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1 Executive Summary 
BigDataStack delivers a complete high-performant stack of technologies addressing the needs 
of data operations and applications. The main objective of the dimensioning, modelling and 
interaction services building block of the BigDataStack environment, is to provide all the 
interaction mechanisms, including the Process Modelling framework, the Data Toolkit, the 
Dimensioning Workbench, and the Visualization environment. These are required in order to 
exploit the added-value services of the “underlying” BigDataStack offerings: the data-driven 
infrastructure management and the Data as a Service. 

The current deliverable is the second (i.e. updated) deliverable that focuses on the 
aforementioned interaction services building block of BigDataStack. It contains an updated 
description of all the components (in terms of design specifications), along with the progress 
done until now (in terms of software prototypes, integration and initial evaluation outcomes), 
as well as the expected progress until M34. 

The main updates of D5.2 are: 

1. Updated design specifications of the components, including updated requirements as 
well as experimentation outcomes. 

2. Extended description of the “Adaptable Visualisations” component – the 
corresponding task had not started by the time D5.1 was delivered. 

3. Description of the scenario that was presented during the interim review of the 
project and demonstrates the integration of WP5 components. 

An updated and final version of this report is planned for M34 (D5.3). 
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2 Introduction 
2.1 Relation to other deliverables 
The current deliverable, the second BigDataStack deliverable concerning Dimensioning, 
Modelling and Interaction Services (D5.3 is scheduled for M34 and D5.1 was delivered in 
M11) is related to several other BigDataStack deliverables in a direct or indirect way.  

D2.1 (State of the art and Requirements analysis - I) and its updated versions D2.2 
(Requirements & State of the Art Analysis - II) and D2.3 (Requirements & State of the Art 
Analysis - III) identify and specify the technical requirements for BigDataStack both through 
use case (UC) providers and technology providers, while D2.5 (Conceptual model and 
Reference architecture - II), the updated version of D2.4, provides information about the key 
functionalities of the overall architecture and the interactions between the main building 
blocks and their components. 

We should also underline that the Requirement Tables of the corresponding components of 
the Dimensioning, Modelling and Interaction Services (Tables 3-19, 25-28, 30-53 and 60-73) 
are compiled together with the rest of requirements of BigDataStack in D2.3 (Requirements 
& State of the Art Analysis - III); they are included in this document for the reader’s 
convenience. 

Finally, D3.2 (WP3 Scientific Report and Prototype description – Y2) and D4.2 (WP4 Scientific 
Report and Prototype description – Y2) are the deliverables which, in combination with D5.2, 
present the current technical status (dealing with Data-driven Infrastructure Management 
and Data as a service respectively) of BigDataStack project. 

 

2.2 Document structure 
Section 3 gives an overview of the various components, while Section 4 provides information 
for the experimental setting and implementation roadmap. Sections 5 to 9 follow the data 
flow in the dimensioning, modelling and interaction services’ block of BigDataStack 
architecture and are dedicated to each one of the different components, namely Process 
Modelling framework, Process Mapping, Data Toolkit, Application Dimensioning Workbench 
and Adaptable Visualizations. Section 10 contains the conclusions of the current deliverable. 
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3 Solution Architecture 
This section describes the technical solution for the Dimensioning, Modelling & Interaction 
Services of BigDataStack, based on D2.5. Firstly, it gives a general overview of the 
BigDataStack capabilities (context, goal, main functions or services); secondly, it enumerates 
the platform roles interacting with these services; and finally, it describes the design of the 
proposed solution. 

 

3.1 Vision  
BigDataStack offerings are depicted through a full stack aiming to facilitate the needs of data 
operations and applications (all of which tend to be data-intensive) in an optimized way. The 
BigDataStack core platform capabilities are depicted in Figure 1 and further analysed in D2.5. 

 

 
Figure 1 – BigDataStack core platform capabilities (extracted from D2.4) 

These six BigDataStack core platform capabilities are envisioned to achieve the business goals 
or expectations from the different stakeholders. Dimensioning Workbench, Process 
Modelling, Data Toolkit and Data Visualization are the four core offerings of BigDataStack 
platform that are discussed in this deliverable.  
The goal of Data Visualization is to present graphs and reports of data and analytics outcome 
in an adaptive and interactive way, while the Data Toolkit facilitates BigDataStack users build 
operational analytic workflows by means of data pipelines through Directed Acyclic Graphs 
(DAGs). In the case of Process Modelling, the goal is to provide a framework that allows for 
declarative and flexible modelling of process analytics, while the Dimensioning Workbench 
enables the dimensioning of applications in terms of predicting the required data services, 
their interdependencies with the application micro-services and the necessary underlying 
resources. 
These capabilities are mainly engaged in Entry and Dimensioning Phases of BigDataStack (see 
D2.5).  

During the Entry Phase:  
1. Data Owners ingest their data in the BigDataStack-supported data stores through a 

unified API.  
2. Given the stored data, Business Analysts design processes utilising the intuitive 

graphical user interface provided by the Process Modelling framework through the 
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Visualisation component, and the available list of “generic” processes. The compiled 
business workflow is mapped to concrete executable tasks. These mappings are 
performed by a mechanism incorporated in the Process Modelling framework, the 
Process Mapping component. 

3. The graph of services is made available to Data Scientists through the Data Toolkit, 
where they can also specify their preferences for specific tasks, for example, what the 
response time of a recommendation algorithm should be.  

4. Data Scientists are also able to ingest a new executable in case a task has not been 
successfully mapped by the Process Mapping mechanism. 

The output of the Entry Phase is a playbook descriptor that is passed to the Application 
Dimensioning Phase in order to identify the resource needs for the services. 
During the Dimensioning Phase (Figure 2): 

1. The input from the Data Toolkit is used to define the composite application needs 
with relation to the required data services;  

2. The identified/required data services are dimensioned (as well as all the application 
components, regarding their infrastructure resource needs), by exploiting a load 
injector generating different loads, to benchmark the services and analyse their 
resources and data requirements (e.g. volume, generation rate, legal constraints, 
etc.). 

 

 
Figure 2 - Dimensioning Phase 

The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that 
describes the mapping of the input parameters (such as workload and Quality of Service - 
QoS) to needed resource parameters (such as the bandwidth, latency etc.). 

 

3.2 Platform Roles 
Table 1 lists the BigDataStack roles relevant to the Dimensioning, Modelling & Interaction 
Services (see the complete list of roles in Deliverable D2.1). 

 
Id Name Description 

ROL-02 Data Scientist The process model is made available to the data scientist 
through the Data Toolkit. BigDataStack offers the Data Toolkit 
to enable data scientists both to easily ingest their analytics 
tasks, and to specify their preferences and constraints to be 
exploited during the dimensioning phase regarding the data 
services that will be used (for example preferences for the data 
cleaning service). 
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ROL-03 Business 
Analysts 

BigDataStack offers the Process Modelling Framework allowing 
business users to model their functionality-based business 
processes and optimize them based on the outcomes of 
process analytics that will be triggered by BigDataStack. The 
business analyst can search processes from the list of available 
processes, create a flow of processes and set objectives for the 
overall flow or per process. The visual analytical reports are 
made available to the business analyst through the 
visualization layer. 

ROL-04 Application 
Engineers and 
Application 
Service 
Owners 

The updated model is made available to the application owner 
/ engineer through the Application Dimensioning Workbench. 
BigDataStack offers the Application Dimensioning Workbench 
to enable application owners and engineers to experiment 
with their applications and dimension it in terms of its data 
needs and data-related properties.  

Table 1 – BigDataStack Platform roles relevant to Dimensioning, Modelling & Interaction Services 

The UI platform has different views depending on the user role, so, apart from the 
Administrator, who has access to the full UI view, three more roles have been defined: 

o ROL-03-Business Analyst (Process Modeller View) 
o ROL-02-Data Analyst (Data Toolkit View) 
o ROL-04-Application Owner/Engineer (BenchMarking, Dimensioning Workbench, 

Analytics View) 

 

3.3 Example Scenario 
In this section, we provide an example scenario to illustrate how the Dimensioning, Modelling 
& Interaction Services of BigDataStack are envisaged to function and how business analysts, 
application engineers and data scientists benefit from its functionalities.  

Let us assume that we have a stock pricing application for a large European grocery retailer. 
The application’s role is to set the prices for all goods in the consortium’s online stores, 
including adding one-day flash sales to promote regular engagement from customers. There 
is an important constraint for data scientist devising the big data analytics algorithms and the 
application engineers deploying and executing those as compute tasks: it needs to run each 
night after 9pm and needs to be finished before 4am, so that the online storefronts have time 
to update their pricing before morning traffic. 

The application itself is comprised of three main services: the price modelling service, the 
price application service and the store-front update service. The price modelling service needs 
to run first as a large batch operation, ingesting all sales from the previous twelve months and 
updating the internal model about product stock and popularity. This means the model 
update process will require access to historical big data. Once that service has finished, the 
price application service runs over all current stock, updating the item prices and adding sales 
where appropriate. As items are processed, these are sent directly to the store-front update 
service, which remotely updates the various consortium’s store-front databases.  
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To make the example more concrete we consider the following assumptions concerning the 
Dimensioning, Modelling & Interaction Services: 

a) The BigDataStack infrastructure is deployed on an opaque cloud provided by a public 
vendor, where compute resources can be requested on demand.  

b) The cloud environment is relatively stable in terms of performance and, for the sake 
of simplicity, we have a unique size of allocable server. 

c) The benchmarking phase gives hints (estimates) on the expected computation time 
depending on different variables, including the opaque cloud configuration, the 
application deployment configuration and even the day of the week/month, but with 
some non-negligible uncertainty. 

d) The historical big data is stored in a secure datastore managed by BigDataStack, 
including the specification of what data needs to be processed by what service (e.g., 
the price modelling service needs the last twelve months’ sales information). 

Using BigDataStack User Interface (Adaptable Visualisations), the Application Engineer 
uploads the application to the BigDataStack platform and the Business Analyst specifies the 
main workflow of their application via the Process Modelling, while the Data Scientist uses 
the Data Toolkit to create the so-called Playbook that contains all the information related to 
the preferences of the application (e.g. Service Level Objective (SLO) of end-to-end completion 
time < 7 hours, agreed to be accomplished between 9pm and 4am). The Application Engineer 
can now pass the Playbook to the Application Dimensioning Workbench, where it is 
converted into multiple CDP (Candidate Deployment Pattern) Playbooks, each one describing 
a potential deployment configuration (what compute and memory resources to request). 
Each of these configurations will undergo a brief benchmarking step, where the resource 
usage of the application is estimated. The resultant set of CDP Playbooks with benchmarking 
information is passed to Data-driven Infrastructure Management to optimize its decision-
making models. 

 

3.4 Design 
The conceptual view of Dimensioning, Modelling & Interaction Services consists of four main 
blocks, as summarized in the following paragraphs: 

1. Process Modelling 
The Process Modelling Framework allows for declarative and flexible modelling of 
process analytics, while the Process Mapping component targets the problem of 
identifying or recommending the best algorithm from a set of candidate algorithms. It 
is accessed through BigDataStack User Interface (Adaptable Visualisations 
component) by the Business Analyst. 

2. Data Toolkit  
The main objective of the Data Toolkit is to design and support data analysis 
workflows. It facilitates Business Analysts and Data Scientists in building operational 
analytic workflows, interacting with Process Modelling component. It can be accessed 
by both Business Analyst and Data Scientist through BigDataStack UI.  

3. Dimensioning Workbench  
The Application Dimensioning Workbench (ADW) aims to provide insights regarding 
the required infrastructure resources for the data services and application 
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components (micro-services), linking the used resources with load and expected QoS 
levels. 

4. Adaptable Visualizations  
Adaptable Visualizations component is the main User Interface of BigDataStack. 
Different roles have been defined, controlling the access to the interface. Graphs are 
created, saved or loaded though the UI, while reports of data and analytics outcome 
are presented in an adaptive and interactive way. 

 
As it is depicted in Figure 3, typical Big Data flow starts from the Process Modelling Block 
(Process Modelling and Process Mapping), then the defined processes/graphs are further 
concretized through the Data Toolkit and its output will be passed to the Dimensioning 
Workbench. The graphs, the analytics insights and all the relevant information feed the 
Adaptable Visualisations component. 

 

 
Figure 3 – Dimensioning, Modelling and Interaction Services of BigDataStack 

Figure 4 illustrates the building block that provides all the interaction mechanisms.  

 
Figure 4 – Interaction Mechanisms  
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4 Implementation and Experimentation 
This section describes how the use cases are being supported through the components of 
WP5, along with the implementation roadmap towards the project conclusion. 

 

4.1 Experimental Settings  
This section introduces the use cases and the scenarios we are using to validate the different 
implementation increments (releases) of the Dimensioning, Modelling & Interaction Services. 
Connected Consumer (CC) and Real-time Ship Management (RSM) are the two use cases 
with which we are testing the different components presented in this deliverable. 
 

4.1.1 Setting 1 

The Connected Consumer (CC) use case, provided by ATOS, deals with a multi-sided market 
ecosystem (see deliverable D2.1 section 4.2). Some of the highlights of the use case are 
(please refer to D2.1 for the full description): 

• The main challenge is to predict which consumers are the most loyal or which 
potential buyers are more likely to purchase a certain product or service.  

• Eroski1, one of the largest distribution companies in Spain with more than 35.000 
workers, is collaborating with ATOS in the definition and test of a use-case related to 
the grocery business. It is also contributing with real data for the development of the 
project. The goal of this scenario is to provide data insights to EROSKI to better 
understand how to create and offer added-value services to their consumers.  

• CC use case aims to predict both which products and which promotions are more likely 
to be interesting for the customers at the right time. From the analysis of different 
data sources provided by Eroski, the goal is first to predict the list of products that 
customers with recurrent purchases will need in the current purchase period (trend). 
Afterwards, add to this prediction those products that can be interesting for the user 
based on other similar user’s behaviour (cross-selling). Finally, thanks to a deep 
knowledge of the customer profile, the goal is also to incorporate those promotions 
that can be interesting for each customer.  

All the components of Dimensioning, Modelling and Interaction Services are involved in the 
different stages of CC.  
The Business Analyst uses Process modelling framework to define the graph that represents 
the requested application and includes both application and data services.  
This graph is loaded by the Data Scientist, who is using the Data Toolkit in order to concretize 
the analytic tasks. 
The application is then analysed through the Application Dimensioning Workbench, 
deployment patterns have been generated and the deployer of BigDataStack has been utilized 
to perform the actual deployment on the infrastructure and obtain the analytics results 
through the recommendation engine that has been implemented.  
These results / recommendations along with the first steps of the process have been displayed 
through the Visualization module. 

                                                 
1 https://www.eroski.es/ 

https://www.eroski.es/
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4.1.2 Setting 2 

The Real-time Ship Management (RSM), provided by DANAOS, deals with the maintenance 
and spare parts inventory planning & dynamic routing (see deliverable D2.1 section 4.1). 
Some of the highlights of the use case are (please refer to D2.1 for the full description): 

• Two key challenges in the ship management domain: (i) predictive maintenance 
combined with spare parts inventory planning, and (ii) dynamic routing.  

• DANAOS, a leading international maritime player with more than 60 containerships, 
transporting millions of containers, sailing millions of miles to thousands of ports, and 
consuming millions of tons of fuel oil, which is a partner of BigDataStack, provides the 
consortium with real data in order to test the various components. 

• Two different but complementary scenarios have been defined in the framework of 
RSM: (i) monitoring and predictive maintenance and (ii) requisition of a spare part and 
dynamic routing to the closest port where this part is available. 

All the components of Dimensioning, Modelling and Interaction Services are involved in the 
different stages of RSM.  
Adaptable Visualisations component offers the UI to all the users of BigDataStack, providing 
different functionalities according to their role. The Business Analyst logs in the BigDataStack 
platform and, using the Process Modelling Framework, creates a workflow graph or updates 
an available one, through the definition of the business processes and the associated 
objectives. 
The processes included in this workflow graph will be further concretized through the Data 
Toolkit. Using the Data Toolkit, the Data Scientist can define the data ingestion and the 
necessary curation tasks for DANAOS dataset (weather data, tracks from vessels) and 
configure the runtime resources.  
The output of this step is a Playbook representing the grounded workflow for each process. 
It will be passed to the Dimensioning Workbench to identify the necessary resources for each 
node of the graph. The Pattern Generator subcomponent of the Application Dimensioning 
Workbench (ADW) is not explicitly linked to the particular UC; it forms part of the underlying 
application deployment backbone that supports all UCs of BigDataStack in order to identify 
how to deploy the user’ s application onto the cloud infrastructure. On the other hand, 
although Dimensioning core applies to the generic data services included in BigDataStack, it 
can be adapted to a specific UC, specifically with relation to aspects of workload. 
 

4.2 Implementation Roadmap 
Table 2 summarises the plan for Dimensioning, Modelling & Interaction Services (M26 and 
M34 are the tentative dates of the next planned integration meetings). 

 
 M24 M26 M34 

Process Modelling 
Framework 

• Enrich the pallet of 
the available 
processes to model 

• Define constraints 
between available 
nodes/processes 

• The business analyst 
able to set apply 
constraints per node 
/ process of the 
workflow 
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• The business analyst 
able to apply 
constraints / 
parameters per edge 
(i.e. connections 
between processes of 
the workflow). 

• Enriched and 
complete collection 
of services fulfilling 
all Process Modelling 
Scenarios 

Process Mapping • Extend/complete the 
functionality of 
Process Mapping for 
clustering 

• Integrate with 
Process Modelling 
Framework. 

• (Design) Extend 
functionality to other 
ML tasks, e.g., 
classification. 

• (Development) 
Extend functionality 
to other ML tasks, 
e.g., classification. 

• Support for MLib of 
Apache Spark 

Data Toolkit • Data serialization in 
the support of 
diverse data 
objects/formats 
(early prototype). 

• Data serialization in 
the support of 
diverse data 
objects/formats 
(early prototype). 

• Data serialization in 
the support of 
diverse data 
objects/formats 
(mature prototype). 
This will enable data 
transformations 
within a data analytic 
pipeline to be 
realized through a 
message queuing 
system. 

Application 
Dimensioning 
Workbench 

• integration with the 
Openshift Application 
Simulator adapter 

• Inclusion of data 
services in the 
benchmarking graph 
and initialization of 
benchmarking runs. 

• Finalization of model 
creation and online 
availability for 
predictions at the 
graph level. 

Adaptable 
Visualisations 

• Integration of Data 
Toolkit Component. 
Additional login to 
Data Toolkit will be 
bypassed once the 
user is authenticated 
via JWT in the BigDS 
web platform 

• Authentication of the 
user performed once 
upon logging in the 
platform. Any 
additional 
authentication for 
individual 
components should 
happen in the 
background without 

• Interactive UI 
adapted to different 
devices and displays 
(proper operation, 
good user 
experience). 

• ADW: Application 
owner imports a 
playbook produced 
by the Data Toolkit 
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further user 
interaction.  

Component and 
choose Manual Mode 
Deployment to get 
Deployment 
Recommendations 
(automatically 
deployed and 
monitored). 

• ADW: Application 
owner can redeploy 
functionality 

• ADW: the user can 
retrieve the logs for 
each application 

• ADW: Application 
owner can trigger 
certain decision 
provided by the 
Dynamic 
Orchestrator 

• ADW: Application 
Simulator Capabilities 
(part of Data Toolkit 
or Adaptive 
Visualizations) 

• Dashboards: All use 
cases vizualized. 

Table 2 – Implementation Roadmap for Dimensioning, Modelling & Interaction Services 
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5 Process Modelling framework 
The Process Modelling Framework allows for declarative and flexible modelling of process 
analytics. Functionality-based process modelling is then concretized to technical-level process 
mining analytics, while a feedback loop is implemented towards overall process optimization 
and adaptation.  

The Process Modelling Framework is a straightforward way to provide the ability to produce 
high-level graphs that describe Business Processes. 

5.1 Requirements 
The anticipated functionalities / requirements are described in the following tables (Table 3 -
Table 12), that are compiled together with the rest of requirements of BigDataStack in D2.3. 
 

 Id2 Level of detail3 Type4 Actor5 Priority6 

REQ-PMF-01 System and 
Software 

USE ROL-03 MAN 

Name UI/UX experience 

Description The system should guide the users to complete the business diagram / 
flow with easy steps. It should clearly indicate what connections – 
interactions are possible and provide comprehensive error messages. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 3 – System Requirement (1) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-02 System and 
Software 

FUNC ROL-02 
ROL-03 

MAN 

Name Multi-user support 

Description Multiple users should be able to use the Process Modelling Framework and 
create diagrams at the same time. It should also support different roles: 
business analysts and data analysts. A business analyst will define a process 
in a higher level and a data analyst will provide the concrete 
implementations. 

