshift Adapter Node-RED flow

8.3.2.6 ADW Runtime Playbook Population

The main runtime usage of the ADW Bench results is performed during the call by the Pattern
Generator component in order to enrich the described patterns with anticipated levels of QoS
based on the available performance data. To do so, ADW Runtime includes a relevant POST
method, in which the PG component submits the service manifest along with the variations
of the patterns in terms of resources used (Figure 48). The backend Node-RED flow (Figure
49) then brakes down the description per type of pattern suggestion and queries the results
database in order to find relevant results (by also utilizing the API of Table 56). These results
are then used to populate the respective QoS fields.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 90 of 114 bigdatastack.eu

Figure 48 - Indicative Playbook JSON Structure and Population

Figure 49 - Post Playbook Node-RED flow and Result

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 91 of 114 bigdatastack.eu

Context Method Path Input Output

ADW
Runtime

POST /postPlaybook Playbook YAML String Annotated Playbook
YAML string with QoS
tags. This primarily
implements the
request prediction
operation

Table 57 - ADW Core API

8.4 Experimentation Outcomes
Besides the functional evaluation presented in the previous paragraphs, a set of experiments
have also been performed in order to check out specific aspects of ADW.

8.4.1 Evaluation results

8.4.1.1 Scalability of framework for test setup submission

The testing scenario refers to examination of the ADW Bench API based test submission. In
order to stress that aspect, a number of sequential test setups are submitted to the system
via the API call. Sequential tests were selected since these linger in the system for a long time
due to the blocking logic and therefore we can check the system’s responsiveness under a
large number of pending combinations. The responsiveness is measured by obtaining the
response time needed for submitting a test setup through the relevant REST call. A stressed
system would produce larger delays in all relevant calls including the /launchTest method
used to submit a test setup. During such a call, the system receives the input, checks the test
setup name selected and if not unique it adds the current timestamp to make it unique. It
then stores the test setup configuration in the tool DB, retrieves the associated image names
for the test, counts and stores the iterations and launches the individual messages that are
responsible for triggering each test combination. These messages are then blocked due to the
sequential nature of the test and when the flag is raised, one of them will proceed with
execution. Given that the client runs consecutively and tests are blocked, overall test
combinations in the system increase (based on either the defined request frequency and/or
the size of the setup).

Various testing cases have been examined such as:
• Submitting a test setup with 10 combinations every 10 seconds (Figure 50). This is the

most anticipated area in which the tool would be used under normal circumstances and
it gives a view of the baseline response times of the service. From the graph, it can be
seen that the response times are in the range of 20-50 msec, with some occasional
spikes around 200 msec.

• Submitting a test setup with 100 combinations every 1 second (Figure 51). This indicates
an average response time of 466 msec while being very stable for cases up to
approximately 100,000 pending combinations (with averages in the range of 60msec).
After that there is a gradual increase in the response times up to the point of around
170,000 combinations, after which the system reaches its limits.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 92 of 114 bigdatastack.eu

• Submitting a test setup with 100 combinations every 10 seconds (Figure 51). This
indicates an average response time of 700 msec while again being very stable for cases
up to approximately 100,000 pending combinations. Compared to the previous case, it
presents a slightly higher level of test combination endurance (around 190,000
combinations). It might indicate a higher average response time from the previous case
which might seem strange given the fact that it has a smaller frequency, but this is due
to the fact that it is still responsive in higher numbers of submitted jobs in which the
response times are significantly higher.

• Submitting a test setup with 100 combinations every 0.1 seconds (Figure 51). This
indicates an average response time of 2200 msec while again being very stable for cases
up to approximately 100,000 pending combinations (average of 60 msec up to that
point). However, it starts to deteriorate at a lower level that the previous cases, in the
area of 150,000 pending combinations.

• Submitting a test setup with 10000 combinations every 10 seconds (Figure 51). This
setup was included in order to check the effect on large submissions due to the internal
breakdowns to combinations in the system. It indicates an average response time of
3200 msec while again being very stable for cases up to approximately 100,000 pending
combinations (average of 68 msec up to that point). Also in this case, the breaking point
seems to be around 180,000 pending combinations, however in this case the system
was able to reach slightly over 200,000.

• Submitting a test setup with 10 combinations every 0.01 seconds (Figure 52). This setup
was included in order to check the effect on higher request frequencies and smaller job
sizes (thus more fragmented tests than in the previous case). With relation to the
previous cases, it indicates a very high average response time of 20000 msec from the
early stages of load, due to the increased overhead posed by the fragmentation and
request handling process. The breaking point in this case is very early, around 10000
combinations.

