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1. Executive Summary 
This is the Scientific Report and Prototype Description (Y3), reflecting the work done in the 
scope of the Data-Driven Infrastructure Management (DDIM) capability of the overall 
BigDataStack environment, including Cluster Management, Dynamic Orchestration, 
Realization Engine (known as ADS Ranking & Deploy in Y1 and Y2), Triple Monitoring & QoS 
Evaluation, and Information-Driven Networking. For all components, additional 
requirements have been identified and refined, new design solutions have been proposed, 
experimentation has been conducted and evaluation results have been collected for the 
respective implementations.  

Cluster Management has been improved  to provide extended APIs to manage the 
Infrastructure and Applications (such as Network Policies for fine-grain network access 
tuning for the applications), and to improve the performance such as the support for 
distributed load balancing for East/West traffic; speed up on the control plane actions 
(services creation time); resource consumption savings (remove the need of having a VM 
per service); and Read Write Many (RWX) support to enable pods sharing the same 
volumes. 

The Realization Engine is a new component of the BigDataStack platform that has been 
developed as an addition to Task 3.3 (Dynamic Deployment Patterns & Runtime Re-
Configuration). The goal of the Realization Engine is to provide a central suite of 
containerized services that enable configuration, deployment and subsequent management 
of user applications and their components.  

The Dynamic Orchestrator has also been improved to make our Reinforcement Learning (RL) 
algorithm more flexible and adequate to deal with the complexity needed for orchestrating 
BigDataStack applications. We have developed a novel Reinforcement Learning-based 
approach called Tutor4RL, which combines domain knowledge with machine learning for 
achieving a good initial performance, a common problem in RL and in particular for DQN. 
We have introduced constrain functions, to supervise the behavior of the agent at every 
point, avoiding unnecessary and incorrect changes in the deployment of applications.  
Finally, we have integrated the DO with the Data-as-a-Service layer of BigDataStack, which 
contains stateful components such as the Adaptable Distributed Storage (ADS) and the 
Complex Event Processing (CEP), for adapting these components dynamically during 
runtime. 

Both ADS Ranking and ADS Deploy were subject to significant updates to factor in the new 
Realization Engine component of BigDataStack, as well as better integrate them with that 
component via operations. The ADS Ranking component was updated to add support for 
supervised ranking via learning to rank, demonstrating that it is able to produce effective 
rankings of deployments for the user across two categories of application. 

TME and QoSEvaluator was testing and evaluating in real-world conditions with high 
scalability and availability. This results in the integration with Thanos1, and the open source 
and highly available Prometheus setup with long term storage capabilities. This has allowed 

                                                 
1 https://thanos.io/ 

https://thanos.io/
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us to go one step further (beyond Prometheus) in the integration within the cloud-native 
foundation ecosystem.  

The development focus with respect to the Information-driven Networking includes the 
deployment and configuration of Istio service mesh with sidecar injection enabled which is 
exposed through the telemetry application of Kiali Dashboard. Furthermore, service mesh 
interactions are recorded by the Triple Monitoring and QoS Evaluation which facilitates to 
validate and realize the enforced network policies and therefore prioritize traffic through 
weighted load balancing, perform access controls and limit traffic rates across diverse 
protocols and runtimes. 
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2. Introduction 
This deliverable presents the Scientific Report and Prototype Description of Data-Driven 
Infrastructure Management (DDIM) capability for Y3 of the BigDataStack Project, 
specifically, work done under the WP3. The document presents the improvements in the 
designs and implementations of the main components of the DDIM to give support to 
advance experimental settings and scenarios addressed in Y3. Like in Y2, a particular focus 
has been put on the Machine Learning (ML) algorithms used to bring data-driven decisions 
and actions to infrastructure operations, located in the Dynamic Orchestrator (DO) and the 
Realization Engine (formerly known as ADS Ranking & Deploy), respectively.  The rest of 
components play a supportive role within the DDIM capability and are implemented over 
well-known CNCF (Could Native Computing Foundation)2 open source projects in the cloud-
native ecosystem: Cluster Management, based on Kubernetes (OpenShift distribution), 
Information-Driven Networking, based on Istio service mesh framework, and Triple 
Monitoring and QoS Evaluation, based on Prometheus monitoring system.  

2.1. Relation to other deliverables 
This document is related to the following past and immediately upcoming deliverables: 

• D2.6 – Conceptual model and Reference architecture III (M30). The description of 
the high-level architecture of BigDataStack as well as the interplay and integration 
between the main components. The architecture of the Data-Driven Infrastructure 
Management as well as the design of the components have been devised to fit into 
the overall architecture. 

• D2.3 – Requirements & State of the Art Analysis III (M22). The specification of 
BigDataStack requirements is centralized in this deliverable. Only modifications in 
the requirements of DDIM components have described in this deliverable, in the 
component-specific subsections. 

• D3.2 – WP3 Scientific Report and Prototype Description – Y3 (M23). It described the 
solution as well as the experimental results produced in Y2. D3.3 presents the results 
obtained in Y3, which are necessarily an increment or refinement with respect to 
those presented in D3.2. Therefore, please note those aspects of the solution that 
did not change during Y3 will be referred to in either D3.2 (Y2) or D3.1 (Y1) reports. 

• D4.3 – WP4 Scientific Report and Prototype Description – Y3 (M34). D4.3 makes 
references to some of the requirements and components which are designed, 
implemented and experimented with at WP4, while also the D4.3 references and 
raises requirements that are being described in the current document. In fact, the 
Data-Driven Infrastructure Management is meant to provide infrastructure services 
(Infrastructure-as-a-Service) to those components. 

• D5.3 – WP5 Scientific Report and Prototype Description – Y3 (M34). D5.3 makes 
references to some of the requirements and components which are designed, 
implemented and experimented with at WP5; this is because the tools developed at 

                                                 
2 https://www.cncf.io/ 

https://www.cncf.io/
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WP5 will interact with the services and resources provided by the infrastructure to 
implement certain functionality supporting the different BigDataStack stakeholders. 

• D6.2 – Use case description and implementation – Y3 (M34). D3.3 describes partially 
the use cases which are subject to the experimental validation carried out in Y3. 
Refer to this deliverable for more details about the use case applications, their 
motivation, requirements, development and results. 

2.2. Relevant aspects unchanged from D3.2 and D3.1 
As described in the previous section, this deliverable presents the Scientific Report and 
Prototype Description for Y3 for the work done in WP3. Therefore, much of the 
development and research work reported in this deliverable is a continuation or extension 
of the work reported in an equivalent report for Y1 (D3.1) and Y2 (D3.2).  

However, in order to avoid the duplication of content, those aspects of the work which have 
remained unchanged for the last year are not reported again here but property referred to 
in D3.2 and D3.1. This is the case for: 

i. Unchanged from D3.1:  

o The Solution Architecture (Section 3), including the architecture vision, 
assumptions, platform roles, example scenarios and the high-level design of 
the Data-Driven Infrastructure Management (DDIM) capability.  

o Experimental settings 1 and 2—included for the reader’s convenience. 

o Experimental scenarios 1—included for the reader’s convenience. 

ii. Unchanged from D3.2: 

o Experimental settings 3 and 4—included for the reader’s convenience. 

o Experimental scenarios 2 and 3—included for the reader’s convenience. 

o The requirements specification of four out of the five building blocks of the 
architecture remained unchanged for the most part: Cluster Management 
(Section 5), Dynamic Orchestrator (Section 6), Realization Engine (Section 7), 
and Information-Driven Networking (Section 9). 

o The design specification of four out of the five building blocks of the 
architecture remained unchanged for the most part: Cluster Management 
(Section 5), Dynamic Orchestrator (Section 6), Triple Monitoring Engine and 
QoS Evaluation (Section 8), and Information-Driven Networking (Section 9). 

o Global experimentation outcomes at M23 reported in Section 10 regarding 
deployment and dynamic adaptation of one kind of big data analytics: 
product recommendation systems—the Connected Consumer (WDL) use 
case was taken as experimental subject. 
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2.3. Document structure 
The document is structured as follows: Section 3 describes the solution architecture of the 
Data-Driven Infrastructure Management (DDIM) capability of BigDataStack. Section 4 
reports the Implementation and Experimentation: Starting with the experimental settings 
(Section 4.1), it describes the DDIM capability development roadmap giving support to the 
research (Section 4.2), and then finalizes with the description of experimental scenarios 
(Section 4.3). 

The following five sections are dedicated to the requirements specification, design 
specifications, the presentation of experimental results, the description of interesting 
aspects of the implementation and integration of the component within the whole 
architecture, and some next steps:  Cluster Management (Section 5), Dynamic Orchestration 
(Section 6), ADS Ranking & Deploy (Section 7), Triple Monitoring & QoS Evaluation (Section 
8) and Information-Driven Networking (Section 9). 
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3. Solution Architecture 
For a full description of the technical solution for the Data-driven Infrastructure 
Management (DDIM) capability architecture, please refer to D3.1 (WP3 Scientific Report and 
Prototype Description  ̶  Y1) and D3.2 (WP3 Scientific Report and Prototype Description  ̶  
Y2). 

 
Figure 1: Data-Driven Information Management (DDIM) process. 

Figure 1 shows the standard Data-driven Infrastructure Management (DDIM) process, 
including the flow of the main messages, as a collaboration between components inside and 
outside the DDIM: In green, components belonging to the DDIM capability (developed in 
WP3); in grey, components belonging to the Data as a Service capability (developed in WP4); 
in blue, components of the GUI (developed in WP5). 

Main DDIM building blocks are: 1) Cluster Management (WP3-T3.1) based on OpenShift 
container orchestration platform running on either OpenStack infrastructure-as-a-service 
(IaaS) or bare metal; 2) Realization Engine (known previously as ADS-Ranking & Deploy in 
D3.1 and D3.2, WP3-T3.3) as the self-optimized deployment realization service; 3) Dynamic 
Orchestration (WP3-T3.2) providing runtime adaptation of big data analytics applications 
and services; 4) Data-Driven Networking (WP3-T3.4), based on a serve mesh model to 
enforce networking policies of application and data services; and 5) Triple Monitoring and 
QoS Evaluation (WP3-T3.5) providing monitoring and QoS checks for big data analytics 
systems at different levels (application, data, networking and cluster resources). 

Apart from those 5 main DDIM building blocks, the cost monitoring (Cost Estimation 
component of Realization Engine) provides support for the Triple Monitoring Engine and this 
component belong to T3.3 

  



 
 Project No 779747 (BigDataStack) 
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3 
 Date: 30.10.2020 
 Dissemination Level: PU 

 

 page 16 of 116 bigdatastack.eu 

4. Implementation and Experimentation 
This section introduces the new experimental settings and scenarios WP3 developed in the 
Y3 phase, to answer important questions and validate certain hypothesis to develop the 
Data-Driven Infrastructure Management (DDIM) capability. 

4.1. Experimental Settings 

In the following sections, we describe the new experimental settings developed in Y3, 
supporting experiments with big data analytics systems with an increasing level of 
complexity with respect to Y1 and Y2, in terms of the number of use case application 
components as well as BigDataStack Platform components engaged. Please refer to D3.2 for 
a description of experimental settings from 1 to 4. 

 

4.1.1. Setting 5: Real-time Recommendation Model Building 
This setting deploys the real-time analytics process which keeps the Product 
Recommendations table up to date in between runs of the batch analytics process. This 
process is made of two services as shown by Figure 2. 

 

 
Figure 2: Experimental setting 5 - Real-time analytics process to produce the Product Recommendations table 

(data flow view) 

 

The product recommendation real-time analytics process is split into two main services: 
Feedback Collector, which receives behavioural events of users visiting the EROSKI’s 
ecommerce web site, and Model Update, which runs the real-time event streaming analytics 
that carry out incremental changes to the Product Recommendations table stored in 
LeanXcale database (data flow view). The actual analytics is made by the Batch 
Recommendation. Model Update runs as a Spark Streaming job. It keeps the 
recommendation table up to date in between batch analytics process runs (see D6.2 for 
more details of this process). 

 

4.1.2. Setting 6: Batch Recommendation Model Building 
This setting deploys the batch analytics process which produces the Product 
Recommendations table used by the Recommendation Provider service to run its 
recommendation inference. This process runs as a Spark job, and it is made of several 
analytics services as shown by Figure 3 (see D6.2 for more details of this process).  
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Figure 3: Experimental setting 6 - Batch analytics process to produce the Product Recommendations table 

(data flow view). 

The product recommendation batch analytics process is split into three main services, Data 
Filtering, Transform Data and Collaborative Filtering, and returns Product Recommendations 
table stored in LeanXcale database (see D6.2 for more details of this process). 

 

4.2. Implementation 
Table 1 summarizes the experimentation (evaluation and validation) plan for the Data-
driven Infrastructure Management capability between M24 and M36: 

 M24 M30 M36 

Milestone Performance 
Optimization with 
settings 1, 2, 3, 4 

Settings 5 and 6 
Implementation and 
Testing 

Scenarios 5 and 6 
Validation and 
Optimization 

Objective  WP3, WP4 and WP5 
components as well as 
their collaboration 
optimized to provide 
cost-effective 
orchestrated 
capabilities for 
scenarios 1, 2 and 3. 

 WP3, WP4 and WP5 
implement changes 
needed to support big 
data real-time and batch 
analytics processes 
outlined in settings 5 and 
6, respectively. 

 WP3, WP4 and WP5 
components as well as 
their collaboration 
optimized to provide 
cost-effective 
orchestrated 
capabilities for 
scenarios 4 and 5. 

Success 
criteria 

ALL WP3, WP4 and 
WP5 services are fully 
integrated and 
deployed on 
Kubernetes, validated 
in scenarios 1, 2 and 3.   

ALL WP3 services are 
deployed and running on 
Kubernetes to 
implement experimental 
settings 5 and 6. 

ALL WP3, WP4 and 
WP5 services are fully 
integrated and 
deployed on 
Kubernetes, validated 
in scenarios 4 and 5.   

Experimentation with 
Setting 3 and 4 

Experimentation with 
Setting 1 

Experimentation with 
Setting 2 and 3 
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Table 1 - Data-driven Infrastructure Management capability experimentation phases. 

Table 2 summarizes the Data-driven Infrastructure Management capability implementation 
roadmap for Y3: 

 M24 M30 M36 

Experimental 
setting 
supported 

1, 2, 3, 4 5, 6 5, 6 

Experimental 
scenario 
enacted 

1, 2 3, 4 4, 5 

Cluster 
Management 

OpenStack integration, 
Cluster performance 
improvements, 
Operators, 
Gateway 
East/West Distributed 
Load Balancing 

- Complete the E/W 
Distributed 
LoadBalancing 
support (not only the 
kuryr part, but also 
the integration into 
OpenShift) 
- Network Policy 
Implementation in 
Kuryr 
- Extra 
fixes/improvements 
on the OpenStack 
and Operators 
integration 
 

- Network Policy 
testing coverage and 
bug fixes 
- Manila support to 
enable pods with RWX 
volumes 
- Kuryr-kubernetes 
modernization 
through CRD model 
adoption 
 

Dynamic 
Orchestrator 

Agent 
Interpreter 
ADS Interplay 

Tutor4RL: RL 
framework for 
combining ML with 
external domain 
knowledge 
Implementation of 
guides and constrains 
to express domain 
knowledge in 
Tutor4RL 
Improvements and 
bug fixes in 
interactions with 
components in WP3 

Refinements for 
Tutor4RL, including 
guide and constrain 
functions 
Refinements for 
orchestration of 
multiple applications 
with different metrics, 
SLOs and actions 
simultaneously 
Changes in 
implementation of 
interactions with 
Realization Engine, CEP 
and ADS, including the 
implementation of 
REST-RabbitMQ proxy 
for communication 
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between DO and 
components outside 
WP3 that utilize REST 
APIs 

Ranking & 
Deployment 

ADS-Ranking, 
ADS-Deploy 
Global Decision 
Tracker 

  

Triple 
Monitoring 
Engine & QoS 
Evaluation 

Prometheus, 
Graphana, 
Metrics at application, 
data, resources cluster 
and networking levels, 
Manager, 
QoS evaluation 
QoS evaluation proxy 
Resource Cluster 
metrics 

QoS Evaluation 
Confidence Levels 

Triple Monitoring 
Engine (TME) Scaling, 
Long-Term Persistence 

Information-
driven 
Networking 

Kubernetes 
Networking & Policies 
Enforcement, 
Istio 

- Implementation of 
the Istio weighted 
load balancing 
mechanisms 
- Integration with Kiali 
and Triple Monitoring 
Engine and QoS 
Evaluation 
- Implementation of 
different network 
policies coupled with 
the Demos 

- Network policy testing 
coverage and bug fixes 
- Access control and 
policy enforcement 

Table 2 - Data-driven Infrastructure Management capability implementation plan. 

 

4.3. Experimental Scenarios 
This section explains the new experimental use case scenarios, including success criteria, 
developed in Y3 to be used in the context of WP3 to verify and validate the behavioural 
invariances of DDIM components in order to ensure trustworthy run of component-specific 
experiments. Please refer to D3.2 for a description of experimental scenarios from 1 to 3. 

 

4.3.1. Scenario 4: Real-time product recommendation analytics cost-
readiness 
This scenario deals with the real-time analytics of behavioural event streams of users visiting 
the EROSKI’s ecommerce website. The analytics process makes incremental updates to the 
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Product Recommendations table based on micro-batches of events, to keep the table up to 
date in between runs of the batch analytics process.  

In this scenario, the Data Scientist is concerned with the time to value of certain type of 
events, in particular, to speed up the changes the Product Recommendations table need to 
undergo in the impact of events of type PRODUCT_RECOMMENDATION_REMOVED3 so that 
the recommender is not recommending anymore a product that has been rejected to a 
given user.  

ID WP3-EXPSCE-04 

Use Case ATOS Worldline 

Name Real-time product recommendation analytics cost-readiness 

Situation Increase in the volume of events produced by the users in the EROSKI’s 
ecommerce website.  

Settings  

Preconditions What happened in the system before running the test? Initial conditions or 
state; e.g. the product recommendation real-time analytics process is 
deployed, which includes LXS database as well as Feedback Collector and 
Model Update services (see Setting 5 in Section 4.1.5). 

 

Trigger What triggers this scenario, the entire use case, e.g. the traffic or requests 
per second (rps) to the Feedback Collector service spikes. 

QoS 
requirements 

Response time < 300ms 

Compute resource cost < 2$ per hour 

QoS 
preferences 

Response time < 100ms 

Compute resource cost < 1$ per hour 

Postcondition Expected result, e.g. the response time as well as the compute resource 
cost (CRC) meets the QoS requirements. 

                                                 
3 This event informs a given user has explicitly expressed through a click that she does not 
find a given recommendation interesting. 
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Scenario  

Steps 1. The CRC is under 1$ per hour. 
2. We increase the rps to the product recommendation service from 

0 to 1000. The response time remains under the SLO warning 
threshold. 

3. We rise to 2000 rps. The response time goes beyond the SLO 
warning threshold but still below the SLO error threshold. 

4. We rise to 3000 rps. The response time goes beyond the SLO error 
threshold. 

5. The QoS Evaluator notifies a QoS violation to the DO. 
6. The DO makes the decision to increase by one the number of 

replicas of the product recommendation service. It sends a request 
to the ADS-Ranking. 

7. The ADS-Ranking produces the best re-redeployment to enact the 
DO decision and sends a request to the ADS-Deploy. 

8. The ADS-Deploy executed the deployment specified by the ADS-
Ranking by sending request to the cluster manager (OpenShift). 

9. OpenShift increases by one the number of replicas of the product 
recommendation pod. 

10. The response time of the product recommendation service drops 
below the SLO warning threshold. 

11. The CRC rises to 1.5$ per hour so beyond the SLO warning 
threshold but still below the SLO error threshold. 

4.3.2. Scenario 5: Batch product recommendation analytics throughput 
This scenario represents a situation where the application suffers a traffic spike that 
obligates the DDIM to scale out the application deployment so to keep its response time at 
certain SLO, like in Scenario 1, but adding a second SLO to ensure operational costs remain 
under certain threshold. Thus, this scenario exemplifies how the operational “cost” can be 
managed and enforced as just another SLO or QoS attribute by the DDIM. 

 

ID WP3-EXPSCE-05 

Use Case ATOS Worldline 

Name Cost-effectiveness of the product recommendation service 

Situation Spike in the volume of traffic (requests per second - rps) to the online 
serving layer of the product recommendation system.  

Settings  

Preconditions What happened in the system before running the test? Initial conditions 
or state; e.g. the product recommendation batch analytics process is 
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deployed, which includes LXS database as well as Data filtering, 
Transform Data and Collaborative Filtering services (see Setting 6 in 
Section 4.1.6). 

 

Trigger What triggers this scenario, the entire use case, e.g. the periodic run of 
the product recommendation table batch analytics process. 

QoS 
requirements 

Throughput < 300 ms 

Compute resource cost < 2$ per hour 

QoS 
preferences 

Throughput < 100 ms 

Compute resource cost < 1$ per hour 

Postcondition Expected result, e.g. the throughput as well as the compute resource 
cost (CRC) meets the QoS requirements. 

Scenario  

Steps 1. The CRC is under 1$ per hour. 
2. We increase the rps to the product recommendation service 

from 0 to 1000. The response time remains under the SLO 
warning threshold.  

3. We rise to 2000 rps. The response time goes beyond the SLO 
warning threshold but still below the SLO error threshold.  

4. We rise to 3000 rps. The response time goes beyond the SLO 
error threshold.  

5. The QoS Evaluator notifies a QoS violation to the DO.  
6. The DO makes the decision to increase by one the number of 

replicas of the product recommendation service. It sends a 
request to the ADS-Ranking.  

7. The ADS-Ranking produces the best re-redeployment to enact 
the DO decision and sends a request to the ADS-Deploy.  

8. The ADS-Deploy executed the deployment specified by the 
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ADSRanking by sending request to the cluster manager 
(Openshift).  

9. Openshift increases by one the number of replicas of the 
product recommendation pod.  

10. The response time of the product recommendation service 
drops below the SLO warning threshold. 

11. The CRC rises to 1.5$ per hour so beyond the SLO warning 
threshold but still below the SLO error threshold. 
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5. Cluster Management 
The cluster management component’s responsibilities are both to deploy the BigDataStack 
components as requested and to keep its status healthy overtime. This not only includes 
containers but also the related services and even the OpenShift Kubernetes cluster itself by 
exposing the needed Infrastructure APIs. The cluster management is in charge of adapt the 
current deployments to the new preferred status requested by the upper layers, in order for 
example to increase the size of the cluster, or scale up/down given applications. In addition, 
during the last year of the project more improvements has been done at the cluster 
management internals to provide extended APIs to manage the Infrastructure and 
Applications (such as Network Policies for fine-grain network access tuning for the 
applications), and to improve the performance such as the support for distributed load 
balancing for East/West traffic; speed up on the control plane actions (services creation 
time); resource consumption savings (remove the need of having a VM per service); and 
Read Write Many (RWX) support to enable pods sharing the same volumes. 

5.1. Requirements 
The main change comparing to the requirements documented in D3.2 is described below.  

 Id Level of detail Type Actor Priority 

REQ-CM-0X System ENV Developer DES 

Name Manila Support at OpenShift on OpenStack: Enable ReadWriteMany 
(RWX) PVs when running OpenShift cluster on top of OpenStack VMs 

Description Most of the OpenStack Cinder backend drivers do not support the 
attachment of volumes to multiple VMs. This means that pods running 
inside different OpenShift nodes (aka VMs) cannot access the same 
Volume (i.e., the same PV/PVC). To avoid this problem we need to add a 
new operator in charge of installing and configuring the needed 
operators/controllers to make use of Manila (instead of Cinder) as a 
storage class that pods can use to get their PVs attacked. 

Additional 
Information 

This is needed by some applications that may require access to shared block 
storage, not just object storage. 
Note Manila is an OpenStack project whose main objective is to create 
shared NFS as a service 

5.2. Design Specifications and Implementation Details 
The design for this component (specified in Section 5 of D3.1) has mostly remained valid for 
Y2. The following sections describe the aspects of the design that have been changed. 