Additional 
Information 

N/A 

                                                 
2Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 
3Level of detail: Following the use of ISO/IEC/IEEE 29148:2011, we use the following levels: Stakeholder, System and Software (i.e., 
technology details). 
4Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and Feel Requirements), USE 
(Usability Requirements), PERF (Performance Requirements), ENV (Operational/Environment Requirements), and SUP (Maintainability and 
Support Requirements).  
5Actor: It needs to be either one of the BigDataStack platform roles identified in Section 3.2 or a system actor, e.g. another component or 
service. 
6Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable requirement), OPT (optional 
requirement), ENH (possible future enhancement). 
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Status Fulfilled 

Table 4 – System Requirement (2) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-03 System and 
Software 

FUNC ROL-03 MAN 

Name Process workflow creation 

Description A business analyst should be able to create a process workflow in a higher 
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow. 

Additional 
Information 

N/A 

Status Fulfilled 

 

Table 5 – System Requirement (3) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-04 System and 
Software 

FUNC ROL-02 MAN 

Name Process workflow configuration 

Description The data analyst should be able to configure a process workflow with all the 
required details. The data analyst will set up the nodes parameters and 
define the rules for moving from one node to another. 

Additional 
Information 

N/A 

Status Fulfilled 

 

Table 6 – System Requirement (4) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-05 System and 
Software 

FUNC ROL- 02 MAN 

Name Process workflow export 

Description The data analyst should be able to export/edit/import the process workflow 
in BigDataStack format. 

Additional 
Information 

The default format of the export will be in JSON. It will include information 
regarding the flows and their interconnections. Alternative export formats 
(YAML, Dockerfile) will be considered based on the requirements of other 
components.  

Status Fulfilled 

Table 7 – System Requirement (5) for Process Modelling Framework 
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 Id Level of detail Type Actor Priority 

REQ-PMF-06 System and 
Software 

FUNC ROL-03 MAN 

Name Support for end-to-end (in terms of process workflow) objectives 

Description The business analyst should be able to defile end-to-end objectives. These 
objectives do not apply to a single process, but to the workflow as a whole. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 8 – System Requirement (6) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-07 System and 
Software 

FUNC ROL-03 MAN 

Name Process constraints 

Description The business analyst should be able to set apply constraints per node / 
process of the workflow 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 9 – System Requirement (7) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-08 System and 
Software 

FUNC ROL-03 MAN 

Name Edge constrains 

Description The business analyst should be able to apply constraints / parameters per 
edge (i.e. connections between processes of the workflow). 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 10 – System Requirement (8) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-09 System and 
Software 

FUNC ROL-02  
ROL-03 

MAN 

Name Save and Edit capabilities of the graph 

Description The user should be able to export /import/edit/save the generated graph. 

Additional 
Information 

N/A 
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Status Fulfilled 

Table 11 – System Requirement (9) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-10 System and 
Software 

FUNC ROL-02  
ROL-03 

MAN 

Name Arsenal of Services 

Description The component should provide an enriched and complete collection of 
services which will fulfill all Process Modelling Scenarios 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 12 – System Requirement (10) for Process Modelling Framework 

 

 

5.2 Design Specifications  
The Process Modelling Component was initially implemented by utilizing as a baseline Node-
RED. Subsequently taking the UI/UX into account a migration and refactoring was performed 
towards the VueJS framework by using ReteJS library. 
 
Rete7 is a modular framework for visual programming. Rete allows you to create node-based 
editor directly in the browser. It is possible to define nodes and workers that allow users to 
create instructions for processing data in your editor without a single line of code. 

                                                 
7 https://github.com/retejs/rete 
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Figure 5 – RETE framework visual example 

 
Using the capabilities provided by ReteJS library the following scenarios were implemented: 

1. Provide a wide palette of available processes that can model the uses cases. 
2. Create flow of processes. 
3. Edit available fields depending on the type of the process. Fields can be:  

a. Process Name 
b. Process Attributes. 

4. Define the overall objective of the Process Modeller graph to be generated. 
5. Create a high-level graph of processes. 
6. Export/edit/import/save of the generated graph in JSON format. This JSON file will 

subsequently be used as input for the Data Toolkit Component. 
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Figure 6 – Process Modeller User Interface 

 

5.3 Experimentation Outcomes 
 

5.3.1 Evaluation results 

After integration of the Process Modeller Component in the end to end process provided by 
BigDataStack environment, graphs were generated to reflect scenarios from the Business 
Analyst perspective. For each graph, the relevant attributes were defined per process 
(represented by a node) and the graph description was exported in JSON format. Generated 
graphs were subsequently consumed by the Data Toolkit Component. 
In terms of evaluation metrics and KPIs, the following objectives were fulfilled: 
 
Good UI/UX experience 

The process of creating/editing/import and export of the desired Process Modeling graph 
is straightforward and consistent for the User. 
The Business Analyst has the ability to choose services among an arsenal of available 
services. 
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Figure 7 – Process Modeller Services 

Each one of the selected services is visually represented by a node. Furthermore, for each 
service, the user can specify the name of the service and the attributes (attributes are 
dependent on the type of the service). 
 

 
Figure 8 – Service Name and available attributes 
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Subsequently, the user can create relations among the services by simple drag and drop 
links. 

 
Figure 9 – Linking Services in process Modeller 

Upon completion of the graph, the user can define the Overall Objective and export the 
graph using the horizontal menu on top of the Modeller 
 

 
 
By pressing Export, the graph is converted in JSON format and downloaded locally. 
Additional capability provided by the Modeler is importing a generated graph for further 
Editing and Updates simply by pressing the Choose file button. 
 

Successful modelling of the use cases 
Process Modeler was used to produce graphs that correspond to the use cases. Among 
others, the following graphs were generated to model the respective processes: 

 
Figure 10 – Process Modelling Use Case Graph 1 

 
Figure 11 – Process Modelling Use Case Graph 2 
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Figure 12 – Process Modelling Use Case Graph 3 

 
Seamless integration with other components 

Process Modeler Component is directly consumed and adapted to comply with the unified 
BigDataStack platform. 

 

5.3.2 Comparison with other approaches  

In general, there are limited options on available Visual Programming Components. 

In contrast with the initial Process Modelling Framework Prototype (Node-RED), 
implementation of the Process Modeller using VueJS - ReteJS provided a more structured, 
well-defined and user friendly component. User Experience is improved and the creation of a 
Process Modeller Graph is more feasible. 

 

5.4 Integration Highlights 
The Process Modelling component was directly consumed by other BigDataStack components 
in terms of integration. JSON files can be directly imported exported locally.  
 

5.5 Next steps 
Towards a complete Process Model Framework implementation, the following steps need to 
be completed: 

• Enrich the pallet of the available processes to model. 
• Define constraints between available nodes/processes. 
• Apply validation rules on Node attribute level and Node Connectivity level. 
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6 Process Mapping 
The Process Mapping component targets the problem of selecting the best algorithm along 
with a set of values for the algorithm’s input parameters, from a set of candidate algorithms, 
given a specific data analysis task, in an automatic way. Its role is to automatically map a step 
of a process to a specific algorithmic instance from a given pool of algorithms, thereby 
achieving so-called “process mapping”.  

Obviously, covering all possible types of processes is a tedious task that goes beyond this 
project. In fact, previous EU projects, most notably METAL [11] and MiningMart [12], have 
focused on algorithm selection for specific problems. Instead, in the context of the Process 
Mapping component, the focus will be on Machine Learning (ML) tasks, since this is very 
important for the successful analysis of big data. Moreover, ML algorithm selection is 
challenging, because the connection between an ML algorithm and the characteristics of the 
data under analysis is still a challenge. Thus, our work focuses mainly on ML algorithms and 
the automatic selection of the most appropriate algorithm for a given input dataset. This is 
recently also known as “automated machine learning”. 
In more concrete terms, the key functionality targeted by the Process Mapping component is 
stated as follows. Given an ML task, a dataset, and a set of available ML algorithms that can 
handle the given task, the Process Mapping component selects the ML algorithm with best 
performance. Essentially, the problem can be cast as a search problem, where the search 
space consists of the available ML algorithms, and the objective is to identify the best 
performing algorithms.  
At the time of this writing, the focus is on unsupervised learning, namely clustering. Also, the 
optimization goal is the quality of the result, thus the best performing algorithm is indicated 
by appropriate cluster quality indexes, which are evaluation metrics that assess the quality of 
clustering. 

In comparison to the deliverable D5.1 submitted on M11, the Process Mapping component 
has significantly evolved in terms of new functionality and features, as listed below. 

1) Pre-processing. A variety of pre-processing steps has been implemented for data 
preparation, prior to the execution of task specific algorithms (e.g., normalization of 
input data for clustering, handling of missing values, etc.). 

2) Hyperparameter Tuning. A new subcomponent has been developed and included in 
the overall architecture, which is responsible for Hyperparameter Tuning. Essentially, 
this subcomponent couples the Model Selection subcomponent and its role is to 
select appropriate values for the input parameters of the selected clustering 
algorithm in an automatic way. Its functionality is based on Bayesian Optimization 
methods.  

3) Datasets additions. A more thorough experimental study has been conducted on a 
bigger collection of datasets, in order to acquire deeper insight on how the 
performance of clustering algorithms is affected by dataset characteristics and as a 
result improve the overall performance of the Process Mapping component.  

4) Larger collection of ML algorithms. Finally, the collection of ML algorithms has been 
expanded (to the 7 clustering algorithms implemented in the Scikit-Learn library) to 
broaden the available selection choices, aiming at more realistic application 
scenarios.  
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Related Work 

Regarding the Combined Algorithm Selection and Hyperparameter optimization problem 
CASH, state of the art solutions such as AutoML, AutoWeka, TPOT, etc., exist and base their 
work on optimization techniques such as genetic and Bayesian optimization to name a few. 
Although the frameworks mentioned provide solutions in the context of supervised learning 
such as classification and regression, none of those frameworks provides solution for the 
CASH problem in unsupervised learning. This is generally due to the lack of information to be 
used for validation purposes, such as the true clusters of a dataset’s instances leading to 
obscure objective functions to optimize. Although many indices based on Separation and 
Compactness of clustering schemas, also called internal indices, have been developed to 
overcome this difficulty, each comes with its own drawbacks and limitations. As a result, the 
definition of a universal best index for clustering evaluation remains a difficult task.  

Algorithm Selection as an individual problem has been previously tackled in the literature by 
transferring knowledge through meta learning systems [10]. We refer to [13] for a survey of 
the problem of meta-learning for algorithm selection, and also to recent notable works for 
classification [14] and clustering [15] (the former having been the object of much more 
extensive studies). 

The most recent work of Ferrari and Castro [15] implements this procedure of Algorithm 
Selection for clustering problems along with some novelties, such as extracting Meta Features 
based on the distance distribution of instances. The Process Mapping component extends this 
work significantly. It adds a Hyperparameter Tuning subcomponent that tries to automatically 
find optimized values of input parameters, by inferring knowledge from the algorithm 
selection process. More concretely, in the context of algorithm selection, this allows not only 
the selection of an algorithm that produced the best results, but also the discovery of input 
parameters to warm start the optimization procedure.  

 

6.1 Requirements 
The Process Mapping component is invoked from the output of the Process Modelling 
framework. Recall that the Process Modelling framework is used to create process models 
that contain different types of tasks, including data analysis tasks. In order to map steps of an 
(abstract) process model to concrete implementations of corresponding algorithms, process 
mapping is required. In particular, for data analysis or machine learning (ML) tasks, which 
constitute the main target of our work, a given task can be implemented using different 
alternative algorithms. Quite often, it is hard for data scientists to select the best performing 
algorithm, and even more so for the non-expert user. Consequently, there is a need for a 
system that identifies the most promising ML algorithm for the given task. 
 

The anticipated functionalities / requirements are described in the following tables that have 
been compiled together with other functional requirements of BigDataStack components and 
have been recorded in Deliverable D2.3. 
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 Id Level of detail Type Actor Priority 

REQ-DO-01 Stakeholder FUNC ROL-04 MAN 

Name Compatibility with output of Process Modelling 

Description The Process Mapping component is able to process the output of Process 
Modelling, in order to select appropriate ML algorithm(s) for specific 
Process steps. 

Additional 
Information 

This requirement practically ascertains that the two components (Process 
Modelling and Process Mapping) are compatible and that the output of the 
first can be consumed by the second.  

Status Not Fulfilled 

Table 13 – System Requirement (1) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC ROL-04 MAN 

Name Extraction of metadata 

Description Given a dataset, extract a set of metadata that is sufficient in order to 
discover similarities between datasets, in particular regarding the 
underlying data distributions and other statistical properties. 

Additional 
Information 

The metadata should cover at least statistical and information-theoretic 
characterization of a given dataset.  

Status Not Fulfilled 

Table 14 – System Requirement (2) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-03 Stakeholder FUNC ROL-04 MAN 

Name Build and maintain a meta-knowledge repository 

Description Collect and store information about datasets, metadata, and the 
performance of ML algorithms that have been executed on the datasets. 
This information is referred to as meta-knowledge, because it is essentially 
knowledge about the learning process. This meta-knowledge repository is 
going to be used for meta-learning, which is defined as the study of 
methods that exploit meta-knowledge to obtain efficient models and 
solutions by adapting machine learning processes.  

Additional 
Information 

The meta-knowledge repository is augmented with information about the 
execution of ML algorithms on new datasets. 

Status Fulfilled 

Table 15 – System Requirement (3) for Process Mapping 
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 Id Level of detail Type Actor Priority 

REQ-DO-04 Stakeholder FUNC ROL-04 MAN 

Name ML algorithm selection 

Description Given a machine learning task, a dataset, and a set of available ML 
algorithms that can handle the given task, select (or recommend) the subset 
of ML algorithms with best performance. 

Additional 
Information 

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and 
an execution environment for running ML algorithms on different datasets 
and evaluating their result quality. 

Status Not Fulfilled 

Table 16 – System Requirement (4) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-05 Stakeholder FUNC ROL-04 MAN 

Name Hyperparameter Tuning 

Description Given a specific machine learning algorithm (determined by algorithm 
selection), automatically select optimal values for the input parameters. 

Additional 
Information 

The Hyperparameter Tuning process is performed for (a) a given machine 
learning task (e.g., clustering, classifications, etc.), and (b) the input 
parameters of each algorithm. Its objective is to automatically compute 
appropriate values for the input parameters, which will be used for the 
invocation of the specific ML algorithm. 

Status Not Fulfilled 

Table 17 – System Requirement (5) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-06 Stakeholder FUNC ROL-04 MAN 

Name Data retrieval from the storage engine 

Description The Process Mapping component is able to connect to and query the 
LeanXcale datastore of the storage engine, to retrieve input datasets or 
filtered datasets. 

Additional 
Information 

The two sub-tasks of Process Mapping, namely ML algorithm selection and 
Hyperparameter Tuning, should be considered dataset-–-specific, i.e., they 
are executed for a given input dataset. This requirement ascertains that the 
Process Mapping component is able to access the datasets stored in the 
LeanXcale datastore in order to provide an integrated solution at system 
level. 
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Status Not Fulfilled 

Table 18 – System Requirement (6) for Process Mapping 

 
 Id Level of detail Type Actor Priority 

REQ-DO-07 Stakeholder FUNC ROL-04 MAN 

Name Output recorded in the playbook 

Description The output of the Process Mapping component is used to update the 
playbook. 

Additional 
Information 

The output of the Process Mapping component is written in a form that is 
compatible with the playbook format, in order to enable the execution 
engine to have all the necessary information for the invocation of the 
selected machine learning algorithm. 

Status Fulfilled 

Table 19 – System Requirement (7) for Process Mapping 

 

6.2 System Architecture 
The component’s architecture is described in two subsections. The first one (6.2.1) presents 
the process pipeline (Training phase) of creating a repository of information crucial for the 
execution of Process Mapping. The second subsection (6.2.2) presents the process pipeline 
(Selection phase) for providing solutions to new dataset entries given certain user inputs and 
the information produced in the training phase. 

 
Figure 13 - Training phase of the component/ update procedure of the Analytics Repository (AR) 

 
6.2.1 Training Phase – Analytics Repository Creation Process 

Before moving forward to explaining the individual subcomponents used in the Training 
phase, it is important to clarify what the Analytics Repository consists of. The Analytics 
Repository (AR) is a collection of various types of information required for the execution of 
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the individual processes of the Process Mapping component.  This information is collected 
and updated from executions of ML algorithms on previously seen datasets. Essentially, the 
system follows a “learning-to-learn” approach, and exploits knowledge assembled from its 
past usage in order to constantly improve its performance with time. As shown in Figure 13, 
the collection of information in Analytics Repository falls into three distinct categories: 

• Metafeature database (MFDB) 
• Results of Exhaustive Search (ES Results) 
• Machine Learning algorithms (ML Algorithms)  

which are directly linked to the subcomponents as described next. 

A. Data Preprocessing 

The Data Preprocessing subcomponent is responsible for handling inconsistencies and 
preprocessing of the input dataset (denoted 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛), in order to provide a transformed 
version that is more suitable as input for the given analysis task. As an example, in the 
specific case of clustering the Data Preprocessing is responsible for the following 
transformations on the input dataset: 

• Drops columns when they consist only of unique values. 

• Drops columns with 30% or more missing values. 

• Scales data into [0,1] range by applying Min-Max scaling/normalization. 

• Replaces missing values with KNN strategies (regressor for continuous 
attributes and classifier for discrete attributes). 

It should be mentioned that no restrictive assumptions are made with respect to the 
original input data. It is expected to consist of n rows (records) and m columns 
(attributes) of numeric values. Obviously, both n and m may vary, depending on the 
dataset at hand. 

B. Meta Features Extraction 

This subcomponent is responsible for the creation of data descriptors in the form of 
numerical vectors that describe various features of the dataset. The Meta Features 
Extraction subcomponent computes several characteristics of a dataset, also known 
as meta-features, that capture information about the objects in the dataset, based on 
Statistics, Information Theory and the distribution of pairwise distances of the objects 
(Table 20-Table 21). This subcomponent is responsible for producing the information 
that is stored in the MFDB (Meta Features Database) in the Analytics Repository (AR), 
which is subsequently used for finding similar datasets to the dataset at hand.   

C. Exhaustive Search 

The Exhaustive Search subcomponent produces instances of a setting explored (ML 
Algorithm and a set of values for input parameters) and the proper evaluation metric 
that was observed for this setting with respect to the ML Task. This is achieved using 
two of the most well-known exploration methods of Hyperparameter Tuning. The first 
method that is used is a “brute-force” approach called Grid Search that searches every 
possible combination of values of finite parametric spaces and is computationally 
intensive. The second one, known as Random Search, randomly selects a handful of 
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combinations from those available for evaluation, is less time-consuming and has 
proven to outperform Grid Search in certain cases (see 6.4.3).   

Both of these methods need a defined search space which is drawn from ML 
Algorithms in the Analytics Repository. This information, formatted in standard JSON, 
is responsible for recording the Machine Learning algorithms that are currently 
supported by the Process Mapping component, their input parameters and the search 
spaces for the execution of Grid and Random Search. After the search space is set, 
every combination of ML algorithm and input parameters is executed for a given 
dataset in an Analytics Engine (practically a runtime for ML algorithms). The collection 
of information derived from Exhaustive Search (ES Results) is later used for the 
selection of ML models for new unseen datasets and provides a baseline for evaluating 
results. 

 

Table 20 - Meta Features based on Statistics and Information Theory used for Algorithm Selection 

 

 Meta-Features Based on Information Theory 

MA-1 Log2 of the No of Objects 

MA-2 Log2 of the No of Attributes 

MA-3 Percentage of Discrete Attributes 

MA-4 Percentage of Outliers 

MA-5 Mean Entropy of Discrete Attributes 

MA-6 Mean Concentration between Discrete Attributes 

MA-7 Mean absolute Correlation between continuous attributes. 