Figure 50 - ADW Bench Baseline times under anticipated normal conditions of execution (1 submitted test

setup every 10 seconds with 10 test combinations to be launched)

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 93 of 114 bigdatastack.eu

Figure 51 - Various stress testing cases for ADW Bench based on request frequency and test setup size

Figure 52 - ADW Bench Response Times under small job granularity and high frequency

Test case Average Response
Time at
approximately half
point

Average Response
Time (overall) (msec)

Standard Deviation
(overall) (msec)

Breaking point
(pending
combinations in
the system)

10 every 10
seconds

- 25.25 18.96 -

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 94 of 114 bigdatastack.eu

100 every 1
seconds

47.98 466.02 2723.97 ~170,000

100 every 10
seconds

101.60 701,70 4012,14 ~190,000

100 every 0.1
seconds

59.59 2275,34 6141,43 ~150,000

10000 every 10
seconds

68.10 3248.22 8979.61 ~210,000

10 every 0.01
seconds

9314,42 (on 5,000
pending
combinations)

13905,31 6621.13 ~10,000

Table 58 - Statistics for the various test cases

8.4.1.2 Real-time Stream Processing Plugin Analysis

Earlier in Section 8.3.1 we introduced the real-time stream processing plugin. This is the first
of three plugins that will be developed for the application simulator – which aims to solve the
issue of having precollected data on various application level component types without
benchmarking during the actual deployment process. The development of this plugin is
complete, and in this section we report the initial analysis of this plugin when deploying it on
cluster hardware, using a mono-transformer application. In particular, we performed
experiments in order to evaluate two main research questions:

1. How accurately does the real-time stream processing plugin simulate the specified
properties/configuration? This is useful as it gives us an idea of the expected error
bounds when using this plugin.

2. How much overhead is added by containerized deployment on OpenShift? This is
valuable as we need to know the degree of resource overhead when estimating the
amount of resources to request during application deployment.

We summarize the outcome of our experiments below:

Simulation Accuracy, Memory Usage: We first examine the accuracy of memory allocation
within the application simulation. Ideally, when we specify that we want a transformer that
uses 128Mb of memory, we would expect that to be the amount of memory that is allocated.
However, due to the underlying implementation, there may be some variance in actual
allocation. To test this, we deploy an instance of the plugin on a local machine, while
monitoring the memory foot-print of the transformer JVM object. We run eight tests, each
requesting a transformer with a different amount of memory, while keeping CPU usage at
zero so that each test lasts only as long as it takes to allocate and randomise the memory for
the transformer.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 95 of 114 bigdatastack.eu

Figure 53 shows the total
memory usage of the
experiments in contrast to the
amount of memory requested
by the transformer (array size)
for different request sizes. As
we can see from Figure 53, the
requested and used memory
are not always equal,
particularly when requesting
small amounts of memory.
This is indicative of notable
overheads in memory usage
by Flink transformers, which
appear to add around 40Mb in
memory usage to any deployment.

Simulation Accuracy, CPU Usage: We also ran the equivalent to the above experiments when
requesting different CPU loads and monitoring resultant application CPU usage. The results
from this experiment showed that on a local deployment, CPU simulation accuracy is 100%
accurate.

Overheads, CPU Usage: Having shown that CPU load simulation is accurate on a local
deployment, we next examine any overheads when deployed on a containerized Flink cluster
on top of OpenShift. To test this, we run a series of experiments, where we deploy a Flink
JobManager and TaskManager (forming a small Flink cluster) as containers running on
Openshift, and then deploy the real-time stream processing plugin onto that Flink Cluster. We
request 100% CPU usage by the transformer and monitor CPU usage by the TaskManager
container that is running the transformer every 1 second. A separate container, co-located
with the TaskManager, feeds the transformer with a fixed number of records without any
added delay. Each experiment is run for 60 seconds, although the records sent for processing
will not need all that time before they are processed. This experiment is replicated twenty
times to provide information about performance variance. With each experiment, we
recreate all OpenShift objects from scratch, to avoid contamination of results stemming from
cached data. We might expect that we would see 100% CPU usage for the container
(potentially with a ramp-up and ramp-down period where the transformer starts up and later
shuts down).

Figure 54 illustrates the CPU usage over time for these experiments. The blue curve
represents the mean CPU usage across experiments, while the red curve represents the
median CPU usage. As we can see from Figure 54, each experiment does not reach the desired
100% CPU usage on the TaskManager container. Indeed, while usage spikes to around 80% at
some time points, mean CPU usage during the active periods is much lower (around 20% CPU
usage). This indicates that there are significant overheads being added by the combination of
Flink and the containerized deployment. In particular, the lower CPU usage can be explained
by data transfer latencies between the container that is sending the records and the
transformer receiving those records, in addition to internal buffering by Flink itself (which is
not present on a single-container local deployment). As a result, the transformer is left idle

Figure 53 - Total memory usage comparison with transformer memory
usage

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 96 of 114 bigdatastack.eu

for a significant period of time while waiting for data. Discrepancies like this illustrate why we
need real deployment data from components like the ADW to train models such as that used
by ADS-Ranking, as there are multiple factors that can influence the actual resources needed
by an application that are not part of the application itself.

Figure 54 - TaskManager CPU usage when running a 100% Load Transformer

Overheads, Memory Usage: Earlier, we showed that the transformer object itself exhibited
about 40Mb higher memory usage than expected, likely due to the Flink object and its
input/output buffers. We next examine overall memory usage for the real-time stream
processing plugin when running containerized on OpenShift. We follow the same setup as for
the Overheads, CPU Usage experiments, with the exception that we vary the target memory
usage of the transformer to either 64Mb, 128Mb, 256Mb and 512Mb, respectively. As
transformers generate output records, we run multiple experiments with different output
sizes. Specifically, we explore every power-of-two number of Mb that is compatible with the
target memory of the current transformer. We measure the Java Heap size within the
TaskManager container that is running the transformer. We expect that there will be a
memory overhead introduced here by the Flink management software that was not present
within the local deployment.