5.2.1. Gateway 
The gateway for the BigDataStack engine can also be implemented as part of OpenShift, in 2 
different ways depending on the final requirements: 

- By using OpenShift routes: Route is a way to expose OpenShift services by giving it 
an externally reachable hostname, like www.example.com. It has the option to 
perform the routing based on paths, i.e., we can use it to redirect some queries to 

http://www.example.com/
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the CEP component (i.e., www.example.com/cep/…) and others to the Alarm 
component (i.e., www.example.com/alarms/...). The initial design targets to use this, 
being able to assign a common OpenStack Floating IP for all the ingress traffic to 
OpenShift Apps, in this case BigDataStack components. 

- By using Istio service mesh: A service mesh is a network of microservices that 
enables applications and the interactions among them. It offers functionality like 
load-balancing, fine grain traffic control, access control, logging, tracing, etc., 
through sidecars containers associated to the applications pods. One offered 
functionality is Istio-Gateways which controls the exposure of services at the edge of 
the mesh. This could be used to tie gateways to specific virtual services that can 
perform the extra required actions that the gateway may require besides redirecting 
the traffic to the desired endpoint. 

Even though we are also using Istio service mesh internally, for the Cluster Gateway we are 
using the OpenShift Ingress, I.e, the first option with the routes where a single public IP is 
used for accessing all the applications by leveraging the OpenShift route support and the 
services k8s models to expose applications. 
 

5.2.2. East/West Distributed Load Balancing 
In Kubernetes and OpenShift, the communication between the different application 
components and between applications (i.e., between the Pods) is not meant to be pod to 
pod (and using IPs) since pods are supposed to be disposable and therefore they can be 
replaced/deleted at any time. Pods are usually behind a service which abstracts the IP/name 
of the container(s) that is pointing to. This way, pods can talk to known services IPs (and 
names) and containers after that service can be recreated at any time without impacting the 
way the caller pods uses to reach them. 

Given the above, the pod to svc to pod communication performance is quite important as it 
is the most usual pattern. When using Kuryr, Services are implemented as Octavia load 
balancers. This means that each K8s service will require Octavia load balancer, and with the 
default ‘amphora’ driver that means an OpenStack VM. This has 4 main implications: 

1. Resource waste since lots of VMs will be needed for backing the services. 
2. User experience as services will need more time to be up and running since the 

amphora VM must be created and configure. 
3. Single point of failure for services as if the VM dies, a new one will need to be 

created to replace it. 
4. Network latency as traffic needs to do extra hops to reach the amphora VM. 

For these reasons, we have worked on the integration of OVN load balancer into OpenStack, 
including Octavia and Kuryr. The OVN load balancer is a distributed load balancer based on 
OVS/OVN flows. This means that it does not require any amphora VM to load balance the 
traffic and simply creates the needed flows locally on each OpenStack compute node. To 
make it easier to understand, it is like if an iptable rule was changing the Kubernetes service 
IP by one of the Kubernetes endpoints (pods) IPs and then the traffic was directly forwarded 
to the selected pod. 

Thanks to this integration, the next advantages have been achieved: 

http://www.example.com/alarms/
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• Speed up on the time needed to create a K8s service. Now it is more similar to bare 
metal OpenShift/Kubernetes deployment (with kube-proxy) and it will take only a 
few seconds instead of around 1 minute 

• Resource savings: There is no need for extra resource when creating services. This 
approach used ovs flows instead of amphora VMs. In fact, this solution is also more 
scalable than kube-proxy solution based on iptables 

• Due to the OVN load balancer distributed nature (flows in every node instead of a 
VM somewhere) there is no single point of failure 

• Reduced latency with increased throughput: Distributed routing as the traffic goes 
directly pod to pod instead of having to jump to the OpenStack node that has the 
amphora VM and back 

• No need to parse Security Groups at amphora load balancer to apply Kubernetes 
Network Policies, with the consequent reduction on Neutron OpenStack load, as well 
as in the time needed to enforce those policies. 

 
This feature makes Kuryr-kubernetes a project much more appealing for companies and for 
different use cases, where having a VM per service was an impediment to use it, not only for 
the extra penalties on control and data plane performance, but mainly due to the excessive 
number of resources needed for the amphora VMs. 
 

5.2.3. Cluster Management API extensions: Network Policy Support at 
Kuryr 
Some applications need fine grain traffic control at the IP address or port level (OSI layer 3 
or 4). For this reason, Kubernetes Network Policies API was defined. Network Policies are an 
application centric construct which allow you to specify how a pod is allowed to 
communicate (ingress and egress) with various network entities over the network. The 
entities the pod can communicate with are identified through a combination of the 
following, which is fully based on Kubernetes labels: 

• Other pods that are allowed  

• Namespaces that are allowed 

• IP Blocks 

 

In order to be able to provide this cluster management API for network management at 
Kuryr-Kubernetes, we need Kuryr to: 

• React to the Network Policy objects creation/deletion/updates and process them 

• Generate the corresponding OpenStack resources that provide the same isolation 
between pods and services as expected by the Network Policies. The OpenStack 
resources available for this are the Neutron Security Groups and Security Group 
Rules. 

This is one of the largest and hardest features merged on upstream Kuryr-Kubernetes, with 
a lot of implications, such as new handlers and drivers, as well as with modifications to 
almost any existing handler to react to them. There have been more than 50 commits 
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upstream related to it between the different pieces for the feature, the extra testing code 
and the follow up bug fixed due to uncover corner cases. For more information about the 
proposed solution as well as the new handlers and drivers, and the modifications to the 
existing ones, you can check the developer reference document that was created for it at: 
https://github.com/openstack/kuryr-
kubernetes/blob/master/doc/source/devref/network_policy.rst  

The flow that Kuryr drivers/handlers follow when a new network policy is created is the 
following: 

As it can be seen, the new policy handlers not only have to reach out the new network 
policy drivers (3 of them) but also existing drivers such as the vif pool (for pods creation) and 
the lbaas driver (for services creation). Changes are not only limited to that, but also other 
handlers are affected, such as the vif handler (the one in charge of creating the resources 
needed for the pods): 

 

https://github.com/openstack/kuryr-kubernetes/blob/master/doc/source/devref/network_policy.rst
https://github.com/openstack/kuryr-kubernetes/blob/master/doc/source/devref/network_policy.rst
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5.2.4. Cluster Management API extensions: RWX PVs at OpenShift on 
OpenStack through Manila support 
Applications that need to maintain some state or data (Pods) need access to persistent 
volumes (PVs). The default backend for those when running OpenShift on top of OpenStack 
is Cinder. However, Cinder does not have support for multi-attachment of volumes to 
different VMs (at least not all the cinder backend drivers). This impose some limitations on 
the applications running on top as each one will need to get them on PV/PVC and therefore 
both of them won’t be able to read/write from the same one.  

In order to avoid this limitation, we have added support for Manila at OpenShift. Manila is 
an OpenStack project that derived from Cinder project, and that provides canonical storage 
provisioning control plane for shared or distributed file systems, similarly to the way Cinder 
provides such a canonical control plane for block storage. This allows to define a new type 
of OpenShift Storage Class that enables the creation of volumes backed up by NFS and 
therefore shareable between different pods at the same time, hence providing RWX (read 
write many) access for them. 

To add this support, we have created a new Manila CSI Driver Operator which is in charge of 
the deployment and configuration, and that allows the provisioning of dynamic manila CSI 
volumes. More information about its usage can be found at 
https://docs.openshift.com/container-
platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html  

 

5.2.5. Kubernetization of Kuryr-Kubernetes by adapting CRDs model 
There is a current trend of moving containerized applications to the Kubernetes/operators 
model which allows you to extend Kubernetes API with application specific object/APIs. This 
model pursued by Kubernetes and CNCF communities, gives some advantages and de-facto 
standardization that were fitting really well into the Kuryr-Kubernetes model. Therefore, we 
initiated the effort on modernization the Kuryr internals by adopting this model. 

In contrast to regular OpenStack projects like Nova or Cinder, Kuryr-Kubernetes behaviour is 
driven by events happening in Kubernetes (e.g. Pod or Service being created) and not by 
user calling OpenStack REST API. A pattern when application acts upon events received from 
Kubernetes API and adjusts environment state accordingly is called "controller" in 
Kubernetes world. Moreover, Kuryr does not use any database, and it used to store some 
information on Kubernetes object annotations. Thanks to the adoption of Kubernetes 
Custom Resources (called CRDs), we now store that state of the OpenStack resources on 
specific CRDs on the Kubernetes environment instead. This give us several advantages such 
as: 

• Limit the number of calls to OpenStack, with the consequent performance 
improvement as well as reduction on its load 

• Easier to debug/check the status by looking at the existing Kubernetes objects, in 
this case the Kuryr specific CRDs. 

This CRDs adoption by Kuryr has been made at 4 main points: 

https://docs.openshift.com/container-platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html
https://docs.openshift.com/container-platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html
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• KuryrNetworks: related to the namespace handling by Kuryr, which is in charge of 
creating subnets in OpenStack for OpenShift/Kubernetes namespaces 

• KuryrPorts: related to the pod handling by Kuryr, which is in charge of creating the 
needed ports in OpenStack for OpenShift/Kubernetes pods 

• KuryrLoadBalancers: related to the service handling by kuryr, which is in charge of 
creating the Load Balancers in OpenStack for OpenShift/Kubernetes 
services/endpoints 

• KuryrNetworkPolicy: related to the network policy handling by Kuryr, which is in 
charge of creating the SecurityGroups/SecurityGroupRules in OpenStack for 
OpenShift/Kubernetes network policies. 

This have been the biggest effort on Kuryr-Kubernetes during the last OpenStack release 
(Victoria) and it has already being noticed by the community such as the blog post article 
https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-
work/2020/10/ that mentioned the next: 

The biggest move was the release of Victoria, which is the 22nd OpenStack release. Victoria 
builds on the previous Ussuri launch with more than 20,000 code changes that include 
native integration with Kubernetes and more support for diverse infrastructure deployments. 

The Kubernetes integration is on the back of the Kuryr container networking plugin. It acts as 
the link that delivers the OpenStack networking into containers. Kuryr now has support for 
customer resource definitions (CRDs) that remove the need for it to use annotations to store 
data about OpenStack objects in the Kubernetes API. 

“Kuryr has adopted this as the way that it passes information back and forth between the 
underlying infrastructure that a Kubernetes cluster may be running on and the Kubernetes 
environment itself,” explained OSF Executive Director Jonathan Bryce, in a press 
briefing. “This is great because it brings the two systems closer together using the native 
components on each side.” 
 

5.3. Integration Highlights 
For the first part of the project, initial support for OpenStack was included into the 
OpenShift-Ansible installer to handle the creation of OpenStack resources. This was based 
on OpenShift 3.11 as OpenShift 4.X was currently at a being developed phase and an 
OpenShift cluster was needed so as not to block the other components. As soon as the work 
on moving OpenShift to the operator’s model was stable enough (OpenShift 4), we moved 
our testbed to that release. We did this as part of our testbed migration to the 
Massachusetts Open Cloud (MOC – https://massopen.cloud/). The objective of this cloud is 
to create a self-sustaining at-scale public cloud based on OpenStack. It serves as a 
marketplace for industry partners (Red Hat being one of them) as well as a place for 
researchers and industry to innovate and expose innovation to real users. We obtained an 
OpenStack user project with enough quota for our experiments and use cases:  

• 1 TB RAM, >1 TB Storage (plus access to the ceph storage cluster), 30 volumes, 20 
instances, 300 cores, 300 networks, ... 

On top of this OpenStack cloud, and based on the extensions made to the OpenShift 
Installer to have better support when can be installed on top of OpenStack, we deployed 

https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-work/2020/10/
https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-work/2020/10/
https://www.sdxcentral.com/articles/news/openstack-ussuri-update-tackles-reliability-security/2020/05/
https://www.sdxcentral.com/containers/definitions/what-are-containers-like-docker-linux-containers/
https://massopen.cloud/
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OpenShift (4.5 version) on the testbed. This support extends the OpenShift installer to 
create/delete OpenStack VMs and later install the packages, configuration files, keys, 
services, etc., needed to install and configure the OpenShift cluster on top of them. It 
includes the basic operators and prepares the system for the new ones to be created as part 
of the BigDataStack project. 

We followed the best practices (configuration) for deploying OpenShift on top of OpenStack 
already outlined within D3.1; the reader can also refer to that deliverable to see an account 
of the minimum number of each OpenStack resource types that are needed for a minimal 
installation of OpenShift on top of OpenStack. 

On top of this OpenShift cluster, the rest of the Big Data Stack components are installed in a 
containerized mode. They are able to take advantage of the extensions made to the cluster 
management. Some of them transparently: 

• Improved network performance thanks to Kuryr integration into the Cluster Network 
Operators 

• Improved performance for services, both control plane (faster to create and more 
scalable), data plane (improved bandwidth with reduced latency), resource 
consumption (no need for extra VMs), and fault tolerance (no single point of failure) 

• Kuryr CRD adoption 

And some other by leveraging the new APIs 

• OpenShift Routes for the Gateway and access of applications from the outside of the 
cluster 

• OpenShift Cluster API that allow to easy scale up/down the cluster itself. Even with 
automatic scaling based on usage, as covered here: 
https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack 

• Fine-grain network access control to the applications by using Network Policies, 
thanks to its integration into Kuryr 

• Support for Manila and thus the option to have RWX PVs in OpenShift, which makes 
possible for pods to share data through volumes. 

 

5.4. Experimentation Outcomes 
5.4.1. Distributed OVN Load Balancer performance 
We did some initial experimentation that focused on the initial integration testing and scale 
testing of OVN-Octavia distributed load balancing for Kubernetes Services.  

A performance comparison between Kuryr and OpenShift SDN was carried out, proving a 
performance boost of up to nine times better for throughput, as presented in the following 
figures, while additional results have been published online at the OpenShift blog4. 

                                                 
4 https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr 

https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr
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Figure 4: Throughput improvements (POD to POD) 

 
Figure 5: Throughput improvements (POD to SVC) 

Thanks to the integration of the distributed OVN load balancer into Kuryr (and Octavia), the 
customers interest on this has raised and consequently Red Hat is performing some bigger scale 
testing with it, similarly to the already made scale testing for OpenStack itself in here but with 
OpenShift with Kuryr on top: https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-
161-more-700-nodes 
 

5.4.2. Kuryr tuning for real use cases 
As part of the upstream development, components are not usually target to just one use 
case and they have some configuration knobs to be able to be adapted to the specifics of 
each case. This was the case for kuryr-kubernetes too. 

Thanks to the Kuryr-Kubernetes extensions as part of BigDataStack, and due to its network 
performance improvements as well as its simplified model to expose applications to the 
outside work, some customer has already started testing OpenShift on top of OpenStack 

https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-161-more-700-nodes
https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-161-more-700-nodes


 
 Project No 779747 (BigDataStack) 
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3 
 Date: 30.10.2020 
 Dissemination Level: PU 

 

 page 32 of 116 bigdatastack.eu 

with Kuryr. However, the above mention knobs needed to be adapted to the needs of the 
specific use cases. This was gathered in the next blog post: 

• https://developers.redhat.com/blog/2020/10/02/customizing-and-tuning-the-kuryr-
sdn-for-red-hat-openshift-3-11-on-red-hat-openstack-13/ 

As it can be seen there may be some needs to adapt, among others: 

• Services and Load Balancer ranges, to accommodate for the specific ranges available 
at the customer, as well as to adapt it to the expected OpenShift cluster usage, i.e. 
number of expected services, pods, etc. 

• Type of isolation required by the applications: namespace isolation vs network policy 
isolation. This depends on the application needs and if fine grain control is not 
needed (i.e., network policies), a simpler approach can be taken with the namespace 
isolation. 

• Ports pre-creation to save time and expensive OpenStack calls. This allow to have 
certain amount of Neutron ports ready to be used by the OpenShift/Kubernetes 
pods. This improves the time needed for pods to be running by one order of 
magnitude as well as remarkably decreases the load on Neutron server on pods 
creation spikes. However, it comes at the expenses of more ports being created per 
OpenShift node and depending on the size of the network it may lead to problems, 
such as running out of subnet IPs. As a consequence, its configuration is needed 
considering both the size of the available networks (/24, /26, …) as well as the size of 
the cluster (number of nodes).  

 

5.4.3. Autoscale experiments through Infrastructure provided APIs 
Thanks to leveraging the CRD usage model and the OpenShift on OpenStack integration, it is 
possible to expose the infrastructure through OpenShift/Kubernetes APIs. In turns, this 
allows us for an easy way to increase or decrease the size of the OpenShift cluster, with just 
one single command (or click) and in an exactly the same way as you would do with the 
number of pods for an applications, i.e., just increasing the number of replicas. 

What is more, this opens the floor for more advanced autoscaling techniques, based on 
either usage or predictions/estimations about future needs, which could trigger the scale 
up/down of the cluster to either get more resources for your applications or reduce the 
resource consumption when not needed. 

As part of the OpenShift integration on top of OpenStack we have also added support for 
the autoscaler that automatically can trigger the OpenShift cluster scaling actions based on 
load, where both the maximum and minimum number of workers can be specified, e.g.: 
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For more information about this you can see the blog post and demo video in here: 

https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack  

  

https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack
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6. Realization Engine 
The Realization Engine is a new component of the BigDataStack platform that has been 
developed within WP3 in Y3 by the GLA partner as an addition to Task 3.3 (Dynamic 
Deployment Patterns & Runtime Re-Configuration). The goal of the Realization Engine is to 
provide a central suite of containerized services that enable configuration, deployment and 
subsequent management of user applications and their components. The main 
functionalities provided by the Realization Engine are: 

• Registration and storage of user applications (either via complete BigDataStack 
Playbooks or in smaller units). 

• Deconstruction of BigDataStack Playbooks into constituent components for easier 
management. These components are: the application definition; comprised object 
definitions (Deployment Configs, Jobs, Services, Routes, etc.); exported metrics; 
service level objectives; operation sequences; and application states. 

• Provision of built-in object-level management actions for the user’s application 
• Support for complex deployment or alteration actions in the form of operation 

sequences. 
• Live OpenShift cluster state monitoring, enabling synchronisation of application 

states between the cluster and Realization Engine supporting automated action 
triggering. 

• Short-term time-series data storage for Realization Engine managed metrics. 
• Provision of a REST API for accessing application, component, and cluster status, as 

well as triggering actions. 
• Provision of a graphical user interface enabling run-time application monitoring and 

management 
• Integration with the other WP3 components (e.g. ADS Ranking and ADS Deploy). 

 
In the remainder of this section we will discuss why the Realization Engine was introduced 
as well as provide a technical overview for it. In particular, in Section 6.1 we summarise the 
motivation for the introduction of the Realization Engine. Section 6.2 describes the 
additional requirements identified for the Realization Engine. In Section 6.3 we describe 
how internal modelling of user applications has changed to enable better division of 
complex applications into components. Meanwhile, Section 6.4 details updates made to the 
BigDataStack Playbook format to reflect these modelling changes. Section 6.5 provides an 
architectural overview of the Realization Engine, while Section 6.6 provides a brief overview 
of each of the services comprised within it. Finally, Section 6.7 summarizes the different 
built-in operations within the Realization Engine and what they are used for. 
 

6.1. Motivation 
For the BigDataStack M18 review, a demonstration system was developed to illustrate the 
different components and added value of the BigDataStack project. Post the M18 review, 
the consortium internally performed a separate review of this system to identify potential 
issues with the platform design.  As outcome of this review, there were two main 
architectural limitations identified that impacted WP3: 

• The first limitation was that from a user-facing perspective, the application engineer 
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lacked a means to manage their application post deployment. In effect, once the 
application was launched, management was fully automatic and if the user disagreed 
with alterations that the platform implemented they could not intervene. Hence, 
there was a need for additional (manual) management capabilities that had not been 
originally envisaged.  

• The second limitation that was identified was regarding the underlying application 
modelling. In the original design, a user application was considered to be atomic, and 
as such could be orchestrated as a single unit. The implications of this are many-fold, 
however we summarize some of the more important down-stream impacts here. 
First, all deployment and alteration actions had to be natively supported by the user 
application (e.g. via a Kubernetes Operator) and then have a supported trigger 
within one of the BigDataStack components (e.g. ADS-Deploy or Adaptive 
Networking). This made the BigDataStack platform very rigid and difficult to adapt to 
new application types. Second, as any complex deployment and alteration actions 
had to be defined within the application, progress regarding those complex actions 
could not be tracked or visualised by BigDataStack. This could lead to incorrect 
statuses being shown to the user, while also causing issues for any active automated 
orchestration systems that rely on those states for decision making. As a result, it 
was decided that applications needed to be divisible into components that could be 
independently managed and tracked, as well as that all deployments and alterations 
needed to have clearly defined stages that were managed by BigDataStack. 

 
To address these limitations, it was clear that there needed to be a centralized system that 
could track and manage the user application at component-level, which was not in the 
original platform architecture. Hence, the Realization Engine was designed and developed.    
 

6.2. Requirements 
In this section we provide an overview of the requirements that were identified for the 
Realization Engine. Realization Engine requirements are REQ-RE-XX. 

 

 Id Level of detail Type Actor Priority 

REQ-RE-01 System FUNC Data 
Toolkit 

MAN 

Name BigDataStack Playbook Registration 

Description Once the application engineer and/or data scientist has defined the 
application via the Data Toolkit (or has generated a BigDataStack Playbook 
manually), the Realization Engine needs to ingest the application definition 
and divide it into individual components and store them. 

Additional 
Information 

Sending of the application definition is performed by REST API in YAML 
format as a BigDataStack Playbook. 

 

 



 
 Project No 779747 (BigDataStack) 
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3 
 Date: 30.10.2020 
 Dissemination Level: PU 

 

 page 36 of 116 bigdatastack.eu 

 Id Level of detail Type Actor Priority 

REQ-RE-02 System FUNC Application 
Engineer 

MAN 

Name Operation Triggering 

Description Once an application has been registered, the user should be able to trigger 
pre-defined actions that deploy or alter their application. Operations may 
be atomic or be comprised of multiple tasks. 

Additional 
Information 

 

 

 Id Level of detail Type Actor Priority 

REQ-RE-03 System FUNC Realization 
Engine 

MAN 

Name Application Component State Tracking 

Description Once an application component is deployed on the cluster, the Realization 
Engine needs to monitor the state of that component and generate alerts 
when state-changes occur. 

Additional 
Information 

This enables state reporting within the Realization Engine itself as well as 
can be used to inform other orchestration software of component states. 

 
 Id Level of detail Type Actor Priority 

REQ-RE-04 System FUNC Application 
Services 

MAN 

Name API Suite 

Description The Realization Engine should enable other components or services to 
access the information about applications that it manages, as well as 
enable actions to be triggered for them. 

Additional 
Information 

This enables other components like the Dynamic Orchestrator to both get 
information about applications for decision making, as well as expose what 
actions can be performed at any one time. 

 
 Id Level of detail Type Actor Priority 

REQ-RE-05 System FUNC Application 
Engineer 

MAN 

Name GUI 

Description The Realization Engine should provide a graphical user interface that 
enables access the information about applications that it manages, as well 
as enable actions to be triggered. 

Additional 
Information 
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 Id Level of detail Type Actor Priority 

REQ-RE-06 System FUNC ADS-
Ranking 

MAN 

Name Integration with ADS-Ranking 

Description The Realization Engine should provide native support for the ADS-Ranking 
(Deployment Recommender Service) also developed within T3.3. 

Additional 
Information 

 

 
 Id Level of detail Type Actor Priority 

REQ-RE-07 System FUNC ADS-Deploy MAN 

Name Integration with ADS-Deploy 

Description The Realization Engine should provide native support for the ADS-Deploy 
to facilitate deployment of application components 

Additional 
Information 

 

 
 Id Level of detail Type Actor Priority 

REQ-RE-08 System FUNC Dynamic 
Orchestrator 

MAN 

Name Integration with the Dynamic Orchestrator 

Description The Realization Engine should provide native support for Dynamic 
Orchestrator configuration upon deployment of an application 
component. 

Additional 
Information 

This involves sending information about the application component and 
service level objectives to the dynamic orchestrator. 

 
 Id Level of detail Type Actor Priority 

REQ-RE-09 System FUNC - MAN 

Name Local Timeseries Metric Storage 

Description The Realization Engine should also provide optional support for local time-
series data for cases where it is deployed without the Triple Monitoring 
Engine.  