MA8 Mean skewness of continuous attributes 

MA9 Mean kurtosis of continuous attributes 

 Meta-Features based on the distance distribution of Instances 

MD-1 Mean of distances vector 

MD-2 Variance of distances vector 

MD-3 Standard Deviation of distances vector 

MD-4 Skewness of distances vector  

MD-5 Kurtosis of the distances vector 

MD-6-
14 

Percentage of distance values in each of ten intervals that equally 
comprise range [0,1] 
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Table 21 - Meta-Features used, based on the characteristics of the distance distribution of instances  

 

6.2.2 Selection Phase – Process Mapping “In Action” 

Figure 5 presents the architecture design of the Process Mapping component. The input is 
provided as a dataset (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛) and a specific analysis Task (T), e.g. Clustering, Classification, etc. 
A Machine Learning algorithm is then selected (or recommended) along with specified values 
for the input parameters. Based on the ordering presented in Figure 14, a comprehensive 
explanation of each process of the overall architecture follows.  
 

 
Figure 14 - Process Mapping System Architecture 

 

A. Model Selection 

The main purpose of this process is to select or recommend a set of ML algorithms for 
the input dataset 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 and analysis task T. The idea behind this process is that similar 
datasets should have similar solutions for a given task T. In order to define similarity 
among datasets, several characteristics, known as meta-features, are extracted from 
each dataset and create a feature vector which allows for the calculation of similarity 
measures between datasets. The feature vector consists of measurements based on 
Statistics and Information-Theory (Table 20) and the distribution of pairwise distances 
of the instances (Table 21).  

When this process is initiated, the meta features of the dataset are extracted and its 
similarity is computed against the meta features of instances of the Metafeature DB 
(MFDB), corresponding to previously seen datasets, located in the analytics 
repository. Then the most similar dataset is found along with the algorithm that 

MD-15-
19 

Percentage of distance values with absolute z-score in four intervals of 
range [0, inf) 
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produced the best result, based on the Exhaustive Search that occurred during the 
training phase. 

B. Parameter Tuning 
After the Model Selection has concluded its operation, the Process Mapping 
component is able to return a specific ML algorithm that is considered suitable for the 
dataset at hand. However, it is yet unclear what values should be used for its input 
parameters. For instance, in the case of K-means the number of returned clusters 
should be provided as input. As another example, in the case of DBSCAN, two input 
parameters must be set: MinPts and Eps. 
To address this problem, the Hyperparameter Tuning process is responsible for the 
optimized selection of the input parameter values. It is based on Bayesian 
Optimization, a state-of-the-art method that searches the global optima of an 
objective function f(x) through a surrogate model of the f(x) due to cheaper 
evaluations.  
 
Depending on the hypothesis for the surrogate model, two approaches can be 
distinguished: (a) Gaussian Process Bayesian Optimization and (b) Bayesian 
optimization with Tree Parzen estimator. The former employs Gaussian processes to 
model the target function because of their expressiveness, smooth and well calibrated 
uncertainty estimates and closed-form computability of the predictive distribution. 
Typical downsides of this approach include cubical scaling due to the increase in the 
number of data points and poor scalability to high dimensions. The latter, instead of 
modeling the probability 𝑝𝑝(𝑦𝑦|𝜆𝜆) of observations y given the configurations λ, models 
density functions 𝑝𝑝(𝜆𝜆|𝑦𝑦 < 𝑎𝑎) and 𝑝𝑝(𝜆𝜆|𝑦𝑦 ≥ 𝑎𝑎). Given a percentile α the observations 
are divided in good and bad observations and simple 1-d Parzen Windows are used to 

model the two distributions. The ratio 𝑝𝑝�𝜆𝜆�𝑦𝑦 < 𝑎𝑎�
𝑝𝑝�𝜆𝜆�𝑦𝑦 ≥ 𝑎𝑎� 

 is related to the expected 

improvement acquisition function and is used to propose new hyperparameter 
configurations. Bayesian optimization with TPE is conceptually simple and can be 
naturally parallelized [16]. In the implementation of Process Mapping, the Tree Parzen 
Estimator was selected due to its inherent ability to handle both categorical and 
discrete values. 
 
For Bayesian Optimization to build the surrogate model, a number of evaluations of 
the objective function are needed to initiate the procedure. With respect to the 
previous subcomponent, we select a parametric space close to the parameters already 
suggested, in order to speed up and improve the overall performance for scenarios 
with limited resource budget. For float parameters the new space is defined as [x-0.15, 
x+0.15] and for integers x+-2. For the specific case where the number of clusters is 
required as input parameter, the search space is defined as [2, 

𝑖𝑖𝑖𝑖𝑡𝑡(�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
2

 )] where Nsamples is the number of instances of the input dataset.  

 

6.3 Implementation and Integration Highlights 
Implementation Changes 
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In order to accommodate the requirements of the Process Mapping component, the 
programming language used for implementation of the proof-of-concept prototype 
presented in M11 was Java. At the current stage of the project, our prototype is based on 
Python as programming language.  This choice complements many improvements of the 
component, as it supports a wide variety of tools for Data Science. More specifically, Python 
libraries such as Scikit-Learn offer a large pool of implemented ML algorithms that can be 
used in the process of algorithm selection. Furthermore, state of the art optimization 
techniques are widely supported in many open source Python projects, thus enabling the 
addition of Hyperparameter Tuning in the Process Mapping component. Last, but not least, 
in the context of Big Data, Python is supported by all modern frameworks for distributed 
storage and parallel processing (e.g., MongoDB, Spark, etc.). This feature enables handling 
and processing of big volumes of data, which in turn broadens the applicability of our 
prototype in use cases related to Big Data. 
 

System Integration with Process Modelling Framework 

The output of Process Modeller, a JSON formatted file that contains information about the 
processes the Business Analyst chose for her analytics Task via the graphical user interface, 
can be ingested by the Process Mapping component before it is (in turn) recorded in the 
playbook of the Data Toolkit component. After its execution, the Process Mapping is able to 
include the selected algorithm and a set of values for the input parameters in this JSON 
formatted file, and later record it in the playbook. This procedure is instantiated if the Process 
Mapping is activated as part of the process design procedure by the Business Analyst. 
 
Proof-of-concept 
To visually demonstrate the functionality of the Process Mapping component, the procedure 
has been tested on synthetic data of two dimensions. The data was produced with the use of 
scikit-learn, a well-known Python library in the Data Science domain. A set of two hundred 
instances was created pseudo-randomly, centered around four centers with standard 
deviation of 1. This configuration is well suited for showcasing the performance of the 
component in Clustering scenarios as the data belong by definition in visually distinct clusters.  
Process Mapping was able to select the optimal setting (ML algorithm and a set of values for 
input parameters) for clustering the synthetic data according to their structure in under 40 
seconds. The original dataset and the clustering result are depicted in Figure 15. 
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Figure 15 - Testing of Process Mapping for simple Synthetic Data 

 

6.4 Experimental Evaluation 
We conducted an experimental study to demonstrate the advantages of Process Mapping 
using real-life datasets. As already mentioned, our prototype is implemented in Python. 

Datasets. A collection of 45 datasets in total was used for the evaluation of clustering: 40 real-
life datasets were downloaded from the UCI Machine Learning Repository, while the other 5 
from an open to the public collaborative dataset repository namely Data World. All of them 
were pre-processed in order to form the dataset used in our evaluation. The datasets used 
are the following: 

UCI: Absenteism_at_work.txt, ae_train, buddymove_holidayiq, c1r4r_01, c1r4r_02, c1r5r_01, 
c1r5r_02, c1r6r_01, c1r6r_02, c1r7r_01, c1r7r_02, Frogs_MFCCs, gesture_phase_a2_raw, 
gesture_phase_b3_raw, gesture_phase_c3_raw, HTRU_2, l1n_01, l1n_02, l1n_03, l1_04, 
l1_05, l1r_01, l1r_02, l1r_03, l1r_04, l1r_05, LG_G-Watch_1, movement_libras_1, 
movement_libras_5, movement_libras_8, movement_libras_10, mturk_cluster_data, 
mturk_data_feature, perfume_dataset, Sales_Transactions_Dataset_Weekly, SCADI, 
seeds_dataset, turkiye-student-evaluation-generic, Wholesale_20customers_20data. 

Data World: Indian_Premier_League, Customer_Segmentation, Historical_Public_Debt, 
Asia_Economic_Outlook, Pokemon_Stats. 

 

Algorithms. As already mentioned, we focus on a specific Machine Learning task (clustering) 
and we use seven clustering algorithms in our evaluation, those provided by the scikit-learn 
library, which is a library used quite extensively by many data scientists. In particular, the 
clustering algorithms used in our evaluation are: AffinityPropagation, K-means, 
SpectralClustering, Agglomerative, DBSCAN, Optics and Birch.  Regarding Hyperparameter 
Tuning, we evaluate Grid search, Random search and Bayesian Optimization. 
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Metrics. For the evaluation of model selection, we use accuracy as main metric, which is 
defined as the number of times model selection decided to suggest the algorithm that 
performed best on the dataset at hand. The best algorithm is obtained offline by brute-force 
evaluation of all clustering algorithms. Unfortunately, the evaluation of clustering is a long-
researched topic, and various cluster quality (validity) indexes have been proposed and are 
used in practice, without a clear winner. Therefore, we employ three different cluster quality 
indexes. 

Silhouette Coefficient (SL): Validates the clustering performance based on the pairwise 
difference of between and within-cluster distances. Higher Values indicate better Clustering. 

1
𝑁𝑁𝑁𝑁

� { 
1
𝑛𝑛𝑛𝑛
�

𝑏𝑏(𝑥𝑥) − 𝑎𝑎(𝑥𝑥)
max [𝑏𝑏(𝑥𝑥),𝑎𝑎(𝑥𝑥)]

 }
𝑥𝑥∈𝑐𝑐𝑖𝑖𝑖𝑖

 

 

Calinski - Harabasz Index (CH): Evaluates the cluster validity based on the average between 
and within cluster sum of squares. 

∑ 𝑛𝑛𝑖𝑖𝑑𝑑2(𝑐𝑐𝑖𝑖, 𝑐𝑐)/(𝑁𝑁𝑁𝑁 − 1)𝑖𝑖

∑ ∑ 𝑑𝑑2(𝑥𝑥, 𝑐𝑐𝑖𝑖)(𝑛𝑛 − 𝑁𝑁𝑁𝑁)𝑥𝑥∈𝐶𝐶𝑖𝑖𝑖𝑖
 

 

Davies – Bouldin Index (DB): For each cluster C, the similarities between C and all other 
clusters are computed, and the highest value is assigned to C as its cluster similarity. Then the 
DB index can be obtained by averaging all the cluster similarities. Smaller values of this index 
indicate better clustering. 

1
𝑁𝑁𝑁𝑁

� 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗≠𝑖𝑖{[
1
𝑛𝑛𝑖𝑖𝑖𝑖
� 𝑑𝑑(𝑥𝑥, 𝑐𝑐𝑖𝑖) +  

1
𝑛𝑛𝑗𝑗
� 𝑑𝑑(𝑥𝑥,𝐶𝐶𝑗𝑗)]/𝑑𝑑(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗)

𝑥𝑥∈𝐶𝐶𝑖𝑖
}

𝑥𝑥∈𝐶𝐶𝑖𝑖
 

 

Composite Score (CS): A linear combination of the 3 indexes presented above, after scaling of 
them in [0,1] range. Higher values indicate better clustering. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐷𝐷𝐷𝐷. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑)/3 

 

Evaluation Methodology. Our experimental methodology is structured as follows: 

• First, we conduct an experiment in order to demonstrate the accuracy of Process 
Mapping with respect to selection of appropriate clustering algorithm. 

• Then, we demonstrate the advantage of Hyperparameter Tuning by evaluating both 
the accuracy of the parameter values as well as the performance (in terms of running 
time) of Hyperparameter Tuning. 

• Lastly, we present evidence for including Random Search in the Exhaustive Search 
section of the Analytics Repository by implementing it as a Hyperparameter Tuning 
method for three test datasets and comparing it with Grid Search Results. 

In the following, we present the results of the empirical evaluation using real-life data sets. 
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In order to obtain a better understanding on performance, from the results of the Process 
Mapping component, the evaluation process is distinguished in two main parts: Section 6.4.1 
and Section 6.4.2. The former aims to evaluate the accuracy of model, while the latter aims 
to clarify the performance and subsequently justify the need for Hyperparameter Tuning. 
Finally, Section 6.4.3 justifies the inclusion of Random Search in our experimental evaluation. 

 
6.4.1 Evaluation of Model Selection 

First, the 45 datasets were split into training (75%) and testing (25%). The training dataset 
was used to extract meta-features, which were stored in the MetaFeaturesDB. Then, we 
executed all clustering algorithms over these datasets, and we evaluate the generated 
clustering using different cluster quality indexes (SL, CH, DB), in order to obtain the best 
performing clustering algorithm for each dataset. Thus, we can select the best performing 
algorithm that serves as ground truth for the model selection problem based on different 
cluster quality indexes. In addition, we use Composite Score (CS) which is the linear 
combination of the three indices already mentioned.  

Then, for each dataset of the test set, we extract the respective metafeatures and use a k-
nearest neighbor (kNN) classifier in order to find the k most similar datasets in the training 
set. Similarity between metafeatures is computed in two different ways: using the Euclidean 
distance or using the Cosine similarity. We varied the value of k from 1 to 10, and obtained 
the algorithms that performed best for these k nearest neighbors (datasets) to the given 
dataset. Then, we used majority voting in order to select the algorithm that is selected by the 
Process Mapping component, i.e., we select the algorithm that performed best in most of the 
k datasets. 

Figure 16 presents the accuracy of model selection for different cluster validity indices: SL, 
CH, DB and CS. Also, the charts depict the obtained accuracy when using the Euclidean 
distance and the Cosine similarity. We observe a general trend, namely that accuracy 
increases for higher values of k, although in some cases the accuracy drops. This is due to the 
fact that higher values of k return more datasets that are deemed similar to the one at hand, 
and (consequently) more algorithms are returned as candidates for selection. When the same 
algorithm is returned many times, this is strong evidence that it is suitable for the dataset at 
hand, and this is reflected in the increased accuracy values. However, in some cases (e.g., 
from k=1 to k=2), two different candidate algorithms are returned, and then the selection is 
practically random, which may cause a decrease in accuracy values. 

When comparing the absolute accuracy values obtained, we observe that the use of CH 
(accuracy 88%) and DB (accuracy 87%) result in the highest values. This means that when we 
perform model selection based on these cluster quality indexes, we obtain higher accuracy. 
The SL metric performs worse than all others do, and the CS method is in between these two 
extremes.  
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Figure 16 - Algorithm Selection Evaluation 

 

When considering the two alternative similarity measures (Euclidean and Cosine), we observe 
that only in the case of DB, there is a clear winner, namely Cosine. In the other cases, the 
results are mixed, although in most cases the use of the Euclidean distance returns higher 
accuracy values. 

Figure 17 shows how accuracy is affected when Process Mapping returns the top-N algorithms 
(1, 2 or 3 algorithms), instead of a single algorithm. Recall that the pool of available algorithms 
contains 7 algorithms, therefore we are interested to explore the accuracy values when 
returning 2 or 3 algorithms, since this is always much better (in terms of saving time of the 
data analyst) than following a brute-force approach that would execute all 7 algorithms and 
pick the best performing one.  

As can be seen in Figure 17, when using CH as cluster quality index and the top-2 or top-3 
algorithms, we obtain very high accuracy values (95.5% and 98% respectively). This is strong 
evidence about the merits of our approach, since it can be interpreted as follows: when using 
CH and suggesting 2 or 3 algorithms, we manage to find the best performing algorithm in at 
least 95% of the cases. DB and CS also achieve high accuracy values. SL manages to achieve 
91.5% accuracy when selecting 3 algorithms. 
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Figure 17 - Top-N accuracy of Algorithm Selection, neighbours and distance metric chosen from the best 

setting of Figure 13 

In summary, our Process Mapping approach achieves high accuracy values (88%) when using 
the CH cluster quality index and selecting only 1 out of 7 available algorithms. Another 
important finding is that if we can return 2 or 3 algorithms, instead of a single one, the use of 
the remaining cluster indexes produces results of sufficiently high accuracy too. These results 
demonstrate that model selection for clustering is indeed a well-performing solution, with as 
few as 30 training datasets. 

 
6.4.2 Evaluation of Hyperparameter Tuning 

In this experiment, we evaluate the performance of the Hyperparameter Tuning 
subcomponent, which relies on Bayesian Optimization. We compare the result obtained by 
our approach against the result of Exhaustive Search (ES), using: (a) the number of times that 
our selection led to better results compared to the best achieved in ES Results and (b) the 
deviation of the rest from the best achieved in ES Results. Deviation is measured using the 
Mean Absolute Error (MAE), which is the absolute difference of the scoring of the model 
suggested after Bayesian Optimization from the best score obtained by Exhaustive Search. 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) =  
1

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=0

 

Low values of the MAE metric indicate that the expected performance of the parameters 
selected from Hyperparameter Tuning will be approximately close to the best performing 
parameters of Exhaustive Search. For experimentation purposes, the number of evaluations 
is set to fifty (50) of the surrogate models, for every one of the 45 datasets.  
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Index MAE (When Bayesian OPT 
Results are lower than ES)  

No Instances Bayesian OPT 
outperformed ES 

Silhouette Coefficient 0.1134 14/45 

Table 22 - Hyperparameter Tuning Evaluation 

Table 22 demonstrates the ability of Bayesian Optimization to select parameters, that (a) 
outperform traditional Hyperparameter Tuning methods, or (b) underperform only by a 
negligible amount compared to the best solutions of ES. 

The MAE value 0.1134 can be described as approximately how much lower will be the scoring 
of the cluster schema selected by our Hyperparameter Tuning compared to the best scoring 
clustering schema of an offline Exhaustive Search. Taken into consideration the range of 
Silhouette Coefficient [-1, 1], 0.11 is reasonable difference in evaluation metric, for results 
produced in a much more timely manner than ES Results.  

In addition, for 14 out of 45 datasets the Bayesian Optimization method was also able to 
achieve higher Scorings than ES, showing its capability to outperform Grid Search and Random 
Search.  

 
6.4.3 Random Search in Analytics Repository 

The inclusion of Random Search as a method for optimizing input parameters of a given ML 
algorithm stems from the inherent ability of the method to achieve better results compared 
to Grid Search in certain cases. When the number of input parameters that account for the 
optimization of a function is relatively small, either because the respective algorithm requires 
the definition only of a few or because only a handful of them are responsible for the variance 
of an objective function, Random Search is able to achieve better results most of the times in 
a less computational intensive manner [17]. 

In Table 23 the results of the two methods are compared, to provide a better understanding 
of the advantages of Random Search and validate its inclusion in our approach. 

 

MODEL GS_Parameters 
Suggested 

SC (Grid 
Search) RS_ParametersSuggested 

SC 
(Random 
Search) 

RS>Gs 

Affinity 
Propagation damping: 0.5 0.3032 damping: 

0.9222286448558172 0.3550 True 

Kmeans N_clusters: 3 0.5857 N_clusters: 2 0.5056 False 

Spectral 
Clustering 

N_clusters: 2, 

Gamma: 0.5 
0.5741 

N_clusters:2 

Gamma: 1.407633 
0.5056 False 

Agglomerative 

N_clusters:3, 

Affinity: Euclidean, 

Linkage: Ward 

0.58524 

N_clusters:2, 

Affinity: Cosine, 

Linkage: linkage 

0.50555 False 

DBSCAN Eps: 0.2, 0.36372 Eps: 0.41511246, 0.58526 True 
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Min_samples: 5 Min_samples: 7 

Optics Cluster_method: “xi”, 
min_samples: 6 0.11201 Cluster_method: dbscan, 

min_samples: 2 0 False 

Birch 
N_clusters: 3, 

Threshold: 0.3 
0.58524 

N_clusters:210, 

Threshold: 0.361893 
0.58636 True 

Table 23 - Comparison of the two methods for a single dataset (In terms of Silhouette Coefficient) that 
comprise Exhaustive Search in the Analytics Repository. 

The results of Table 23 are produced by running Grid Search and Random Search to optimize 
the input parameters of seven different algorithms for the ML task of clustering for a given 
dataset.  In 3 out of 7 cases Random Search is producing better results in terms of the 
Silhouette Coefficient. Those cases include a few input parameters to be specified, some of 
them being real-valued. This indicates that in order to produce results that will later be 
referenced for comparison both of these methods should be used. It is worth mentioning at 
this point that Random Search is much faster (its execution time is more than 7 times smaller 
than Grid Search), as Random Search evaluates much fewer models than Grid Search (Table 
24).   

 

METHOD Execution Time (in minutes) Sets of Input 
Parameters Explored 

Random Search 0.67 50 

Grid Search 4.66 1639 

Table 24 - Execution Specifications of the two Methods 

 
 
 

6.5 Next steps 
Next steps and planned activities of Process Mapping component are the following: 

• Extend the functionality of the component for supporting the algorithm selection and 
Hyperparameter Tuning for other ML tasks (e.g., classification). 