Figure 55 (a-d) reports the memory usage of the TaskManager for each of the four memory
requests. The horizontal dashed green line represents the requested memory amount, while
the blue and red lines show mean and median Java Heap size respectively. From Figure 55 we
observe three main trends. First, we see that there is a notable start-up period where the
transformer has not yet reached the desired memory consumption. This is expected, as it
takes time for the transformer to start-up as well as time to generate and randomise an array
of the desired size. Second, again as expected, the full heap usage is higher than the
transformer alone (during the period where the transformer is active), representing

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 97 of 114 bigdatastack.eu

additional overhead. Furthermore, the size of this overhead is related to the transformer size.
This represents the additional memory that is needed to generate the output records from
the transformer and appears to be close to a linear combination of target memory and output
record size. Third, if we look closely at the individual experiment curves, we see a drop in
memory consumption after processing as commenced in many experiments. This indicates
that once the records have been processed the JVM quickly garbage collects the transformer
and all container objects (although sometimes the experiment ends before this occurs). In
general, we see from these results that there is much variance in memory usage over time for
this type of application, and hence we should use longer experiment durations to get a true
picture of the required peak memory for this type of application.

Figure 55 - TaskManager Memory usage over time as we vary Transformer Memory Usage

In summary, these experiments tested the real-time stream processing plugin within the
application simulator. Through local testing, we showed that the implementation is quite
accurate at simulating transformer-level CPU and memory consumption. However, when
subject to containerized deployment, we observed significantly higher divergence in both
CPU and Memory usage in comparison to the target values. This illustrates the value that
the application simulator can bring, as quantifying these discrepancies on different types of
hardware will provide valuable data when estimating resources to request during
application deployment.

8.4.2 Comparison with other approaches

As mentioned previously the main purpose of ADW Bench is not to introduce another baseline
benchmark test, since a number of them are already available and tailored for various

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 98 of 114 bigdatastack.eu

application domains (an interesting analysis of these appears in [22]), but to enable a higher
layer benchmark and load injection execution, coordination and management framework
that will simplify and abstract this process for the performance engineers/application owners.
In this section an analysis of relevant work is presented in order to compare against existing
solutions and identify advantages and disadvantages of each approach. The comparison is
performed against the following axis:

• User interfaces and whether these are based on web, command line interface (CLI)
and/or REST API availability.

• Ability to support multiple platforms of execution with multiple benchmarks or the
ability to extend these.

• Nature of the tool, in the sense of whether it is primarily designed as a benchmarking
tool scope, a load injector scope or both. For example, for the load injector scope one
should be able to handle arbitrarily defined workloads as well as distributed load
generation.

• Ability of the tool to cover the complete test lifecycle, meaning resource setup, test
setup, test execution, result acquisition and resource cleanup and whether this ability
exists for multiple variations (parameter sweep fashion), trace driven simulations or
isolated/parallel modes of operation). Given that this aspect is primarily met in cloud-
targeting and measuring frameworks, since the cloud domain offers extensive
capabilities for API based resource manipulation, the majority of the examined tools
are from the cloud domain.

• General scope of the tool as well as availability as an open source project.

The overall comparison between ADW Bench and the main comparable tools appears in Table
59 for the aforementioned aspects. The comparison was based on the retrieved available
information (published papers, GitHub repositories or tool description pages). In the following
paragraphs details of each tool are presented.

In [23] the ARTIST benchmarking tool is presented, which has the aim of measuring and
monitoring the performance of Cloud services. The tool is centered around 3 main baseline
tools and can automate the launch and execution of the tests (even in a periodic manner), as
well as result collection and filtering against various cloud platforms. However, its main
rationale is to implement a continuous and stable experiment execution (e.g. with the same
workload conditions for the tests and on a single node) for comparability purposes in an
attempt to monitor cloud services performance evolution and variation. As such, it does not
enable the arbitrary input of any type of workload needed by the end user in these tests, nor
does it enable different business cases such as the private cloud isolation case.

In [24] Cloudbench Tool (CBTOOL) is a multi-benchmark framework that aims primarily at
infrastructure as a service (IaaS) cloud stress and scalability testing. It enables running
controlled experiments with workloads designed by the user/contributor, through
experiment plans based on a scripting syntax. In CBTool applications are by default bundled
with the load generation, hence its approach is primarily a benchmark one and not a generic
load injector towards any given external endpoint, although it could indirectly serve towards
that purpose. CBTool has also a feature for parallel vs isolated mode, through waitfor,

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 99 of 114 bigdatastack.eu

waituntil and waiton capabilities that can hault test submission, thus being able to apply the
specific mode requirement in a test scenario. One difference on this aspect is that in our case
this mode is enforced across the overall tool scope (thus if multiple users are trying to use the
stress test cluster/resource they will all be blocked in an isolated requirement), whereas in
the CBTool’s case it seems that blocking relates to the specific experiment plans submitted by
this user. A step that appears increased in needs is the number of steps needed to adapt a
given application to the benchmark framework automation. In the case of ADW Bench it
would be almost the same specification (e.g. Docker compose file) used for the actual
deployment of the target application, due to its primary application centric nature. Another
comparison point with ADW Bench is the latter’s intuitive flow based programming style (due
to Node-RED) and portability (the actual source code is a JSON file of a few KB), compared to
the 20k python lines of code of CBTool. Overall, CloudBench is the state of the art tool that
presents the majority of features, being also the basis for the SPEC Cloud IaaS 2018
benchmark. In a nutshell, CBTool is a more centralized, production grade, VM oriented and
infrastructure/benchmark centered tool, whereas ADW Bench can be considered as a
container oriented, more lightweight, portable tool that bundles all the needed functionalities
in one package.