Additional 
Information 

This de-couples the Realization Engine from the Triple Monitoring Engine, 
enabling it to optionally be used in a stand-alone mode. 

 
 Id Level of detail Type Actor Priority 

REQ-RE-10 System FUNC Application 
Engineer 

MAN 

Name BigDataStack Pilot Support 
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Description The Realization Engine should support sufficient operations out-of-the-box 
to enable deployment and management of the BigDataStack Pilots  

Additional 
Information 

 

 

6.3. Modular Object Design  
To meet the above requirements (particularly REQ-RE-01, REQ-RE-02 and REQ-RE-03) as well 
as to tackle the second limitation discussed in Section 6.1, how the user application was 
modelled, needed to be revised.  The core of this revision was the transition from a user 
application being considered a single atomic unit to an application being instead seen as a 
grouping of interconnected components that can have actions performed upon them. This 
enables more granular tracking and alterations to be made to a user application. At the 
same time, we also added explicit modelling of supporting data structures to hold 
information linked to an application component, such as exported metrics, resource 
templates and service level objectives.  
 
The following figure illustrates the new conceptual application model used by the 
Realization Engine. In particular, under this model, the user account or ‘owner’ owns one or 
more applications and can also define metrics. A single application has a state, zero or more 
object (templates) representing the different components of the application, zero or more 
operation sequences representing actions that can be performed for the application, and a 
series of events generated about the application. An object template (application 
component) can be instantiated multiple times, producing object instances. Object 
instances may have an associated resource template describing the resources assigned to 
that object. An object instance contains a definition of an underlying Kubernetes or 
OpenShift object that contains the deployment information. Operation sequences represent 
actions to perform on the application and contain multiple atomic operations. An operation 
targets either an object template or instance, performing either some alteration or 
deployment action upon it. Service level objectives can be attached to an object instance, 
which track a metric exported by or about that object.  
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Figure 6: Realization Engine Application Model 

 
In the remainder of this section we summarize each of the main objects/classes that the 
Realization Engine uses internally to model a user application.   
 

6.3.1. (BigDataStack) Application 
The Application class represents at a high-level 
the concept of a user application. A user 
application has an owner (a 
Kubernetes/OpenShift user), a 
namespace/project (the Kubernetes 
namespace or OpenShift project that the 
application will be deployed to) and an 
identifier (appID). Together, these three pieces 
of information uniquely identify the 
application. An application also has zero or 
more types associated to it. These types specify 
information about how components within 
that application should be processed, typically 
during first registration. For example, the 
‘inferMissingValues’ type tells the Realization Engine to check that all application metadata 
is specified within a component during registration, and if not to add it. Finally, an 
application also has a name and a description associated to it. These are used for 
visualisation within the Realization Engine graphical user interface.  
 

6.3.2. (BigDataStack) Object 
A BigDataStack Object is the structure that the Realization Engine uses to represent a single 
component within a user application. To aid in compatibility with both Kubernetes and 
OpenShift, a BigDataStack Object has a 1-to-1 relationship with an underlying Kubernetes or 
OpenShift object, such as a Deployment Config, Job, Service, Volume Claim, etc. The 
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differences between a BigDataStack Object 
and one of these underlying objects are 
two-fold. First, a BigDataStack Object can be 
either a Template or an Instance. When a 
BigDataStack Object is first registered it is 
stored as a Template. Instances can then be 
spawned from stored templates (via the 
Instantiate Operation discussed later), 
enabling a single template to be reused to 
create multiple instances. It is also worth 
noting that a template can be stored in an 
incomplete form, and then be modified 
during instantiation to fill in missing 
information, enabling customisation at 
deploy-time. The second main difference is 
that as multiple instances of a template can 
exist at one time, each BigDataStack Object has an instance number that is needed to 
uniquely identify an instance. 

In terms of fields comprising a BigDataStack Object, each object contains the secondary keys 
owner, namespace and appID, connecting that object to a user application. To uniquely 
identify an individual object within an application, an objectID (that uniquely identifies the 
template) and instance number are used (where the template is instance 0). Additionally, a 
BigDataStack Object has a type, which corresponds to the underlying type of the Kubernetes 
or OpenShift object, a status which represents the aggregate state of the underlying 
instances and finally a yamlSource field, that contains the raw source for the underlying type 
of the Kubernetes or OpenShift object. 

  

6.3.3. (BigDataStack) Operation 
A BigDataStack Operation is a representation 
of an ‘action’ that can be performed on a 
BigDataStack Object. For example, spawning 
an instance from an object template is an 
(Instantiate) operation. Similarly, deploying an 
object instance onto a cluster is an (Apply) 
operation. The Realization Engine defines a set 
of standard operations that can be performed 
on any BigDataStack Object. It is through these 
operations that users (or programmatic orchestrators) can deploy or alter their applications. 

A BigDataStack Operation is mapped to a (java) class within the Realization Engine that 
contains the logic for executing that operation. An operation always targets an object, and 
hence requires an objectID as a target, although additional parameters may be provided 
depending on the implementation. For example, the ExecuteCMD operation (which 
executes one or more commands on one or more containers) requires an ‘instancelookup’ 
string, which defines the matching criteria to determine which instances of the specified 
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object should be targeted. In cases where multiple operations are grouped together into an 
operation sequence (see the next section), then the state of each operation will be recorded 
an updated. An operation can be in the following states: ‘NotStarted’, ‘InProgress’, 
‘Completed’ or ‘Failed’. The currently supported operations within the Realization Engine 
are summarized later in Section 6.7. 

 

6.3.4. (BigDataStack) Operation Sequences 
A BigDataStack Operation Sequence, as its name suggests, is a sequence of BigDataStack 
Operations. The goal of an Operation Sequence is to provide a way to group atomic 
Operations together, enabling the formation of more complex higher-level actions that the 
user may wish to perform. For example, a common deployment pattern is comprised of 
‘Instantiate’ (create a new instance of an object), ‘SetSequenceParameters’ (that sets 
parameters within the new object instance), and ‘Apply’ (which creates the object instance 
on the cloud/cluster). However, for more complex applications, an operation sequence may 
contain 10’s to 100’s of individual operations. For instance, for the ATOSWL Grocery 
Recommendation Pilot, an operation sequence exists to deploy that application from first 
principles, which is comprised of 46 operations.  

Like a BigDataStack Object, an Operation 
Sequence can be either a template or an 
instance. When the user registers a new 
operation sequence it is stored as a template. 
When the user triggers that operation 
sequence, an instance of that sequence is 
spawned, and then executed in a separate 
container. An operation sequence will process 
the operations contained within in sequential 
order.  The ‘mode’ field of an operation 
sequence defines the behaviour of the 
processing in the case of sequence restarts or 
failures. An operation sequence can be run in 
the following modes:  

• Run: Executes all operations regardless 
of state, will exit on an operation 
failure. 

• Continue: Will execute all operations 
that are not in ‘Completed’ state already. This enables an operation sequence to be 
restarted in the event of a transient failure.  

• RunIgnoreFailures: Will execute all operations regardless of state and will still 
continue to the next operation even if a failure is detected. 

Regarding the internal representation of a BigDataStack Operation Sequence, each 
sequence contains the secondary keys: owner, namespace and appID, linking the sequence 
to an application. A sequence is uniquely identified within an application by its sequenceID 
and instance number (where the template is instance 0). A sequence has both a name and 
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description, which are used for display within the Realization Engine graphical user 
interface. Finally, the mode field defines the mode of operations, the parameters field is a 
<key,value> mapping that contains parameters that can be used to customise objects 
created or used by the sequence, and the operations field specifies the operations to 
perform. 

 

6.3.5. (BigDataStack) Events 
A BigDataStack Event represents a notification of some underlying change relating to an 
application. An event may be generated for a variety of reasons, such as the user registering 
a new application, a state change in a component detected by OpenShift, operation 
completion, or a quality of service violation, among others. The goal of a BigDataStack Event 
is to provide a standardised format for reporting application changes that can both be 
displayed to the user in an informative manner, while also being a functional trigger that can 
be used for automated orchestration.  

Events are keyed to a particular application (i.e. have 
the secondary keys owner, namespace and appID). 
Most events will reference a particular object 
instance that the event is about (defined by objectID 
and instance). The event itself then has a number 
(eventNo), to uniquely identify that event for the 
application.  For the purposes of display, an event 
has a title and description. Finally, a type field 
specifies the type of event (which is usually used to 
specify what caused the event to be created) and a 
severity level. 

BigDataStack events are most commonly generated 
by the Realization Engine itself, as it makes changes 
to the user’s application and observes run-time state 
changes in that application. However, other 
components can create new events via an API 
endpoint. Events are persistently stored within the 
Realization Engine. Additionally, if enabled, events can be pushed to a RabbitMQ mailbox 
that other services can subscribe to in cases where push notification of application changes 
is desirable. 

 

6.3.6. (BigDataStack) Metric 
User applications and other services within the 
BigDataStack ecosystem export metrics that 
provide valuable run-time information about 
user applications and the cluster itself. A 
BigDataStack metric is a high-level description 
of the properties of such a metric. Note that a 
metric definition here only represents the 
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concept of the metric, it does not directly refer to a concrete time-series being generated by 
an object. A BigDataStack Metric has two main uses within the Realization Engine, namely: 
1) BigDataStack Metrics and BigDataStack Objects are linked together within Service Level 
Objectives (see Section 6.3.7); and 2) the details of the metric are used for display within the 
Realization Engine graphical user interface. 

Metrics are high-level constructs and as such are not directly linked to an application, but 
rather only to a particular user that registered them. A metric is uniquely identified by its 
name. It also contains a display summary that explains what the metric measures, in 
addition to a display unit. A metric definition also has functional information about that 
metric that is useful when performing comparisons with that metric. In particular, the 
metric definition provides valid bounds for the metric value (maximumValue and 
minimumValue), along with a reference to the (java) class that can be used to parse such 
values (metricClassname). A higherIsBetter field is also included, indicating whether higher 
or lower values are typically seen as desirable for this metric.         

 

6.3.7. (BigDataStack) Service Level Objective 
To enable down-stream monitoring of a user’s 
application for quality of service failures, as well as 
to enable subsequent automated orchestration to 
rectify such failures, the user needs to have a way 
to define what quality of service means for their 
application. This is achieved via BigDataStack 
Service Level Objective (SLO) definitions. In effect, 
a Service Level Objective connects a BigDataStack 
Object (the application component to track) and a 
BigDataStack Metric (what to track about the 
component). The SLO definition then sets a target 
value or threshold to compare against (value) 
along with a type of comparison to perform (e.g. 
‘lessThan’). To enable users to set hard targets that 
must be met, as well as softer targets that should 
be met if possible, each SLO specifies whether it is 
a requirement (hard target) or not, along with how 
severe a failure it is if the SLO is not met. 

SLOs are primarily used by the Quality of Service 
(QoS) Evaluation component of BigDataStack, which is responsible for monitoring the status 
of each SLO. Some SLOs are also used by ADS-Ranking to help in validating different 
resource templates for a user application, i.e. to estimate whether it is likely that a 
deployment with a fixed set of resources will meet the SLOs set by the user (see Section 
8.5).  
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6.3.8. (BigDataStack) Resource Template 
A Resource Template represents a set of resources 
to be allocated to a BigDataStack Object from the 
cluster. When deploying a BigDataStack Object, it is 
good practice to include a Resource Template, such 
that the cluster knows what the object needs to 
function, reducing the risk that the component will 
fail due to a lack of resources later on. Resource 
capacity can be specified either in terms of a 
request (the minimum amount of the resource 
needed for the object to function) and/or a limit 
(the maximum amount of the resource that the 
object would like). When considering resources, 
there are three resource types of interest: CPU, 
Memory and GPUs. CPU capacity represents the 
number of compute cores that the object has 
available to it. Memory capacity is the amount of 
RAM available to the object. GPU capacity is simply 
the number of GPU cards assigned to the object5. 
As a work-around for the current limitations of in-built GPU scheduling within Kubernetes 
and OpenShift, the resource template also contains a node selector field. This is useful in 
cases where the underlying infrastructure uses homogeneous GPU configurations (i.e. one 
physical compute node only contains one type of GPU) with appropriate labels, effectively 
enabling the GPU type to be set by forcing the scheduler to place the object on a particular 
node type.  

 

6.3.9. (BigDataStack) Application State 
As an optional feature, it is possible for the user to 
define custom states for their application along 
with criteria that must be met for the application 
to be considered as in those states. In a simple 
case, the user might define a state ‘Services OK’, 
where the criteria to be met is that all of the 
application components are in a ‘Running’ state. 
This can be useful to an application engineer or 
other user maintaining the application, as they can 
easily get a view on whether the application is 
functioning correctly. A more complex application 
of state definitions would be to encode all possible 
states that an application could be in, and then 

                                                 
5 GPU support in OpenShift and Kubernetes clusters is still in beta, and hence is not 
currently fully featured. In the future it would be desirable to be able to specify GPU types 
as well as share GPUs among multiple objects, but this is not currently possible. 
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use those states as triggers for automated orchestration. 

An application state has an identifier that uniquely 
identifies it (appStateID), along with a name (for 
display to the user). For the purposes of 
identifying whether the application is in a 
particular state, a list of application conditions are 
specified. An application condition can check 
either the state of an object or the state of an 
operation sequence, dependant on the 
information specified. If one or more objectIDs are 
specified, the condition will return true if there are 
at least the target number of instances of each 
object with the specified state. Meanwhile, if the 
sequenceID is specified, it will return true if the specified sequence is in the target state and 
not in any of the other states as listed within the ‘notInStates’ field of the condition. As well 
as the conditions, the application state can also define a separate ‘notInStates’ field, which 
enables checking whether the application is currently in any other of a list of application 
states. This is useful if the user wants to stop an application from being in multiple states 
simultaneously. 

Finally, the application state can also contain a list of operation sequence identifiers. This is 
such that the user can set particular actions to become available depending on the state of 
the application. If the sequence identifier list exists, the Realization Engine will filter the 
available list of operation sequences shown to the user based on the current application 
state.   

 

6.4. Updated Playbook Formatting 
As the way that the underlying application is modelled has changed, this in turn mandated 
associated changes to the format of the BigDataStack playbook that it ingests (see REQ-RE-
01). A BigDataStack playbook represents a single application, and should be able to provide 
all of the needed information about that application (although some information can be 
omitted and then added later). As such, the updated format playbook is structured into the 
different modular objects specified above. In particular, the BigDataStack Application data is 
specified at the top, followed by lists of related objects (BigDataStack Objects, BigDataStack 
Metrics, BigDataStack Service Level Objectives, BigDataStack Operation Sequences and 
BigDataStack Application States), as illustrated in Figure 7. 
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Figure 7: Updated BigDataStack Playbook Format 

 

6.5. Realization Engine Architecture 
Having discussed the internal modelling that the Realization Engine uses to represent the 
user application and associated information, we next describe the overall architecture of the 
Realization Engine itself. The Realization Engine is implemented as a series of containerized 
services, with distinct roles and functionalities designed to meet the requirements discussed 
in Section 6.2. Figure 8 provides an overview of the different containerized services within 
the Realization Engine along with the communication flows between those services. The 
green boxes denote the core containerized services provided by the Realization Engine. 
Orange boxes indicate off-the-shelf data-stores or data exchange services. Meanwhile blue 
boxes indicate other BigDataStack services used by the Realization Engine.  The role of each 
of the main services (green boxes) are as follows: 

• Realization Engine (and Application API): This is a containerized service that houses 
the main application management logic. It also exposes the Realization Engine API 
that provides other components with access to user application states and actions 
(REQ-RE-04), as well as enabling the registration of new applications by the Data 
Toolkit (REQ-RE-01). 

• Realization UI: This is a graphical user interface exposed by the Realization Engine 
that enables users to view the state of their applications, as well as trigger actions 
for them (REQ-RE-05). 
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• Cluster Monitoring: This component is responsible for synchronizing the state of the 
underlying Kubernetes/OpenShift objects running on the cluster with their 
associated BigDataStack Object definitions stored in the State DB. 

• Resource Monitoring: This component acts as a bridge between OpenShift 
Monitoring (a built-in set of services to OpenShift that track node and pod-level 
resource usage) and the Realization Engine. This enables the Realization Engine to 
access live CPU and Memory usage by the application components. 

• Cost Estimation: The cost estimation component, as its name suggests, generates 
estimated costs (in US dollars) for the different application components. By doing so, 
it enables service level objectives such as cost per hour or total cost to be evaluated. 

• Log Search: This component hosts a search engine that indexes the logs of each 
running container within the user application and provides custom search 
functionality for those logs. 

The other main component of the Realization Engine is the Operation Sequence (shown as a 
red box in Figure 8). Previously in Section 6.3.4 we introduced the idea of an operation 
sequence as a representation of a high-level ‘action’ that the user could trigger for their 
application, which was comprised of a series of atomic operations. When one of these 
operation sequences is triggered (e.g. via API call to the Realization Engine), a new 
temporary containerized service will be launched that performs the operation sequence. 
Internally, the operations called within that sequence may then interact with other 
BigDataStack services to obtain needed functionalities. For example, ADS-Ranking may be 
called to produce a Resource Template for a BigDataStack Object (REQ-RE-06), ADS-Deploy 
may be called to deploy a BigDataStack Object (REQ-RE-07), and the Dynamic Orchestrator 
may be called to register a new BigDataStack Object to be managed (REQ-RE-08). In the 
following section we describe each of the BigDataStack services in more detail, while in 
Section 6.7 we describe the operations that can be included within an operation sequence 
(high-level action).  

 
Figure 8: Realization Engine Architecture 
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6.6. Containerized Services  
In this section we describe the main containerized services within the Realization Engine in 
more detail. In particular, we describe: the Realization Engine and Application API; the 
Realization UI; Cluster Monitoring; and the Operation Sequence services. Information about 
the Resource Monitoring and Cost Estimation components can be found in D5.3 (as they 
were developed as part of the Application Dimensioning Workbench and then later moved 
to the Realization Engine).  
 

6.6.1. Realization Engine and Application API 
The Realization Engine (and associated API) containerised service is the core of the suite of 
services that comprised the Realization Engine as a whole. This service is responsible for 
registering new user applications, updating or adding new objects to those applications, 
performing actions on those applications (or at least launching a separate service to do so), 
providing access on-demand to application information and state, as well as providing in 
some cases short-cuts for accessing information from dependant services (e.g. application 
cost). Internally, the Realization Engine is a Java-based program compiled as a Jar. The core 
of this program the Manager class that contains the logic for all of the responsibilities listed 
above. To achieve this, the Manager maintains a wide array of configured clients, enabling it 
to both send and receive information about any managed application, access information 
about the cluster itself, create/delete objects on the cluster, send/receive events, as well as 
access time-series data stored in the local Prometheus metric data store. The structure of 
these clients is shown in Figure 9. Of note is that it is this wide availability of information in a 
central location that makes the Realization Engine a powerful tool, as it effectively makes 
the Realization Engine a ‘one-stop-shop’ for all of the distributed and disparate information 
about the user’s application.  
 

 
Figure 9: Realization Engine Manager Architecture 



 
 Project No 779747 (BigDataStack) 
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3 
 Date: 30.10.2020 
 Dissemination Level: PU 

 

 page 49 of 116 bigdatastack.eu 

 
On initialization, the Realization Engine container instantiates a new instance of Manager, 
loading relevant credentials from a file, and performs a check that the minimum required 
services for the Realization Engine to function are running and accessible, i.e. a copy of the 
Application State Database, the OpenShift API, and the local Prometheus timeseries 
database. Assuming this succeeds, the container will then start a Jetty webserver and hosts 
a set of REST API endpoints that exposes the functionality of Manager to other services. In 
particular, the API endpoints exposed are listed below. Within an endpoint, values in {} 
indicate a parameter, e.g. {owner} should be replaced with the owner to target. HTTP POST 
endpoints require an appropriate object to be included in the message body (if not 
otherwise specified in JSON format): 
 
Category HTTP 

Request 
Type 

Endpoint Return Type 

Register 
Application 
Model (YAML 
Format) 

POST /registeryaml/playbook/{owner}/{namespace} boolean 
POST /registeryaml/playbook boolean 
POST /registeryaml/application boolean 
POST /registeryaml/object boolean 
POST /registeryaml/slo boolean 
POST /registeryaml/metric boolean 
POST /registeryaml/namespace boolean 
POST /registeryaml/operationSequence boolean 

Register 
Application 
Model (JSON 
Format) 

POST /registerjson/playbook/{owner}/{namespace} boolean 
POST /registerjson/playbook boolean 
POST /registerjson/application boolean 
POST /registerjson/object boolean 
POST /registerjson/slo boolean 
POST /registerjson/metric boolean 
POST /registerjson/namespace boolean 
POST /registerjson/operationSequence boolean 

Retrieve User 
Applications 

GET /list/{owner} List<BigDataStack 
Application> 

GET /list/{owner}/apps List<BigDataStack 
Application> 

Retrieve Object 
Templates 

GET /list/{owner}/objectTemplates  List<BigDataStack Object> 
GET /list/{owner}/{appID}/objectTemplates List<BigDataStack Object> 
GET /get/{owner}/{appID}/objects/{objectID}/template BigDataStack Object 

Retrieve Object 
Instances 

GET /list/{owner}/objects List<BigDataStack Object> 
GET /list/{owner}/{appID}/objects List<BigDataStack Object> 
GET /list/{owner}/{appID}/objects/{objectID} List<BigDataStack Object> 
GET /get/{owner}/{appID}/objects/{objectID}/instance/{instance} BigDataStack Object 

Retrieve 
Sequence 
Templates 

GET /list/{owner}/{appID}/sequenceTemplates List<BigDataStack 
Operation Sequence> 

GET /get/{owner}/{appID}/sequence/{sequenceID}/template BigDataStack Operation 
Sequence 

Retrieve 
Sequence 
Instances 

GET /list/{owner}/{appID}/sequences List<BigDataStack 
Operation Sequence> 

GET /list/{owner}/{appID}/sequence/{sequenceID} List<BigDataStack 
Operation Sequence> 

GET /get/{owner}/{appID}/sequence/{sequenceID}/instance/{instance} BigDataStack Operation 
Sequence 

Retrieve Pod 
Statuses 

GET /list/{owner}/{appID}/objects/{objectID}/pods List<BigDataStack Pod 
Status> 

Retrieve Service 
Level Objectives 

GET /list/{owner}/{appID}/objects/{objectID}/slos/{metricName} List<BigDataStack Service 
Level Objective> 

GET /list/{owner}/{appID}/objects/{objectID}/instance/{instance}/slos/{metricName} List<BigDataStack Service 
Level Objective> 

Retrieve 
Metrics 

GET /list/{owner}/metrics List<BigDataStack Metric> 
GET /get/{owner}/metrics/{metricName} BigDataStack Metric 

Retrieve Metric 
Values 

GET /list/{owner}/{appID}/metrics/{metricName} List<BigDataStack Metric 
Value> 

GET /list/{owner}/{appID}/metrics/{metricName}/{objectID} List<BigDataStack Metric 
Value> 

Retrieve Events 
for Application 

GET /list/{owner}/{appID}/events List<BigDataStack Event> 
GET /list/{owner}/{appID}/events/{objectID} List<BigDataStack Event> 

Retrieve Events 
for a User 

GET /list/{owner}/events List<BigDataStack Event> 
GET /list/{owner}/events/all List<BigDataStack Event> 
GET /list/{owner}/events/error List<BigDataStack Event> 
GET /list/{owner}/events/alert List<BigDataStack Event> 
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GET /list/{owner}/events/info List<BigDataStack Event> 
GET /list/{owner}/events/warning List<BigDataStack Event> 
GET /list/{owner}/events/all/{type} List<BigDataStack Event> 
GET /list/{owner}/events/error/{type} List<BigDataStack Event> 
GET /list/{owner}/events/alert/{type} List<BigDataStack Event> 
GET /list/{owner}/events/info/{type} List<BigDataStack Event> 
GET /list/{owner}/events/warning/{type} List<BigDataStack Event> 

Retrieve the 
Most Recent K 
Events for a 
User 

GET /list/{owner}/kevents?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/all?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/error?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/alert?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/info?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/warning?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/all/{type}?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/error/{type}?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/alert/{type}?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/info/{type}?k={depth} List<BigDataStack Event> 
GET /list/{owner}/kevents/warning/{type}?k={depth} List<BigDataStack Event> 

Instant 
Prometheus 
Queries 

GET /query/{owner}/{appID}/{namespace}/metrics/{metricName}/{objectID} BigDataStack Metric Value 
GET /query/{owner}/{appID}/{namespace}/metrics/{metricName}/{objectID}/{instanceID} BigDataStack Metric Value 

Register New 
Event 

POST /event/{owner}/{appID}/{objectID} boolean 

Execute 
Operation 
Sequence 

GET /exe/{owner}/{appID}/{sequenceID}/start boolean 
POST /exe/{owner}/{appID}/{sequenceID}/start boolean 

 
 

6.6.2. Realization UI 
The Realization UI is an optional component that hosts a Web-based front-end, enabling 
configuration, deployment and monitoring of user applications by the application engineer 
or other users. In effect, it provides a user-friendly way for the application engineer to 
access the functionality of the Realization Engine. The Realization UI integrates with the 
larger BigDataStack offering through integration with the BigDataStack Visualisation Service 
(the primary UI for BigDataStack).  