• Support of the MLib of the Apache Spark framework, for parallel execution of the ML 
Algorithms.  

• System integration in the BigDataStack architecture, using an appropriate 
demonstrator. 
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7 Data Toolkit 
Today’s current processing infrastructure capacity and price and the availability of large 
amount of data have enabled the development of new and more complex applications. 
However, in order to fully exploit such opportunity, a team should deal with different 
expertise, coming from the business domain and coupled with diverse programming skills and 
infrastructure maintenance capabilities. Sometimes, one wants just to test a hypothesis about 
the data having the role of a Business Analyst. Other times, one knows the technical details, 
having the role of a Data Scientist, and needs to concretize the parameters of an analysis task. 
To both engage Business Analysts and Data Scientists and let them collaboratively join their 
forces, we introduce the Data Toolkit in the BigDataStack project.  

The Data Toolkit enables the end-users design, implement, experiment, test and deploy data 
processing tasks coupled with machine learning capabilities in order to set up more complex 
and data-intensive applications. The Data Toolkit also provides the means to visually design 
and define the analytic workflows through a higher level of abstraction and graphical user 
interfaces which are used in order to set the required parameters, objectives and 
dependencies for these machine learning applications.   
 

7.1 Requirements 
The Data Toolkit facilitates Business Analysts and Data Scientists build operational analytic 
workflows by means of data pipelines through Directed Acyclic Graphs (DAGs). The data 
pipelines consist of a group of processing tasks, which can be instantiated through the 
respective microservices. The graphs consist of nodes and edges with properties where the 
end-user can define the starting and ending stage and the intermediate processing stages that 
she wants to perform towards the realization of her analytic task. The pipelines enable to 
define the set and the sequence of the stages required to be executed in order to set up end-
to-end Big Data analytics based on a framework agnostic manner. These pipelines comprise 
the entire data orchestration lifecycle coupled with the corresponding executables. This 
means that the end user will be only aware and will take care of the conceptualisation of her 
analytics functionality and the desired objectives to be achieved in an agnostic way (i.e. REST 
APIs for data curation, transformation, analytic task such as classification, clustering, etc.). For 
instance, a Business Analyst has access to a higher level of abstraction (i.e. BPMN like), 
services and the respective UIs of her Big Data analytics and end-to-end application 
objectives. At the same time, a Data Scientist, having the experience, the technical 
information and knowledge to specify more details in the workflow set up, she has also the 
ability to define connection details and interfaces to the services, specific algorithm selection 
from a set of relative algorithms (through an algorithms taxonomy), parameters configuration 
for the analytics algorithms and/or performance metrics. The Data Toolkit enables end-users 
to design point-to-point Big Data pipelines through drag-and-drop tools and intuitive UIs with 
the ability to define, configure and parameterize nodes, edges and properties in order to 
realize the operation, iteration and execution of the required pipelines in an ordered way. 
The expected outcomes are to: 

• Create and handle valid data workflows by means of a managed graph creation 
process, which combine stream and batch data with the capabilities to define the 
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required parameters, transformations and configuration settings per node and per 
edge.  

• Facilitate end-users to reduce the time that is required to design, develop and produce 
executable analytic pipelines. 

• Continuously monitor and manage pipelines performance, which is important 
especially in configuration of multiple analytic tasks with diverse requirements and in 
different business domains.   

The tables that are following (Table 25 - Table 28) describe the requirements engineering 
method and have been compiled together with the rest of requirements of BigDataStack in 
D2.3. 
 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN 
Name Describe data mining and analysis processes through data workflows 

Description This is a support regarding the description of data mining and analysis 
processes, interconnected to each other in terms of input/output data 
streams/objects. The corresponding metadata and an algorithms taxonomy 
for the categorisation of the analytic processes, type of data and connection 
details will be used to facilitate the description of individual nodes. 

Additional 
Information 

The playbook must be represented in the form of a descriptor (e.g. through 
a Yaml file) that can be incorporated into the Dimensioning Workbench as 
well as the Dynamic Orchestrator. 

Status Fulfilled 

Table 25 – System Requirement (1) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN 
Name Express data workflows through graphs using nodes and edges 

Description Data workflows are represented in the form of an analysis application graph 
that includes the set of individual processes as nodes of the graph along 
with their binding/dependencies in the form of virtual links (i.e. edges). The 
links may include properties representing constraints, KPIs or objectives, 
which are desirable at specific analytic stage. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 26 – System Requirement (2) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-03 Software FUNC ROL-03 MAN 
Name Validate graph through chain-ability constraints 
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Description This requirement resolves chain-ability constraints through different nodes 
in the data workflows. The target is to produce a valid graph ensuring that 
the services interdependencies have been correctly specified. This is the 
reason why a set of checks will be performed to meet these prerequisites. 
If these prerequisites are not met, the graph is not considered valid, and 
therefore the application descriptor via the Yaml file cannot be produced. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 27 - System Requirement (3) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-04 Software FUNC ROL-03 MAN 
Name Link valid graphs with viable executables for Big Data analytic processes 

Description This step links the graph with the actual executable image. In order to cope 
with the problem of vendor lock-in format of the executable, the container 
format has been chosen. To this end, the actual container pulling will be 
performed. 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 28 - System Requirement (4) for Data Toolkit 

 
7.2 Design Specifications  
The UI of the Data toolkit is provided as a web-based application and the created application 
graph can be exported as a yaml file and sent to the OpenShift container application platform 
of the BigDataStack project for execution. This yaml file can be also used by the Dimensioning 
Workbench and the Dynamic Orchestrator. From the UI of the Data Toolkit, the user can 
access the main Dashboard which contains an overview of the resources used, historical data 
and services logs, as presented in Figure 18. She can also access the Components, the 
Applications and the Instances.  

The Application Definition and Management UI provides a dedicated page with forms that 
can be used to define the Components. The definition of the Components through the UI 
allows the configuration of the services, the requirements deployment, the definition of the 
type of the component (if it is a component or a function), the container image it uses, its 
interfaces, and other helpful parameters, as depicted in Figure 19, Figure 20 and Figure 21. 



 
 Project No 779747 (BigDataStack) 
 D5.2 – WP5 Scientific Report and Prototype Description – Y2 
 Date: 29.11.2019 
 Dissemination Level: Public  

 

 page 48 of 114 bigdatastack.eu 

 
Figure 18 - Data toolkit Main Dashboard 

 

 

Figure 19 - Creation of new Components 

 
Figure 20 - New Component configuration 1 



 
 Project No 779747 (BigDataStack) 
 D5.2 – WP5 Scientific Report and Prototype Description – Y2 
 Date: 29.11.2019 
 Dissemination Level: Public  

 

 page 49 of 114 bigdatastack.eu 

 
Figure 21 - New Component configuration 2 

After the user creates all the needed Components of her data pipeline, the configuration of 
the application can be performed from the graph editor. As seen in Figure 22, the graph editor 
can be used to configure the Application and the application Components. Through the graph 
editor, the user defines the connections between the Components, by connecting the 
appropriate, matching interfaces of the components. Execution requirements can be also 
defined, and custom health checks can be added to ensure that the service is deployed 
properly. She can also specify the minimum and maximum requirements on how two services 
are interacting (i.e. Hard/Soft constraints), as presented in Figure 23. For example, a new 
Application Instance has been created namely “App Inst” having a front-end interface coupled 
with a back-end database, as presented in Figure 24. 
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Figure 22 - New Application Instance configuration 

 

 
Figure 23 - Constraints over interacting services 
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Figure 24 - New Application Instance creation 

 

7.3 Implementation and Integration Highlights 
The UI of the Data Toolkit has been developed using React, while the back-end services have 
been developed in JAVA. React is a powerful JavaScript library for building user interfaces and 
is used to couple the back-end services of the Data Toolkit with the front-end functionalities 
delivered to the end user. The several back-end functionalities developed in JAVA are exposed 
as microservices through REST APIs. Therefore, the front-end UIs interact with the back-end 
services through REST APIs. 

Also, the Data Toolkit gets as input a JSON file produced by the Process Modelling framework 
which represents the high-level application graph defined by the Business Analyst. The Data 
Scientist uses the Data Toolkit to configure and set the several parameters, requirements, 
constraints and objectives regarding her analytics application. The output of the Data Toolkit 
is produced in a yaml file which contains the necessary information to execute the analytics 
application in the OpenShift container application platform over the Dynamic Orchestrator. 

 

7.4 Experimentation Outcomes 
The Data Toolkit as it does not introduce or advance any methodology or algorithm, it has not 
been experimented over existing approaches. The comparative analysis performed includes 
the literature review, deployment of proof-of-concept of similar frameworks and workflow 
engines in order to perform a gap analysis and identify the features which are good to 
incorporate in the Data Toolkit.  

The efficient execution of analytics workflows and the management of resources are recently 
realised through automated workflow engines providing a collection of functionalities and 
abilities to configure and extend their settings. In the context of the BigDataStack project, 
optimization and automation of workflows on different frameworks as presented in the 
following have be examined for performance, along with tasks scheduling on resources to 
meet resource constraints/performance constraints/time constraints. Depending on the 
workflow and the frameworks in use, we also explored the abilities of the framework’s 
scheduler to optimize the workflow and guarantee analytics efficiency and time performance.  

The StreamSets DataOps Platform8 operationalizes data flows and enables continuous data 
delivery by addressing the entire design-deploy-operate lifecycle of data pipelines. It supports 
functionalities which facilitate to design simple pipelines or complex data flows comprising 
dozens of pipelines in a single topology using a cloud-based visual UI with pre-built origins, 

                                                 
8 https://streamsets.com/ 

https://streamsets.com/
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destinations and transformations. Pipelines are executed in memory on standalone systems 
or scalable distributed systems using YARN, Mesos or Kubernetes mechanisms. 

Apache Airflow9 is a platform for programmatically author, schedule and monitor workflows. 
It’s one of the mostly maintained project in the GitHub10 community. Apache Airflow makes 
the workflow a little bit simple and organised by allowing to divide it into small independent 
(not always) task units that are easy to organise and easy to schedule. The entire workflow 
can be converted into a DAG with Airflow. Once the workflows are defined by the 
corresponding code, they become more maintainable. With the feature rich user interface, 
the workflow pipelines can be easily visualised, monitored and troubleshooted. Airflow also 
provides a rich set of command line utilities, which can be used to perform complex 
operations on DAG. 

Spring Cloud Data Flow11 provides tools to create complex topologies for streaming and batch 
data pipelines. The data pipelines consist of Spring Boot apps, built using the Spring Cloud 
Stream or Spring Cloud Task microservice frameworks. Spring Cloud Data Flow supports a 
range of data processing use cases, from ETL to import/export, event streaming, and 
predictive analytics. 

The Data Toolkit differentiates to the current offerings in the direction of simplicity and 
reusability. It consists of a web-based application coupled with a set of microservices 
developed in JAVA to support the required functionalities for the BigDataStack project. It can 
be easily set up and fulfils the entire life cycle of designing, configuring and deploying complex 
data-intensive analytics applications. Its ease of use lies within the simplicity where it does 
not require over killing definitions and configurations to efficiently realize data pipelines. It 
only requires designing, defining and configuring the connection details, the sequence and 
constraints of the interacting microservices. The presented frameworks are either coupled 
with programming languages specificities (i.e. Python, JAVA, etc.), or cannot be easily 
parameterized and configured due to licensing restrictions. As a result, we focused on the 
fulfilment of the BigDataStack requirements, including the loading of a high-level application 
graph in JSON, easy to use UIs to further concretize the interacting services and the 
production of a yaml file which can be easily deployed over any cloud-native environment.  
 

7.5 Next steps 
Towards a more complete Data Toolkit, the following steps need to be completed: 

• Addition of more functionalities supporting and streamlining ML as a service 
capabilities. 

• Usage of an intermediate queueing system to address data transformation and 
serialisation issues among different format in end-to-end analytic pipelines. 

 
  

                                                 
9 https://airflow.apache.org/ 
10 https://github.com/ 
11 https://spring.io/projects/spring-cloud-dataflow 

https://airflow.apache.org/
https://github.com/
https://spring.io/projects/spring-cloud-dataflow
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8 Application Dimensioning Workbench 
The Application Dimensioning Workbench (ADW) component aims to provide information 
regarding the necessary resources needed and respective QoS levels that would aid in making 
informed decisions during the deployment and runtime management process of an 
application. To this end, it needs to obtain baseline configurations, data samples and 
performance models at the level of the base components (application level components and 
data service components) and use these in order to populate potential combinations of 
resources that would satisfy the end user. Overall, the subcomponents included or used as 
part of the ADW are presented in Table 29. The ADW performs two main roles within 
BigDataStack using these sub-components. Firstly, during initial installation of the 
BigDataStack platform, the Openshift Application Simulator Adapter is used to collect initial 
data points on the performance of the underlying infrastructure for different applications and 
workloads. Second, when a user uploads a new application into BigDataStack, the Pattern 
Generator and ADW Core can be used to benchmark that application to aid in subsequent 
selection of resources for deployment for that application. 

It is worth highlighting key pieces of terminology used in this section which are critical to 
understand the functioning of the Application Dimensioning Workbench: 

• BigDataStack Playbook: This is a description of a user’s application as provided from 
the Data Toolkit component of BigDataStack. It specifies services to be deployed and 
desired quality of service (QoS) for the application, but not how that application 
should be deployed. 

• Candidate Deployment Pattern Playbook: This is a description of how to deploy a 
user’s application on the available cluster infrastructure, derived from a BigDataStack 
Playbook. One BigDataStack Playbook can have multiple Candidate Deployment 
Pattern Playbooks, representing the different ways that application might be 
deployed. 

• Dimensioned Deployment Playbook: This is a Candidate Deployment Pattern 
Playbook with additional injected information about predicted quality of service and 
resource usage of the application. Dimensioned Deployment Playbooks are used by 
downstream components such as ADS-Ranking for deployment configuration 
selection. 
 

Component Name Purpose 
Pattern Generator Create various candidate deployment combinations for 

inspection, represented as Candidate Deployment Pattern 
Playbooks. 

ADW Bench (included in 
ADW Core) 

General load/benchmark management and execution 
framework for simplifying and coordinating data acquisition 
process and load injection 

ADW Runtime (included 
in ADW Core) 

Used to understand the deployment descriptor structure of 
the Pattern Generator suggestions, retrieve performance 
data from the benchmarks and populate the anticipated QoS 
fields. In effect, the ADW Runtime takes Candidate 
Deployment Pattern Playbooks as input and outputs 
Dimensioned Deployment Playbooks. 
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Openshift Application 
Simulator Adapter 
(OASA) 

This is a stand-alone component designed to collect initial 
performance information from various user application types 
on the cluster infrastructure, when BigDataStack is first 
deployed. 

Application Type 
Experiment Plugin 

These are plugins for the OASA that enable particular pre-
configured standard applications to be deployed. 

Table 29 - List of ADW related parts and their functionality   

8.1 Requirements 
8.1.1 Pattern Generator  

The aim of pattern generation is to define the different ways that a user’s application might 
be deployed on available cloud infrastructure. Prior to pattern generation, the user has 
defined in a conceptual manner what their application is comprised of and how the different 
components of that application interact. It is the job of pattern generation to map this 
conceptual view of the application into concrete specifications for how the application 
components can be physically deployed.  

Given the wide variety of hardware available on most cloud platforms, there are potentially 
a very large number of deployment configurations for a user’s application. Each deployment 
configuration may place application components on different machine types for instance. We 
refer to a specific deployment configuration for a user application as a candidate deployment 
pattern. In effect, pattern generation aims to produce a set of candidate deployment patterns 
for a user’s application that span the range from low-cost/single machine deployments up-to 
high-cost/high-performance computing deployments. 

Later components within the Application Dimensioning Workbench and subsequently the 
Realization system within BigDataStack will automatically analyse these candidate 
deployment patterns, as well as examine their suitability given the user requirements and 
preferences, with the end-goal of selecting the best one that will fit the user’s needs. 

The anticipated functionalities / requirements are described in the following tables (Table 30-
Table 35), that are compiled together with the rest of the requirements of BigDataStack in 
D2.3. 

 
 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-01 System and 
Software 

FUNC ROL-04 MAN 

Name Ingest Playbook 

Description The Data Toolkit sends to the Pattern Generation a Playbook containing 
the graph of the user’s application. The Pattern Generation receives the 
playbook and initiates creation of candidate deployment patterns. 

Additional 
Information 

N/A 

Status Requirement met in latest version. 

Table 30 – System Requirement (1) for Pattern Generator 
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 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-02 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory (File) 

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon. Initial versions will load this information from a static 
file. 

Additional 
Information 

N/A 

Status Requirement met in latest version. 

Table 31 – System Requirement (2) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-03 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory  

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon.  

Additional 
Information 

N/A 

Status Scheduled for implementation in Tier 2. 

Table 32 – System Requirement (3) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-04 System and 
Software 

FUNC ROL-04 MAN 

Name Service-Hardware Mapping (1-1) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The first version 
of this functionality produces only 1-1 mappings, i.e. one service is 
mapped to one piece of hardware (e.g. machine). 

Additional 
Information 

N/A 

Status Requirement met in latest version. 

Table 33 – System Requirement (4) for Pattern Generator 
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 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-05 System and 
Software 

FUNC ROL-04 MAN 

Name Service-Hardware Mapping (1-M) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The second 
version of this functionality produces only one to many mappings, i.e. one 
service can be mapped to multiple piece of hardware (e.g. spread over 
multiple machines). This may be advantageous in cases such as were a 
single ‘big’ machine is more expensive than multiple smaller machines. 

Additional 
Information 

N/A 

Status Scheduled for implementation in Tier 2. 

Table 34 – System Requirement (5) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-06 System and 
Software 

FUNC ROL-04 DES 

Name Service-Hardware Mapping (M-1/Pods) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The third version 
of this functionality produces only many to one mappings, i.e. multiple 
services can be co-located on a single piece of hardware. This may be 
advantageous when services perform high-volume data transfers that 
would be expensive over a network. 

Additional 
Information 

N/A 

Status Scheduled for implementation in Tier 2. 

Table 35 – System Requirement (6) for Pattern Generator 

8.1.2 ADW Core  

The ADW Core functionality extends across two areas: 
a) Initially gather a dataset that includes executions at least at the data service level, with 

indicative differentiations related to deployment options and input workloads and 
their measured influence on the observed QoS outputs of the service. This may be 
later on used in order to further generalize based on a set of identified attributes. 

b) Provide predicted QoS and resource usage predictions for individual candidate 
deployment patterns (produced by the Pattern Generation component)  

Requirements gathered and refined from D2.1 as well as the technical process in BigDataStack 
are presented in the following tables (Table 36-Table 49) with relation to the ADW Core. These 
tables are compiled together with the rest of the requirements of BigDataStack in D2.3. 
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 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-01 System PERF/ 
NONFUNC 

ROL-02 MAN 

Name Response Time and Workload 

Description The service provided by the data applications (e.g. recommender system) 
must have enough speed so consumers will not notice the time taken by the 
request. This implies that the Data Scientist should be able to dictate what 
are the required levels of QoS, selecting them from available metrics and 
appropriate levels for them.  

Additional 
Information 

This requirement poses initially the feature of metric selection and insertion 
at the Data Toolkit layer, for the Data Scientist to express their desires. Then 
the annotated Playbook gets passed to the following components (primarily 
ADW). Inside the Application Dimensioning Workbench, an initial candidate 
solution set is created, its estimated QoS level is enriched and the solution 
set is returned to the Data Scientist for final selection. Workload features 
(e.g. maximum/average etc. number of concurrent users) should also be 
able to be specified in order for the system to estimate the anticipated QoS 
levels for the desired range of application level workload. 
This indicates that per category of data service or data service+analytics 
function a suitable selection of workload and QoS metrics should be 
performed and supported across the system (including also other 
components like monitoring). 

Table 36 – System Requirement (1) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-02 System NONFUNC 
/ PERF 

ROL-04 MAN 

Name Scalability and configurability of stress tests for load injection 

Description The system should have knowledge of a mapping between workload and 
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the 
data services that can easily scale to support the client sizes needed. 
Furthermore, different parameters of workload should be able to be 
determined.  

Additional 
Information 

Given that different data services exist in the project ecosystem, different 
baseline benchmarking tools should be identified per case. Following their 
selection, they need to be configured based on the respective workload 
parameters and scaled based on an abstracted generic approach (e.g. 
Docker containerization and Docker swarm approach). 