Smart Cloudbench [25] is another tool that aims to simplify benchmarking execution against
Cloud services through the use of application level benchmarks such as TPC-W. The tool
covers aspects such as (web) UI based configuration and setup, test lifecycle management for
VMs, result aggregation and reporting on application and resource level metrics. Its primary
use is for benchmarking purposes and comparisons (similarly to the ARTIST tool already
mentioned) through the supported benchmarks (with ability to apply user defined aspects of
workload). There is no mentioning for availability of a REST based API (or other forms of
automated insertion of parameter sweep tests) through which further automation could be
achieved. On the other hand, it supports direct selection through querying incorporation of
cost, performance and KPIs specification.

Google Perfkit [26] is an approach that aims to facilitate the execution of various benchmarks
against Cloud services in order to capture cloud related metrics (similar to CBTool) but also
scores related to a wide set of primarily microbenchmarks. Thus it mainly acts as a
benchmarking comparison between service offerings and not at the level of generic load
injection that can be used to analyse or stress test an arbitrary application. It has advanced
templates for multiple benchmark results gathering and processing, parsing for the
incorporated benchmarks as well as enabling the test lifecycle management (resource
creation, test installation and execution, result gathering and resource cleanup). Its primary
UI is through a command line interface (CLI). Extensions (PerfkitExplorer) have been built for
providing web based interfaces, although only as a Google App Engine project.

Octoperf [27] is a commercial offering that features either a privately deployed or SaaS based
solution and it is based on Apache Jmeter (one of the supported benchmarks in ADW Bench).
It comes with a number of features such as load testing execution design, extensive web UI,
inclusion of Service Level Agreement rules etc. One of the drawbacks of Octoperf is its closed
source and purely commercial nature, thus it is not freely available to all audiences.
Furthermore, it does not seem to have means of abstracting from Jmeter in order to include
different baseline benchmarks/load injectors nor does it apply scenarios such as a trace driven
simulation or an isolated vs concurrent execution. In essence it is completely integrated with

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 100 of 114 bigdatastack.eu

the baseline tool. On the other hand, it features the ability to use multiple platforms (at least
AWS and Digital Ocean) as well as a RESTful API through which automations may be
performed, in addition to features such as result reporting and presentation.

μSuite [28] and DeathStarBench [29] are tools to target microservices and containers,
however their main goal is to define and implement a baseline benchmark test that can be
used in containerized environments. As such they could be seen as a potential baseline test
for future inclusion in ADW Bench rather than a directly comparable tool. In other cases,
specialized benchmark management solutions have appeared, including test lifecycle
management processes, targeting at specific use cases and domains (e.g. cloud hosted DBMS
systems elasticity aspects in [30])

Overall what can be observed from the related work analysis is that there is a large number
of tools available. However typically each one has its own features and drawbacks. In the case
of ADW Bench, as differentiating factors the following can be summarized:

• It enables its usage either as a benchmarking framework or as a generic load injection
tool for arbitrary loads, thus serving a dual nature.

• It enables the implementation of rich test definitions and diverse modes of execution.

• It targets containerized environments for its operation, deployment and test lifecycle.

• It is tailored and oriented around the easy acquisition of related datasets towards
further processing such as machine learning models training.

• It is focused around portability, lightweight nature, all-in-one characteristics for
minimizing dependencies while being based on a flow programming style that can be
more attractive and abstract for developers.

Furthermore, with relation to usage in containerized environments, a complete description
of requirements posed in such cases appears in [31]. Even though these are targeted primarily
at baseline benchmarks for containerized environments, we consider it important also for the
above benchmark/execution management layer (such as ADW Bench) to cover at least a part
of them, since it can be anticipated that when such tools appear they will need to be managed
in a similar fashion. ADW Bench meets related requirements such as inclusion of a software
repository easily accessible from a public version control system (ADW Bench uses Gitlab),
support for reusable container images, support for automated deployment and orchestration
and easy to use interfaces among others.