The Realization UI is implemented using the Play Framework, which combines a Java/Scala 
back-end service with an HTML/JavaScript front-end. Communication between the backend 
and the user browser is handled via asynchronous websockets, enabling the back-end server 
to push updates to the user as they happen. The component is compiled and run within a 
container using the SBT build tool, and then exposed via a service and route in OpenShift. 

When the user first opens the Realization Engine UI, they will be asked for their OpenShift 
credentials as well as the project/namespace that they want to manage. This is such that 
any data requests or actions triggered are performed as that particular user, rather than as 
whomever launched the realization engine itself. Once the user has submitted their 
credentials, they are forwarded to the project/namespace overview screen, as shown in 
Figure 10. The namespace overview screen provides a high-level view of the state of the 
project/namespace itself, and is a useful way to determine if there is anything that urgently 
needs the application engineer’s attention. In particular, as can be seen from Figure 10, the 
overview screen provides visual indicators for the state of the Realization Engine itself in the 
first row (which can be important, as if a component like cluster monitoring was not active, 
then component states may not be up-to-date). Below that event statistics are provided, 
such that the user can see if there have been any warnings, errors or other alerts recently. If 
there were such alerts, the user can use the notifications side bar on the right-hand side to 
view those events. The final row at the bottom of the overview page gives statistics of the 
different types of BigDataStack Objects currently running on the cluster.  
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Figure 10: Realization UI Namespace Overview 

The second screen of the Realization UI is the Applications screen, which is shown in Figure 
11. This screen provides the user access to information about the different applications that 
are registered to the current namespace/project as well as allows them to trigger actions for 
those applications. The main part of the view is comprised of a list of registered applications 
along with descriptions for those applications. Clicking on an application will load 
information about that application. In particular four pieces of information are checked and 
displayed: 

• Available Operations and Sequences: This is the list of actions that the user can 
perform for the application. By default, a request is made to the Realization API to 
get all operation sequences registered for the application, which are then rendered 
within the UI, from where the user can choose to trigger them. However, if the user 
application contains application states and sequences associated to those states, 
then only the sequences that are valid for the active states will be shown. 

• External Endpoints: This renders a list of BigDataStack Objects of type ‘Route’, which 
represent external HTTP endpoints being exposed by the application, such as 
application specific user interfaces. 

• Active Deployments: This renders the list of currently running application 
components, along with their states. 

• Ended Deployments: This renders the list of ended (deleted or failed) application 
components. 

 



 
 Project No 779747 (BigDataStack) 
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3 
 Date: 30.10.2020 
 Dissemination Level: PU 

 

 page 52 of 116 bigdatastack.eu 

 
Figure 11: Realization UI Applications View 

The third screen within the UI is the Operation States screen, which is illustrated in Figure 
12. The goal of this screen is to provide the user more insights into the state of applications 
while actions are taking place. The user can either enter this screen via the tab at the top of 
the UI, or they will be sent here if they trigger the launch of a new operation sequence from 
the Applications screen. As with the Applications screen, the main view is comprised of a list 
of applications registered to the namespace/project. However, instead of focusing on 
application information, this view shows information about the different operation 
sequences triggered for each application. In particular, for an application, operation 
sequences are grouped by their current state (Running, Complete, Failed or Pending). When 
an operation sequence is clicked, it will expand to show a detailed state view for that 
sequence. In particular, the sequenceID and instance is shown at the top, with the creation 
time and stage information shown directly below. Below that is the sequence description 
followed by a breakdown of the sequence state. The left-hand pane lists the different 
BigDataStack Operations that comprise the sequence, along with their individual states, 
followed by information about any custom parameters that were set for the sequence. 
Meanwhile the right-hand pane lists any events that were generated by the current 
operation sequence, where events are colour coded. It is worth noting that the Operation 
States screen is dynamic, in that any operation sequence that is currently running will have 
its information automatically updated within the screen when a state change is detected. 
Furthermore, operation sequences in Running or Pending states can be cancelled by the 
user by pressing a button. 
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Figure 12: Realization UI Operation States View 

Through the use of the Realization UI, the user can check to see what application 
components are currently active, track changes as they are made to the application and 
intervene (cancel) that sequence if needed. They are also able to manually trigger new 
operation sequences (actions) as needed, as well as monitor application status and changes 
via the events system. This solves the first limitation that was discussed previously in Section 
6.1, as well as meeting REQ-RE-05. 
   

6.6.3. Cluster Monitoring 
One of the challenges when adding an additional modelling layer on-top of Kubernetes and 
OpenShift is how to enable state tracking (REQ-RE-03). When a BigDataStack Object is 
deployed onto a  Kubernetes/OpenShift cluster, associated Kubernetes/OpenShift objects 
are created (e.g. a DeploymentConfig or Job), which may then spawn further objects (e.g. 
Pods). To facilitate the effective management of BigDataStack Objects, the run-time state of 
those objects is needed, which is derived from the states of the underlying 
Kubernetes/OpenShift objects. Hence, a service is needed that generates states for each 
BigDataStack Object by analysing the states of the associated Kubernetes/OpenShift objects 
on the cluster. This is the role of the Cluster Monitoring service. 

Functionally, the cluster monitoring service periodically (every 10 seconds) looks up the list 
of BigDataStack Objects for which associated state information can be collected, i.e. any 
BigDataStack Object that will result in a Pod object being spawned on the cluster. It then 
sequentially processes each BigDataStack Object in turn, querying the cluster via the 
OpenShift API to determine the states of the associated Kubernetes/OpenShift objects, to 
determine the BigDataStack Object state. In most cases, this simply replicates the current 
states assigned to the Kubernetes/OpenShift object to the BigDataStack Object. However, as 
the cluster can be in states where a BigDataStack Object exists but no underlying 
Kubernetes/OpenShift object exists (e.g. because the underlying object was deleted or has 
not been created yet), additional logic exists to detect and set appropriate states for those 
scenarios. 
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Furthermore, the cluster monitoring service has a second function, which checks all Pod 
objects running in the managed namespace/project, maps them to BigDataStack Objects 
where possible, and saves their states in the Application State DB. The reason for this is two-
fold. First, it enables Pod states to be queried within the Realization Engine for a given 
BigDataStack Application or BigDataStack Object. Second, it enables changes in the 
underlying Pods connected to a BigDataStack Object to be detected, tracked and exposed 
(such as cases where a Pod is moved to a different physical host).  

The final function of the cluster monitoring service is as an event generator. Any changes 
detected by either function of the cluster monitoring service will result in a BigDataStack 
Event being generated and published. By default, these events will be saved in the 
Application State DB for the containing BigDataStack Application. Meanwhile, if a RabbitMQ 
instance is available, the Event will also be published as a push notification. In this way, 
application changes are exposed in such a way that they can be used as triggers for 
orchestration.  

 

6.6.4. Operation Sequence (Container Service) 
The Operation Sequence container service is a unique service within BigDataStack, in that it 
is not a continuous service. Instead, an operation sequence container is a temporary service 
that is solely concerned with processing a BigDataStack Operation Sequence that has been 
triggered (either by the application engineer or by some other orchestration service). The 
reason for this service is that as operation sequences become more complex, it can take 
multiple minutes to complete them and depending upon the operations involved, may 
require a non-negligible amount of resources. Hence, it is good practice to separate out the 
processing of an operation sequence from the rest of the platform. 

When an operation sequence is triggered within the Realization Engine, internally this first 
takes the operation sequence template and generates an instance from it, and stores that 
instance in the Application State DB. The Realization Engine then creates a new Pod object 
on the Kubernetes/OpenShift cluster to run the operation sequence service targeting the 
new instance. Once the Pod object has been created, the responsibility for that operation 
sequence is passed to the Pod, freeing the Realization Engine for other work. Once the new 
Pod reaches running state, it will first load the target BigDataStack Operation Sequence 
instance from the Application State DB. Subsequently, it will process each BigDataStack 
Operation within the sequence in order, reporting operation outcomes as BigDataStack 
Events, whilst simultaneously updating the state information housed within the 
BigDataStack Operation Sequence instance itself. Once the operation sequence is complete, 
the Pod exits, freeing those resources back into the cluster.  

In the next section, we describe the different BigDataStack Operations that can be included 
within a BigDataStack Operation Sequence. 

 

6.7. Generic BigDataStack Operations  
As described previously, within the Realization Engine the different ‘actions’ that the user 
can perform on an application are defined in terms of atomic BigDataStack Operations, 
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where multiple such operations can be combined into a BigDataStack Operation Sequence. 
A single BigDataStack Operation conceptionally performs a single alteration or deployment 
action on a BigDataStack Object. By combining different BigDataStack Operations together, 
the application engineer can encode complex processing logic into actions that can be 
executed with a single click.  

The Realization Engine provides several built-in operations that enable common tasks to be 
performed on the cluster. We can divide these into generic operations (Instantiate, 
SetParameters, GetParameterFromObjectLookup, Deploy, ExecuteCMD, Build, Delete, Scale, 
Wait and WaitFor) and BigDataStack-specific operations (RecommendResources, Apply, 
RegisterWithDynamicOrchestrator, Benchmark and GetResourceTemplates). Each operation 
loads a configuration mapping when first initialized, which is how an application engineer 
can customise an operation for their particular application. In the remainder of this section 
we will describe the generic set of operations. Information regarding BigDataStack-specific 
operations can be found alongside their associated component descriptions (e.g. 
information about RecommendResources that is part of ADS-Ranking can be found later in 
this deliverable in Section 8.4.2).  
 

6.7.1.  Instantiate 
The Instantiate operation is a core part of the deployment process of a user application. As 
discussed earlier, when the application engineer registers a component of their application, 
that component is stored as a BigDataStack Object template. However, it is not templates 
that are deployed, but instead instances produced from those templates. The instantiate 
operation is responsible for generating a BigDataStack Object instance from a BigDataStack 
Object template. 

When an Instantiate operation is started, it first loads the ‘objectID’ of the BigDataStack 
Object template that it targets. Assuming a valid template is found, it then clones that 
template and assigns it a unique instance number, and stores the new BigDataStack Object 
instance back to the Application State Database. The final step of the instantiate operation 
is to record a mapping between the new instance and a reference key, such that the new 
instance can be referred to by subsequent operations within a surrounding sequence. This is 
achieved by loading a user-defined key ‘defineInstanceRef’ from the operation configuration 
and then storing a mapping between that key and the <objectID, instance> pair that 
uniquely identifies the new object instance. An example operation configuration for an 
instantiate operation is shown below:   

 
Figure 13: Instantiate Operation Configuration 

6.7.2. SetParameters 
The SetParameters operation is a generic operation that enables placeholder values within a 
BigDataStack Object to be replaced with defined parameters. In particular, a BigDataStack 
Object is allowed to contain placeholder values, which are represented by a $key$ token, 
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where key can be any basic character string. The idea is that when an application engineer 
initially configures an operation sequence, there may be information needed that cannot be 
known until run-time, or that they want to be set at run-time. For example, if a component 
requires the IP address of a database that is deployed earlier in the operation sequence, 
then that cannot be known until the database starts. Otherwise, in the case of machine 
learning jobs, the application engineer may deliberately leave configurable such as 
hyperparameters as placeholders, such that they can easily launch multiple learning jobs 
with different parameter sets using the same operation sequence.   

SetParameters sources a set of key-value pairs to replace placeholders with from the 
parameters field in the containing operation sequence (see Section 6.3.4), which is a string 
to string map. In particular, for each key ‘k’ within that map, it performs a regular expression 
search for all instances of ‘$k$’ and replaces any matches with the associated value from the 
map. The parameter map itself can be populated in three main ways: 

• Automatic Application and Object Population: By default, the Realization Engine will 
insert key-value pairs detailing information about the application and target object 
into this mapping. This will typically provide values for: owner, namespace, appID, 
objectID and instance.  

• User Specified Defaults within the Operation Sequence: The operation sequence 
definition contains a parameters field where values can be set. 

• User Specified Values Provided at Trigger Time: When the user triggers an operation 
sequence, they can optionally provide a set of key-value pairs that are used to 
update the parameter map. 

• Via Operations: Other operations may update this parameter map as the operation 
sequence progresses. 

 
To enable SetParameters to only alter a specified BigDataStack Object, which may have 
been created via a previous Instantiate operation, the operation configuration for 
SetParameters requires an ‘instanceRef’ value, as illustrated below: 
 

 
Figure 14: Set Parameters Operation Configuration 

 

6.7.3.  GetParameterFromObjectLookup 
A relatively common scenario is where we need to set an application parameter at run-time 
through an object look-up. An example use-case here could be that we need to determine at 
run-time the name or IP address of a dependant Pod or Service, which could not have been 
known when the operation sequence was originally created. This is the role of the 
GetParameterFromObjectLookup operation. More precisely, this operation performs a 
query of OpenShift/Kubernetes objects and sets a parameter within the containing 
operation sequence based on the response (e.g. that can be used later by the 
SetParameters operation). 
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Figure 15: Get Parameters from Object Lookup Operation Configuration 

 

The GetParameterFromObjectLookup operation takes as input a key (‘parameter’) which is 
the parameter name that will be written into the parent operation sequence parameter 
map. To facilitate the search operation over the OpenShift/Kubernetes objects on the 
cluster, it also takes as input a ‘criteria’ string, which is the query, and a ‘multipleMatches’ 
field that specifies what to do if multiple objects are found that match the query. The query 
is formatted as follows: 

• <namespace/project to search>:<object type>:<object name java regular 
expression> 

The multiple matches criteria can then be any of the following: 

• SelectFirst: It will select the first object found as the parameter value 

• Allow: It will write an array containing all matched objects as the parameter value 

 

6.7.4.  Deploy 
Deploy is a simple operation that takes a BigDataStack Object instance and then creates the 
underlying OpenShift/Kubernetes Object on the cluster using the built-in OpenShift 
operation client within the Realization Engine.  This operation is rarely used in BigDataStack, 
as the ‘Apply’ operation (see Section 8.4.3) provides similar base functionality, while 
integrating with ADS-Deploy to provide additional functions. In practice, Deploy acts as a 
back-up option in scenarios where the Realization Engine is deployed stand-alone without 
ADS-Deploy. Deploy uses an ‘instanceRef’ field in its configuration to identify the 
BigDataStack Object instance to target for deployment. This is typically defined as part of 
the ‘Instantiate’ operation, although it can also be set through a 
GetParameterFromObjectLookup  operation. 
 

 
Figure 16: Deploy Operation Configuration 

 
 

6.7.5.  ExecuteCMD 
Within BigDataStack, some of the Pilot use-cases involve what we refer to as ‘tier 2’ 
applications. These are applications that require multiple consecutive steps to deploy, 
because they first need to deploy a management framework, and then once that is ready, 
launch the true application on-top of the management framework. Apache Spark is a 
common example of a tier 2 app, where the spark cluster first needs to be deployed 
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(comprised of master and worker nodes), and then once the spark cluster reports ready, the 
application is launched by submitting the application Jar to one of the master nodes. To 
make this type of applications possible, we need the ability to queue operations to perform 
the different steps, as provided by operation sequences. However, we also (like in the case 
of Spark) need the ability to execute commands on a container to complete the process (e.g. 
submitting a Spark Job Jar to a master node). This is the role of the ExecuteCMD operation. 
 

 
Figure 17: ExecuteCMD Operation Configuration 

The ExecuteCMD operation targets a BigDataStack Object instance, and then can run a 
command on one or more of any underlying Pods (and associated containers) connected to 
that object. To achieve this, it takes as input from its configuration an ‘objectID’ (identifying 
the BigDataStack Object instance and a ‘instanceLookupCriteria’ field, which can have the 
following values: 

• First: The commands will be run only on the first running Pod connected to the 
target object instance (if a Pod has multiple containers, then the command will be 
attempted on all containers). 

• All: The commands will be run on all running Pods connected to the target object 
instance. 

 
Commands to run are specified as a two-layer array via the ‘commands’ value in the 
configuration. The first layer array represents the different commands to run in sequence, 
while the second layer of the array contains the components of each command to run. 
 
 

6.7.6.  Build 
The Build command is a simple operation that enables the triggering of a container build 
process within OpenShift, using its source-to-image sub-system. It takes as input within its 
configuration a target BigDataStack Object, which must be a template and be of type 
BuildConfig, otherwise the operation will fail. The operation will then simply trigger the start 
of the build process. This operation is almost always followed by a WaitFor operation 
targeting the same object, i.e. waiting for the new image to be ready. 
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Figure 18: Build Operation Configuration 

 

6.7.7.  Delete 
The delete command enables a user to delete the underlying OpenShift/Kubernetes objects 
for one or more BigDataStack Object instances. Note that this does not delete the 
BigDataStack Object instance itself, which will remain with a ‘deleted’ state (this is to allows 
for persistent history for a BigDataStack Object). To identify the object to perform the 
deletion for it uses an ’instanceRef’ in the same way as the ‘Deploy’ operation. This is 
typically set via a previous GetParameterFromObjectLookup operation which performs a 
run-time look-up of the object(s) to delete. 
 

 
Figure 19: Delete Operation Configuration 

  

6.7.8.  Scale 
The Scale operation provides an in-built method for altering the replication factor for 
BigDataStack Object instances of type DeploymentConfig at run-time. In effect, this allows 
continuous applications a means to scale up and down in response to the environment (e.g. 
user traffic volumes). However, in general, it is not recommended to use this operation for 
Realization managed apps. Instead, scaling should be handled through the creation/deletion 
of instances for the BigDataStack Object template, rather than altering the replication factor 
of an existing instance. The reason for this is that the Realization Engine can track (and 
report events) for individual object instances, but cannot distinguish between different 
replicas for the same instance when reporting events, making data-driven orchestration 
more difficult. 
 

 
Figure 20: Scale Operation Configuration 

 
To identify the object(s) to scale, it uses an ’instanceRef’ in the same way as the ‘Deploy’ 
and ‘Delete’ operations. This is typically set via a previous GetParameterFromObjectLookup 
operation which performs a run-time look-up of the object(s) to scale. The other 
configuration provided to the Scale operation is ‘replication’, which sets the replication 
factor. This is a string, that can either contain a target replication number (e.g. “3”) or can 
be a relative adjustment (e.g. “+1” or “-1”). 
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6.7.9.  Wait 
The Wait operation simply inserts a pre-defined wait in seconds before starting the next 
operation. This can be used in cases where a fixed amount of time is needed for some 
internal application process to complete that is not exposed by the Pod state. The Wait 
operation takes only a single configuration value ‘seconds’, which is the number of seconds 
to wait for. 

 
Figure 21: Wait Operation Configuration 

 

6.7.10. WaitFor 
The WaitFor operation enables an application sequence to pause until a particular 
BigDataStack Object instance reaches a pre-defined state. This is often used where there are 
dependencies between application components, where one needs to be available (e.g. a 
database) before the next can start.  

 
Figure 22: WaitFor Operation Configuration 

To identify the object(s) to wait for, it uses an ’instanceRef’ in the same way as the ‘Deploy’ 
‘Scale’ and ‘Delete’ operations. WaitFor is commonly used during deployment operations, 
and hence the instanceRef is normally generated via the Instantiate operation. Additionally, 
a ‘waitForStatus’ value is provided in the configuration, that specifies the state that the 
BigDataStack Object instance must be in for the wait process to end. 
 
 

6.8. Summary 
In this section we have summarized why the Realization Engine was introduced as well as 
provide a technical overview for it. In particular, we have provided a summary of the 
modelling changes to the overall deployment and management of applications within 
BigDataStack, as well as summarized the services and operations provided by the Realization 
Engine. At the time of writing, the Realization Engine is fully functional and meets the 
requirements listed in Section 6.2, although it is under continuous further development. It is 
currently envisaged that the Realization Engine will undergo an open source release later in 
2020 as a stand-alone component.  
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7. Dynamic Orchestration 
The Dynamic Orchestrator (DO) works alongside the Triple Monitoring Engine (TME) to 
monitor and trigger the redeployment of BigDataStack applications during runtime to 
ensure they comply with their Service Level Objectives (SLOs.) The DO receives and manages 
monitoring requests when a new application or service is deployed into the BigDataStack 
platform, informing the TME and the Quality of Service (QoS) component what metrics and 
SLOs should be monitored. When any violation to these SLOs exist, the QoS informs the DO, 
and the DO is in charge of deciding what redeployment change is necessary, if any. 
Since month 18, we have worked on several improvements for the DO: 

- In M18, the DO decision mechanism was based on a Tabular Q-learning logic; this 
has been updated to use Deep Q-learning, in particular DQN (Mnih, 2013), allowing 
us to deal with a larger action space and a continuous state space, two 
improvements that make our Reinforcement Learning (RL) algorithm more flexible 
and adequate to deal with the complexity needed for orchestrating BigDataStack 
applications. 

- We have developed a novel Reinforcement Learning-based approach called 
Tutor4RL, which combines domain knowledge with machine learning for achieving a 
good initial performance, a common problem in RL and in particular for DQN. This is 
done through programmable functions – called guide functions - that guide the 
behavior of the agent in its initial steps and until the agent gathers sufficient 
experience to manage the application properly. 

- In Y3, we have introduced constrain functions, to supervise the behavior of the agent 
at every point, avoiding unnecessary and incorrect changes in the deployment of 
applications. This results in a more stable and robust behavior for the DO without 
sacrificing the agent’s learning capabilities. 

- In addition, in Y3 we have implemented and tested different guide and constrain 
functions that generally work for most applications, adjusting the general Tutor4RL 
framework to be able to manage changing action and state spaces, necessary to 
manage multiple BigDataStack applications with different metrics, SLOs and 
redeployment actions. 

- Finally, we have integrated the DO with the Data-as-a-Service layer of BigDataStack, 
which contains stateful components such as the Adaptable Distributed Storage (ADS) 
and the Complex Event Processing (CEP), for adapting these components dynamically 
during runtime as described in section 6.2.1. 

 

7.1. Requirements 
Modified requirements: 

 Id Level of detail Type Actor Priority 

REQ-DO-01 System FUNC Application 
Engineer, Data 
Engineer 

MAN 

Name Playbook Enrichment 
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Description The Dynamic Orchestrator shall ingest the monitoring request when an 
application or service is deployed and enrich its playbook with information 
about the QoS metrics and intervals to be considered by the Triple 
Monitoring to monitor the QoS during runtime. 

Additional 
Information 

N/A 

Table 3 - Requirement (1) for Dynamic Orchestrator 

 
 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC Application 
Engineer, Data 
Engineer 

MAN 

Name Runtime Re-deployment 

Description When an application or service is running, the Dynamic Orchestrator shall 
determine if a deployment change should be performed when there is a 
violation of an application requirement or Service Level Objective (SLO) 
and send a signal to the Realization Engine to trigger a change in the 
deployment to try to satisfy the requirements or SLOs. 

Additional 
Information 

The Triple Monitoring detects this violation and sends an alert to the 
Dynamic Orchestrator to start this process. 

Table 4 - Requirement (2) for Dynamic Orchestrator 

 Id Level of detail Type Actor Priority 

REQ-DO-04 System FUNC Application 
Engineer, Data 
Engineer 

MAN 

Name Resources Limits 

Description The orchestrator shall be able to retrieve the possible actions, or 
sequences, for each application through the Realization Engine, and use 
this information in its own decisions. 