Status Completed 

Table 37 – System Requirement (2) for ADW Core 
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 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-03 System FUNC ROL-04 MAN 

Name Dimensioning output 

Description The Dimensioning workbench should provide a list of candidate 
dimensioning suggestions along with the expected QoS levels towards the 
ADS Deploy component (and eventually the Application Engineer role), for 
the former to filter them based on an extra set of criteria and the latter to 
perform the final selection. 

Additional 
Information 

Upon reception of the Candidate Deployment Pattern Playbook with the 
service graph, ADW needs to estimate QoS level based on the results 
obtained through REQ-SYS-DW-02 and populate the respective fields. The 
operation should be offered through a REST service interface for 
automating the process and hiding complexities.  

Status Partially completed at the level of understanding and populating the service 
graph, pending part to integrate with performance measurements retrieval. 

Table 38 – System Requirement (3) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-04 System FUNC ROL-04 MAN 

Name Monitoring requirements for dimensioning 

Description The Dimensioning workbench should have a means to obtain monitoring 
information from the deployed data services and application components 
for a given deployment to extract training data for the performance models. 
The rationale of the requirement is that for every needed metric (workload 
oriented e.g. number of current users, requests etc. or QoS oriented e.g. 
response time, throughput) in the model the respective endpoint should 
exist from which the monitoring component would extract metrics values. 
This applies to both actual runtime and benchmarking phase. 

Additional 
Information 

Relevant Tools affected: Data services, application components, triple 
monitoring engine. 

Status Completed (load injection clients report on such values). 

Table 39 – System Requirement (4) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-01 Software FUNC ROL-04 MAN 

Name Load injector dockerization 

Description To support a generic load injection process as indicated by REQ-SY-DW-02, 
“dockerization” of the respective load generators per type of service needs 
to be performed. Thus, a specific Docker container image per needed load 
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generator tool needs to be provided, along with a unified process for 
feeding the per case load description file based on the Docker API and 
configuration process.   

Additional 
Information 

N/A 

Status Completed for Jmeter, Partially completed for YCSB. 

Table 40 – System Requirement (5) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-02 Software FUNC ROL-04 MAN 

Name Service structure specification 

Description The service graph specification coming as input from the Process Modelling 
and Data Toolkit should follow the Docker Compose specification, to be 
understandable by the Dimensioning Workbench. Following, the 
Dimensioning phase should add the respective candidate resource 
deployment options as additional custom metadata in the file to be used by 
the Deployment selection.  The same applies for the benchmarking runs, 
which should be based on the same format (even without the inclusion of 
the PM and Data Toolkits). All requirements needed for deploying the 
benchmarking environment should be described using this common agreed 
standard. 

Additional 
Information 

N/A 

Status Completed 

Table 41 – System Requirement (6) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-03 Software FUNC ROL-04 MAN 

Name Representative nature of gathered data samples 

Description In order to create representative and accurate performance models, 
dataset creation from benchmarking should take into account different 
conditions such as applied workloads, configuration aspects of the service, 
deployment options etc. In this way different bottlenecks may be examined 
and the final decision making can be adapted per case of service usage. 

Additional 
Information 

N/A 

Status Completed through the automation of the benchmarking configuration. 

Table 42 – System Requirement (7) for ADW Core 
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Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-04 Software FUNC ROL-04 ENH 

Name Deployment time for stress tests 

Description The overhead added by the benchmarking setup should be negligible and 
not included in the measurement process. 

Additional 
Information 

Since the deployment phase is done in a containerized manner, the time 
used in instructions different than launching the benchmark or storing data 
should not be significant. 

Status Stress testing and benchmarking is performed prior to the deployment 
process, therefore it is not included in the delays for that phase, only the 
enquiries towards the results. Stress test deployment has been met through 
the dockerization process of the benchmarks. 

Table 43 – System Requirement (8) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-05 Software FUNC ROL-04 ENH 

Name Benchmarking Workflow implementation 

Description During the benchmarking phase, there should be a controlled manner in 
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data 
collection. 

Additional 
Information 

 
Status Completed 

Table 44 – System Requirement (9) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-06 Software Non 
FUNC/USE 

ROL-04 MAN 

Name Trace driven simulation 

Description Except for the parameter sweep definition of a stress test that is used in the 
context of REQ-SO- ADW-03, the ADW user should also be able to define a 
trace file with a time series of load aspects for the framework to undertake 
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its sequential implementation, simulating a historical fluctuation of demand 
for the service. 

Additional 
Information 

Trace definition should be made as simple as possible, for example through 
uploading a trace file on a gitlab account. Trace file structure should also be 
defined e.g. one row per setup. 

Status Completed 

Table 45 – System Requirement (10) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-07 Software Non 
FUNC/SUP 

ROL-04 DES 

Name Subflow grouping of relevant implementation parts 

Description The implemented flows created in the context of the ADW Core can become 
quite complex and thus difficult to maintain or extend. Thus suitable 
grouping and formulation into more clear and well defined reusable 
subflows should be performed.  

Additional 
Information 

This feature should be implemented primarily for the cases of platform 
descriptor/coordination logic and/or baseline benchmark invocation and 
incorporation. These are the two main extension points for the ADW load 
injection. 

Status  Partially completed for configuration nodes, ongoing for cases of larger 
subflows. 

Table 46 – System Requirement (11) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-08 Software FUNC ROL-04 MAN 

Name Enablement of parallel and isolated modes of execution 

Description ADW Load injection can be configured to launch a variety of configurations 
under the same test setup (e.g. in the parameter sweep definition of a test). 
The test instances stemming from the parameter combinations  should be 
able to be performed in either a sequential, isolated mode, that guarantees 
repetitiveness of an experiment under the same conditions or in a parallel 
mode, in order to check aspects of multitenant applications. 

Additional 
Information 

The tool logic should prevent different modes from being applied at the 
same time, thus accession to the stress test cluster should be considered as 
a race condition and handled appropriately. 

Status Completed 

Table 47 – System Requirement (12) for ADW Core 
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Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-09 Software FUNC ROL-04 DES 

Name Enhanced benchmark results filtering 

Description Results acquired through the benchmarking may be queried in multiple, less 
or more advanced forms. In the case of more advanced ones, setup of the 
experiment and how closely it relates to a specific desired deployment 
option should be considered, while an additional level of complexity may be 
included if the query includes a given metric goal and relevant tolerance for 
the returned results (in terms for example of a percentage coverage of the 
goal). 

Additional 
Information 

Definition of the aforementioned parameters should be included in the 
available interfaces towards the platform so that they can be set by the user 
(i.e. through a REST API, Data Toolkit annotations, the pattern generator 
candidate patterns or the end user UI of the ADW tool). 

Status Partially Completed 

Table 48 – System Requirement (13) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-10 Software FUNC ROL-04 MAN 

Name Functionality offered through REST APIs 

Description In order to further automate the various processes such as result querying, 
test setup submission etc., the main functionalities that relate to these 
processes should be offered via a RESTful API, so that they can be included 
in relevant software implementations. 

Additional 
Information 

This functionality is in addition to the user interface built for ADW. 

Status Completed 

Table 49 – System Requirement (14) for ADW Core 

 
8.1.3 Openshift Application Simulator Adapter and Application Type Plugins 

The aforementioned ADW Core component enables the management and coordination of 
benchmarking experiments on cloud infrastructures for different real user applications. 
Indeed, this data is critical to provide effective selection of candidate deployment patterns 
for the user’s application (see D3.1 and D3.2). However, early in the lifetime of an installation 
of the BigDataStack platform, little data on how different application types will perform on 
the underlying hardware will be available (since the users will not yet have tried deploying 
their applications). This is an issue, since down-stream components such as ADS-Ranking need 
to be initially trained/tuned for the particular hardware that BigDataStack has been deployed 
upon, otherwise such component’s performance will be poor. Hence, it is important to 
provide an alternative solution to tackle this ‘cold-start’ problem. This is a new addition to 
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WP5 T5.1, based on further analysis of the BigDataStack Realization components that was 
carried out in year 2.  
 
The Openshift Application Simulator Adapter (or OASA) is a stand-alone piece of software that 
is developed within WP5 to deal with the cold-start issue by providing a turn-key solution for 
collecting basic application performance information. Its role is to deploy a pre-defined set of 
standard applications onto the cluster infrastructure and collect their performance 
information under different resource constraints. For the purposes of BigDataStack, we aim 
to deploy applications that resemble each of the application use cases of the project.  In this 
way, the underlying infrastructure can be interrogated to determine how suitable it is for 
different applications and workloads. Subsequently, from this data, down-stream 
components such as ADS-Ranking which need information about how different application 
types are affected by the underlying infrastructure can undergo initial training. It is envisaged 
that when the BigDataStack platform is first deployed, the OASA will be run once to collect 
these initial data points.  
 
The requirements for OASA are listed in the following tables (Table 50-Table 53): 
 

 Id Level of 
detail 

Type Actor Priority 

REQ-T5.1-AS-01 System FUNC ROL-04 DES 

Name OpenShift Application Simulator Adapter 

Description The application simulator needs to support a central control server that can 
be deployed onto OpenShift. This control server may receive requests from 
ADW Bench and maintain a queue of application deployment experiments 
(loaded from a configuration file or provided through the request) that need 
to be run. Then it will launch experiments and monitor their performance 
(quality of service and resource usage metrics). It will support both storage 
of the resultant metrics, as well as metric export in a format suitable for 
down-stream training of ADS-Ranking. 

Additional 
Information 

N/A 

Status Requirement met  

Table 50 – System Requirement (1) for OASA 

 Id Level of 
detail 

Type Actor Priority 

REQ-T5.1-AS-02 System FUNC ROL-04 DES 

Name Simulation Type: Flink-Based Streaming Applications 

Description The application simulator needs to be able to deploy different types of user 
applications. This requirement represents the class of real-time streaming 
applications, comprised of a series of transformers. These types of systems 
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are often used to support alerting use-cases. The Danaos use-case is an 
example of this application type. 

Additional 
Information 

N/A 

Status Requirement met 

Table 51 – System Requirement (2) for OASA 

 Id Level of 
detail 

Type Actor Priority 

REQ-T5.1-AS-03 System FUNC ROL-04 DES 

Name Simulation Type: Supervised Training 

Description The application simulator needs to be able to deploy different types of user 
applications. This requirement represents the class of applications that 
perform batch training of a machine learned model, e.g. using deep 
learning. The EROSKI use-case contains an application of this type. 

Additional 
Information 

N/A 

Status Scheduled for implementation in Tier 1 

Table 52 – System Requirement (3) for OASA 

 Id Level of 
detail 

Type Actor Priority 

REQ-T5.1-AS-04 System FUNC ROL-04 DES 

Name Simulation Type: API Service 

Description The application simulator needs to be able to deploy different types of user 
applications. This requirement represents the class of applications that 
return a data packet on request to a RESTful API. Examples of these types 
of applications are web-sites and item classifiers. The GFT use-case is an 
example of this application type. 

Additional 
Information 

N/A 

Status Scheduled for implementation in Tier 2 

Table 53 – System Requirement (4) for OASA 

 

8.2 Design Specifications 
8.2.1 ADW Core System Use Cases 

Following the analysis of the requirements in the previous section, we have created the set 
of system use cases for the ADW subsystem. For each case the vertical separation refers to 
aspects such as Generic Functionalities (high level actions that the component needs to 
perform), specific sets of User Actions (i.e. selection from a relevant UI etc), the set of 
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Background Processes that need to be enacted following user preferences and any 
Dependencies from external components (or internal subcomponents of ADW) that are 
needed in order to complete the process. 

Initially the ADW Core user needs to design a range of stress tests/benchmarks (Figure 25) 
that are needed in order to cater for the data set collection, including the UI based insertion 
of a set of needed information such as target service, examined workload etc. In order to aid 
them in this direction, a set of predefined workloads may be created from which the users 
may select the subset that they are mostly interested in. These predefined workloads may be 
mapped to common use cases of the services and applications and/or tailored to the specific 
use-cases of BigDataStack. To support application benchmarking, base load clients need to be 
determined and dockerized in order to be used as load injectors. QoS metrics per 
benchmarked element need also to be defined a priori and the service owner to define which 
ones are of interest to maintain and correlate. Another aspect is the various configuration 
options for the data services, e.g. modes of operation, deployment etc., that might change a 
service’s performance profile. This needs to be investigated on a service level and should be 
included in the test combinations.  

Once the service is deployed, then the stress test (launch of the distributed clients) can be 
performed. Therefore, there is an asynchronous step for benchmarking to wait until the setup 
of the stress system is complete. 

In a nutshell, the issues that need to be handled offline and/or in agreement with respective 
parties include: 

1) Predefined workloads (per data service and/or BigDataStack UC) and ways to feed 
them as input during the stress test. 

2) Configuration options that affect data service/algorithm performance and associated 
BigDataStack Playbooks. 

3) Dockerized base load clients for each tool needed by the BigDataStack data services 
to emulate load. 

4) Main QoS metrics per service and way of acquisition/storage in a given run.  

Having a wide set of data for a given data service enables the more generic and abstract 
mapping to individual deployment instances of a specific use case. Otherwise, benchmarking 
needs to be performed for every single service graph, a process that is expected to be both 
complicated and time consuming for the Data Scientist/Application Owner during the actual 
deployment process. 
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Figure 25 - ADW Design Benchmark Run System Use Case 

Following the creation and acquisition of the relevant data set, the service owner may 
initialize the process of predictive model creation (Figure 26) in order to create the 
generalized predictive model per case. Based on a given name during the benchmarking 
phase, they may collect all relevant data and feed them to the model creation process. 

 
Figure 26 - ADW Create Model System Use Case 
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Once the previous phase has been completed, the acquired data and/or models may be 
exploited in the context of a given service instance to be deployed with given QoS needs and 
workload aspects. In this case the Data Scientist, in the Data Toolkit and/or in the ADS Ranking 
UI, will insert the needed data services instances and indicate anticipated input workloads 
and needed QoS levels (Figure 27). The annotated Candidate Deployment Pattern Playbook, 
enriched by the Pattern Generator with the HW deployment options, will be fed into the ADW 
Core, that will analyse the individual elements and provide the estimates (from the 
benchmark history and/or models) that more closely resemble the given deployment 
instance. Points of attention here include: 

1) The metrics made available to the Data Scientist need to be in accordance with the 
ones supported by the benchmarking and monitoring process. 

2) The ADW Core needs also to annotate the initial input playbook with the anticipated 
QoS levels per service element and forward it to the ADS Deploy component for final 
selection and deployment. 

The outputs of ADW Core are then the annotated playbooks, which are referred to as 
Dimensioned Deployment Playbooks. 
 

 
Figure 27 - ADW Request Prediction System Use Case  

8.2.2 System Design 

The design of the ADS-Dimensioning appears in the following figure, as updated during the 
second year of the project. We summarize the design of the main sub-components shown in 
this diagram in the remainder of this section. 
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Figure 28 - Overall ADW Design Diagram 

8.2.3 Pattern Generator  

Pattern Generation is designed as an independent Apache Spark streaming service. The Data 
Toolkit component of BigDataStack passes Pattern Generation a BigDataStack Playbook, 
containing the conceptual view of the user’s application. This Playbook is passed through a 
series of Spark transformation functions that perform the core service mapping functionality. 
The final function within the Spark topology posts the created candidate deployment patterns 
to a mailbox which can be read by the next component in the BigDataStack application 
deployment pipeline.  

The architecture of the Pattern Generation component is shown in Figure 29 below. Within 
Figure 29, Spark transformers are shown in orange while non-spark components are shown 
in blue. As we can see from Figure 29, Pattern Generation ingests Playbook objects via a 
RESTful API, which directly passes that playbook into the main Spark processing pipeline via a 
Spark receiver. Once a Playbook is ingested, it is first split into services, and each service is 
mapped to different types of available hardware, where that hardware is specified in an 
external directory. This directory may be loaded from file or directly populated from the 
cluster infrastructure management system (OpenStack in our case). Once individual or groups 
of services have been mapped to hardware, these service mappings are then re-combined 
into what we refer to as an availability sheet, which contains all valid service to hardware 
mappings. Finally, this availability sheet is used to produce a large number of unique 
candidate deployment patterns, where one candidate deployment pattern contains a service 
to hardware mapping for each service in the user’s application. These candidate deployment 
patterns are then published for consumption by the next step in the BigDataStack application 
deployment pipeline, the ADW Core.   
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Figure 29 - ADS-Pattern Generation Architecture 

8.2.4 Benchmarking and Model Creation of ADW Core 

Initially, the ADW Core needs to create performance models for the elementary components 
in a service graph of BigDataStack (or combinations of services and analytics algorithms). This 
is needed in order to be able to reason on necessary resources needed per deployed instance 
of the service. However, in order not to need tests prior to each and every deployment 
request, an initial benchmarking phase is anticipated in order to gather a representative data 
set with which a performance model can be created (thus abiding to requirements REQ-SO- 
ADW-03, REQ-SY-DW-03 and REQ-SY-DW-01), but for every type of data service and for a 
variety of workloads and service configurations. 

Based on the envisioned system UCs presented, the service owner needs to design the 
benchmark phase in order to cater for representative load cases. To this end, a tailored UI is 
needed to enter the various parameters, implemented in Node-RED. The purpose of this is to 
gather the parameters and wrap them to the necessary JSON format that is the input to the 
ADW Core relevant RESTful endpoint. In order to minimize the inserted information, relevant 
fields need to be included in a parameter range type of format (e.g. min/max value and step), 
meaning that the back end wrapper needs to unwrap the various combinations and launch 
the according configurations. This launch could be performed in either a sequential or parallel 
mode, for reducing sampling time, if the available testbed resources are adequate. For 
launching the stress test for the given configuration, two features are needed: 

• Dockerization of relevant tools that can generate base load towards the component 
(e.g. data service), along with capable configuration of the docker image to initialize 
parameters per execution. 

• Implementation of interfaces towards the execution platforms (e.g. ADS Deploy, 
Openshift, Docker Swarm) in order to submit the request to deploy the respective 
service and load clients.  
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Ability to check the state and progress of a running test is also needed. The architecture 
needed for this phase appears in Figure 30. 

 
Figure 30 - Benchmark Design Architecture 

Following the creation of a representative dataset, model creation needs to be triggered 
based on the same REST interface layer of ADW Core. Acquisition of relevant data is based on 
the component naming used. Once the models for each component (e.g. data service) are 
created, they are ready to be used during the online phase for populating the various CDPs. 
It is necessary to stress that model structure is based on the various configuration options 
and workload aspects, so that they act as predictors, while the predicted output is the 
relevant QoS metrics for each benchmarked element. 
 

 
Figure 31 - Model Creation Architecture 
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8.2.5 Openshift Application Simulator Adapter and Application Type Plugins 

The goal of the Openshift Application Simulator Adapter is to provide a turn-key solution for 
sequentially deploying a series of standard applications and collect performance statistics 
from them (which we refer to as running experiments), on top of Openshift. This is aimed at 
dealing with the cold-start issue that is discussed in Section 8.1.3. To enable the adapter to 
be generic, it is designed to be agnostic to the application types that it runs. In effect, the tests 
can be considered to act as 'plugins' to the application simulator adapter, where each 
experiment is a self-contained piece of software that performs the experiment. This allows 
the application simulator to be lightweight, needing to hold only the list of experiments to 
run and the logic for operationalizing deployment on OpenShift (represented as pre-
configured BigDataStack playbooks).  Thus it has a dual nature, initially of adapting to the 
Openshift and BigDataStack deployment process and finally to deploy specific application 
level standard component categories (a kind of application level benchmark) that resemble 
the ones found in BigDataStack. We discuss the different components of the application 
simulator below. 

Openshift Adapter Server: The adapter server is the primary component of the application 
simulator. This is a containerized Java application that launches and monitors the application 
level experiments. Upon launching of the adapter server, an OpenShift config map is first 
mounted as a volume. This config map contains the configuration for each of the experiments 
that are to be deployed. The adapter server will also mount a separate writable volume for 
holding the outcome of each experiment. Once the volumes are mounted, the control server 
will sequentially run each experiment. This involves the submission of the BigDataStack 
playbook to the ADS-Deploy component, which operationalises the deployment of the 
needed containers on the cluster infrastructure for the current experiment. Once all 
experiments are complete, the adapter server exits and the volumes released.  