Framework
/Tool

User
Interface

Applicati
on
encapsula
tion

Multipl
atform/
benchm
ark

Benchmark/
Load
Injection
Scope

Test
Lifecycle
Managem
ent

Test and
mode
variations

General
scope

Ope
n
Sou
rce

ADW
Bench

Web,
REST API

Container
s

Yes/Yes Yes/Yes Yes Yes lightweight,
portable,
single
package,
intuitive flow
based
programming
style

Yes

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 101 of 114 bigdatastack.eu

ARTIST Web VMs Yes/Yes Yes/No Yes,
periodicall
y

No Same load,
benchmark
metrics over
time

Yes

Μ-suite No Container
s

Yes/No Yes/No No No Baseline
benchmark
definition

Yes

Smart
Cloudbench

Web VMs Yes/Yes Yes/No Yes No Application
and Resource
metrics

N/A

Perfkit With
extensions
but with
vendor
lock-in

VMs Yes/Yes Yes/No Yes No Benchmark
score,
resource
metrics

Yes

Octoperf Web,
REST API

N/A Yes/No No/Yes but
heavily
integrated
with Jmeter

Yes Application
Scope

No

Cloudbench Web, CLI,
XML RPC

VMs Yes/Yes Yes/Partial Yes Test
variations
through
test plans

centralized,
production
grade, VM
oriented and
infrastructure/
benchmark
centered

Yes

Table 59 - Comparative Table of Features between ADW Bench and other tools

8.5 Next Steps
8.5.1 ADW Bench

In terms of ADW Bench, the next steps include:

• Finalization of integration with the Openshift Application Simulator adapter for
generic submission testing and launch.

• Extension to new adapters for being able to deploy against external platforms (e.g.
AWS Elastic Container service).

• Incorporation of data services in the benchmarked graph.

• Collection of necessary data that may be used for prediction model creation which will
aid us in providing responses for cases that have not been benchmarked.

8.5.2 ADW Model Creation and Runtime Usage

In terms of ADW Runtime, the next steps include:

• Creation of baseline prediction models with relation to data services, application
elementary types and the various aspects that affect their QoS.

• Propagation of this information at the level of the service graph, by understanding the
structure of the graph (e.g. as a directed graph), using the initial workload input and
combining the baseline models in one overall end to end QoS prediction.

• Implementation and testing of a RESTful service through which the respective models
can be queried during runtime and the playbook population method.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 102 of 114 bigdatastack.eu

9 Adaptable Visualizations
Adaptable Visualizations will present graphs and reports of data and analytics outcome in an
adaptive and interactive way. Based on the form and the size of the data, different
visualizations will be dynamically presented. Performance aspects such as computing, storage
and networking infrastructure data, data sources information, and data operations outcomes
will be visualized.

Apart from that Adaptive Visualizations will provide a multi-view/multi-role unified and
structured User Interface that either consumes or integrates various components such us
Process Modeller, Data Toolkit, Process Mapping, Benchmarking, Application Dimensioning
Workbench, CEP, Triple Monitoring Engine, Data Quality Assessment and Predictive
Maintenance components.

9.1 Requirements
The anticipated functionalities / requirements are described in the following tables (Table 60
-Table 73), that are compiled together with the rest of requirements of BigDataStack in D2.3.

 Id Level of detail Type Actor Priority

REQ-AV-01 System and
Software

USE ROL-2/ROL-
03/ROL-04

MAN

Name Interactive and Responsive UI

Description The system should provide an interactive UI that should adapt to different
devices and displays in order to provide a proper operation of the solution
and a good user experience.

Additional
Information

N/A

Status Not Fulfilled

Table 60 – System Requirement (1) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-02 System and
Software

FUNC ROL-04 MAN

Name Automatic graph selection

Description Appropriate graphs and reports should automatically be selected for
different data sets.

Additional
Information

N/A

Status Fulfilled

Table 61 – System Requirement (2) for Adaptable Visualizations

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 103 of 114 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-AV-03 System and
Software

FUNC ROL-04 MAN

Name Live data for different data sources

Description The system should be able to display live data obtained from application
probes, resource probes and data operations probes.

Additional
Information

Adaptable selection of sources should be possible both in terms of
application, resources or data operations, as well as in terms of the datasets
selected and visualized per each one of these cases. Combinations should
also be enabled.

Status Fulfilled

Table 62 – System Requirement (3) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-04 System and
Software

FUNC ROL-03 MAN

Name The system should be able to consume/integrate Process Modeller
Component.

Description Business Analyst can create graphs and export/edit/import them in latter
time.

Additional
Information

N/A

Status Fulfilled

Table 63 – System Requirement (4) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-05 System and
Software

FUNC ROL-02 MAN

Name The system should be able to consume/integrate Data Toolkit Component.

Description Data Analyst can use the output provided by Process Modeller Component
to apply Data Analyst Logic and enrich it.

Additional
Information

N/A

Status Fulfilled

Table 64 – System Requirement (5) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-06 System and
Software

FUNC ROL-04 MAN

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 104 of 114 bigdatastack.eu

Name The system should be able to integrate Benchmarking API.

Description Application owner can define tests by providing the proper playbook and
extract metrics.

Additional
Information

N/A

Status Fulfilled

Table 65 – System Requirement (6) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-07 System and
Software

FUNC ROL-04 MAN

Name The system should be able to integrate Application Dimensioning
Workbench.

Description Application owner imports a playbook produced by the Data Toolkit
Component and choose assisted Mode Deployment to get Deployment
Recommendations. These recommendations can be automatically
deployed and monitored.

Additional
Information

N/A

Status Fulfilled

Table 66 – System Requirement (7) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-08 System and
Software

FUNC ROL-04 MAN

Name The system should be able to integrate Application Dimensioning
Workbench.