Additional 
Information 

The complete list of deployment parameters might vary according to the 
application/service and its actual deployment.  

Table 5 - Requirement (3) for Dynamic Orchestrator 

 Id Level of detail Type Actor Priority 

REQ-DO-07 System FUNC Application 
Engineer 

DES 

Name Orchestration of Data-as-a-Service components 

Description The orchestrator will also orchestrate the redeployment of stateful 
components of the Data-as-a-Service layer, such as the Adaptable 
Distributed Storage and CEP components, for improving applications’ 
performance in terms of adaptable storage and replication of CEP queries. 
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Additional 
Information 

N/A 

Table 6 - Requirement (4) for Dynamic Orchestrator 

7.2. State-of-the-Art: RL for Applications’ Configuration 
There is extensive research in the fields related to the use of RL for applications and 
systems’ configuration. Natural Adaptive Video Streaming with Pensieve6 presents a system 
that generates adaptive bit rate (ABR) algorithms using RL. These algorithms are used for 
video streaming and must balance a variety of Quality of Experience (QoE) goals. This work 
successfully uses a variant of deep RL, A3C, to create algorithms that adapt to a wide range 
of environments and QoE. In Chameleon7, the performance of video analytics applications is 
optimized by performing automatic adaptation of its configurations. The application’s 
behavior is customized to the execution context by selecting different parameter 
configurations; the best parameter configuration is selected by a logic inspired by greedy hill 
climbing combined with periodical online profiling. However, these two works are centered 
around applications that use deep convolutional neural networks for video 
processing/streaming use cases, while in BigDataStack we aim to offer a flexible 
orchestration logic that can be applied to any kind of application. 
In addition, there are also different approaches for bootstrapping RL, obtaining a better 
performance from the first moment the agent begins to operate. A simple approach is to 
explore the state space randomly, but this approach is usually time-consuming and costly 
when the state/action space is large. The drawback of this approach has been reported by 
our previous study8 in the case of leveraging RL to automatically decide the configuration 
and deployment actions of a data processing pipeline in a cloud and edge environment. 
Another approach, is to gain experience via simulation. With enough computational 
resources we can easily produce lots of experience data in a short time, but it is difficult to 
ensure that the simulated experiences are realistic enough to reflect the actual situations in 
the observed system.  
Recently, there has been a new trend to leverage external knowledge to improve the 
exploration efficiency of RL agents. For example, in 9 and 10, prior knowledge like pre-trained 
                                                 
6 Mao, H., Netravali, R., & Alizadeh, M. (2017, August). Neural adaptive video 
streaming with pensieve. In Proceedings of the Conference of the ACM Special 
Interest Group on Data Communication (pp. 197-210). 
7 Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., & Stoica, I. (2018, August). 
Chameleon: scalable adaptation of video analytics. In Proceedings of the 2018 
Conference of the ACM Special Interest Group on Data Communication (pp. 253-
266). 
8 Argerich, M. F., Cheng, B., & Fürst, J. (2019, April). Reinforcement learning based 
orchestration for elastic services. In 2019 IEEE 5th World Forum on Internet of 
Things (WF-IoT) (pp. 352-357). IEEE. 
9 Moreno, D. L., Regueiro, C. V., Iglesias, R., & Barro, S. (2004). Using prior 
knowledge to improve reinforcement learning in mobile robotics. Proc. Towards 
Autonomous Robotics Systems. Univ. of Essex, UK. 
10 Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., ... & Osband, 
I. (2017). Deep q-learning from demonstrations. arXiv preprint arXiv:1704.03732. 
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models and policies are used to bootstrap the exploration phase of a RL agent. However, 
this type of prior knowledge still originates in previous training and is limited by the 
availability of such data.  
Instead of relying on any pre-trained model, we explore how to utilize a set of 
programmable knowledge functions to guide the exploration of a RL agent so that we can 
quickly bootstrap a RL agent to make effective decisions, even just after a few exploration 
steps. We call our method Tutor4RL.Unlike existing approaches, Tutor4RL requires not any 
previous training. Therefore, it is a more practical approach for the use of RF in real systems. 
To the best of our knowledge, Tutor4RL is the first to apply programmable knowledge 
functions into RL for improving the sample efficiency problem of RL. 
 
 

7.3. Design Specifications 
During the second phase of the project, we have Finalized the development of our new 
approach called Tutor4RL. Tutor4RL takes as input domain knowledge guidelines that are 
used to constraint, explore and learn from the environment in which the agent is deployed, 
while learning from its own experience the best actions to achieve its goal in different 
states. 

We have modified the RL framework by adding a component we call the Tutor. The tutor 
possesses external knowledge and helps the agent to improve its decisions, especially in the 
initial phase of learning when the agent is inexperienced. In each step, the tutor takes as 
input the state of the environment and outputs the action to take, in a similar way to the 
agent's policy. However, the tutor is implemented as a series of programmable functions 
that can be defined by domain experts and interacts with the agent during the training 
phase. We call these functions knowledge functions and they can be of two types: 

• Constrain functions: are programmable functions that constrain the selection of actions 
in a given state, “disabling” certain options that must not be taken by the agent. For 
example, if the developer of the application has decided a maximum budget for the 
application, even the application load is high and this could be fixed by adding more 
resources to the deployment, this should not be done if the budget of the user has 
already reached its maximum. 

• Guide functions: are programmable functions that express domain heuristics that the 
agent will use to guide its decisions, especially in moments of high uncertainty, e.g. start 
of the learning process or when an unseen state is given. Each guide function takes the 
current RL state and reward as the inputs and then outputs a vector to represent the 
weight of each preferred action according to the encoded domain knowledge. For 
example, a developer could create a guide function that detects the number of current 
users for an application and if the number is higher than a certain threshold, more 
resources might be deployed for the application. 
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Figure 23: High level vision of Tutor4RL 

The benefit coming from using Tutor4RL is twofold: 

• During training, the tutor enables a reasonable performance, opposed of the 
unreliable performance from an inexperienced agent, while generating experience 
for the agent's training. Furthermore, the experience generated by the tutor is 
important because it provides examples of good behaviour, as it already uses 
domain knowledge for its decisions. 

• The knowledge of the tutor does not need to be perfect or extensive. The tutor 
might have partial knowledge about the environment, i.e. know what should be 
done in certain cases only; or might not have a perfectly accurate knowledge about 
what actions should be taken for a given state. Instead, the tutor provides some 
“rules of thumb” the agent can follow during training, and based on experience, the 
agent can improve upon the decisions of the tutor, achieving a higher reward than it. 

The main functioning of Tutor4RL is as follows: 

1. Application developer (i.e., the domain expert) defines guide and constrain functions 
These functions encode domain knowledge of the developer that guide and 
constrain the RF agent during its initial stage. This is important for new applications 
and/or a new system execution context, where traditional RL would need to explore 
the state space randomly and thereby negatively impact QoS of the application. If 
the application has been deployed before, Tutor4RL can use the historical data from 
that previous deployment and encodes it as a guide function. 

2. The Triple Monitoring Engine and QoS Evaluation informs the Interpreter about the 
current system metrics and the SLO violations, respectively. 

3. These metrics are taken as input by the agent and the tutor and both output a vector 
with valuations for each action. 

The RL agent selects an action, from its policy or from the suggestions provided by the tutor, 
which should be executed by the Realization Engine and sends it. 
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7.3.1. Adaptable Distributed Storage and Complex Event Processing 
Interplay 
The Adaptable Distributed Storage and Complex Event Processing (CEP) components (as 
described in 4.2) will interact with the DO to scale in/out its resources. As a result, the 
storage can be re-configured automatically, moving data regions across its current nodes 
and scale in or out to be adapted under diverse workloads. And CEP sub-queries can be 
replicated to increase throughput and process a higher number of events per second if the 
system was overloaded with the previous configuration. To realize these redeployments, the 
DO monitors several metrics related to each of these components and triggers the changes 
in deployment when necessary via a request to the component.In the case of the Adaptable 
Distributed Storage, the re-configuration can be started by the Elasticity Manager, a 
subcomponent of the Adaptable Distributed Storage, or by the DO. The DO needs to 
consider that there is a second dynamic adaptation mechanism acting at the storage layer 
level. This second adaptation component (i.e. Elasticity Manager) will request the DO for 
more resources if needed; in fact, this has been specified as a requirement imposed on the 
Adaptable Distributed Storage (see REQ-ADS-06) by the DO. More specifically, the Adaptable 
Distributed Storage will notify information regarding pending redeployments of the storage, 
when the process of data reconfiguration starts and finishes, along with the current 
deployment of this layer.  

In the setting of Tutor4RL, the Adaptable Distributed Storage logic is seen as a Guide 
function, so it is used by the agent to improve its performance. This information helps the 
DO to determine in what cases the Adaptable Distributed Storage should be scaled up or 
down, first by observing the behaviour of the already implementing logic, and then 
repeating and potentially, improving these decisions thanks to having a broader picture of 
the application and system status. 

The communication with both, the Adaptable Distributed Storage and the CEP is 
implemented via REST API calls. These calls are structured as follows:  

1. Monitoring request: everytime a new CEP query or an ADS engine is launched, a new 
monitoring request is sent to the DO, with information about the SLOs and metrics to be 
monitored. 

2. Once the query or engine is running and a change is needed, a request for redeployment 
can be sent 
2.1. The ADS requests the DO to scale up, the DO will return “True” if resources allow it 

and update its internal state (learning step.) 
2.1.1. If resources do not allow this change, the DO will return False and flow 

finishes here.  
2.2. DO requests ADS/CEP to scale up/down, the component will return “True” if its 

state allows this change 
2.2.1. If the state does not allow this change, the component returns “False” and 

flow finishes here.  
2.2.2. If the request is to scale down and the component’s state allows this, the 

ADS/CEP will scale down and the flow finishes.  
3. The DO will request the Realization Engine (RE) to scale up the CEP/ADS. 
4. The RE will execute the deployment change.  
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More information about the protocol between the DO and the Data-as-a-Service 
components can be found at the D4.3. 

 

7.3.2. CEP Integration with the Infrastructure building block of 
BigDataStack 
 

The CEP interacts with the mechanisms described in Section 6.4.1 of D4.3 to integrate with 
the infrastructure building block. The CEP driver implements the methods needed by the 
infrastructe (Section 6.5.2 of D4.3): canYouScale, infrastructureFinishedScaling and 
infrastructureFinishedScalingDown. 

 

7.3.3. canYouScale method 
The canYouScale method sends a can_scale action to the orchestrator indicating the query 
and subquery to be scaled and checks if the subquery is registered and deployed in the 
system. If the subquery is not registered, the orchestrator sends back a response of type 
SQ_NOT_ABLE_TO_SCALE. If the subquery is deployed, checks if the subquery is stateful and 
if the tuples are not grouped by some fields, the subquery cannot be scaled and the 
SQ_NOT_ABLE_TO_SCALE message is sent Back. Otherwise, if the query is stateless or is 
stateful and the tuples are grouped in different windows, the subquery can be scaled and 
the response message of type SQ_CAN_BE_SCALED is sent back.  

 

7.3.4. infrastructureFinishedScaling method 
The infrastructureFinishedScaling method sends a scale_out action to the orchestrator 
indicating the pod where the new subquery instance is going to be deployed, the query, 
subquery and subquery instance to scale out. Once the orchestrator receives all this 
information starts the scale out process.s 

 

7.3.5. infrastructureFinishedScalingDown method  
The infrastructureFinishedScalingDown method is called at least three times by the Dynamic 
Orchestrator (DO) component (WP3). The can_scale_down action is sent to the orchestrator 
to check if the subquery instance to be scaled down is deployed in the system and if there is 
more than one instance of this subquery  running. A message is returned to the DO with the 
answer, YES or NO.  

 

The second time the DO calls this method, the orchestrator replies with a WAIT message, 
specifying the amount of seconds to wait (30 seconds) and the pod where the subquery 
removed was running. Then, the DO waits in order to check if the scale_down process has 
finished. Next time the DO calls this method, a message with a YES or WAIT will be send 
back. If the answer is YES, the DO can remove the pod where the subquery instance was 
running in order to save resources. 
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7.3.6. Interplay with the Realization Engine 
To enable applications to be registered with BigDataStack to be managed by the Dynamic 
Orchestrator (DO), the DO needs to integrate with the Realization Engine to obtain 
information about the application (components) to manage. This is achieved via a 
BigDataStack-specific Operation (see Section 6.3.3), ‘RegisterWithDynamicOrchestrator’ that 
can be included within an application deployment. In particular, once an application 
component, represented by a BigDataStack Object instance has been launched (either by 
the Deploy or Apply operations) and has reached running state, this new operation can be 
called, which will pass information about the component and any associated service level 
objectives to the DO, such that data-driven orchestration can commence. 

 
Figure 24: Register with Dynamic Orchestrator Operation Configuration 

To identify the target object to orchestrate, it uses an ’instanceRef’ in the same way as the 
‘Deploy’, ‘Scale’ and ‘Delete’ operations. RegisterWithDynamicOrchestrator is normally used 
during deployment operations, and hence the instanceRef is normally generated via the 
Instantiate operation. Internally, the RegisterWithDynamicOrchestrator operation queries 
the Application State Database to collect up-to-date information about the target 
BigDataStack Object instance, as well as connected information about service level 
objectives, resource templates and exported metrics. This is then sent via REST API call to 
the DO, which starts its orchestration process. There is also a related operation 
‘EndDynamicOrchestration’, that notifies the DO to stop orchestration for a BigDataStack 
Object instance. 

 

7.4. Implementation and Integration Highlights 
The DO has been fully designed and implemented to provide the following overall 
functionality: 

1. Every time a new application is launch, the Realization Engine (RE) sends a monitoring 
request to the DO. This request contains all the information necessary for the DO to 
track the application: application and object identifiers, metrics and SLOs to monitor 
and possible redeployment actions to execute for this application. 

2. The DO informs the Triple Monitoring Engine (TME) and QoS Evaluation (QoS) about 
the new application with details about the metrics and SLOs that need to be tracked. 

3. Periodically, the TME and QoS inform the DO about the current system metrics and 
the SLO violations if any, respectively. 

4. When all the metrics for a given application have been updated since their last 
processing, the DO converts them into states and rewards. The states represent the 
system status as a continuous vector of fixed length. The rewards indicate to the 
Reinforcement Learning agent if an executed action was “good” or “bad” in terms of 
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requirements and SLOs compliance (e.g. if the requirements and SLO violations 
disappeared after the execution of an action). 

5. At this point, the DO triggers a new step in the RL (Reinforcement Learning) agent. In 
this step, the state and reward are fed to the RL agent and the agent selects an 
action, from its policy or from the suggestions provided by the tutor, that should be 
executed by the RE. The actions are type of changes in the deployment such as 
change the number of replicas, change the number of vCPUs or change the vRAM 
assigned—note these are just some of the changes that are being considered, the full 
list of deployment changes still needs to be determined. The action to keep the 
current deployment, called “none” action, is valid for all applications. 

6. If the action is different to the “none” action, the DO requests this action to the RE. 
7. The process is repeated from step 3. 

For Tutor4RL, we have defined a set of guides and constrains that are used for all 
applications. These guides and constrains work for most applications and provide a starting 
behaviour for the DO, that will learn from the experience of orchestrating each application 
and will improve over time upon this default behaviour. 

7.5. Experimentation Outcomes 
In the first half of this project, we have implemented an early version of the DO using 
Tabular Q-learning and tested it in simulations of a streaming application in which the load 
of the application increases (see [44]) for a detailed description and evaluation of this 
prototype). This streaming application can find lost children based on the processing of 
camera data. It can be split in two components:  (1)  an  offline  module,  which  is  trained  
with pictures  of  the  child  in  a  server  and  (2)  an  online  module,  a face detection and 
matching service that is deployed in several devices  and  is  in  charge  of  finding  the  child 
(see [44]).  
 

 
Figure 25: Example of streaming analytics application 

We have shown that RL can be used efficiently (up to 25% better precision than a state-of-
the-art heuristics) to dynamically orchestrate such a data processing pipeline like the ones in 
BigDataStack. However, we noticed two issues with applying traditional RL:  

i. Bad performance during the “training phase” of the RL agent, and 
ii. Missing constrains to avoid clearly wrong actions.  
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Both issues are very relevant to BigDataStack: BigDataStack applications need to be ready 
from the start and the DO should ideally avoid clearly wrong actions.  We started to address 
both issues with Tutor4RL. 

Tutor4RL adds two features to traditional RL: Guide Functions and Constrain Functions. 
These functions enable the user to give some initial knowledge to the RL agent to direct its 
initial exploration.  

During the second phase of the project, we implemented a prototype of Tutor4RL with 
standard RL libraries in order to provide a fair comparison of it against other heavily used RL 
algorithms. Specifically, we have modified the library Keras-RL to implement a tutored Deep 
Q-Network (DQN) agent.  

An important question towards our model is when the tutor should decide for the agent and 
vice-versa. In a similar way on how Epsilon greedy exploration works, we defined Tau as the 
threshold parameter for the agent to control when it will use the suggested actions from the 
tutor instead of using its own. The initial value of Tau is a parameter of our model and the 
best value to initialize it depends on the use in which Tutor4RL is used. This parameter is 
linearly reduced while the agent gathers more experience and learns to take better 
decisions. 

To test Tutor4RL, we have used the library OpenAI gym [42], which provides several 
environments ready to be used with RL. As we are testing a DQN agent, we decided to use 
the Atari game Breakout [43] which is a complex use case in which we can observe how the 
agent performs in cases in which reward is sparse and episodes are long in time steps. This 
is a different use case than the one we are addressing in BigDataStack, but we have chosen 
it because it is heavily used in the RL literature, so it lets us compare Tutor4RL with the 
state-of-the-art in a straightforward manner.  

In Breakout, the state of the environment in each time step is the video games’ frame in 
pixels. The actions are four: no operation, fire (which throws the ball to start the game), left 
and right. The reward is the points achieved in the game, given each time a brick is broken. 

We implemented a simple guide function that encapsulates some basic knowledge about 
the game: the function takes as input each frame, searches for the ball and the position of 
the bar, and moves the bar to the left if the ball is to the left of the bar or to the right if the 
ball is on that side. If the ball is not seen, then the action chosen is “fire” to start the game. 

We have compared the functioning of Tutor4RL by also training a plain DQN agent for the 
same use case. The results can be seen in the plot below: 
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Figure 26: Comparison of performance between Tutor4RL and a plain DQN agent. 

As it is possible to see, from the initial steps the DQN agent with Tutor4RL manages to 
achieve a reasonably high reward while the plain DQN agent performs very poorly, because 
of its inexperience. As the agents perform more steps, the plain DQN agent catches up, but 
it’s not until step 1 million that it manages to achieve a similar reward to the tutored DQN 
agent. Tau is decreased in every step, starting with a value of 1 and reaching 0 in step 1.5 
million. It is important to note that after this step, the tutor is not used anymore but the 
agent keeps up with its high reward. 

In Y3, we completed the implementation of Tutor4RL for the DO. We have added the 
mechanisms for managing constrain functions, and a way to manage changing state and 
action spaces with the same Tutor. The latter is a requirement that we have noticed for the 
BigDataStack use case: each application can have a different state space, i.e. it can have 
different metrics and SLOs, as well as a different action space, i.e. different sequences or 
redeployment changes. However, we want the tutor to support all different applications, 
with guides and constrains that express rule of thumbs for applications’ deployment in the 
cloud. An example of this can be as simple as: “if no SLO is being violated, do not perform 
any change”, and this in fact, constitutes a guide for our agents. A constrain for example, is 
“if response time or latency are close to a maximum threshold, do not remove replicas of 
the process”. These are simple examples we have included in our current tutor and work in 
most cases for applications. The set of guides and constrains can be modified by a 
BigDataStack platform administrator. 

We have compared Tutor4RL performance against vanilla DQN in a scenario where the DO is 
in charge of controlling two metrics: cost per hour (which varies according to resources used 
by application) and response time. These are two opposite objectives: if we increase the use 
of resources, the response time decreases but the cost per hour increases, and if we 
decrease the use of resources, the opposite is true. However, the SLOs specify thresholds 
for each metric: cost per hour should be less or equal to $0.03 and response time should be 
less than 200ms.  

The DO must find the sweet spot that satisfies these two SLOs as long as the application 
allows it. In fact, it might happen that the application load is too high, and then there is no 
way of satisfying both SLOs, in these cases the DO behaviour will tend to find the 
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configuration that violates the SLOs proportionally less. However, we believe this are corner 
cases in which even a human might not be sure what to do and therefore we have not 
evaluated the DO’s performance in these situations. 

In Figure 27, we see the performance of the vanilla DQN agent (left) and the Tutor4RL agent 
(right) for managing this scenario with two SLOs. Note than on the images we have marked 
with horizontal lines the thresholds for SLOs and with a vertical line, the moment in which 
the guide functions from the Tutor are not used anymore, until that point the functions are 
used on and off with a diminishing frequency from 0.9 to 0. As we can see, the Tutor4RL 
agent performs better than the vanilla agent, reducing the amount of deployment changes 
performed and achieving a better satisfaction of SLOs as shown in Table 7. We still see that 
once the guides are completely abandoned, the agent commits some mistakes, but it can 
quickly correct its error. We can avoid this by adding constrains such as not changing the 
deployment configuration if no SLO is violated, but we wanted to show a case in which the 
agent is freer e in its actions and therefore show its learned behaviour better. 

 

SLO satisfaction Vanilla DQN Tutor4RL 

Response time (< 200ms) 82.37% 84.03% 

Cost per hour (< $0.03) 56.23% 95.75% 

Table 7 - SLO satisfaction for Vanilla DQN agent vs. Tutor4RL agent 
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Figure 27: DO performance to manage 2 SLOs: costPerHour < 0.03 and responseTime < 200  

On the figure above, Vanilla DQN is shown on the left, while Tutor4RL, with 2 guides and 1 constrain, is shown 
on the right. The horizontal blue dashed lines show the SLO threshold for the metrics and the pink dotted line 
show the moment in which guides are not used anymore. 

This has been achieved by using 2 guides and 1 constrain for the Tutor, showing the benefits 
of our approach. The guide (#1 and #2) and constrain (#3) functions are shown in Figure 28. 
In #1, we avoid unnecessary deployment changes if the reward is positive, i.e. no SLO is 
being violated. This has been implemented as a guide and will therefore stop being used 
when Tau equals to 0. #2 is another guide function and checks the response time, if it is less 
than 100ms (50% of the maximum threshold for the response time SLO), a replica might be 
removed. Function #3 is a constrain and will be always applied to the agent’s action vector. 
This function avoids the removal of a replica when response time is 80% of the maximum 
threshold. 
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Figure 28: Guide (#1 and #2) and constrain (#3) functions for DO. 

7.6. Next Steps 
Beyond BigDataStack, we plan to continue the improvement of the DO, by integrating it and 
testing it with FogFlow. This activity is currently under development and it will give us 
important insights about how generally applicable is Tutor4RL as well as the guide and 
constrain functions we have developed for BigDataStack.  
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8. ADS Ranking & Deploy 
The role of the ranking and deployment module of BigDataStack is to decide how to deploy 
the user’s application and then operationalize that deployment via a container orchestration 
platform (e.g. Kubernetes). Ranking and deployment is part of the application deployment 
back-bone that enables a user to get their application running on a hardware cluster. Prior 
to ranking and deployment, the user will have defined in a conceptual manner what their 
application is comprised of and how the different services within that application interact, 
forming a BigDataStack Playbook. This conceptual definition will have then been 
extrapolated into multiple deployment options, representing different ways that the 
application/services can be mapped onto compute resources. Finally, these options will 
have been benchmarked, providing estimated resource usage and quality of service 
information for each. Ranking and deployment takes these deployment options and 
associated benchmarking information as input, identifies the optimal deployment 
configuration based on needed resources, and also handles subsequent deployment on the 
cluster or cloud. 