Prometheus12: OpenShift itself maintains a Prometheus monitoring and time-series database. 
The application simulator adaptor uses this database to store the performance information 
for each experiment that is run. Metrics stored here can be considered to be of two types: 

• Resource Usage: These are standard resource usage metrics that OpenShift monitors 
by default for each running container on the cluster. These are: CPU Shares, Memory 
and Disk Usage. 

• Quality of Service: These are application-particular metrics that describe how 
successful the deployment was. These may include factors such as Response Latency, 
Completion Time and Throughput. It is the responsibility of each experiment to define 
the quality of service metrics for that application.  

Experiment Application Type Plugins (one or more): The application simulator needs to 
deploy a series of experiments targeted at similar components with the applications in 
BigDataStack. To that end it needs to have a packaged generic and standardized version of 
such an application type.  Each experiment is described by a BigDataStack Playbook, listing 
the containers and metadata about the application type plugin. Experiments are typically 
launched by OpenShift ‘Job’ objects, as they are finite containers. We describe the first of the 
implemented experiments in Section 8.3.1. 

                                                 
12 https://prometheus.io/ 
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Figure 32 - Openshift Application Simulator Adapter Diagram 

 

8.2.6 Load Clients Plugins 

When needing to create the necessary load for the various benchmarks and experiments, 
relevant external tools such as Jmeter and YCSB are used. Even though some of them (e.g. 
Jmeter) are also designed to work on a distributed manner in order to reach the necessary 
stress levels, there is a significant amount of manual intervention for deployment, 
configuration and load injection execution. To automate this process ADW Bench includes a 
number of coordination actions (more details are provided in Section 8.3.2.5). A prerequisite 
for such a process includes the creation or extension of dockerized versions of such tools in 
order to be able to accept in a parametric manner the various needed configuration details. 
An example of such a case can be found in our current version of the implementation of 
Jmeter13. Additions are required in baseline dockerfile scripts in order to include relevant 
startup scripts14 and other dependencies. Also startup scripts need to cover for changes in 
container behaviour, specific requirements for collecting and forwarding the results as well 
as passing and utilizing configuration parameters in the baseline tools such as Jmeter. 
 

8.2.7 ADW Core Online Request prediction phase 

Following the population of the playbook with the various CDPs, it gets published to the 
relevant REST API offered by ADW Core.  For each CDP, the ADW Core needs to populate it 
with the respective expected QoS levels. Thus it needs to break down the input per CDP, 
extract the service graph and start predicting the QoS level per service element. Given that 
the service elements are interconnected, one element’s input will be the previous element’s 
output. Thus the predicted output of the first stage will act as input to the following and so 
on. For each prediction, the component needs to retrieve the relevant baseline model, apply 
the inputs and get the result, propagating it as input to the next element of the graph. On 

                                                 
13 http://bigdatastack-tasks.ds.unipi.gr/gkousiou/adw/blob/master/adwdocker/jmeter_workloads/Dockerfile 
14 http://bigdatastack-
tasks.ds.unipi.gr/gkousiou/adw/blob/master/adwdocker/jmeter_workloads/docker-entrypoint-new-cli.sh 
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completion, the various CDPs, annotated with the QoS levels, are then forwarded to the ADS 
Ranking component to investigate and decide on the finally selected tradeoff. 

 
Figure 33 - Annotate Playbook Architecture 

 

8.3 Implementation and Integration Highlights 
In the following sections, the main implementation and integration highlights of Y2 are 
presented with relation to the various parts of ADW. 

 
8.3.1 Application Type Experiment Plugin: Real-time Stream Processing 

Experiment plugins are applications that can be deployed by the Openshift Application 
Simulator Adapter component, allowing a particular type of application to be tested. The first 
implemented experiment plugin is the real-time stream processing plugin. This plugin is 
designed to simulate a stream processing application, i.e. an app that takes in a continuous 
stream of data items, processes those items sequentially through a series of transformers, 
and then publishes the outcome. Within the BigDataStack project, the Danaos Shipping use-
case, is an example of this type of application. There, sensor data from a series of ship-board 
IoT sensors produce logging data about ship engine status and efficiency. These sensor feeds 
are processed in real-time, first by transforming and aggregating them, and second by using 
the merged information to predict whether a pattern as emerged that would indicate 
component failure in the near future. The real-time stream processing experiment plugin aims 
to simulate applications of this form. 

The real-time stream processing plugin is implemented as an Apache Flink application. 
Apache Flink is a framework designed to enable the development of streaming applications 
for JVM-based languages, such as Java and Scala. Flink deployment consists of a JobManager 
that manages the work, and one or more TaskManagers that execute tasks. The real-time 
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stream processing plugin first deploys a JobManager and one or more TaskManagers onto the 
cluster infrastructure as containers. Once these containers have reached a running state and 
have initialized, Flink applications can be submitted to the JobManager. To simulate real-time 
streaming applications, like the Danaos shipping use-case, we deploy a configurable Flink 
application with a defined set of properties. The Flink application is comprised of a sequence 
of data transformers, where the number of transformers, which take an input data record, 
simulates some computation on that record and then emits a new record to the next 
transformer can be defined. The properties of these transformers can be configured for each 
experiment. For each transformer, the following properties can be customised: 

• The amount of CPU time needed to process each record 

• The memory usage of the transformer 

• The size of the output record 

• Processing delay added for retrieving data from an external data store 

Additionally, as streaming applications need a data source, a separate container is also 
launched, which provides data load onto the Flink application. This load-generator can also 
be configured in terms of: 

• How many records to send to the application at one time (batch size) 

• The duration between sending records (delay between batches) 

By altering these configurables, we can simulate a range of different real-time stream 
processing applications with different properties, and hence generate a range of data-points 
on how well they perform on whatever cluster infrastructure BigDataStack is deployed upon. 
Indeed, the Openshift Application Simulator Adapter can be configured to launch a range of 
experiments using the real-time stream processing plugin, with the aim of collecting data-
points about real-time streaming applications of varying types without needing real user 
applications. 
 

8.3.2 ADW Core 

ADW Bench aims at supporting different testing cases for a variety of business models and to 
enable the acquisition of sufficiently large datasets that can be afterwards be used online 
during the CDP population or during performance model training. As an example,  Figure 34 
includes the following indicative cases, from which the variety of implemented features 
especially for the ADW Bench part is determined given that they are considered as 
requirements for implementing these scenarios. 

a) Generic Load Injection  
In this case, ADW Bench may be used as the main environment for a Stress Testing as a Service 
offering, testing at an existing and external application endpoint. Through the use of a 
dedicated load generation cluster (or through the use of available public cloud resources if 
the former is not available), relevant loads can be scaled and injected towards externally 
deployed applications. In this mode ADW Bench does not actually control the applications but 
only generates the necessary load needed for reaching anticipated scales through its 
dockerized and coordinated client execution. 
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b) Application Baseline Performance Model   
In this case, an interested entity needs to create a baseline performance model for a given 
application that captures dependencies of the application from different workloads, 
parameters of execution, deployment etc. For this case, a number of different parameters 
may be defined in a parameter sweep fashion and guarantees on the isolated execution of 
the application should exist to avoid any interference effects that could tamper with the 
results. Given that this requirement cannot be set in public Clouds (except for cases of 
dedicated hosts in public Cloud offerings), this scenario is primarily targeted at private cloud 
cases. 

c) Application Multitenant Performance Model (Offering of the application as SaaS) 
In this case, an interested entity needs to create a multitenancy performance model for a 
given application that captures performance interference between this instance of the 
application and other concurrently running applications or instances. Performance 
interference in multitenant environments has been proven to cause significant QoS 
degradation for the same amount of resources used when compared to a dedicated 
deployment mode [21], hence this aspect is specifically important when one needs to 
determine the pricing terms with which they will offer different QoS flavors of the SaaS 
application, taking under consideration that they will need to cater for this underprovisioning 
due to the multitenancy aspects. 

d) Public Cloud Benchmarking 
In this case an interested entity needs to measure/benchmark the performance of public (or 
even private) Cloud platforms, in which case they need to utilize the dockerized version of an 
application or benchmark in a repetitive manner and potentially through the usage of various 
combinations. This is the mode that mostly resembles the mode available by other state of 
the art tools, however it was decided to be included for completeness of ADW Bench and the 
ability to act also as a generic benchmark framework.  

 
Figure 34 - Potential testing/load injection models  
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However, the process of acquiring sufficiently large datasets in order to come to useful 
conclusions is always a tiresome, error-prone and background needing task, that requires 
experience around the measurement process, the used benchmark/load injector (and the 
specific needs for action sequence coordination) as well as execution in a distributed manner 
so that the produced artificial input reaches the scale of a realistic stress test without worrying 
about client side bottlenecks. Even with this knowledge, one would have to iterate a 
considerable number of manual steps (creation and configuration of distributed agents, 
monitoring of test status etc.), thus limiting in effect the scale of the experiment in terms of 
gathered test cases or “dataset lines”.  

The aim of ADW Bench is to act as a benchmark/stress test management and execution 
framework that targets at: 

• abstracting this tedious process, thus reducing the knowledge barrier needed for the 
execution of the test, through intuitive web UI driven setup and monitoring, hiding the 
complexity of test setup, coordination needs, test execution, result gathering and 
cleanup. 

• Incorporating dockerized versions of benchmark executables of commonly used baseline 
benchmarks (such as Apache Jmeter and YCSB) that can easily scale on a target execution 
platform such as Docker Swarm or Openshift, thus reaching the necessary stress test load 
generation, while respecting their requirements in terms of test setup and launch. 

• Enabling on-demand spawning of these stress test clusters and the incorporation or not 
of the benchmarked service as part of the benchmark setup where applicable. 

• Enabling automation aspects in the form of parameter sweep definition experiments to 
be incorporated either through the UI or through a REST based API that offers the same 
functionalities and can be used to further automate the process. Parameters may refer 
to the injected load, the type and size of resources used by the bundled application.  

• Enabling the simple definition of a trace driven scenario that may follow a specific 
variation of the load based on historical data and automation of the results acquisition 
process for the defined sequence. Through this feature, various scenarios such as 
scalability testing, endurance testing, stress testing and spike testing [25] can be easily 
applied.  

• Enabling the execution of the various combinations in either parallel or sequential mode, 
in order to support the different business/technical cases requirements that were 
described previously. 

• Offering increased test reliability through the monitoring and report on the actually 
executed tests, anticipated samples and acquired ones as well as mutual blocking of 
combinations that may need either parallel or sequential mode concurrently. 

• Applying a modular architecture and implementation that can lead to the extension 
towards new baseline tests and target platforms incorporation. 

Therefore, ADW Bench aims not to present yet another low or mid-level benchmark tool, but 
to handle and coordinate such available ones (like Jmeter or YCSB) in order to automate their 
launching against a target application or software stack and act either as a benchmarking tool 
or as a load injection tool. Furthermore, it aims to decouple the test management from the 
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underlying baseline benchmark used, so that it is easier to reuse the higher layer management 
framework with other baseline benchmarks or generic load injectors. 
 
8.3.2.1 ADW Bench Setup 

Setup of a test series is performed either through the UI or through a relevant REST API 
interface. Necessary details include the name of the test (which implies if it is a simple load 
service or a bundled data service), the type of the node used (with included naming 
conventions to indicate the platform type, used afterwards for selecting the correct launch 
adapter) and the type of the workload, which is the list of the uploaded available files in gitlab. 
Furthermore, other parameters can be inserted in a parameter sweep fashion, for example 
minimum, maximum and step nodes for the data service and client setups, operations per 
second of the clients as well as switches to indicate if the execution is a tracedriven one, a 
parallel or a sequential one. Finally details on the test setup name, endpoint of the target 
platform and endpoint of the results database are included. The respective Node-RED 
implementation on which the Setup UI is based is presented in Figure 36. The user can also 
exploit historical data and retrieve previous test setups for the same type of service. Given 
that in many cases the information in most fields may be repeated, this is a feature that is 
expected to help users speed up the process by avoiding to repopulate identical fields. 

 
Figure 35 - ADW Bench Setup UI 

 
Figure 36 - Node-RED implementation flow of the Setup Test UI 
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The aforementioned process can also be applied programmatically for further automation 
through the submission of the relevant JSON configuration file through a REST POST endpoint. 
The JSON fields and structure appear in Figure 37. 

 
Figure 37 - JSON specification of the REST API test submission 

For the trace driven experiment case, the user is anticipated to have uploaded a relevant file 
that includes the various trace steps as a sequence of the main workload aspect e.g. number 
of users. Then the execution is performed in a stepwise manner and for each line of that 
datafile. Result ingestion is expected to be performed on a tool specific case, through utilizing 
a generic REST POST method. Thus the load injectors of each tool should be able to perform 
such a call in order to push the acquired results in the backend results database. For each 
client type used, there is a relevant table with the necessary fields, however this is transparent 
to the end user since redirection to the respective table is performed by the tool and based 
on the test setup configuration. The overall API calls related to the setup stage appear in Table 
54. 

Context Method Path Input Output 

ADW 
Bench 
Setup 

POST /launchTest JSON 
configuration 
file for 
parameters 
(tool selection, 
workload 
features) 

Return 
message for 
test id 

ADW 
Bench 
Data 
Input 

Post /pushResults JSON object 
with results 
from the load 
clients of each 
type 

 

Table 54 - ADW Core API calls for Test Setup and Results Ingestion 
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8.3.2.2 Test Lifecycle Management 

In this section it is necessary to clarify the various terms and concepts used in the remainder 
of the document, for clarification purposes: 

• A test setup is a complete experiment series that is defined by the application 
owner/performance engineer in a single configuration/parameter sweep fashion. In 
that sense, a single test setup may contain variations or ranges of the parameters 
used, that will break eventually into multiple individual test executions or iterations in 
a stepwise manner.  Each test setup is assigned a unique ID. 

• A test iteration is a single execution instance of the test, with a concretely specified 
and unique combination of the input parameters, stemming from the ranges defined 
in the test setup. Single in this case does not refer to the samples gathered (multiple 
samples are gathered during the test execution), but to the existence of a single set of 
test parameters (such as number of clients, target throughput etc.). Each test iteration 
is also assigned a unique ID.  

• Reporting of the test results is always performed at the lowest level of execution 
granularity, thus the test iteration is stored in the tool’s database. This result includes 
the benchmark input (type of load etc.) as well as the test iteration ID and the test 
setup ID. 

• In the case of the parallel execution of all iterations of a given test setup, one should 
retrieve and accumulate results as well as load by grouping relevant result rows at the 
test setup ID field, so that all parallel running instances are considered. This way the 
multitenancy effect scenario can consider all concurrently running test instances at 
the final stage of the dataset extraction (to train a multitenancy prediction model for 
example). 

• In the case of the sequential execution, only the specific iteration is running, so the 
relevant test results should be grouped by the test iteration ID field in order to extract 
the overall dataset (e.g. to train a prediction model that associates necessary 
resources and expected QoS output based on given load inputs). Whether there will 
be one or multiple result rows per test iteration ID depends on the benchmark used in 
each case and whether multiple client nodes are used to generate the traffic load. 
There are benchmarks like Jmeter that handle result acquisition from the distributed 
slave nodes used, thus resulting in one row per test iteration ID. Others (like YCSB) do 
not include this step, hence multiple result rows would appear in the database (one 
for each reporting client node). 

The rationale behind the needed semaphore-like behaviour has already been identified for 
purposes of experiment isolation and similar conditions guarantee (sequential tests) or for 
the need to investigate concurrent execution overheads in multitenant environments 
(parallel tests). The implemented semaphore structure requires two elements: 

• A global Boolean flag (for sequential purposes), that indicates if a sequential test is 
already running. 

• A global counter variable that indicates how many tests are being executed at the 
moment. 
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The blocking logic is as follows: 

• Parallel tasks check the sequential flag before launching: 
o If false they launch, increasing the counter by 1 
o If true they sleep and check again after an interval 
o On finish they reduce the counter by 1 

• Sequential tasks check the counter: 
o If 0 they launch, set the Boolean flag to true and increase the counter 
o Otherwise they sleep and check again after an interval 
o On finish they reset the Boolean flag to false and reduce the counter by 1 

• When a sequential task finishes, all the sleeping (sequential or parallel) tasks race for 
the resource, meaning the permission to launch. In this case: 

o Either one of the sequential iterations gets it and starts executing while 
blocking all remaining ones (sequential or parallel) 

o Or one of the parallel gets it and all the pending parallel ones can be executed 
o Selection of the winner is more or less random, depending on which task exits 

the sleeping period first after the lock has been lifted. A discussion on the 
tradeoff of this approach follows. 

 
The behaviour of the system appears in the following figure for an indicative arrival and 
execution scenario. 

 
Figure 38 - Semaphore-like behaviour for test combinations blocking 
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Guarantee on atomicity of operations 

For any semaphore like behavior to be successful, it is well known that the atomicity of the 
test-and-set-lock operation (reading of a shared variable and changing its value without any 
intermediate execution interrupt) needs to be guaranteed. Due to the fact that the nodejs 
framework (in which our implementation is based) is single-threaded and a nodejs function 
does not get interrupted by the framework until it completes or waits for a callback, the 
atomicity of the global variables check and/or manipulation is guaranteed, if this is performed 
inside the same function.  

Tradeoff with relation to next task selection 

As noted above, whenever the conditions for a new launch are met and we have a number of 
parallel or sequential executions waiting in line, there is no way with the current 
implementation (unless a relevant queue is created) to dictate which execution will follow. If 
a parallel one happens to wake up, poll and get the token of execution then all waiting parallel 
ones may start. If a sequential one is successful, then all parallel ones again have to wait. This 
approach was followed for two reasons. Initially there is no specific requirement that a test 
should finish before another test or within a given time constraint. Also it would be unfair for 
the parallel tests (in one or more test setups) to wait for the finalization of potentially many 
sequential iterations in another test setup just because that setup arrived a few moments 
earlier (and given that the isolation requirement is only needed by this setup). Thus the 
followed approach achieves a fairer trade-off, given that multiple parallel tests are more 
probable to acquire the lock (and thus enable all parallel ones to be launched without further 
wait) and is expected to reduce the overall waiting time in the system.  

Tradeoff with relation to extension of isolation between different parallel setups 

Another case of design decision relates to whether the system should enable isolation 
between different parallel setups. Thus if a specific series test instances is already running in 
parallel, whether another test setup (and all its children instances) could be launched before 
the first parallel setup is complete or not. The decision in this case was to enable different 
parallel setups to be executed, primarily due to the fact that one of the main business cases 
of the tool is to enable a stress test creation framework against external targets. Thus blocking 
concurrent parallel setups against different targets would significantly reduce the utilization 
of the client creation cluster and significantly deteriorate the prospects of a Stress Testing as 
a Service model, since even if one parallel setup was running even at a small part of the cluster 
resources, all of the latter would be blocked. 

In case one needs to launch parallel setups that are somehow isolated from one another with 
the application bundled and running within the client cluster, then other forms of isolation 
may be applied to achieve that goal (e.g. dictating to the container orchestrator that these 
containers should not be collocated with other ones). 

 

ADW Data Model 

With relation to the data model used for storing state and test results, this appears in Figure 
39. It consists of 6 tables with the following purposes: 

• Mappings table holds the names of the container images to be used for each service 
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or type of load. 
• Nodetypes table holds the resource types of each platform. 
• Tests table holds the main test setup information along with all the configuration 

details. 
• *_results tables include one specific table for each type of measurement that holds 

the case specific metrics and details. 
• Workloads table holds details of workloads. Although given that this information is 

retrieved from a relevant gitlab folder implies that the usage of this table is deprecated 
to informative purposes only. 

 

 
Figure 39 - ADW Bench Data Model 

The database layer of ADW is based on sqlite, given the fact that only high level summary 
results are maintained inside the tool and due to the fact that this type of database is very 
portable and directly integrated into Node-RED. This enhances the portability aspects of the 
tool and alleviates from the need to have an externally deployed DB. 