Description Application owner imports a playbook produced by the Data Toolkit
Component and choose Manual Mode Deployment to get Deployment
Recommendations. These recommendations can be automatically
deployed and monitored.

Additional
Information

N/A

Status Not Fulfilled

Table 67 – System Requirement (8) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-09 System and
Software

FUNC ROL-04 MAN

Name The system should be able to monitor the Deployed Application and receive
notifications regarding QoS that are violated by the Dynamic Orchestrator
and ADS Ranking Recommendator.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 105 of 114 bigdatastack.eu

Description Monitoring Screen is provided in the Application Owner View for each
application deployed.

Additional
Information

N/A

Status Fulfilled

Table 68 – System Requirement (9) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-10 System and
Software

FUNC ROL-04 MAN

Name The system should be able consume and visualize datasets provided by the
Data Quality Assessment Component.

Description User can extract information provided by the above component.

Additional
Information

N/A

Status Fulfilled

Table 69 – System Requirement (10) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-11 System and
Software

FUNC ROL-04 MAN

Name The system should be able consume and visualize datasets provided by the
Maintenance component.

Description User can extract information provided by the above component.

Additional
Information

N/A

Status Fulfilled

Table 70 – System Requirement (11) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-12 System and
Software

FUNC ROL-04 MAN

Name The system should be able consume and visualize graphs from the CEP.

Description User can extract information provided by the above components.

Additional
Information

N/A

Status Fulfilled

Table 71 – System Requirement (12) for Adaptable Visualizations

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 106 of 114 bigdatastack.eu

Id Level of detail Type Actor Priority

REQ-AV-13 System and
Software

FUNC ROL-04 MAN

Name The system should be able to provide different Views of the UI depending
on the user role.

Description Different Components should be visible and accessed depending of the role
that each user has. This role can be Business Analyst, Data Analyst,
Application Owner and Administrator. Access to any view of the above
requires authentication of the user.

Additional
Information

N/A

Status Fulfilled

Table 72 – System Requirement (13) for Adaptable Visualizations

Id Level of detail Type Actor Priority

REQ-AV-14 System and
Software

FUNC ROL-02
ROL-03
ROL-04

MAN

Name User Authentication

Description Authentication of the User should be performed once upon logging in the
platform. Any additional authentication for individual components should
happen in the background without further user interaction.

Additional
Information

N/A

Status Not Fulfilled

Table 73 – System Requirement (14) for Adaptable Visualizations

9.2 Design Specifications
Figure 56 depicts the most commonly used architecture for visualizing big data.

Figure 56 – Base architecture for visualizing big data

Database

Middleware
+ Web Socket

Server
Client Library

Data Stream

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 107 of 114 bigdatastack.eu

The data originate either from a Data Stream or from a Database (NoSQL or Relational). A
middleware server component consumes the data and converts them to a format suitable for
the visualization client-side library. Live update of the data is achieved through a web socket
interface between the server and the client.
The visualization of the data streams has been integrated with the CEP developed in
BigDataStack. First of all, data streaming queries are designed through a visual editor so that,
programmers do not need to program the CEP query. Those queries can be executed and the
visualization tool for the CEP shows the live flow of data though the different query operators.
Both the query editor and the online visualization are implemented using Angular 7 and
Rete.js15. The online visualization tool uses WebSockets for communication with the CEP.
Many options are available for the Middleware (Node.js, Spring Boot). The client library must
provide graph implementations of many types, interactivity, responsiveness and integrations
with many Javascript frameworks. State of the art option selection is currently Chart js [20]:
Open source javascript library that provides simple yet flexible charting for developers and
designers.
All the components were integrated via Restful APIs and several graphs are directly consumed
from Grafana software.

9.3 Experimentation Outcomes
An end to end scenario has already been implemented. A high level graph was produced by
the business analyst using Process Modeller Component. The generated graph was
propagated to the Data Analyst who extracted a playbook by invoking the Data Toolkit
Component. This playbook was later on consumed by the ADW API and a recommendation
was deployed and monitored. Application has access to performance metrics and QoS
violation alarms and respective actions taken by the Dynamic Orchestrator Component.

Figure 57 – Monitoring QoS violations and performance of the Deployments

15 https://rete.js.org/#/

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 108 of 114 bigdatastack.eu

Figure 58 – Predictive maintenance Component

Figure 59 – Analytics Dashboard Component

The full queries for the Danaos use case are shown in Figure 60. A more detailed view is shown
in Figure 61, where the boxes represent the operators with the conditions they are checking
and arrows represent the stream of data and how it flows through operators.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 109 of 114 bigdatastack.eu

Figure 60 - Danaos CEP query

Figure 61 – Detail of one the Danaos queries

A first functional prototype of the online visualization of streams is already available. Figure
62 shows the visualization of CEP queries; more concretely, it presents the query run by CEP1
at the ship. For each query operator (represented as boxes), the name of the operator and
part of the functionality is shown. For instance, the condition that checks whether the
pressure is between 0 and 700 is shown. When the visualization is running, for each operator
the last received tuple is also shown. A more detailed view of the same execution can be
found in Figure 63. This figure presents a snapshot of the execution the Danaos query when
real data is received from several sensors. On top of the figure a message is presented when
an alarm is triggered. That is, one of the rules the query checks is not fulfilled.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 110 of 114 bigdatastack.eu

Figure 62- Visualization of CEP queries

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 111 of 114 bigdatastack.eu

Figure 63 – Detailed visualization of the CEP queries execution

9.3.1 Evaluation results

An end-to-end scenario was successfully tested. Cross role data interaction resulted to
successful deployment/ scaling/monitoring of applications.