As its name suggests, ranking and deployment is split into two distinct components, namely: 
ADS (Application and Data Services) Ranking and ADS (Application and Data Services) 
Deployment. ADS Ranking is responsible for taking the different deployment options and 
associated benchmarking information, and deciding which is the most suitable based on the 
user requirements and preferences. This has two uses within BigDataStack, namely:  to 
determine what compute resources to request for a user’s application when first deploying 
it; and to re-estimate compute resource needs in cases where a current deployment is 
predicted to miss one or more Service Level Objectives. ADS Ranking is also sometimes 
referred to as the Deployment Recommender Service, as it produces a recommended 
deployment configuration for the user. Meanwhile, ADS Deploy is responsible for taking the 
selected deployment option and using the configuration information contained within, to 
operationalize deployment of the user’s application on the cluster or cloud infrastructure. 

 

8.1. Changes Since D3.2 
Over the last year since the previous WP3 deliverable, there have been significant changes 
in how user application management within BigDataStack is handled. In particular, the 
introduction of the Realization Engine as a new suite of services that enable the user to 
more effectively define, configure and manage their applications altered the previous 
deployment flow. Previously, upon ingestion of a BigDataStack playbook, deployment was 
largely automated, with that playbook being fed in a serial manner through Pattern 
Generation, Benchmarking, ADS-Ranking (the Deployment Recommender Service) and 
finally to ADS-Deploy. This is no longer the case, instead BigDataStack playbooks now go 
through a registration process with the Realization Engine, where it is de-constructed into 
modular components that can be independently managed. The user can then trigger atomic 
operations or aggregate operation sequences, which represent ‘actions’ to perform on the 
user application. As such, resource recommendation via ADS-Ranking and the underlying 
deployment process via ADS-Deploy were re-built to function within the atomic operations 
‘RecommendResources’ and ‘Apply’, respectively. These operations can then be included as 
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part of any operation sequence, providing users significantly more customisation than was 
previously possible.     

The other main addition was the Tier 2 implementation of ADS-Ranking, which transitions 
from the heuristic deployment scoring mechanisms used in Tier 1 to a new machine learned 
scoring function based on Learning to Rank. Associated to this, as second deployment 
ranking dataset was developed to enable evaluation of ADS-Ranking for machine learning 
based applications. Additional information regarding this can be found later in this section.  

 

8.2. Terminology 
As a result of the changes to the underlying application management process via the 
introduction of the Realization Engine, some of the underlying application modelling has 
similarly changed. This had down-stream impacts on the input formats used by ADS-Ranking 
and ADS-Deploy. Hence, it is worth summarizing the updated terminology that we use later 
and how that maps to the terminology used previously in D3.1/D3.2.  

 

Name Description Relation to Previous 
Deliverables 

BigDataStack 
Playbook 

This is the conceptual representation of 
a user application that is registered with 
the Realization Engine. It can include 
one or more of the following: 1) 
application definition; 2) comprised 
object definitions; 3) metrics; 4) service 
level objectives; 5) operation sequences; 
6) application states. 

This new BigDataStack 
playbook is more structured 
and can contain significantly 
more information than those 
used in D3.1/D3.2. 

BigDataStack 
Object 

A BigDataStack Object is the internal 
representation of a Kubernetes/ 
OpenShift object (e.g. a 
DeploymentConfig or Service) within the 
Realization Engine. Such objects can 
either be templates or instances, where 
templates represent the blueprint for 
creating the object on the cluster, while 
an instance represents an actual object 
post-deployment.  

BigDataStack Objects did not 
exist previously. The closest 
approximation under the old 
system is an old format 
BigDataStack Playbook. 

Resource 
Template 

This is a specification of a set of 
resources that can be associated to a 
BigDataStack Object, typically covering 
CPU, Memory and GPU requests and 
limits. 

A Candidate Deployment 
Pattern (CDP) was the 
aggregation of a Resource 
Template and old format 
BigDataStack Playbook. Now 
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Resource Templates are 
managed independently. 

Benchmark 
Results 

This is a set of features describing the 
run-time performance for a 
BigDataStack Object and Resource 
Template pair as outcome from a 
benchmarking run. 

A Dimensioned Deployment 
(DD) Playbook was the 
aggregation of a Benchmark 
Result, a Resource Template 
and old format BigDataStack 
Playbook. Benchmark Results 
are now managed 
independently. 

Workload A workload describes a data in-load 
scenario for a user application. This is 
used during benchmarking to specify 
how heavily loaded a BigDataStack 
Object instance is. 

This remains unchanged from 
previous deliverables. 

 

8.3. Requirements 
To facilitate the understanding of the design as well as the challenges addressed by this 
component, the requirements related to this component have been brought from D2.3, 
updated to reflect the above terminology changes and included into this section. Note that 
the requirements themselves have not changed (only the wording has been updated) and 
are included in here simply for the reader’s convenience. 

This section contains the requirements for both the ADS Ranking and ADS Deployment 
components, denotated as REQ-ADSR-XX and REQ-ADSD-XX, respectively. 

 Id Level of detail Type Actor Priority 

REQ-ADSR-01 System FUNC Application 
Dimensioning 
Workbench 

MAN 

Name Ingest BigDataStack Objects, Resource Templates and Benchmark Results 

Description The Application Dimensioning Workbench sends a series of deployments 
(BigDataStack Object and Resource Template pairs) and Benchmark 
Results to the ADS Ranking component. ADS Ranking needs to collect 
these for subsequent scoring/ranking based on the user requirements and 
preferences.  

Additional 
Information 

Communication is now handled via REST API, where the process is 
mediated via the Realization Engine. 

Table 8 - Requirement (1) for ADS Ranking 

 Id Level of detail Type Actor Priority 
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REQ-ADSR-02 System FUNC Dynamic 
Orchestrator, 
Application 
Dimensioning 
Workbench 

MAN 

Name Deployment Suitability Feature Extraction 

Description Once a series of deployments (BigDataStack Object and Resource 
Template pairs) and associated Benchmark Results has been received, the 
next step is to determine how each is predicted to perform based on the 
benchmarking information. In effect, this involves defining a series of 
functions that relate individual or groups of user requirements to the 
predicted performances produced by benchmarking. The output of this 
step is a vector representation for each candidate deployment, 
representing how that deployment is predicted to perform under different 
user requirements.  

Additional 
Information 

Features produced here are dependent on the capabilities of the 
benchmarking system and the amount of information the user provides in 
terms of requirements and preferences. 

Table 9 - Requirement (2) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-03 System FUNC Dynamic 
Orchestrator, 
Application 
Dimensioning 
Workbench 

MAN 

Name Deployment Scoring (Heuristic) 

Description Given a vector representation for a deployment (BigDataStack Object and 
Resource Template pair), we next need to map this vector into a single 
score, representing how suitable that deployment will be overall (such 
that we can compare different deployments). This involves combining the 
different elements within the vector (that each represent some aspect of 
pattern suitability, such as cost, or predicted compute wastage). The first 
version of this component will use a hand-tuned linear combination.  

Additional 
Information 

N/A 

Table 10 - Requirement (3) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-04 System FUNC Dynamic 
Orchestrator, 
Application 
Dimensioning 
Workbench 

DES 
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Name Deployment Scoring (Supervised) 

Description Given a vector representation for a deployment (BigDataStack Object and 
Resource Template pair), we next need to map this vector into a single 
score, representing how suitable that deployment will be overall (such 
that we can compare different deployments). This involves combining the 
different elements within the vector (that each represent some aspect of 
pattern suitability, such as cost, or predicted compute wastage). The 
second version of this component will learn how to combine the elements 
based on logging information from past deployments. Models may be non-
linear in nature. 

Additional 
Information 

Depends on REQ-ADSR-06. 

Table 11 - Requirement (4) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-05 System FUNC Dynamic 
Orchestrator, 
Application 
Dimensioning 
Workbench 

MAN 

Name Deployment Selection 

Description Once all candidate deployment patterns have been scored, the final step is 
to select one of those deployments to pass to ADS Deploy. In many cases 
this will simply involve selecting the highest scoring pattern. However, the 
user may have the option to select an alternative configuration at this 
stage. 

Additional 
Information 

N/A 

Table 12 - Requirement (5) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-06 System FUNC Dynamic 
Orchestrator, 
Application 
Dimensioning 
Workbench 

DES 

Name Supervised Model Training 

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react 
to changes in the deployment environment over time, this model needs to 
be frequently updated based on new information from current 
deployments. This model needs to be trained based on logging data being 
collected by the Triple Monitoring Framework. 

Additional Requires logging information produced by the Triple Monitoring 
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Information Framework and stored in the Realization Engine. 

Table 13 - Requirement (6) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-07 System FUNC Dynamic 
Orchestrator 

MAN 

Name Deployment Re-Scoring 

Description It is envisaged that in (rare) scenarios, an ongoing application deployment 
will fail to meet the user’s quality of service requirements. For instance, 
this might occur due to assumptions on data input volumes being violated. 
In this case, we may not be able to solve this issue without fully 
redeploying the user application with different resources. To support such 
re-deployment activities, ADS Ranking supports a re-scoring function, 
where a previous set of candidate deployments for a user’s application can 
be re-scored based on updated preferences provided by the Dynamic 
Orchestrator, as well as data about how the previous deployment 
performed (and failed).   

Additional 
Information 

N/A 

Table 14 - Requirement (7) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSR-08 System FUNC ADS 
Ranking 

DES 

Name Deployment Dataset Generation 

Description To support REQ-ADSR-06 and hence REQ-ADSR-04, significant volumes of 
logging data from past deployments are needed to enable effective model 
creation. To this end, a framework and methodology for generating this 
data is needed. Such logging data can be produced through either 
benchmarking, live deployment of the end-user applications and via 
simulated application deployment. 

Additional 
Information 

Data storage for this task is handled by the Triple Monitoring Framework 
and Realization Engine. Data generation is supported by deployments by 
the application dimensioning workbench and other dedicated deployment 
applications. 

Table 15 - Requirement (8) for ADS Ranking 

 Id Level of detail Type Actor Priority 

REQ-ADSD-01 Stakeholder FUNC ADS Deploy MAN 

Name Performance Measurability 

Description Each environment should be measurable according to a set of 
characteristics, that is, Key Performance Indicators (KPIs). 
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Additional 
Information 

The KPIs considered must include: 
- vCPUs 
- Memory 

Table 16 - Requirement (1) for ADS Deploy 

 Id Level of detail Type Actor Priority 

REQ-ADSD-02 Stakeholder FUNC Application 
Engineer, Data 
Engineer 

MAN 

Name Standardised Object Loading 

Description The description of the environments and deployments (i.e., BigDataStack 
Objects) will follow a specification language that is intuitive and as close 
(similar) as possible to well-known and widely-used schemas to describe 
software application deployments in cloud infrastructures, such as Docker 
Compose or Kubernetes Deployment. 

Additional 
Information 

N/A 

Table 17 - Requirement (2) for ADS Deploy 

 Id Level of detail Type Actor Priority 

REQ-ADSD-03 System FUNC Application 
Engineer, Data 
Engineer 

MAN 

Name Standard deployment information 

Description When communicating with other components, as described in Section 8.2, 
these components will use the standard defined in REQ-RD-02. 

Additional 
Information 

N/A 

Table 18 - Requirement (3) for ADS Deploy 

 Id Level of detail Type Actor Priority 

REQ-ADSD-04 System FUNC ADS Ranking MAN 

Name Application Scoring System 

Description The ranking system evaluates each environment’s deployment, which 
keeps track of the most suitable configuration for each application. When 
trying a deployment configuration for a new application, this ranking will 
be used to select the most suitable one. 

Additional 
Information 

The evaluation needs to be performed following the measurements 
defined in REQ-RD-01. 

Table 19 - Requirement (4) for ADS Deploy 

 Id Level of detail Type Actor Priority 
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REQ-ADSD-05 Software FUNC Cluster 
Management 

MAN 

Name Compatibility with Kubernetes 

Description Since the technology used to run and orchestrate the applications is based 
on Kubernetes (OKD11). Thus, the ADS-Deployment component is required 
to be compatible with Kubernetes. 

Additional 
Information 

The ADS-Deploy component should translate from the playbook standard 
defined in REQ-RD-01 into Kubernetes primitives. 

Table 20 - Requirement (5) for ADS Deploy 

 Id Level of detail Type Actor Priority 

REQ-ADSD-06 System PERF ADS Ranking MAN 

Name Synchronous communication 

Description The communication with and within ADS Ranking and ADS Deploy must be 
done through an API REST. 

Additional 
Information 

N/A 

Table 21 - Requirement (6) for ADS Deploy 

8.4. Design Specifications 
The design for ADS-Ranking and ADS-Deploy was originally specified in Section 7 of D3.1 and 
later updated in Section 7 of D3.2. The primary changes made in Y3 are: 1) an updated 
process flow to account for the introduction of the Realization Engine; 2) the introduction of 
the RecommendResources and Apply operations with associated updated communication 
interfaces for ADS-Ranking and ADS-Deploy that enables interoperability with the 
Realization Engine; 3) the integration with the new Realization UI (rather than the more 
general BigDataStack Visualisation service as was used previously); and 4) the extension of 
ADS-Ranking to Tier 2, enabling support for machine learned evaluation of candidate 
deployments. The following sub-sections describe these changes in more detail, with the 
exception of the changes of ADS-Ranking that is described in Section 8.5. 
 

8.4.1. Updated Architecture 
An updated architecture diagram is provided in Figure 29 below (contrasting the original 
architecture provided in Figure 12 of D3.1). As can be seen from Figure 29, the process flow 
for the usage of ADS Ranking and ADS Deploy is now as follows: First, the user (application 
engineer) can interact with the Realization UI to access the functionality of ADS Ranking and 
ADS Deploy (and indeed all of the other services connected to the Realization Engine). For 
illustration, let us assume that the user had an application registered that contains a 
BigDataStack Object ‘InsuranceClassifierService’. Furthermore, let us assume that a 
BigDataStack Operation Sequence (action) has been registered named ‘deploy’ that contains 
                                                 
11 OKD - https://www.okd.io/ 
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the three in-built operations: ‘RecommendResources’; ‘Instantiate’; and ‘Apply’. From the 
Realization UI, the user can trigger the ‘deploy’ action. This sends a request to the 
Realization Engine via its API (in this case the Executions endpoint), which in turn will start 
processing the specified operations within the sequence in order. When the 
RecommendResources operation starts it will collect the needed information about the 
target object template (InsuranceClassifierService) and sends that information to ADS 
Ranking, which will in turn produce new recommended resources for that object and store 
that resource definition within the State Database. Once the recommended resource 
definition is ready, the RecommendResources operation concludes, and passes control to 
the next operation in the sequence, i.e. Instantiate. The Instantiate operation is responsible 
for generating a new BigDataStack Object Definition instance based on a BigDataStack 
Object Definition template. In this case, it will produce a new InsuranceClassifierService 
instance from the associated template, and then store that instance within the State 
Database. Finally, once instantiation is complete, control is passed to the Apply Operation. 
The Apply operation takes the InsuranceClassifierService instance along with the 
recommended resources definition previously produced by ADS-Ranking, and passes them 
to ADS Deploy, which operationalizes the creation of the associated object (and hence 
service) on the cloud or cluster infrastructure via the OpenShift API. Once running, 
adaptations to the deployment can be triggered via operation sequences in the same 
manner either manually or programmatically. For instance, the Dynamic Orchestrator may 
trigger an alteration action that involves RecommendResources as one of the operations in 
the sequence.  
 
      

 
Figure 29: ADS-Ranking and ADS-Deploy Processing Architecture 
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8.4.2.  Recommend Resources Operation  
Previously, as described in Section 7 of D3.1, ADS-Ranking used a publisher-subscriber 
mechanism to ingest the user application details it needs to generate a set of recommended 
resources. This design decision was reasonable at the time, as the entire deployment flow 
was encapsulated within a stream processing pipeline, where a playbook was provided as 
input at one end and a deployment was the output at the other end. With the introduction 
of the Realization Engine, this process was converted to be user (or at least business-logic) 
triggered, and the various sub-components of the process were isolated such that they 
could be triggered independently as atomic operations.  

To enable this, ADS-Ranking was altered to support ingestion of BigDataStack Objects, 
Resource Templates and Benchmarking Results via REST API, rather than through a 
subscription. In particular, all communication with ADS Ranking is now abstracted behind a 
pre-defined operation that is built into the Realization Engine, namely: 
‘RecommendResources’. When this operation is triggered for a particular BigDataStack 
Object, it in turn performs the following steps: 

1. Retrieves the BigDataStack Object Template from the State Database 

2. Retrieves the available Resource Templates for the current cluster from the State 
Database 

3. For each Resource Template, Benchmark Results are requested from the 
Benchmarking component (Flexibench) 

4. The resultant <BigDataStack Object, Resource Template, Benchmark Result> tuples 
are then sent via HTTP POST request in JSON format to an endpoint exposed by the 
ADS-Ranking service. 

5. The operation waits until updated resource definitions are detected in the State 
Database. 

Note that the request at Step 4 only responds with whether the request was accepted (as 
validated based on correct formatting), it does not directly respond with the results. 
Internally, ADS-Ranking is still a stream processing system (see D3.1), and hence output is 
asynchronous to the input. Hence, Step 5 exists to periodically check whether the updated 
resources are yet available. 

 

8.4.3. Apply Operation 
‘Apply’ is a new operation that is built into the Realization Engine to facilitate the 
deployment of the user application via ADS-Deploy. When Apply is triggered, it internally 
performs the following steps: 

1. Retrieves the BigDataStack Object instance to deploy from the State Database 

2. If the BigDataStack Object instance is either of type DeploymentConfig, Job or Pod, 
then the State Database is checked to see whether one or more Resource Templates 
are associated to that Object. If so, the Resource Templates will be merged into the 
object. 
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3. The resultant object is sent via REST API to ADS-Deploy. 

Along with the new Apply operation, some minor changes were made to ADS-Deploy itself 
to support the new object modelling introduced with the Realization Engine. In particular, 
previously ADS-Deploy expected a Playbook as input. Instead, it now takes a BigDataStack 
Object instance definition, which fulfils the same purpose.  It is however notable that as 
BigDataStack Objects are more general and support a wider range of Kubernetes/OpenShift 
objects, ADS-Deploy also benefits from this increased support natively (providing better 
support for REQ-ADSD-05 than previously). 

 

8.4.4. Connection with the Realization UI 
In D3.2 (and demonstrated at the M18 review) the user interacted with ADS Ranking, via the 
top-level BigDataStack user interface, which is known as the BigDataStack Visualisation 
Service. However, with the introduction of the Realization Engine it became clear that there 
was a need for a separate user interface with an increased feature-set, which would enable 
the user to do more than simply deploy their application. This resulted in the development 
of the separate Realization UI, that enables the user to also manage their applications pre- 
and post-deployment.  

ADS Ranking is one of the in-built services within the Realization Engine, and as such the 
Realization Engine UI integrates some additional features for it. In particular, if the user 
triggers an operation sequence (action) that involves the deployment of a container (e.g. 
one that instantiates a BigDataStack Object of type ‘DeploymentConfig’ or ‘Job’) then the 
associated BigDataStack Object(s) will be checked to see if they include a complete Resource 
Template. If so, the operation sequence will be started as normal. If not, the operation 
sequence is checked to see whether it contains a RecommendResources operation targeting 
the object. If not, then the Realization Engine UI will prompt the user to either manually 
provide the missing information or trigger the RecommendResources operation to generate 
the missing information automatically. In this way, the Realization Engine UI leverages direct 
integration with ADS-Ranking to prompt the user to follow good practice when deploying 
cloud/cluster applications, by always specifying the resources they think they need prior to 
deployment. 

8.5. ADS Ranking Tier 2 (Machine Learned Ranking) 
In this section we describe the new machine learned model used for evaluating the 
suitability of different deployment options in ADS Ranking (Tier 2). The section is structured 
as follows. In Section 8.5.1 we provide a brief summary of related works in the field of 
machine learning. Section 8.5.2 describes how we formulate the problem of ranking 
deployment options for various service level objectives as a machine learning task. Finally, in 
Section 8.5.3 we discuss how to tackle the issue of multiple competing service level 
objectives when ranking. 
 

8.5.1. Related Work 
Previously in D3.2 we proposed to tackle the problem of determining what resources to 
allocate to a particular application component (a container to be more precise) as a learning 
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to rank problem. Generally, ranking problems can be defined as a derivation of ordering 
over a list of items, where the goal is to maximize the utility of the entire list [45]. The 
theory is that in scenarios where multiple options will be shown to the user, it is more 
effective to optimise for the entire ordered list of items rather than consider each item 
individually. Learning to rank is the application of supervised learning technologies to such 
ranking problems, and has been widely used in several domains, most notably for search 
and natural language processing applications [10]. 

It is worth noting that machine learned ranking is a fundamentally different problem to 
either item classification or regression, where the goal is to construct a function for 
automatic assignment of labels or numerical values to single items, respectively (although 
you can use regression models for point-wise ranking as discussed later). This is because the 
goal of learning to rank is to maximise the utility of the entire list, hence it is the ordering of 
items that matters, not their individual score [10] .  

A common method for distinguishing different learning to rank approaches is based on how 
they define a surrogate loss function over the ranked lists of items during training. In 
particular, the simplest (and least effective) class of learning to rank approaches use point-
wise scoring of items [46]. These approaches are simply the direct application of regression-
based supervised learning to the problem of ranking, where the goal is to assign a score to 
each item individually. These approaches have been shown to be less effective than later 
methods as they lack the contextual information from the rest of the ranked list. The other 
two classes of learning to rank algorithms, referred to as pair-wise and rank-wise 
approaches, both incorporate this contextual information. Pair-wise approaches calculate 
loss over every pair of items within the ranked list to capture the relative ordering of items 
[47]. Meanwhile, list-wise approaches calculate loss over the entire ranked list as a whole 
[48,49].     

In general, list-wise approaches have been shown to be the most effective in practice. List-
wise approaches can use a range of different metrics as a surrogate for loss, such as 
Normalized Discounted Cumulative Gain (NDCG) [9], Expected Reciprocal Rank (ERR) [50], 
and Mean Average Precision (MAP). These metrics score a ranking based on the number 
(and in cases like NDCG the quality) of relevant/suitable items near the top of the ranking, 
following the probability ranking principle [45]. 

In terms of the algorithm used to operationalize the learning process, classical learning to 
rank techniques can be primarily divided into either linear or tree-based learners. A linear 
learner will produce a model that linearly combines the feature scores for an item. 
Meanwhile, a tree-based learner builds a decision tree-like structure, where the branch 
nodes denote decisions based upon the features and each leaf node represents a final score 
to return. Over the last couple of years there has been a resurgence of research targeting 
the learning to rank problem, examining how the emergence of deep neural networks can 
also be applied to this problem, such as TensorFlow Ranking [51]. However, it was still 
unclear at this stage whether these are better than classical approaches, and the black-box 
nature of the underlying model is a problem when explainability is a desirable characteristic. 
Hence, we decided to focus on classical tree-based learners in this work, as they have been 
shown to be effective [52]. 
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8.5.2. Modelling Deployment Ranking as a Learning Task 
When considering the problem of ranking deployment options for the user, the first 
question that needs to be asked is ‘what are the items to be ranked’? In our scenario, an 
item corresponds to the deployment of an application component, which is comprised of a 
BigDataStack Object and Resource Template. When considering this as a ranking task, the 
goal is for a given BigDataStack Object, to produce a ranked list of Resource Templates, 
where suitable Resource Templates are ranked above less suitable Resource Templates. In 
this case, suitability is defined in terms of the service level objectives (slos) attached to the 
BigDataStack Object. 

Having defined the task formulation, the second question that needs to be answered is ‘how 
can items be modelled’? For any machine learning task, the items need to be represented in 
the form of a fixed length numerical vector. The constraint is each vector must exist within 
the same conceptual vector space, such that the vectors for two items are comparable. As a 
general rule of thumb when modelling items for any task, all distinct information about the 
item itself, contextual information about the ranking environment, as well as predicted 
indicators of suitability should be encoded within the item vector. Within the context of our 
ranking task, there are then four categories of information that we can potentially encode 
within the item vector: 

• BigDataStack Object Features: These are the representation of the actual 
application component being deployed. Such features can be extracted from the 
BigDataStack Object, such as from its description or performance characteristics if 
available. 

• Benchmarks: For each <BigDataStack Object, Resource Template> pair, we also 
assume that we have predictive benchmark results for that application produced by 
Flexibench component of WP5 or equivalent. 

• Service Level Objective Features: These represent the service level objectives 
provided by the user for the BigDataStack Object. 