 
8.3.2.3 Test Monitoring 

After launching a test, one can monitor the progress of the various combinations included in 
the setup. To do so, they can navigate to the respective UI tab and select the specific test 
setup name. A text field can be used in order to filter from the available tests based on a given 
partial naming pattern. Following, the status of the test(s) is presented, including information 
on total, started and finished combinations (Figure 40).  The main operation is also offered as 
a REST API call (/testState). The relevant Node-RED flow appears in Figure 41 while the 
available API calls are included in Table 55. 
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Figure 40 - Test Monitoring 

 

 
Figure 41 - Node-RED flow for Test Monitoring 

 

Context Method Path Input Output 

ADW 
Bench 
Test 
Monitoring 

GET /ServiceTestIDs/service_name Service name 
(from available 
enumeration of 
available 
services (aims 
to return all 
tests for that 
service) 

JSON array 
with test ids 
for that 
service type 

ADW 
Bench 
Test 
Monitoring 

GET /testStatePartial/:testname Partial name of 
the testname 
for filtering 
related tests 

Test state of 
all tests 
whose 
testname 
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matches the 
input 
argument 

ADW 
Bench 
Test 
Monitoring 

GET /testState/testname testname Return all 
info. If all is 
used as the 
testname, all 
test info is 
returned 

ADW 
Bench 
Test 
Monitoring 
Trace 

GET /traceTests/ - Return all 
tracedriven 
tests 

ADW 
Bench 
Test 
Monitoring 
Trace 

GET /serviceConf/:servicename Name of the 
test setup 

Return of 
configuration 
object for the 
test that 
includes all 
setup details 

Table 55 - ADW Core API for Test Monitoring 

 
8.3.2.4 Data Input and Filtering Layer 

The Data Filtering Layer aims at initially creating an API in front of the results database as well 
as implementing a set of post processing queries that aim to facilitate and enhance the result 
filtering and querying process. Furthermore, it provides the necessary calls for the UI layer 
(Figure 42) for presentation to the user, in parallel with the available REST calls. Filtering 
options include the type of the service, the needed metric as well as needed QoS values, in 
the sense of a target value and a percentage tolerance around it. For example, if a user enters 
that she is interested in an average response time of 1000 msec for a given service, with a +-
50% percentage, all relevant results that have response times between 500 and 1500 msec 
will be retrieved. The top ranked one will be presented in detail in the main UI panel, in which 
key metrics of the experiment will appear (such as throughput, latency etc.), as a percentage 
of the goal value, taking also under consideration of the metric is of ascending or descending 
order. 

 

 
Figure 42 - Result filtering UI 
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Figure 43 - Node-RED implementation flow for Data Input and Filtering 

Specifically for the tracedriven experimentation case, and given that in this case one needs to 
retrieve results in a complete trace setup and directly linked to the main workload parameter 
specified, a relevant specific tab has been implemented (Figure 44). In this case, the user can 
partially filter the available trace driven setups with a textual input, while the relevant trace 
file is plotted (top graph) in conjunction with the QoS reported results (bottom graph) for 
direct comparison purposes on the effect of a sudden spike in the load for example. 
Furthermore, they can select another tracedriven setup (potentially with different resources 
used) that is also plotted in the same bottom graph with the previously selected setup, in 
order to enable quick comparisons between the two setups. The user can also select the 
metric of the results to be portrayed. 

 
Figure 44 - Trace driven report and status tab  
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Context Method Path Input Output 

ADW 
Bench 
Data 
Filtering 

GET /stats/test/:testName/:testIteration Specific test 
iteration from a 
specific test setup 

Various statistics 
based on the 
reported metrics of 
each tool (including 
goal ratios etc.) 

ADW 
Bench 
Data 
Filtering 
Trace 

GET /traceSteps/:testName/:metric Tracedriven 
testname and 
relevant metric 

Ordered list by trace 
steps with the result 
of the metric 

ADW 
Bench 
Data 
Filtering 
Trace 

GET /traceStatePartial/:testname Partial naming to be 
used for trace 
driven tests filtering 

Array of objects for 
trace driven tests 
that match the 
naming convention 

ADW 
Bench 
Data 
Filtering 

GET /distinct/:serviceName/:columnNa
me 

Name of a 
supported service 
and metric 

Returned list of 
supported metrics 
for results 

ADW 
Bench 
Data 
Filtering 

GET /launchGroups/stats/:serviceNam
e 

Name of a service 
type 

Accumulated results 
for individual clients 
of a service type, 
grouped by test 
setup id and test 
iteration id 

ADW 
Bench 
Data 
Filtering 

GET /launchGroups/stats/:serviceNam
e/:metric/:order 

Name of a service 
type, metric on 
which to sort and 
order (asc/desc) 

Accumulated results 
for individual clients 
of a service type, 
grouped by test 
setup id and test 
iteration id, sorted by 
a relevant metric 

ADW 
Bench 
Data 
Filtering 

GET /launchGroups/stats/:serviceNam
e/:metric/:order/:targetValue/:max
PercentFromGoal 

Name of a service 
type, metric on 
which to sort and 
order (asc/desc) 

Accumulated results 
for individual clients 
of a service type, 
grouped by test 
setup id and test 
iteration id, sorted by 
a relevant metric and 
based on a target 
value and a percent 
deviation 

ADW 
Bench 
Data 
Filtering 

GET createDataset/service_name Service name (from 
available 
enumeration 
[lxs,ibmos,cep] of 
available services 
(aims to return 
dataset lines for that 
service) 

JSON array with 
[conf, metrics] 
objects 

Table 56 - ADW Core API for Data Filtering 
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8.3.2.5 Execution and Platform Coordination and Layer 

One of the key features of ADW Bench is the ability to follow a benchmarking process’s 
necessary steps. Variations between available baseline tools include the existence or not (and 
with what setup) of distributed versions of the tests, reporting performed overall for all clients 
or not etc.  As an example, the case of Apache Jmeter is presented for the case of Docker 
Swarm as an execution platform. When using the specific benchmark (following the 
acquisition of a case specific workload file), one needs to ensure that a correct sequence of 
actions is enforced in order to maintain the test’s validity or to setup a coordinated 
environment. Thus the following set of actions needs to be performed in the specific strict 
sequence: 

1) The user uploads on a gitlab account the Jmeter workload file and inputs in the UI 
all the relevant test setup information. Upon launching, and provided that the 
semaphore logic does not block the test setup’s execution, the automated process 
may start. 

2) Initially, the virtual helper resources needed for the execution of the test are 
created, i.e. a shared virtual network so that the distributed client nodes can 
discover and communicate with each other as well as a shared storage volume in 
which data for the experiment may be stored or parameters shared (in this case 
properties files and raw data for the measurements which need to be maintained 
after the test end for archival purposes). 

3) Afterwards, the main client nodes (server slaves) that are used to generate the 
actual traffic towards the target endpoint are configured and launched. 
Configuration includes aspects such as mounting the shared folder, joining the 
virtual network etc. The Jmeter server slaves need to be started before the 
coordinating Jmeter Master node, given that the latter is configured with the 
returned IP addresses of the slaves, among other information (such as test id, test 
iteration, target number of clients etc.). Hence the sequence is: start server slave 
containers->obtain their IP-> launch master Jmeter container with the slave IPs as 
arguments. At this point it needs to be stressed that it is not enough that the server 
slave containers are started, the initialization phase needs also to have completed 
(i.e. the servers are up and running and accepting requests). In this case there is a 
dilemma on whether to wait until all slaves are up or accept the fact that in some 
cases slaves may fail occasionally so the master should go ahead with the ones 
available. Given that actual client numbers are reported in the end, it was decided 
to proceed with the second option, since result reporting validity is guaranteed and 
in order to be more resilient for cases of occasional failures without the need to 
rollback a long running experiment. 

4) The Jmeter master node now sends the load directives to the slaves and waits until 
all of them have finished. In this case, suitable post processing logic needs to be 
triggered in the master node in order to concentrate and create aggregate reports 
(enriched with the test setup id, target clients, workload name etc.) that are to be 
inserted in the tool’s main result database, along with the specific test 
measurements. These are the primary results that are used in the filtering 
processes of the tool, while the detailed raw data are kept in the shared volume in 
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case they are needed in the future. This approach is applied in order to maintain a 
lightweight version of the results database in the main tool that will enable faster 
retrievals and queries, as well as to create data rows that include all the necessary 
information (test setup details and respective measurements acquired). Upon 
finish, all the created resources (containers and virtual networks except for the 
shared volume) are deleted in order to clean up the stress test cluster. 

 

Calls to the Docker Swarm environment are performed through the relevant REST API of the 
latter that enables all the various functionalities (storage and network creation, container 
startup and deletion etc.). The respective flow that implements this functionality appears in 
Figure 46. 

 
Figure 45 - Example of Jmeter execution coordination in Docker Swarm 

 
Figure 46 - Jmeter Adapter for Docker Swarm Node-RED implementation 
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Similar adapters are currently being developed for AWS Elastic container service APIs for the 
Jmeter case as well as the YCSB tool case. An example of interconnection with the Openshift 
adapter appears in Figure 47. 
 

 
Figure 47 - Link to Openshift Adapter Node-RED flow 

 
8.3.2.6 ADW Runtime Playbook Population 

The main runtime usage of the ADW Bench results is performed during the call by the Pattern 
Generator component in order to enrich the described patterns with anticipated levels of QoS 
based on the available performance data. To do so, ADW Runtime includes a relevant POST 
method, in which the PG component submits the service manifest along with the variations 
of the patterns in terms of resources used (Figure 48). The backend Node-RED flow (Figure 
49) then brakes down the description per type of pattern suggestion and queries the results 
database in order to find relevant results (by also utilizing the API of Table 56). These results 
are then used to populate the respective QoS fields.  
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Figure 48 - Indicative Playbook JSON Structure and Population 

 
Figure 49 - Post Playbook Node-RED flow and Result 
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Context Method Path Input Output 

ADW 
Runtime 

POST /postPlaybook Playbook YAML String Annotated Playbook 
YAML string with QoS 
tags. This primarily 
implements the 
request prediction 
operation 

Table 57 - ADW Core API 

 
8.4 Experimentation Outcomes 
Besides the functional evaluation presented in the previous paragraphs, a set of experiments 
have also been performed in order to check out specific aspects of ADW.  
 

8.4.1 Evaluation results 

8.4.1.1 Scalability of framework for test setup submission 

The testing scenario refers to examination of the ADW Bench API based test submission. In 
order to stress that aspect, a number of sequential test setups are submitted to the system 
via the API call. Sequential tests were selected since these linger in the system for a long time 
due to the blocking logic and therefore we can check the system’s responsiveness under a 
large number of pending combinations. The responsiveness is measured by obtaining the 
response time needed for submitting a test setup through the relevant REST call. A stressed 
system would produce larger delays in all relevant calls including the /launchTest method 
used to submit a test setup. During such a call, the system receives the input, checks the test 
setup name selected and if not unique it adds the current timestamp to make it unique. It 
then stores the test setup configuration in the tool DB, retrieves the associated image names 
for the test, counts and stores the iterations and launches the individual messages that are 
responsible for triggering each test combination. These messages are then blocked due to the 
sequential nature of the test and when the flag is raised, one of them will proceed with 
execution. Given that the client runs consecutively and tests are blocked, overall test 
combinations in the system increase (based on either the defined request frequency and/or 
the size of the setup). 

Various testing cases have been examined such as: 
• Submitting a test setup with 10 combinations every 10 seconds (Figure 50). This is the 

most anticipated area in which the tool would be used under normal circumstances and 
it gives a view of the baseline response times of the service. From the graph, it can be 
seen that the response times are in the range of 20-50 msec, with some occasional 
spikes around 200 msec. 

• Submitting a test setup with 100 combinations every 1 second (Figure 51). This indicates 
an average response time of 466 msec while being very stable for cases up to 
approximately 100,000 pending combinations (with averages in the range of 60msec). 
After that there is a gradual increase in the response times up to the point of around 
170,000 combinations, after which the system reaches its limits. 
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• Submitting a test setup with 100 combinations every 10 seconds (Figure 51). This 
indicates an average response time of 700 msec while again being very stable for cases 
up to approximately 100,000 pending combinations. Compared to the previous case, it 
presents a slightly higher level of test combination endurance (around 190,000 
combinations). It might indicate a higher average response time from the previous case 
which might seem strange given the fact that it has a smaller frequency, but this is due 
to the fact that it is still responsive in higher numbers of submitted jobs in which the 
response times are significantly higher. 

• Submitting a test setup with 100 combinations every 0.1 seconds (Figure 51). This 
indicates an average response time of 2200 msec while again being very stable for cases 
up to approximately 100,000 pending combinations (average of 60 msec up to that 
point). However, it starts to deteriorate at a lower level that the previous cases, in the 
area of 150,000 pending combinations. 

• Submitting a test setup with 10000 combinations every 10 seconds (Figure 51). This 
setup was included in order to check the effect on large submissions due to the internal 
breakdowns to combinations in the system. It indicates an average response time of 
3200 msec while again being very stable for cases up to approximately 100,000 pending 
combinations (average of 68 msec up to that point). Also in this case, the breaking point 
seems to be around 180,000 pending combinations, however in this case the system 
was able to reach slightly over 200,000.  

• Submitting a test setup with 10 combinations every 0.01 seconds (Figure 52). This setup 
was included in order to check the effect on higher request frequencies and smaller job 
sizes (thus more fragmented tests than in the previous case). With relation to the 
previous cases, it indicates a very high average response time of 20000 msec from the 
early stages of load, due to the increased overhead posed by the fragmentation and 
request handling process. The breaking point in this case is very early, around 10000 
combinations. 

 
Figure 50 - ADW Bench Baseline times under anticipated normal conditions of execution (1 submitted test 

setup every 10 seconds with 10 test combinations to be launched) 
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Figure 51 - Various stress testing cases for ADW Bench based on request frequency and test setup size 

 

 
 

Figure 52 - ADW Bench Response Times under small job granularity and high frequency 

 

Test case Average Response 
Time at 
approximately half 
point 

Average Response 
Time (overall) (msec) 

Standard Deviation 
(overall) (msec) 

Breaking point 
(pending 
combinations in 
the system) 

10 every 10 
seconds 

- 25.25 18.96 - 
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100 every 1 
seconds 

47.98 466.02 2723.97 ~170,000 

100 every 10 
seconds 

101.60 701,70 4012,14 ~190,000 

100 every 0.1 
seconds 

59.59 2275,34 6141,43 ~150,000 

10000 every 10 
seconds 

68.10 3248.22 8979.61 ~210,000 

10 every 0.01 
seconds 

9314,42 (on 5,000 
pending 
combinations) 

13905,31 6621.13 ~10,000 

Table 58 - Statistics for the various test cases 

 

8.4.1.2 Real-time Stream Processing Plugin Analysis 

Earlier in Section 8.3.1 we introduced the real-time stream processing plugin. This is the first 
of three plugins that will be developed for the application simulator – which aims to solve the 
issue of having precollected data on various application level component types without 
benchmarking during the actual deployment process. The development of this plugin is 
complete, and in this section we report the initial analysis of this plugin when deploying it on 
cluster hardware, using a mono-transformer application. In particular, we performed 
experiments in order to evaluate two main research questions: 

1. How accurately does the real-time stream processing plugin simulate the specified 
properties/configuration? This is useful as it gives us an idea of the expected error 
bounds when using this plugin. 

2. How much overhead is added by containerized deployment on OpenShift? This is 
valuable as we need to know the degree of resource overhead when estimating the 
amount of resources to request during application deployment.  

We summarize the outcome of our experiments below: 

Simulation Accuracy, Memory Usage: We first examine the accuracy of memory allocation 
within the application simulation. Ideally, when we specify that we want a transformer that 
uses 128Mb of memory, we would expect that to be the amount of memory that is allocated. 
However, due to the underlying implementation, there may be some variance in actual 
allocation. To test this, we deploy an instance of the plugin on a local machine, while 
monitoring the memory foot-print of the transformer JVM object. We run eight tests, each 
requesting a transformer with a different amount of memory, while keeping CPU usage at 
zero so that each test lasts only as long as it takes to allocate and randomise the memory for 
the transformer.  
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Figure 53 shows the total 
memory usage of the 
experiments in contrast to the 
amount of memory requested 
by the transformer (array size) 
for different request sizes. As 
we can see from Figure 53, the 
requested and used memory 
are not always equal, 
particularly when requesting 
small amounts of memory. 
This is indicative of notable 
overheads in memory usage 
by Flink transformers, which 
appear to add around 40Mb in 
memory usage to any deployment. 

Simulation Accuracy, CPU Usage: We also ran the equivalent to the above experiments when 
requesting different CPU loads and monitoring resultant application CPU usage. The results 
from this experiment showed that on a local deployment, CPU simulation accuracy is 100% 
accurate.   

Overheads, CPU Usage: Having shown that CPU load simulation is accurate on a local 
deployment, we next examine any overheads when deployed on a containerized Flink cluster 
on top of OpenShift. To test this, we run a series of experiments, where we deploy a Flink 
JobManager and TaskManager (forming a small Flink cluster) as containers running on 
Openshift, and then deploy the real-time stream processing plugin onto that Flink Cluster. We 
request 100% CPU usage by the transformer and monitor CPU usage by the TaskManager 
container that is running the transformer every 1 second. A separate container, co-located 
with the TaskManager, feeds the transformer with a fixed number of records without any 
added delay. Each experiment is run for 60 seconds, although the records sent for processing 
will not need all that time before they are processed. This experiment is replicated twenty 
times to provide information about performance variance. With each experiment, we 
recreate all OpenShift objects from scratch, to avoid contamination of results stemming from 
cached data. We might expect that we would see 100% CPU usage for the container 
(potentially with a ramp-up and ramp-down period where the transformer starts up and later 
shuts down). 

Figure 54 illustrates the CPU usage over time for these experiments. The blue curve 
represents the mean CPU usage across experiments, while the red curve represents the 
median CPU usage. As we can see from Figure 54, each experiment does not reach the desired 
100% CPU usage on the TaskManager container. Indeed, while usage spikes to around 80% at 
some time points, mean CPU usage during the active periods is much lower (around 20% CPU 
usage). This indicates that there are significant overheads being added by the combination of 
Flink and the containerized deployment. In particular, the lower CPU usage can be explained 
by data transfer latencies between the container that is sending the records and the 
transformer receiving those records, in addition to internal buffering by Flink itself (which is 
not present on a single-container local deployment). As a result, the transformer is left idle 

Figure 53 - Total memory usage comparison with transformer memory 
usage 
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for a significant period of time while waiting for data. Discrepancies like this illustrate why we 
need real deployment data from components like the ADW to train models such as that used 
by ADS-Ranking, as there are multiple factors that can influence the actual resources needed 
by an application that are not part of the application itself.  

 

 
Figure 54 - TaskManager CPU usage when running a 100% Load Transformer 

 

Overheads, Memory Usage: Earlier, we showed that the transformer object itself exhibited 
about 40Mb higher memory usage than expected, likely due to the Flink object and its 
input/output buffers. We next examine overall memory usage for the real-time stream 
processing plugin when running containerized on OpenShift. We follow the same setup as for 
the Overheads, CPU Usage experiments, with the exception that we vary the target memory 
usage of the transformer to either 64Mb, 128Mb, 256Mb and 512Mb, respectively. As 
transformers generate output records, we run multiple experiments with different output 
sizes. Specifically, we explore every power-of-two number of Mb that is compatible with the 
target memory of the current transformer. We measure the Java Heap size within the 
TaskManager container that is running the transformer. We expect that there will be a 
memory overhead introduced here by the Flink management software that was not present 
within the local deployment. 

Figure 55 (a-d) reports the memory usage of the TaskManager for each of the four memory 
requests. The horizontal dashed green line represents the requested memory amount, while 
the blue and red lines show mean and median Java Heap size respectively. From Figure 55 we 
observe three main trends. First, we see that there is a notable start-up period where the 
transformer has not yet reached the desired memory consumption. This is expected, as it 
takes time for the transformer to start-up as well as time to generate and randomise an array 
of the desired size. Second, again as expected, the full heap usage is higher than the 
transformer alone (during the period where the transformer is active), representing 
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additional overhead. Furthermore, the size of this overhead is related to the transformer size. 
This represents the additional memory that is needed to generate the output records from 
the transformer and appears to be close to a linear combination of target memory and output 
record size. Third, if we look closely at the individual experiment curves, we see a drop in 
memory consumption after processing as commenced in many experiments. This indicates 
that once the records have been processed the JVM quickly garbage collects the transformer 
and all container objects (although sometimes the experiment ends before this occurs). In 
general, we see from these results that there is much variance in memory usage over time for 
this type of application, and hence we should use longer experiment durations to get a true 
picture of the required peak memory for this type of application. 
 

 
Figure 55 - TaskManager Memory usage over time as we vary Transformer Memory Usage 

In summary, these experiments tested the real-time stream processing plugin within the 
application simulator. Through local testing, we showed that the implementation is quite 
accurate at simulating transformer-level CPU and memory consumption. However, when 
subject to containerized deployment, we observed significantly higher divergence in both 
CPU and Memory usage in comparison to the target values. This illustrates the value that 
the application simulator can bring, as quantifying these discrepancies on different types of 
hardware will provide valuable data when estimating resources to request during 
application deployment. 
 