9.4 Integration Highlights
All components have been consumed or integrated using RestFul APIs. Message queueing
protocols (RabbitMQ) along with Web Socket technologies (Socket IO) were invoked for long
time response services.

9.5 Next steps
As the project matures, the visualization scenarios will become more concrete. The
implementation of the Adaptable Visualizations Components will proceed as follows:

• Integration of Data Toolkit Component. Additional login to Data Toolkit will be
bypassed once the user is authenticated via JWT in the BigDS web platform.

• Integration of Dimensioning Workbench Component will be updated. Manual
Deployment Mode will also be available.

• Analytics Dashboards will be more interactive in terms of filter application.
• Possible Migration towards Highchart, a Royalty-free, commercial, javascript library.

Provides the implementations of hundreds of interactive graph types that can be
easily integrated to any Javascript Application. This need emerges as a result of the
dataset sizes.

• The dynamic visualization of the streams of data and the CEP queries requires
functionality to control which elements are shown as well as mechanisms to slow
down the rate at which the information flows.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 112 of 114 bigdatastack.eu

10 Conclusions
This document presents the components of one of the main building blocks of BigDataStack,
the Dimensioning, Modelling & Interaction Services, along with their current design
specifications and their implementation and status. For every component, the anticipated
functionalities along with its architecture are presented. Information is also provided, on
component level, regarding the next steps and the experimentation. Connected Consumer
and Real-time ship management UCs are used to validate the different releases of the
components and their collaboration.

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 113 of 114 bigdatastack.eu

References
[1] https://nodered.org/
[2] https://github.com/node-red/node-red
[3] X. Tian et al., "BigDataBench-S: An Open-Source Scientific Big Data Benchmark

Suite," 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 1068-1077.

[4] Ivanov et al., “Big Data Benchmark Compendium", Performance Evaluation and
Benchmarking: Traditional to Big Data to Internet of Things, Springer International
Publishing, 2016, pp. 135-155.

[5] https://www.cs.waikato.ac.nz/ml/weka/
[6] https://spark.apache.org/mllib/
[7] https://www.gnu.org/software/octave/
[8] https://www.ansible.com/
[9] https://www.dropwizard.io/
[10] Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, Ricardo Vilalta: Metalearning

- Applications to Data Mining. Cognitive Technologies, Springer 2009, ISBN 978-3-540-
73262-4, pp. I-X, 1-176

[11] METAL: A meta-learning assistant for providing user support in machine learning and
data mining. ESPRIT Framework IV LTR Reactive Project Nr. 26.357, 1998-2001.
http://www.metal-kdd.org.

[12] K. Morik and M. Scholz. The MiningMart approach to knowledge discovery in databases.
In N. Zhong and J. Liu, editors, Intelligent Technologies for Information Analysis, chapter
3, pages 47–65. Springer, 2004. Available from http://www-ai.cs.uni-
dortmund.de/MMWEB.

[13] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1): 6:1-6:25 (2008).

[14] Mustafa V. Nural, Hao Peng, John A. Miller: Using meta-learning for model type
selection in predictive big data analytics. BigData 2017: 2027-2036.

[15] Daniel Gomes Ferrari, Leandro Nunes de Castro: Clustering algorithm selection by meta-
learning systems: A new distance-based problem characterization and ranking
combination methods. Inf. Sci. 301: 181-194 (2015).

[16] Hutter Frank, Kotthoff Lars, Vanschoren Joaquin: Automated Machine
Learning.Springer.2019

[17] Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. J.
Mach. Learn. Res., 13, 281-305.

[18] https://d3js.org/
[19] https://www.highcharts.com/
[20] https://www.chartjs.org/
[21] Kousiouris, G., Cucinotta, T. and Varvarigou, T., 2011. The effects of scheduling,

workload type and consolidation scenarios on virtual machine performance and their
prediction through optimized artificial neural networks. Journal of Systems and
Software, 84(8), pp.1270-1291.

[22] Scheuner, J. and Leitner, P., 2018, July. Estimating cloud application performance based
on micro-benchmark profiling. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD) (pp. 90-97). IEEE

[23] Kousiouris, G., Giammatteo, G., Evangelinou, A., Galante, N.A., Kevani, E., Stampoltas,

https://nodered.org/
https://github.com/node-red/node-red
https://www.cs.waikato.ac.nz/ml/weka/
https://spark.apache.org/mllib/
https://www.gnu.org/software/octave/
https://www.ansible.com/
http://www.metal-kdd.org/
http://www-ai.cs.uni-dortmund.de/MMWEB
http://www-ai.cs.uni-dortmund.de/MMWEB
https://d3js.org/
https://www.highcharts.com/
https://www.chartjs.org/