• Suitability Indicators: Given a set of Benchmarks and also the Service Level 
Objectives provided by the user, it is often possible to produce suitability indicators 
that contrast the Benchmark outcomes with one or more Service Level Objectives, 
e.g. contrasting predicted latency vs. a latency target. 

However, there are two problems with attempting to model an item using all of these 
categories of information. The first problem is that the benchmarks produced for an item 
depend on the application type. For instance, for a streaming application, benchmarking 
might report information about processing throughput for the stream. Meanwhile, for a 
batch application, the information reported might be completion time or records processed 
per minute. As such, applications of very different types cannot be directly compared. 
Practically, there is no means to work around this problem using a single model, hence the 
solution to this is to train a different model for each broad type of application. We discuss 
the features included in our test models in Section 8.5.4. The second problem is in regard to 
the user’s service level objectives. Specifically, there are no constraints on the number of 
service level objectives that a user can define for a given BigDataStack Object. Recall that 
the item vector must be of constant length and comparable to other item vectors, hence 
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simply encoding all service level objectives would result in variable-length vectors. To solve 
this, instead of directly reporting service level objective features, we instead define an 
intermediate scoring function that calculates a suitability indicator, aggregating data from 
across all of the service level objectives and the benchmarking results, outputting a single 
predictive performance number, which we discuss in the next section. 
 

8.5.3. Aggregating Across Service Level Objectives 
As discussed above, to tackle the issue with variable numbers of service level objectives, we 
need to devise a means to represent any combination of such objectives as a fixed length 
vector. To do so, we define a function that takes in a list of service level objectives along 
with associated benchmark data, producing a score. The aim is that this score should 
capture the degree to which the benchmark data indicates that the service level objectives 
will be met.  

From a high-level perspective this function simply calculates the degree to which each 
service level objective is predicted to be met by the current deployment (a score), and then 
averages those scores across all objectives to produce a final predicted suitability score: 

 
where SLOs is the set of all service level objectives, B is the set of benchmark results, 
slo.metric is the associated metric that the slo targets and loss[x] is a function that estimates 
the degree to which B[slo.metric] satisfies slo or not. Note that this internal scoring function 
loss[x] changes depending on the particular metric being evaluated. This is needed since we 
aim to capture the degree to which each slo is met, not simply whether it will be met. 
Hence, we need different scoring functions that account for the fact that different metrics 
have different working ranges and meanings. For example, consider a slo targeting 
throughput more than 100 messages per second. We might receive predicted benchmarking 
results indicating that throughput will be 110 messages per second, a success. But how do 
we quantify the degree of that success? This is the role of each loss[x] function.   

ADS-Ranking currently supports scoring functions for the following metrics (and hence slo 
types): 

• CPU Utilisation 

• Memory Utilization 

• Latency 

• Throughput 

• Completion Time 

• Cost Per Hour 

• Total Cost 

For each one of these metrics we define a 
function that takes in a delta between the 
predicted value (produced by benchmarking) 

Figure 30: Cost Per Hour Delta Scoring Function 
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and the target value (specified by the slo) and produces a value between 0 and 1. As this is a 
loss function, lower values are better. For example, we visualise the Cost Per Hour function 
in Figure 30, where the x axis is the cost delta in US dollars and the y-axis is the output score. 
As we can see, this function will return a positive score if the cost per hour is higher than the 
target (a failure), and a negative value if it is lower than the target (a success), where a 
maximum positive or negative value is achieved at 1 US dollar above or below the target 
respectively. Note that as we desire a loss value between 0 and 1 as output, as a final step 
we scale the range by adding 1 and dividing by 2 to produce the final score as a loss for this 
particular function. 

By defining loss[x] functions covering the common types of service level objectives that a 
user might care about, we can support automated evaluation for a wide range of user 
applications. Internally, these functions are implemented as classes that extend a common 
interface, keyed by metric name. As such new functions can be added over time to increase 
support for new application types. 

Furthermore, it is worth highlighting that the aggregate predicted suitability of a 
deployment can be calculated over different sub-sets of slos. In particular, each slo is 
labelled as either a requirement (something that the application must meet) vs. a 
preference (something that is desirable to meet). Hence, in practice when generating 
features for learning, we calculate aggregate predicted suitability for: all slos, requirements 
only; and preferences only. In this way, the learner is provided evidence with which it can 
distinguish between the different slo types. 

 
8.5.4. Models and Feature Sets 
For the purposes of supporting the Pilots within BigDataStack we develop two different 
models with associated feature sets, representing two common application types: 1) stream 
processing applications; and 2) batch model training. The pipeline for training each of these 
two models is the same. What distinguishes these models is the features that they work 
from, as both the information provided from benchmarking and the types of service level 
objectives that the user cares about in each case differ. The features used for each of these 
two models are listed below: 

 

Feature Name Type Summary Stream 
Processing 
Model 

Batch Training 
Model 

Object Description 
Embedding 

BigDataStack 
Object 
Feature 

Word embedding derived 
from the object description 
field  

Yes Yes 

CPU Average Benchmark Average predicted CPU 
utilization over the container 
lifetime (millicores) 

Yes Yes 

CPU Peak Benchmark Peak predicted CPU 
utilization over the container 
lifetime (millicores) 

Yes Yes 
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Memory Average Benchmark Average predicted Memory 
utilization over the container 
lifetime (Megabytes) 

Yes Yes 

Memory Peak Benchmark Peak predicted Memory 
utilization over the container 
lifetime (Megabytes) 

Yes Yes 

Average Latency Benchmark Average end-point response 
latency (milliseconds) 

Yes No 

Peak Latency Benchmark Maximum end-point 
response latency 
(milliseconds) 

Yes No 

Average Throughput Benchmark Average items processed per 
second 

Yes No 

Peak Throughput Benchmark Peak items processed per 
second 

Yes No 

Completion Time Benchmark Total time needed to 
complete training (seconds) 

No Yes 

Precision Benchmark Resultant Model Precision No Yes 

Recall Benchmark Resultant Model Recall No Yes 

NDCG Benchmark Resultant Model Normalised 
Discounted Cumulative Gain 

No Yes 

Predicted Suitability All Suitability 
Indicator 

Output of the predicted 
suitability scoring function 
discussed above for all slos 

Yes Yes 

Predicted Suitability 
Requirements 

Suitability 
Indicator 

Output of the predicted 
suitability scoring function 
discussed above for slo 
requirements 

Yes Yes 

Predicted Suitability 
Preferences 

Suitability 
Indicator 

Output of the predicted 
suitability scoring function 
discussed above for slo 
preferences 

Yes Yes 

Predicted Proportion of 
SLOs Passed 

Suitability 
Indicator 

The proportion of all slos 
that are predicted to be met 

Yes Yes 

Predicted Proportion of 
Requirements Passed 

Suitability 
Indicator 

The proportion of 
requirement slos that are 
predicted to be met 

Yes Yes 

Predicted Proportion of 
Preferences Passed 

Suitability 
Indicator 

The proportion of 
preference slos that are 
predicted to be met 

Yes Yes 
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8.6.  Experimentation Outcomes 
In this section we evaluate the performance of ADS Ranking at identifying effective and 
efficient deployment configurations. As its name suggests, ADS Ranking is a ranking service 
at its core, i.e. it ranks a set of items provided to it, which are Resource Templates for a 
BigDataStack Object in our case. Some of those Resource Templates will be more suitable 
than others. By suitability, we refer to whether the user’s requirements and preferences will 
be met or exceeded, if we use that Resource Template to deploy the user’s application. 
Hence, we can measure how effective ADS Ranking is for an application by evaluating to 
what extent the top-ranked Resource Templates are suitable. By evaluating the 
effectiveness of ADS Ranking at deploying different types of application, we can determine 
the overall effectiveness of ADS Ranking as a whole. In this section we describe the 
experimental framework and setting we use to perform an evaluation of ADS Ranking in 
terms of datasets, methodology, metrics and baselines. We then report the performance of 
ADS Ranking Tier 1 (Heuristic-based) and Tier 2 (Machine Learned), along with two baselines 
under these datasets and metrics. 
 

8.6.1.  Dataset Structure 
As discussed in D3.1 Section 8.5, the idea of producing an automatic system to estimate 
what resources are needed to deploy a user application is novel. Hence, there are not 
readily available standard datasets that we can leverage to evaluate ADS Ranking. Instead, 
for our evaluation we generate new datasets. In effect, a dataset for this task can be 
considered to be comprised of six main parts: 

- BigDataStack Objects: The definition of application components that we are going to 
deploy onto the cluster infrastructure. Each BigDataStack Object describes a service 
within a user’s application and is typically either of type DeploymentConfig, Job or 
Pod. 

- Service Level Objectives: These are the quality of service factors that the user cares 
about in terms of hard requirements and softer preferences for a particular 
BigDataStack Object. These are needed as input to the evaluation function to 
estimate suitability of a deployment.  

- Workload: The workload for an application represents the amount of work that the 
application needs to do. For a real-time streaming application, this might represent 
the stream of records or requests that need to be processed. Meanwhile for batch 
operations, this would be the statistics of the dataset or database that needs to be 
processed or queried. 

- Resource Templates: For a BigDataStack Object that describes a single service, we 
also need a series of resource templates that describe the different ways that we 
might deploy that service on the cluster infrastructure in terms of resources (CPU, 
GPU, memory, per service).    

- Benchmark Performances: As part of the ranking process, ADS Ranking utilizes 
predicted performance estimates produced by the Benchmarking (Flexibench) 
component of the Application Dimensioning Workbench. In effect, for each 
BigDataStack Object and Resource Template pair, Benchmarking provides a series of 
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indicators (features) about how well the service is expected to perform if deployed 
using the resources described within the specified Resource Template. 

- Ground-truth Performances: To evaluate to what extent each Resource Template is, 
in fact suitable for a BigDataStack Object and set of Service Level Objectives, we 
need to have ground truth information about how the service actually performs on 
the cluster infrastructure when deployed. Note that this is different to what the 
Benchmark Performances provide, as those are only (predictive) estimates and are 
subject to error.  

To evaluate ADS Ranking, we report performance using two datasets, each representing a 
different type of application (streaming vs. batch processing) as summarized in the following 
two sections. 
 

8.6.2.  Dataset 1: Real-time Data Server (Streaming) 
The first dataset that we develop to evaluate the quality of ADS Ranking targets the scenario 
of a real-time service that responds to user traffic (e.g. an insurance recommendation 
service). In this type of scenario, we have a stream of request traffic being sent to the 
service and we care about the amount of time it takes for the user to receive a response 
(referred to as response time or latency), along with the cost of running the service. This is a 
very common scenario with services that drive user-facing applications. 

 
Figure 31: Realtime Data Server Architecture 

Figure 31 illustrates the overall architecture of the real-time data service that this dataset 
models. As can be seen from Figure 31, within this type of system, there is an external 
service (e.g. a user’s web browser) that makes an API request to the main data service. This 
in turn performs a data lookup into an external database located on another machine. Once 
the data has been retrieved, some local processing takes place, before a response is 
generated for the user. Within this type of system, there are a range of properties that can 
influence the response time that the user experiences, such as latency for the request to the 
database, the available bandwidth for data transfer between the service and database, as 
well as the complexity of response generation and compute capacity available on the data 
service itself. To create this dataset, we implemented a simulation framework that allows us 
to produce deployable variants of this system for testing, with different properties. For 
example, one variant might require more cpu cycles to produce each response, while 
another might involve moving a large record from the database.  
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Table 22 - Realtime Data Server Deployment Ranking Dataset Statistics 

Realtime Data Server 
Dataset 

BigDataStack Objects (Service Variants)  24 
Service Level Objectives (Unique Scenarios) 4 (x 3) 
Workloads 1 
Resource Templates 35 
Total Deployments 2,520 

 
 
In particular, we created 24 variants of the service. Each of these variants have different 
processing properties, such as start-up time, per-record processing time, memory usage, 
maximum throughput and more. We then defined three quality of service levels, which we 
refer to as medium, high and extreme, where each quality of service level specifies the 
response time bounds and cost for the application (service level objectives, or slos) that are 
acceptable for different classes of user, as follows: 

• Medium QoS: 

o Requirements: Response Time less than 200ms, Cost less than $1.9/hour 

o Preferences: Response Time less than 100ms, Cost less than $0.7/hour 

• High QoS: 

o Requirements: Response Time less than 150ms, Cost less than $1.9/hour 

o Preferences: Response Time less than 70ms, Cost less than $0.7/hour 

• Extreme QoS: 

o Requirement: Response Time less than 70ms, Cost less than $1.9/hour 

o Preference: Response Time less than 50ms, Cost less than $0.7/hour 

Next, we generated one BigDataStack Object for each service variant and quality of service 
pair, resulting in 72 combinations (24 services x 3 QoS levels). For this dataset, we define a 
single stream processing workload (to limit the number of tests needing run), where the 
average input rate is 300 requests per second, with a peak input rate of 500 requests per 
second. We refer to the combination of a <BigDataStack Object, QoS scenario, Workload> 
tuple as an experimental scenario.  

For each of the generated BigDataStack Objects, we then submitted them to the ADW 
Pattern Generation component deployed on our local testbed, which in turn produced 
Resource Templates for each. Based on the underlying available hardware, each 
BigDataStack Object has 35 possible Resource Templates to consider, hence 35 possible 
deployments are generated per experimental scenario, creating a total of 2,520 
deployments (72 scenarios x 35 Resource Templates). At this point, we deployed each of the 
2,520 combinations in turn, collecting resource usage and quality of service information. 
More precisely, we tracked average and peak CPU and memory usage, along with average 
and peak response time. In this way, we collected our ground truth performances. There 
was no competing for resources during these tests and so performances should be 
comparable between scenarios. 
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Finally, to generate the benchmark performances that are used as features within ADS-
Ranking, we use a local Benchmarking Simulation service that we developed, which simply 
takes the true ground truth performances and generates benchmark performances from 
them, with a randomised degree of performance error (+/- 20%) added to represent 
imperfect benchmarking. This allows us to evaluate ADS Ranking while avoiding systematic 
biases potentially introduced by Flexibench. 

 

8.6.3.  Dataset 2: Training a Deep Learning Model (Batch Processing) 
The second dataset that we develop represents a second common type of job that is run on 
cluster infrastructure, i.e. a job that trains a machine learned model and saves the result to 
a datastore. For this type of job, the user typically cares about two main quality of service 
indicators (from the deployment perspective), namely: the time to complete the job; and 
the cost of training the model. This is because it is common for users to either have a fixed 
budget for preparing their models, and/or time constraints for completion (e.g. the new 
model must be available by business open on Monday morning). Cost in particular for 
training models can be significant with the introduction of new deep learning models that 
require expensive GPU infrastructure to run. 
 

 
Figure 32: Deep Learning Architecture 

Figure 32 shows the architecture of a standard deep learning job that this dataset models. 
As we can see, initially the dataset being used for training will be transferred to the compute 
node that will perform the learning. Next, a data preparation stage will be performed, which 
may involve feature generation and/or data sampling. Once the data is ready, that data will 
be loaded sequentially in batches into the learning process, where one pass of the data is 
known as a training epoc.  At the end of a training epoc, the current model effectiveness is 
validated against a ground truth and if an exit condition is not yet reached, the next training 
epoc will start. Once an exit condition is met, the final model is saved to a datastore. The 
key factors that can affect cost and completion time for this type of model are: time to 
transfer the dataset from the database, the compute capacity available for data 
preparation, the compute available for learning (which may be CPU or GPU bound), 
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compute available for validation (that can be very expensive for some scenarios like product 
recommendation); and time for writing the final model. 
 

Table 23 - Statistics for the Deep Learning Deployment Ranking Dataset 

Deep Learning Dataset BigDataStack Objects (Service Variants)  9 
Service Level Objectives (Unique Scenarios) 8 (x 2) 
Workloads 4 
Resource Templates 35 
Total Deployments 2,520 

 

As for dataset 1, we construct a simulator framework to generate variants of this type of job 
with different properties. In this case, the framework is based on the BetaRecsys framework 
that we also developed and is described in more detail in D6.2. In particular, we generate 9 
variants of this job, where the primary variables were the properties of the model type 
being trained (e.g. Triple2Vec [53] vs. VBCAR [54]) and the volume of training data used. We 
then defined two quality of service levels to evaluate the job under, which we refer to as 
`slow and cheap’ and `expensive but fast’. In this case, each quality of service level specifies 
goals for completion time and cost, either as hard requirements or softer preferences: 

 

Slow and Cheap: 

• Requirements:  

o Completion Time less than 2.8 hours 

o Total Cost less than $5 

• Preferences:  

o Completion Time less than [1.9, 1.4, 1] hours  

o Total Cost less than [$4, $3, $2] 

Expensive but Fast: 

• Requirements:  

o Completion Time less than 1.4 hours 

o Total Cost less than $10 

• Preferences:  

o Completion Time less than [1.11, 1, 0.83] hours  

o Total Cost less than [$8, $6, $4] 

 

Note that unlike for dataset 1, we define multiple of the same type of service level objective 
(i.e. completion time or cost) for the preferences here. This is to enable distinctions to be 
drawn between multiple deployments that all meet the higher-level preferences. To 
represent varying datasets that the machine learned models might be trained upon, we 
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define four workloads, where we vary the number of training samples used per training 
epoc and the total number of epocs to use (the training exit condition): 

• Workload 1: 1,000,000 samples per epoc, 120 epocs 

• Workload 2: 500,000 samples per epoc, 120 epocs 

• Workload 3: 1,000,000 samples per epoc, 50 epocs 

• Workload 4: 500,000 samples per epoc, 50 epocs 

As for dataset 1, we refer to the combination of a <BigDataStack Object, QoS scenario, 
Workload> tuple as an experimental scenario. For each variant, we pass the associated 
BigDataStack Object to the Pattern Generation component deployed on our testbed, which 
produces a similar set of 35 Resource Templates as for dataset 1, with the exception that 
each also includes a single RTX Titan graphics card, as all of the variants tested here build a 
deep learned model that requires a GPU. The combination of 9 BigDataStack Objects, 2 QoS 
scenarios, 4 Workloads and 35 Resource templates results in 2,520 deployments. We 
subsequently deployed these on our testbed and recorded the completion time, along with 
the average and peak cpu and memory usage, forming our ground truth. As with dataset 1, 
we generate benchmark data from this ground truth by adding a randomised degree of 
performance error (+/- 20%) to represent imperfect benchmarking.  

 

8.6.4.  Metrics 
For each of the BigDataStack Objects (representing an application component to deploy), 
ADS Ranking will output a ranking of the associated Resource Templates along with scores 
for each. However, to determine how effective each of these rankings are, we need a means 
to determine the true suitability of each deployment within the rankings. During dataset 
creation described above, we have two pieces of information to aid in this task. First, we 
have the quality of service requirements and preferences set by the user. Second, our 
ground truth performances tell us how well each service performed when given the 
resources specified within each Resource Template. Hence, we need a mapping function 
that takes these two pieces of information and produces a suitability score, where a higher 
score indicates that the user’s requirements and preferences were better met. Hence, we 
use a simple scoring function that produces a suitability score between 0 and 3, where 0 
indicates that the deployment (object, workload, QoS scenario and resource template) was 
unsuitable and 3 indicates that all requirements and preferences were met. Scoring is 
performed as follows: 

• If either response time or cost exceeds the user requirement, or the deployment 
failed (i.e. the container crashed due to a lack of resources) the deployment  receives 
a score of 0. 

• If the user requirements are met, but none of the user preferences are met, the 
deployment receives a score of 1. 

• If the user requirements are met, and any (but not all) of the user preferences are 
met, the deployment receives a score of 2. 
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• If all requirements and preferences are met, then the deployment receives a score of 
3. 

We use this function to produce a ground truth suitability score/label for each deployment.  

Once the deployments have been scored, we need to use these scores to evaluate the 
performance of ADS Ranking as a whole. To do so, we use standard ranking metrics from the 
information retrieval literature. In particular, we report: 

- Success@1: This simply evaluates whether the top-ranked deployment met at least 
the requirements specified by the user over all BigDataStack Objects tested. 

- Precision@5: This evaluates whether the top ranked deployments were suitable (had 
a score equal to or greater than 1) over all BigDataStack Objects tested. 

- Mean Average Precision (MAP): Average precision (at a particular rank) is the 
proportion of suitable (has a score equal to or greater than 1) deployments down to 
that rank. MAP is average precision calculated at the maximum rank (35 in this case) 
over the BigDataStack Objects tested. [13] 

- NDCG: Discounted Cumulative Gain (DCG) is a measure of the usefulness, or gain, of 
an item based on its position in a ranking. Total gain is accumulated starting from the 
top of the result list (ranking) and moving downwards to a set rank (the number of 
deployments ranked in our case, i.e. 35). Gain of each result is discounted at lower 
ranks and can incorporate different (suitability) grades. Hence, unlike the above two 
metrics, this metric considers whether the preferences were met in addition to the 
requirements. NDCG is DCG normalized across (in our case) different application 
deployments to account for some deployments being easier to find suitable patterns 
for than others. [9] 

 

8.6.5.  Baselines 
Using the above dataset and metrics, we can score ADS Ranking in terms of its effectiveness. 
However, such a score in isolation can be misleading, as it does not provide us information 
about how difficult the task is. Hence, we also need reference baselines to compare against, 
providing us context. As this is a new task, there are no standard baselines. Hence, we 
propose two new baselines here, representing simple strategies that a human might employ 
when selecting a Resource Template: 

• RankByCost: This baseline simply ranks each deployment by its cost on the cluster 
hardware, where the cheapest deployment is ranked first. In particular, cost is 
calculated as the sum of the cost of the requested resources across the services 
defined by the BigDataStack Object, where a mapping between resources and a US 
dollar cost from a commercial cloud provider (Amazon Web Services EC2) is used.  

• MidTierFirst: This second baseline represents a user selecting resources that are in 
the middle of the available range, as they don’t know what they need. To represent 
this, we manually ordered the available Resource Templates by requested resources, 
placing those using mid-tier hardware first, followed by high-tier hardware, and 
finally putting the lowest-tier hardware at the bottom of the ranking. 
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8.6.6. Training Procedure 
For ADS-Ranking Tier 2, we need to train supervised learning to rank models for each of the 
two datasets. This in effect creates one model for resource prediction for use with stream 
processing applications, and one model for use with batch learning applications. To train 
these models, within each dataset we split the BigDataStack Objects (application 
components to test) into 5 separate folds. Following a standard cross-fold validation 
procedure, we then train a model using 4 folds (with 3 folds being used for training and 1 
fold used for validation) and 1 fold used for testing. This process is repeated for all 5 fold 
configurations and performance averaged across the folds.  

 
8.6.7.  ADS Ranking Performance Results 
In this section we report the performance of the ADS Ranking component when using both 
the heuristic ranking model (tier 1) and the supervised learning to rank model (tier 2)  
against the baselines summarized above for each of our two datasets (representing 
resource prediction scenarios for two different application types). Table 33 reports 
deployment ranking performance for the Real-time Data Server dataset, while Table 34 
similarly reports performance under the Deep Learning dataset. For both datasets we report 
Success@1, Precision@5, MAP and NDCG metrics. * indicates a statistically significant 
increase/decrease in performance over the MidTierFirst baseline (paired t-test, p<0.05). A 
bold highlight indicates an increase in performance over the baselines. 