8.4.2 Comparison with other approaches  

As mentioned previously the main purpose of ADW Bench is not to introduce another baseline 
benchmark test, since a number of them are already available and tailored for various 
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application domains (an interesting analysis of these appears in [22]), but to enable a higher 
layer benchmark and load injection execution, coordination and management framework 
that will simplify and abstract this process for the performance engineers/application owners. 
In this section an analysis of relevant work is presented in order to compare against existing 
solutions and identify advantages and disadvantages of each approach. The comparison is 
performed against the following axis: 

• User interfaces and whether these are based on web, command line interface (CLI) 
and/or REST API availability. 

• Ability to support multiple platforms of execution with multiple benchmarks or the 
ability to extend these. 

• Nature of the tool, in the sense of whether it is primarily designed as a benchmarking 
tool scope, a load injector scope or both. For example, for the load injector scope one 
should be able to handle arbitrarily defined workloads as well as distributed load 
generation. 

• Ability of the tool to cover the complete test lifecycle, meaning resource setup, test 
setup, test execution, result acquisition and resource cleanup and whether this ability 
exists for multiple variations (parameter sweep fashion), trace driven simulations or 
isolated/parallel modes of operation). Given that this aspect is primarily met in cloud-
targeting and measuring frameworks, since the cloud domain offers extensive 
capabilities for API based resource manipulation, the majority of the examined tools 
are from the cloud domain. 

• General scope of the tool as well as availability as an open source project. 

 

The overall comparison between ADW Bench and the main comparable tools appears in Table 
59 for the aforementioned aspects. The comparison was based on the retrieved available 
information (published papers, GitHub repositories or tool description pages). In the following 
paragraphs details of each tool are presented. 

In [23] the ARTIST benchmarking tool is presented, which has the aim of measuring and 
monitoring the performance of Cloud services. The tool is centered around 3 main baseline 
tools and can automate the launch and execution of the tests (even in a periodic manner), as 
well as result collection and filtering against various cloud platforms. However, its main 
rationale is to implement a continuous and stable experiment execution (e.g. with the same 
workload conditions for the tests and on a single node) for comparability purposes in an 
attempt to monitor cloud services performance evolution and variation. As such, it does not 
enable the arbitrary input of any type of workload needed by the end user in these tests, nor 
does it enable different business cases such as the private cloud isolation case. 

In [24] Cloudbench Tool (CBTOOL) is a multi-benchmark framework that aims primarily at 
infrastructure as a service (IaaS) cloud stress and scalability testing. It enables running 
controlled experiments with workloads designed by the user/contributor, through 
experiment plans based on a scripting syntax. In CBTool applications are by default bundled 
with the load generation, hence its approach is primarily a benchmark one and not a generic 
load injector towards any given external endpoint, although it could indirectly serve towards 
that purpose. CBTool has also a feature for parallel vs isolated mode, through waitfor, 



 
 Project No 779747 (BigDataStack) 
 D5.2 – WP5 Scientific Report and Prototype Description – Y2 
 Date: 29.11.2019 
 Dissemination Level: Public  

 

 page 99 of 114 bigdatastack.eu 

waituntil and waiton capabilities that can hault test submission, thus being able to apply the 
specific mode requirement in a test scenario. One difference on this aspect is that in our case 
this mode is enforced across the overall tool scope (thus if multiple users are trying to use the 
stress test cluster/resource they will all be blocked in an isolated requirement), whereas in 
the CBTool’s case it seems that blocking relates to the specific experiment plans submitted by 
this user. A step that appears increased in needs is the number of steps needed to adapt a 
given application to the benchmark framework automation. In the case of ADW Bench it 
would be almost the same specification (e.g. Docker compose file) used for the actual 
deployment of the target application, due to its primary application centric nature. Another 
comparison point with ADW Bench is the latter’s intuitive flow based programming style (due 
to Node-RED) and portability (the actual source code is a JSON file of a few KB), compared to 
the 20k python lines of code of CBTool. Overall, CloudBench is the state of the art tool that 
presents the majority of features, being also the basis for the SPEC Cloud IaaS 2018 
benchmark. In a nutshell, CBTool is a more centralized, production grade, VM oriented and 
infrastructure/benchmark centered tool, whereas ADW Bench can be considered as a 
container oriented, more lightweight, portable tool that bundles all the needed functionalities 
in one package. 

Smart Cloudbench [25] is another tool that aims to simplify benchmarking execution against 
Cloud services through the use of application level benchmarks such as TPC-W. The tool 
covers aspects such as (web) UI based configuration and setup, test lifecycle management for 
VMs, result aggregation and reporting on application and resource level metrics.   Its primary 
use is for benchmarking purposes and comparisons (similarly to the ARTIST tool already 
mentioned) through the supported benchmarks (with ability to apply user defined aspects of 
workload). There is no mentioning for availability of a REST based API (or other forms of 
automated insertion of parameter sweep tests) through which further automation could be 
achieved. On the other hand, it supports direct selection through querying incorporation of 
cost, performance and KPIs specification. 

Google Perfkit [26] is an approach that aims to facilitate the execution of various benchmarks 
against Cloud services in order to capture cloud related metrics (similar to CBTool) but also 
scores related to a wide set of primarily microbenchmarks. Thus it mainly acts as a 
benchmarking comparison between service offerings and not at the level of generic load 
injection that can be used to analyse or stress test an arbitrary application. It has advanced 
templates for multiple benchmark results gathering and processing, parsing for the 
incorporated benchmarks as well as enabling the test lifecycle management (resource 
creation, test installation and execution, result gathering and resource cleanup). Its primary 
UI is through a command line interface (CLI). Extensions (PerfkitExplorer) have been built for 
providing web based interfaces, although only as a Google App Engine project. 

Octoperf [27] is a commercial offering that features either a privately deployed or SaaS based 
solution and it is based on Apache Jmeter (one of the supported benchmarks in ADW Bench). 
It comes with a number of features such as load testing execution design, extensive web UI, 
inclusion of Service Level Agreement rules etc. One of the drawbacks of Octoperf is its closed 
source and purely commercial nature, thus it is not freely available to all audiences. 
Furthermore, it does not seem to have means of abstracting from Jmeter in order to include 
different baseline benchmarks/load injectors nor does it apply scenarios such as a trace driven 
simulation or an isolated vs concurrent execution. In essence it is completely integrated with 
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the baseline tool. On the other hand, it features the ability to use multiple platforms (at least 
AWS and Digital Ocean) as well as a RESTful API through which automations may be 
performed, in addition to features such as result reporting and presentation. 

μSuite [28] and DeathStarBench [29] are tools to target microservices and containers, 
however their main goal is to define and implement a baseline benchmark test that can be 
used in containerized environments. As such they could be seen as a potential baseline test 
for future inclusion in ADW Bench rather than a directly comparable tool.  In other cases, 
specialized benchmark management solutions have appeared, including test lifecycle 
management processes,  targeting at specific use cases and domains (e.g. cloud hosted DBMS 
systems elasticity aspects in [30]) 

Overall what can be observed from the related work analysis is that there is a large number 
of tools available. However typically each one has its own features and drawbacks. In the case 
of ADW Bench, as differentiating factors the following can be summarized: 

• It enables its usage either as a benchmarking framework or as a generic load injection 
tool for arbitrary loads, thus serving a dual nature. 

• It enables the implementation of rich test definitions and diverse modes of execution. 

• It targets containerized environments for its operation, deployment and test lifecycle. 

• It is tailored and oriented around the easy acquisition of related datasets towards 
further processing such as machine learning models training. 

• It is focused around portability, lightweight nature, all-in-one characteristics for 
minimizing dependencies while being based on a flow programming style that can be 
more attractive and abstract for developers. 

Furthermore, with relation to usage in containerized environments, a complete description 
of requirements posed in such cases appears in [31]. Even though these are targeted primarily 
at baseline benchmarks for containerized environments, we consider it important also for the 
above benchmark/execution management layer (such as ADW Bench) to cover at least a part 
of them, since it can be anticipated that when such tools appear they will need to be managed 
in a similar fashion. ADW Bench meets related requirements such as inclusion of a software 
repository easily accessible from a public version control system (ADW Bench uses Gitlab), 
support for reusable container images, support for automated deployment and orchestration 
and easy to use interfaces among others. 

 

Framework
/Tool 

User 
Interface 

Applicati
on 
encapsula
tion  

Multipl
atform/
benchm
ark 

Benchmark/
Load 
Injection 
Scope 

Test 
Lifecycle 
Managem
ent 

Test and 
mode 
variations 

General 
scope 

Ope
n 
Sou
rce 

ADW 
Bench 

Web, 
REST API 

Container
s 

Yes/Yes Yes/Yes Yes Yes lightweight, 
portable, 
single 
package, 
intuitive flow 
based 
programming 
style  

Yes 
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ARTIST Web VMs Yes/Yes Yes/No Yes, 
periodicall
y 

No Same load, 
benchmark 
metrics over 
time 

Yes 

Μ-suite No Container
s 

Yes/No Yes/No No No  Baseline 
benchmark 
definition 

Yes 

Smart 
Cloudbench 

Web VMs Yes/Yes Yes/No Yes No Application 
and Resource 
metrics 

N/A 

Perfkit With 
extensions 
but with 
vendor 
lock-in 

VMs Yes/Yes Yes/No Yes No Benchmark 
score, 
resource 
metrics 

Yes 

Octoperf Web, 
REST API 

N/A Yes/No No/Yes but 
heavily 
integrated 
with Jmeter 

Yes  Application 
Scope 

No 

Cloudbench Web, CLI, 
XML RPC 

VMs Yes/Yes Yes/Partial Yes Test 
variations 
through 
test plans 

centralized, 
production 
grade, VM 
oriented and 
infrastructure/
benchmark 
centered 

Yes 

Table 59 - Comparative Table of Features between ADW Bench and other tools 

 

8.5 Next Steps 
8.5.1 ADW Bench 

In terms of ADW Bench, the next steps include: 

• Finalization of integration with the Openshift Application Simulator adapter for 
generic submission testing and launch.  

• Extension to new adapters for being able to deploy against external platforms (e.g. 
AWS Elastic Container service). 

• Incorporation of data services in the benchmarked graph. 

• Collection of necessary data that may be used for prediction model creation which will 
aid us in providing responses for cases that have not been benchmarked. 

 
8.5.2 ADW Model Creation and Runtime Usage 

In terms of ADW Runtime, the next steps include: 

• Creation of baseline prediction models with relation to data services, application 
elementary types and the various aspects that affect their QoS. 

• Propagation of this information at the level of the service graph, by understanding the 
structure of the graph (e.g. as a directed graph), using the initial workload input and 
combining the baseline models in one overall end to end QoS prediction. 

• Implementation and testing of a RESTful service through which the respective models 
can be queried during runtime and the playbook population method.  
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9 Adaptable Visualizations 
Adaptable Visualizations will present graphs and reports of data and analytics outcome in an 
adaptive and interactive way. Based on the form and the size of the data, different 
visualizations will be dynamically presented. Performance aspects such as computing, storage 
and networking infrastructure data, data sources information, and data operations outcomes 
will be visualized.  

Apart from that Adaptive Visualizations will provide a multi-view/multi-role unified and 
structured User Interface that either consumes or integrates various components such us 
Process Modeller, Data Toolkit, Process Mapping, Benchmarking, Application Dimensioning 
Workbench, CEP, Triple Monitoring Engine, Data Quality Assessment and Predictive 
Maintenance components. 

 

9.1 Requirements 
The anticipated functionalities / requirements are described in the following tables (Table 60 
-Table 73), that are compiled together with the rest of requirements of BigDataStack in D2.3. 

 
 Id Level of detail Type Actor Priority 

REQ-AV-01 System and 
Software 

USE ROL-2/ROL-
03/ROL-04 

MAN 

Name Interactive and Responsive UI 

Description The system should provide an interactive UI that should adapt to different 
devices and displays in order to provide a proper operation of the solution 
and a good user experience. 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 60 – System Requirement (1) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-02 System and 
Software 

FUNC ROL-04 MAN 

Name Automatic graph selection 

Description Appropriate graphs and reports should automatically be selected for 
different data sets. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 61 – System Requirement (2) for Adaptable Visualizations 
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 Id Level of detail Type Actor Priority 

REQ-AV-03 System and 
Software 

FUNC ROL-04 MAN 

Name Live data for different data sources 

Description The system should be able to display live data obtained from application 
probes, resource probes and data operations probes. 

Additional 
Information 

Adaptable selection of sources should be possible both in terms of 
application, resources or data operations, as well as in terms of the datasets 
selected and visualized per each one of these cases. Combinations should 
also be enabled.  

Status Fulfilled 

Table 62 – System Requirement (3) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-04 System and 
Software 

FUNC ROL-03 MAN 

Name The system should be able to consume/integrate Process Modeller 
Component. 

Description Business Analyst can create graphs and export/edit/import them in latter 
time. 

Additional 
Information 

N/A  

Status Fulfilled 

Table 63 – System Requirement (4) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-05 System and 
Software 

FUNC ROL-02 MAN 

Name The system should be able to consume/integrate Data Toolkit Component. 

Description Data Analyst can use the output provided by Process Modeller Component 
to apply Data Analyst Logic and enrich it.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 64 – System Requirement (5) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-06 System and 
Software 

FUNC ROL-04 MAN 
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Name The system should be able to integrate Benchmarking API. 

Description Application owner can define tests by providing the proper playbook and 
extract metrics.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 65 – System Requirement (6) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-07 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able to integrate Application Dimensioning 
Workbench. 

Description Application owner imports a playbook produced by the Data Toolkit 
Component and choose assisted Mode Deployment to get Deployment 
Recommendations. These recommendations can be automatically 
deployed and monitored. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 66 – System Requirement (7) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-08 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able to integrate Application Dimensioning 
Workbench. 

Description Application owner imports a playbook produced by the Data Toolkit 
Component and choose Manual Mode Deployment to get Deployment 
Recommendations. These recommendations can be automatically 
deployed and monitored. 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 67 – System Requirement (8) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-09 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able to monitor the Deployed Application and receive 
notifications regarding QoS that are violated by the Dynamic Orchestrator 
and ADS Ranking Recommendator. 
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Description Monitoring Screen is provided in the Application Owner View for each 
application deployed.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 68 – System Requirement (9) for Adaptable Visualizations 

 
 
 

Id Level of detail Type Actor Priority 

REQ-AV-10 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able consume and visualize datasets provided by the 
Data Quality Assessment Component. 

Description User can extract information provided by the above component.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 69 – System Requirement (10) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-11 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able consume and visualize datasets provided by the 
Maintenance component. 

Description User can extract information provided by the above component.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 70 – System Requirement (11) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-12 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able consume and visualize graphs from the CEP. 

Description User can extract information provided by the above components.  

Additional 
Information 

N/A 

Status Fulfilled 

Table 71 – System Requirement (12) for Adaptable Visualizations 
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Id Level of detail Type Actor Priority 

REQ-AV-13 System and 
Software 

FUNC ROL-04 MAN 

Name The system should be able to provide different Views of the UI depending 
on the user role. 

Description Different Components should be visible and accessed depending of the role 
that each user has. This role can be Business Analyst, Data Analyst, 
Application Owner and Administrator. Access to any view of the above 
requires authentication of the user. 

Additional 
Information 

N/A 

Status Fulfilled 

Table 72 – System Requirement (13) for Adaptable Visualizations 

 
 

Id Level of detail Type Actor Priority 

REQ-AV-14 System and 
Software 

FUNC ROL-02 
ROL-03 
ROL-04 

MAN 

Name User Authentication  

Description Authentication of the User should be performed once upon logging in the 
platform. Any additional authentication for individual components should 
happen in the background without further user interaction. 

Additional 
Information 

N/A 

Status Not Fulfilled 

Table 73 – System Requirement (14) for Adaptable Visualizations 

 

9.2 Design Specifications  
Figure 56 depicts the most commonly used architecture for visualizing big data. 

 

 
Figure 56 – Base architecture for visualizing big data 
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The data originate either from a Data Stream or from a Database (NoSQL or Relational). A 
middleware server component consumes the data and converts them to a format suitable for 
the visualization client-side library. Live update of the data is achieved through a web socket 
interface between the server and the client. 
The visualization of the data streams has been integrated with the CEP developed in 
BigDataStack. First of all, data streaming queries are designed through a visual editor so that, 
programmers do not need to program the CEP query. Those queries can be executed and the 
visualization tool for the CEP shows the live flow of data though the different query operators. 
Both the query editor and the online visualization are implemented using Angular 7 and 
Rete.js15. The online visualization tool uses WebSockets for communication with the CEP. 
Many options are available for the Middleware (Node.js, Spring Boot). The client library must 
provide graph implementations of many types, interactivity, responsiveness and integrations 
with many Javascript frameworks. State of the art option selection is currently Chart js [20]: 
Open source javascript library that provides simple yet flexible charting for developers and 
designers. 
All the components were integrated via Restful APIs and several graphs are directly consumed 
from Grafana software. 

 

9.3 Experimentation Outcomes 
An end to end scenario has already been implemented. A high level graph was produced by 
the business analyst using Process Modeller Component. The generated graph was 
propagated to the Data Analyst who extracted a playbook by invoking the Data Toolkit 
Component. This playbook was later on consumed by the ADW API and a recommendation 
was deployed and monitored. Application has access to performance metrics and QoS 
violation alarms and respective actions taken by the Dynamic Orchestrator Component. 
 

 
Figure 57 – Monitoring QoS violations and performance of the Deployments 

                                                 
15 https://rete.js.org/#/ 
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Figure 58 – Predictive maintenance Component 

 

 
Figure 59 – Analytics Dashboard Component 

 
The full queries for the Danaos use case are shown in Figure 60.  A more detailed view is shown 
in Figure 61, where the boxes represent the operators with the conditions they are checking 
and arrows represent the stream of data and how it flows through operators. 
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Figure 60 - Danaos CEP query 

 
 

 
Figure 61 – Detail of one the Danaos queries 

 

A first functional prototype of the online visualization of streams is already available. Figure 
62 shows the visualization of CEP queries; more concretely, it presents the query run by CEP1 
at the ship.  For each query operator (represented as boxes), the name of the operator and 
part of the functionality is shown. For instance, the condition that checks whether the 
pressure is between 0 and 700 is shown. When the visualization is running, for each operator 
the last received tuple is also shown. A more detailed view of the same execution can be 
found in Figure 63. This figure presents a snapshot of the execution the Danaos query when 
real data is received from several sensors. On top of the figure a message is presented when 
an alarm is triggered. That is, one of the rules the query checks is not fulfilled.  
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Figure 62- Visualization of CEP queries 

 



 
 Project No 779747 (BigDataStack) 
 D5.2 – WP5 Scientific Report and Prototype Description – Y2 
 Date: 29.11.2019 
 Dissemination Level: Public  

 

 page 111 of 114 bigdatastack.eu 

 
Figure 63 – Detailed visualization of the CEP queries execution 

9.3.1 Evaluation results 

An end-to-end scenario was successfully tested. Cross role data interaction resulted to 
successful deployment/ scaling/monitoring of applications. 
 

9.4 Integration Highlights 
All components have been consumed or integrated using RestFul APIs. Message queueing 
protocols (RabbitMQ) along with Web Socket technologies (Socket IO) were invoked for long 
time response services. 
 

9.5 Next steps 
As the project matures, the visualization scenarios will become more concrete. The 
implementation of the Adaptable Visualizations Components will proceed as follows: 

• Integration of Data Toolkit Component. Additional login to Data Toolkit will be 
bypassed once the user is authenticated via JWT in the BigDS web platform. 

• Integration of Dimensioning Workbench Component will be updated. Manual 
Deployment Mode will also be available. 

• Analytics Dashboards will be more interactive in terms of filter application. 
• Possible Migration towards Highchart, a Royalty-free, commercial, javascript library. 

Provides the implementations of hundreds of interactive graph types that can be 
easily integrated to any Javascript Application. This need emerges as a result of the 
dataset sizes. 

• The dynamic visualization of the streams of data and the CEP queries requires 
functionality to control which elements are shown as well as mechanisms to slow 
down the rate at which the information flows.  
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10 Conclusions 
This document presents the components of one of the main building blocks of BigDataStack, 
the Dimensioning, Modelling & Interaction Services, along with their current design 
specifications and their implementation and status. For every component, the anticipated 
functionalities along with its architecture are presented. Information is also provided, on 
component level, regarding the next steps and the experimentation. Connected Consumer 
and Real-time ship management UCs are used to validate the different releases of the 
components and their collaboration. 
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