 Project No 779747 (BigDataStack)
 D5.2 – WP5 Scientific Report and Prototype Description – Y2
 Date: 29.11.2019
 Dissemination Level: Public

 page 114 of 114 bigdatastack.eu

C., Menychtas, A., Kopaneli, A., Balraj, K.R., Kyriazis, D. and Varvarigou, T.A., 2014, April.
A Multi-Cloud Framework for Measuring and Describing Performance Aspects of Cloud
Services Across Different Application Types. In CLOSER (pp. 714-721)

[24] Silva, M., Hines, M.R., Gallo, D., Liu, Q., Ryu, K.D. and Da Silva, D., 2013, March.
Cloudbench: Experiment automation for cloud environments. In 2013 IEEE International
Conference on Cloud Engineering (IC2E) (pp. 302-311). IEEE

[25] Chhetri, M.B., Chichin, S., Vo, Q.B. and Kowalczyk, R., 2016. Smart CloudBench—A
framework for evaluating cloud infrastructure performance. Information Systems
Frontiers, 18(3), pp.413-428

[26] Google Perfkit Benchmarker, available at:
https://github.com/GoogleCloudPlatform/PerfkitBenchmarker

[27] OctoPerf Load Testing Solution, available at: https://octoperf.com
[28] Sriraman, A. and Wenisch, T.F., 2018, September. μ Suite: A Benchmark Suite for

Microservices. In 2018 IEEE International Symposium on Workload Characterization
(IISWC) (pp. 1-12). IEEE.

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana
Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan
He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon
Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud & Edge Systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS '19). ACM, New York, NY, USA, 3-18. DOI:
https://doi.org/10.1145/3297858.3304013

[30] Daniel Seybold, Simon Volpert, Stefan Wesner, André Bauer, Nikolas Herbst, and Jörg
Domaschka. Kaa: Evaluating elasticity of cloud-hosted dbms. In Proceedings of the 11th
IEEE International Conference on Cloud Computing (CloudCom), December 2019

[31] Aderaldo, C.M., Mendonça, N.C., Pahl, C. and Jamshidi, P., 2017, May. Benchmark
requirements for microservices architecture research. In Proceedings of the 1st
International Workshop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering (pp. 8-13). IEEE Press

https://github.com/GoogleCloudPlatform/PerfkitBenchmarker
https://octoperf.com/
https://doi.org/10.1145/3297858.3304013

	Table of Contents
	List of tables
	List of figures
	1 Executive Summary
	2 Introduction
	2.1 Relation to other deliverables
	2.2 Document structure

	3 Solution Architecture
	3.1 Vision
	3.2 Platform Roles
	3.3 Example Scenario
	3.4 Design

	4 Implementation and Experimentation
	4.1 Experimental Settings
	4.1.1 Setting 1
	4.1.2 Setting 2

	4.2 Implementation Roadmap

	5 Process Modelling framework
	5.1 Requirements
	5.2 Design Specifications
	5.3 Experimentation Outcomes
	5.3.1 Evaluation results
	5.3.2 Comparison with other approaches

	5.4 Integration Highlights
	5.5 Next steps

	6 Process Mapping
	6.1 Requirements
	6.2 System Architecture
	6.2.1 Training Phase – Analytics Repository Creation Process
	6.2.2 Selection Phase – Process Mapping “In Action”

	6.3 Implementation and Integration Highlights
	6.4 Experimental Evaluation
	6.4.1 Evaluation of Model Selection
	6.4.2 Evaluation of Hyperparameter Tuning
	6.4.3 Random Search in Analytics Repository

	6.5 Next steps

	7 Data Toolkit
	7.1 Requirements
	7.2 Design Specifications
	7.3 Implementation and Integration Highlights
	7.4 Experimentation Outcomes
	7.5 Next steps

	8 Application Dimensioning Workbench
	8.1 Requirements
	8.1.1 Pattern Generator
	8.1.2 ADW Core
	8.1.3 Openshift Application Simulator Adapter and Application Type Plugins

	8.2 Design Specifications
	8.2.1 ADW Core System Use Cases
	8.2.2 System Design
	8.2.3 Pattern Generator
	8.2.4 Benchmarking and Model Creation of ADW Core
	8.2.5 Openshift Application Simulator Adapter and Application Type Plugins
	8.2.6 Load Clients Plugins
	8.2.7 ADW Core Online Request prediction phase

	8.3 Implementation and Integration Highlights
	8.3.1 Application Type Experiment Plugin: Real-time Stream Processing
	8.3.2 ADW Core
	8.3.2.1 ADW Bench Setup
	8.3.2.3 Test Monitoring
	8.3.2.5 Execution and Platform Coordination and Layer
	8.3.2.6 ADW Runtime Playbook Population

	8.4 Experimentation Outcomes
	8.4.1 Evaluation results
	8.4.1.1 Scalability of framework for test setup submission
	8.4.1.2 Real-time Stream Processing Plugin Analysis

	8.4.2 Comparison with other approaches

	8.5 Next Steps
	8.5.1 ADW Bench
	8.5.2 ADW Model Creation and Runtime Usage

	9 Adaptable Visualizations
	9.1 Requirements
	9.2 Design Specifications
	9.3 Experimentation Outcomes
	9.3.1 Evaluation results

	9.4 Integration Highlights
	9.5 Next steps

	10 Conclusions
	References