Starting with the Real-time Data Server dataset in Table 33, we first observe that ADS-
Ranking with the heuristic model is significantly better at recommending deployment 
configurations than the baselines tested (e.g. 0.5582 vs. 0.2793 NDCG). Moreover, the 
increase in performance is larger under Precision@5 and MAP (that only consider the user 
requirements) than under NDCG (which factors in requirements and preferences), indicating 
that ADS Ranking is much better at meeting at least the minimal user requirements for this 
application type. Second, comparing the performance of the learning-to-rank approach, we 
see a further increase in performance (0.5925 vs. 0.5582 NDCG), indicating that the 
learning-to-rank approach is more effective.  On the other hand, current average 
performance of ADS Ranking appears to be around 0.6, which may indicate that there is still 
significant scope to improve ranking performance. However, upon further investigation of 
per-deployment performance, we observed that much of the loss in the reported 
performances was due to 0-scored experimental scenarios under metrics that score to 
maximum depth (e.g. MAP and NDCG). A 0-score here means that no valid deployment 
existed in the Resource Template set, i.e. this is either a failure on the part of Pattern 
Generation (i.e. it did not produce good Resource Templates), or the quality of service level 
was impossible to achieve. For this case, it is the latter, where the extreme QoS level could 
not be met in some cases (i.e. no deployment could successfully meet both the cost per 
hour and response time requirements).      
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Table 24 - Deployment Ranking Performance on the Real-time Data Server dataset 

 

Considering our second application type, i.e. a deep learning job, we see from Table 34 a 
slightly different picture. First, the performance of both the baselines (RankByCost and 
MidTierFirst) are both much more effective ranking strategies here, as demonstrated by 
performances in the mid-0.60’s). This result tells us something about the dataset itself, i.e. 
that ranking is ‘easier’ than for the Real-time Data Server dataset. This is primarily because 
there are a larger number of deployments that meet the requirements and preferences 
specified in the QoS levels, meaning that it is much easier to produce a good ranking by 
chance. Second, comparing the performance of ADS-Ranking against the baselines, as with 
the Real-time Data Server dataset, we observe that ADS-Ranking using the learning-to-rank 
model is more effective (by a statistically significant margin, except under Success@1) than 
the baselines tested, although the degree of improvement is smaller. We also see that the 
heuristic model is not as effective here, resulting in a small but significant decrease in 
performance in comparison to the MidTierFirst baseline. This appears to be largely due to 
the Heuristic model overly favouring lower cost deployments, which can out-right fail due to 
out-of-memory errors in some learning scenarios.   
 

Table 25 - Deployment Ranking Performance on the Deep Learning dataset 

 

To conclude on the performance of ADS-Ranking, we have seen that over the two different 
application types (a real-time data server and a deep learning job), the supervised ADS-
Ranking model based on learning-to-rank is effective at recommending deployment 
configurations.  

 

Approaches Success@1 Precision@5 MAP NDCG 

RankByCost 0.0000 0.0111 0.1407 0.2793 

MidTierFirst 0.1111 0.1778 0.2260 0.3532 

ADS Ranking Tier 1 (Heuristic) 0.5278 0.5500* 0.5204* 0.5582* 

ADS Ranking Tier 2 (List-wise LTR, 
LambdaMART) 

0.5972* 0.5611* 0.5887* 0.5925* 

Approaches Success@1 Precision@5 MAP NDCG 

RankByCost 0.6389 0.6556 0.6639 0.6734 

MidTierFirst 0.6944 0.6500 0.6607 0.6736 

ADS Ranking Tier 1 (Heuristic) 0.6667* 0.6361* 0.6397* 0.6530* 

ADS Ranking Tier 2 (List-wise LTR, 
LambdaMART) 

0.6944 0.6833* 0.6836* 0.6896* 
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8.7. Summary 
In this section we described the changes made to the ADS Ranking and ADS Deploy 
components during Y3, along with associated evaluation. In summary, both ADS Ranking 
and ADS Deploy were subject to significant updates to factor in the new Realization Engine 
component of BigDataStack, as well as better integrate them with that component via 
operations (see Section 8.4). Meanwhile, the ADS Ranking component was updated to meet 
the final missing requirements, i.e. to add support for supervised ranking via learning to 
rank (see Section 8.5). Furthermore, a new dataset was created that represents 
deployments for deep learning-type jobs (see Section 8.6.3). Finally, extending the 
evaluation that was reported in D3.2, the final version of ADS-Ranking was evaluated across 
both datasets, demonstrating that it is able to produce effective rankings of deployments 
for the user across two categories of application.  

In terms of software requirements, ADS-Ranking and ADS Deploy are complete. ADS-
Ranking is able to ingest information about the user application from the Realization Engine 
(REQ-ADSR-01), and also extract features about that application based on predicted 
Benchmarking Results (REQ-ADSR-02). Two scoring functions are supported, namely 
heuristic scoring (REQ-ADSR-03) that is unsupervised, and supervised learning-to-rank 
scoring (REQ-ADSR-04), and these are used to rank deployments for the user (REQ-ADSR-
05). These models can also be used for re-ranking in the same manner as part of an 
operation sequence that performs application adaptation (REQ-ADSR-07). The supervised 
learning-to-rank model can be trained using metrics exposed by the BigDataStack platform 
(REQ-ADSR-06) via the Realization Engine. To support the training of this model, we also 
produced two datasets (REQ-ADSR-08). Meanwhile, for ADS-Deploy, it supports deployment 
using standardized data formats defined by the Realization Engine for metrics (REQ-ADSD-
01), an application definition (REQ-ADSD-02) and resources (REQ-ADSD-03), which extend 
Kubernetes style objects (REQ-ADSD-05). It also supports deployment integration with the 
Realization Engine via API (REQ-ADSD-06) that handles deployment scoring (REQ-ADSD-04).  
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9. Triple Monitoring & QoS Evaluation 
 
Enabling cloud application adaptation, service level objective must be evaluated constantly 
according to the desired range value defined by the application owner. The platform adapts 
the application if the collected value violated the agreement. The collection of metrics is 
performed by scraping each “I” interval of time. For each scrape request, Prometheus 
gather many samples (data points). This strategy provides the evaluation tools enough data 
points for avoiding the adaptation on outliers.  
 

 
 

Figure 33: Evaluation by data points 

On the response time of the time series shown on the figure above, we can observe that for 
most of the time, the value in less than 150ms. If the threshold is set to 150ms in the 
agreement, the QoS evaluator will raise unnecessary violation which will cost in term of 
resource since many operations will be take place for readapting (scaling) the application 
and cost to the application owner because of the increase of the resource allocated to the 
application. 

The QoS Evaluator can guarantee the compliance of a SLO for the most part or a given 
period or time window. We define “for the most part” as the level of confidence we can 
have in the evaluation of the SLO. 

There exist different ways in which we can “assess” a group of data points or measurements 
to determine whether they comply with the objective “for the most part”. One way is to 
aggregate data points in groups of n and determine whether the group as a whole complies 
with the objective. Again, there are different aggregation functions we can use: from 
quantiles/percentiles to mean (average) and median; we chose the former In other words, 
that, metric’s value is lower or higher than the objective for the percentage of 
measurements collected in the time window. 
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Figure 34: Evaluation by percentile 

• Response time < 900ms for 99% measurements collected in 10min 
 

This percentage can be calculated as the percentile 99th or 0.99 quantile (also known as 99% 
quantile), depending on the nomenclature we want to use.  

The implementation is the percentile computation is performed in a streaming mode. The 
manager starts the computation of the percentile when its receives a “qos” request. This 
request contains the name of the queue to reply to, the name of the request and a list 
where each element is an object composed by the name of metrics, the percentage, the 
name of the application producing the corresponding metric, the interval of time of the time 
window. This request has the following format: 

{"request":"qos","queue":"qos", 
"metrics":[{"application":"tester","metric":"scrape_duration_seconds","interval":10,"percen
tage":90}]} 

The manager creates a bucket based on the interval of time specified in the request, then it 
computes the percentile taking into account the percentage.  

The output has the following format: 

{"application": "tester", "metric": "scrape_duration_seconds", "percentile": "0.016867146", 
"request": "qos"}. 

9.1. Requirements 
Requirements did not change from D3.2.  

9.2. Design Specifications 
The monitoring is collecting metrics from the infrastructure, applications (application 
specific metrics) and data (data transaction). Achieving this collection requires an 
extendable/scalable monitoring engine. BigDataStack infrastructure is based on OpenShift 

Time window 
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which has its own monitoring system, gathering information related to the nodes, pods and 
services etc. BigDataStack components are deployed by namespace which provides the 
flexibility of grouping metrics by component since they can be collected by namespace. The 
monitoring engine exploits service discovery provided by Prometheus to detect all 
Prometheus exporter (endpoint exposing metrics in Prometheus format). Some components 
of BigDataStack such as the CEP engine and the realization engine have internal Prometheus 
instances. The monitoring engine disposes of technique to extend its collection capability by 
adding these Prometheus instances. This functionality is provided through the operator and 
the capability of Thanos components. 
 

 
 

Figure 35: Architecture of the Triple Monitoring Engine 

The above picture shows the latest architecture of the TME. For each Prometheus instance 
we assign a sidecar (Thanos component) which will be connected to the querier. The 
Querier implement all Prometheus HTTP API. Metrics collected by different Prometheus 
instances in the platform can be accessed in a single point. The Ingestor requests metrics to 
the Querier then, publish them to the queue specified in the subscription object. The 
interval of time by which metrics are published can be altered in the subscription object. To 
allow the collection of metrics from application that don’t have the ability to embed a 
Prometheus exporter (based on architecture constraint). The triple monitoring engine is 
receiving their metrics through the Universal exporter collected to RabbitMQ. These 
applications can publish their metrics over HTTP to an endpoint available through Logstash. 
Logstash by its capability of handling huge data flux, publishes these metrics to the queue 
listened by the Universal exporter.  
Through the Realization engine which creates the OpenShift object (application pods), 
applications (use case applications) running on BigDataStack receives the “application ID” 
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which is the unique identification of the application on BigDataStack and the “object ID” 
which is the name of the component. Those elements are passed to the application as 
environmental variable and assigned to each metric. The Triple monitoring engine combines 
the application id and the object ID to create a unique BigDataStack application identifier 
which is present in the QoS start request as application field. The manager can create the 
correct subscription object which will enable the Ingestor to filter the correct metric. 
 

9.2.1. TME Scaling and Long-Term Persistence 
The current architecture uses Minio as metric storage for long term retention. Each 
Prometheus instance connected to the monitoring engine is configured such way to retain 
metrics for 2 hours. TSDB blocks are moved from each Prometheus instance (volume 
assigned) to Minio. For storage optimization, samples are compressed (aggregated) then 
stored to Minio. This operation is performed as routine by the Compactor (Thanos 
component).   

9.3. Experimentation Outcomes 
Like in D3.2 “no individual or specific experiments are conducted for this component; the 
Triple Monitoring engine and QoS Evaluation (QoSE) play a supportive role to the 
components bringing the intelligence to the DDIM capability: the ADS Ranking & Deploy and 
the Dynamic Orchestrator (DO).” Therefore, for experiments where the TME & QoSE 
participate are engaged please refer to Sections 7 and 8. 
 
 
 

 
Figure 36: Example of configuration of TME & QoS Evaluation for experimental setting 5 for scenario 4. 
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For example, Figure 36 shows an example of configuration of the TME & QoS Evaluation for 
the experimentation of real-time product recommendation analytics cost-readiness 
(scenario 4). In this scenario, the traffic of users’ behavioural events at the EROSKI’s 
ecommerce webpage towards the Feedback Collector service rises dramatically, which 
poses a challenge to the Dynamic Orchestrator, that is trading off between the response 
time (i.e. data freshness or time to value) of the real-time analytics process and the 
infrastructure resources cost. 

9.4. Implementation and Integration Highlights 

Figure 37 shows the main interactions in the context of the TME & QoS Evaluation 
component. There is a close collaboration based on asynchronous message passing among 
the main subcomponents of that component: QoS Evaluator, RabbitMQ (message queue), 
Manager and Prometheus-based monitoring system. 

 

Figure 37: Triple Monitoring Engine & QoS Evaluation integrations. 

Within BigDataStack, the Dynamic Orchestrator (DO) is the only consumer of the TME & QoS 
Evaluation service. This ensures low coupling in the architecture as well as high cohesion. 
This collaboration ensures that the DO gets notifications of violations of the QoS with 
respect to certain levels of QoS, and a specific confidence level (e.g. 95%, 99%, 99.99%, etc. 
See D2.3 for a full description of the QoS Evaluation Confidence Levels feature).   

9.5. Conclusions 
The design of this component, with clear distinction and assignment of responsibilities 
between the monitoring system (e.g. TME) and the QoS evaluation system, has provided the 
necessary flexibility to serve the specific needs of the Dynamic Orchestrator. In particular, 
the requirements for the management of multiple levels of QoS as well as confidence levels, 
posed a challenge that was analysed and designed in Y2, and implemented and tested in Y3.  

Furthermore, more of Y3 was dedicated to the testing and evaluation of the component in 
real-world conditions. This pinpointed lacks the Y2 designs that needed to be solver in order 
to provide the solution with high scalability and availability. This results in the integration 
with Thanos12, and the open source and highly available Prometheus setup with long term 
storage capabilities. This has allowed us to go one step further (beyond Prometheus) in the 
                                                 
12 https://thanos.io/ 

https://thanos.io/
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integration within the cloud-native foundation ecosystem. Furthermore, we plan to submit 
this component as a CNCF sandbox13 project in the upcoming months.  

 

  

                                                 
13 https://www.cncf.io/sandbox-projects/ 

https://www.cncf.io/sandbox-projects/
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10. Information-Driven Networking 
The development focus and enhancements compared with Y2 technical activities are that 
the respective networking mechanisms (i.e. Kuryr integrated into the OpenShift enabling to 
avoid the double encapsulation problem due to using two (2) different overlays, namely 
OpenStack SDN and OpenShift SDN on top, as well as Istio service mesh with sidecar 
injection enabled) were fully integrated, parameterized and validated in order to serve the 
application requirements derived by the demonstrators. Specifically, in Y3, we have focused 
in: 

i. Deployment and configuration of Istio service mesh with sidecar injection enabled 
at the BigDataStack Testbed; 

ii. Deployment and configuration of the telemetry application of Kiali Dashboard to 
monitor and visualize the structure of the BigDataStack service mesh and display its 
topology; 

iii. Set up and configuration of interactions with the Triple Monitoring and QoS 
Evaluation (i.e. which works along with the Prometheus monitoring system) in order 
to analyse the enforcement of network policies and prioritization schemes (i.e. 
response time, requests per second, etc.) based on defined metrics;    

iv. Description of the deployed microservices by means of network rules configuration 
(i.e. YAML files) that realize the BigDataStack applications and the interactions 
between them; 

v. Implementation, network policies enforcement and experimentation over a 
pluggable layer enabling traffic prioritization through weighted load balancing, 
access control and rate limit across diverse protocols and runtimes.  

10.1. Requirements 
Requirements did not change from D3.2. 

10.2. Design Specifications 
Through the Information-Driven Networking component the Data Scientist declares her 
intend to be realized by the underlying system to translate either the data flows or the 
application requirements into specific networking primitives that achieve the desired 
Service-Level Objective (SLO). This objective may refer to efficiently handling various kinds 
of traffic – streams, batches and micro batches – get the isolation/priority of availability and 
bandwidth that are needed to serve the application. With the convergence of all data and 
services in the same network mesh, the Information-Driven Networking manages traffic 
according to the network utilisation, the applications requirements and the communication 
latency without compromising the functionality of the services. Using policy statements, 
either the Network Administrators or the Data Scientists can specify which kinds of service / 
pod need to be given weighted load priorities, at what times and on what part of their 
communication protocol (TCP, HTTP, etc.). By deploying and configuring Istio service mesh 
at the BigDataStack testbed all the data metrics are collated by Mixer and stored in 
Prometheus. Kiali uses the data stored in Prometheus to show the service mesh topology, 
metrics, traffic information and more. A common set up which concretises the data flow 
events and the respective logical design is presented as follows.  
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Figure 38: Proxy Pod prioritizes Weighted Load Traffic to the Producer App  

In more details, the Proxy Pod based on Istio rules acts as a gateway which receives external 
traffic. The Proxy Pod through Istio service mesh sidecar splits the requests/traffic based on 
the application requirements. In Figure 38, the event of “product recommendation 
rejections” gets more priority compared to the events related with other user interactions 
to the application, because the former contributes in the re-training/re-calculation of the 
ML model delivering products recommendations to the end users (i.e. improve the accuracy 
of the model). 

  

The deployed microservices / pods and their interaction are described in YAML files. In order 
to enable Istio service mesh for pods at OpenShift Platform, we add "sidecar.istio.io/inject: 
"true" in the YAML file. The other fields remain the same as in the default OpenShift  
deployment. The necessary commands are presented as follows: 

oc apply -n istioapp proxy.yaml  

oc apply -n istioapp producer.yaml  

oc apply -n istioapp feedbackcollector.yaml 

The commands below contain the Destination Rule (app subsets) and the Virtual Services 
(weight and routes) that define the mesh network policies in Istio: 

oc apply -n istioapp destination_rule.yaml 

oc apply -n istioapp routing_subset.yaml 
 

In the following, we present an example of initializing the Proxy Pod at the BigDataStack 
testbed.   

apiVersion: networking.istio.io/v1alpha3 
kind: VirtualService 
metadata: 
  name: feedbackcollector-proxy 
spec: 
  hosts: 
    - "*" 
  gateways: 
    - feedbackcollector-gateway 
  http: 
    - match: 
        - uri: 
            exact: /feedbacks 
      route: 
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        - destination: 
            host: proxy 
            port: 
              number: 8083 

Figure 39: Initialization of the Proxy Pod which splits the events 

In addition to this, to address the challenges of a specific application, its requirements and 
the respective policies enforcement, a set of mechanisms operating at the services layer 
have been deployed. At the same time, to realize the appropriate attributes in order to 
weight the traffic towards concrete microservices / pods, we give priority to events of 
interest based on their type. This functionality implements the policy enforcement endpoint 
inside the pod as sidecar container in the same network namespace. This approach is highly 
flexible and HTTP aware and facilitates to apply policies in the support of operational goals, 
such as service routing, prioritization schemes over data flows, retries, circuit-breaking, etc. 

The Information-Driven Networking mechanisms also operate at the application layer. The 
latter gives the advantage of being universal. Our focus is to address the challenges arising 
from the diverse data types (i.e., stream, micro-batch, batch) to enforce policies to DNS, 
storage services (i.e., scalable storage of LeanXscale, Object Store, etc.), real-time streaming, 
ML model incremental training/update and a plethora of other services that do not use 
HTTP. The workloads in the BigDataStack environment can communicate without IP 
encapsulation or network address translation for bare metal performance, which enables 
easier troubleshooting, and better interoperability. In settings that require an overlay, the 
Information-Driven Networking mechanisms also support tunnelling. This approach is 
universal, highly efficient, and isolated from the pods and facilitates to apply policies also 
related with data privacy goals. In the following, we present the main service / networking 
configuration of controlling communications to HTTP GET/POST requests by giving an 
indicative network policy definition which prioritizes events accordingly.  
 
# On poll producer service handles weighted traffic (i.e. with 90-10 priority). 

# On feedbacks events are being prioritized towards the defined subsets / destinations. 

apiVersion: networking.istio.io/v1alpha3 
kind: VirtualService 
metadata: 
  name: producer 
spec: 
  hosts: 
    - producer 
    - proxy 
    - feedback-collector 
  http: 
    - match: 
        - uri: 
            exact: "/poll" 
      route: 
        - destination: 
            host: producer 
            subset: v1 
          weight: 90 
        - destination: 
            host: producer 
            subset: v2 
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          weight: 10 
    - match: 
        - uri: 
            exact: "/feedbacks/PRODUCT_RECOMMENDATION_REMOVED" 
      route: 
        - destination: 
            host: producer 
            port: 
              number: 8083 
            subset: v1 
    - match: 
        - uri: 
            exact: "/feedbacks/PRODUCT_VISUALIZED" 
      route: 
        - destination: 
            host: producer 
            port: 
              number: 8083 
            subset: v2 
    - match: 
        - uri: 
            exact: "/feedbacks/PRODUCT_ADDED_TO_BASKET  " 
      route: 
        - destination: 
            host: producer 
            port: 
              number: 8083 
            subset: v2 
    - match: 
        - uri: 
            exact: "/feedbacks/PRODUCT_REMOVED_FROM_BASKET" 
      route: 
        - destination: 
            host: producer 
            port: 
              number: 8083 
            subset: v2 

Figure 40: An indicative network policy definition for controlling HTTP GET/POST requests 

 

10.3. Experimentation Outcomes 
The Data Scientist uses the Information-Driven Networking (IDN) tool to define metadata 
and means of service mesh communication in order to apply tailored controls to data 
intensive operations (e.g. data streams requiring concrete prioritization schemes or 
weighted load balancing) and applications related with data intensive tasks (e.g. prioritizing 
user-generated data to facilitate an ML model update/recalculation based on events of 
special focus) according to specific requirements, by also considering: 

• The identification of the end-to-end application objectives in terms of specifying KPIs 
and criteria for optimal networking management and engineering (i.e. response 
time, requests per second, throughput, jitter); 

• The definition of the constraints arising from the type of data to be processed 
(prioritization of specific events, liveness, readiness among services) and the 
requirements of the application (time criticality, accuracy improvement of ML 
model, security, privacy); 
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• The validation of the applied network controls through the assessment of the 
corresponding metrics exposed by Prometheus used by the Triple Monitoring and 
QoS Evaluation. The validation step is required in order to evaluate that the policies 
have been correctly enforced and that resources are distributed among consumer or 
producer services/applications, as requested.  
 

Figure 41: Mapping of Information-Driven Networking tool with BDS Use Cases 
 

The IDN plays a supportive role to the components bringing the intelligence to the Data-
Driven infrastructure Management: the ADS Ranking & Deploy and the Dynamic 
Orchestrator (DO). It also interacts with the Triple Monitoring and QoS Evaluation to collect 
metrics w.r.t. response time, requests/traffic rate per second, request volume, request 
duration, etc., which are relevant to the application requirements. The experimental 
settings of the Information-Driven Networking are broken into 3 steps, as follows: 

i. Flow of Requests, which includes the Initialization of the respective services at the 
Istio/Kiali contexts. The Proxy Pod receives data from external sources based on the 
defined rules and splits the traffic in other serving pods (i.e. producer subset). 
Finally, feedback collector makes an HTTP GET request at the producer which 
responds based on the defines traffic (e.g. v1 = 90% and v2 = 10%).  

 
ii. The decomposition of the respective services within the Istio service mesh, as 
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presented in the below figures. Kiali communicates with Prometheus and gets 
metrics (i.e. % weighted requests) about how producer service interacts with input 
(left side) / output (right side) requests. 

  
 

iii. The Visualization of the results in Kiali including response time (figure on the left 
hand side)  and request per second (figure on the right hand side) for the 
incremental ML model updates. 

iv.  

  
 
The producer log records according to the prioritized events are split between EVENTS of 
TYPE A (i.e. PRODUCT_RECOMMENDATION_REMOVED) and EVENTS of TYPE B (i.e. the rest 
of customer events), as depicted in the following.  
 

  
Figure 42: Producer logs according to the event type 

Kiali Dashboard visualizes mesh network health between the interacting services where the 
producer routes the weighted loads (v1 vs. v2) to the feedback collector. It is shown that in 
some cases (i.e. 92.9%) the requests reach their destination while in some extreme cases 
(i.e. 7.1%) the Proxy Pod faces some requests loss. 
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Figure 43: Service Mesh Health Check through Kiali 

The Prometheus graph depicted in the following presents the total requests for the 
producer (i.e. the case of this destination app) where the prioritized data flow is greater (i.e. 
v1) than the common data flow (i.e. v2). 

 
Figure 44: Total requests collected by Prometheus 

10.4. Implementation and Integration Highlights 
The Information-Driven Networking component combines the OpenShift Network Policies14, 
services and routes to handle Ingress or Egress traffic in the cloud infrastructure at the 
Network, Transport and Application Level with the Istio15 open source service mesh that 

                                                 
14 https://docs.openshift.com/container-platform/4.1/networking/configuring-networkpolicy.html 
15 https://istio.io 

https://istio.io/
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transparently layers the services / pods. The service mesh is used to describe the network of 
containerized microservices / pods that interact in the BigDataStack Testbed. As the service 
mesh grows in size and complexity, it achieves efficiency in service discovery, load 
balancing, failure recovery, metrics, and monitoring. In more details, we implemented 3 
spring boot applications in the support of the respective services: proxy, producer, and 
feedback collector. In the frame of interactions of IDN with the Triple Monitoring & QoS, the 
metrics are stored in Prometheus, while Kiali uses these metrics to show the service mesh 
topology, metrics, traffic information and more. 

In this direction, we deploy special sidecar proxies throughout the BigDataStack 
environment which intercept all network communication between microservices. The key 
capabilities include the efficient traffic management, incorporating the rules configuration 
and traffic routing, which controls the traffic flows and API calls between services / pods. 

10.5. Conclusions 
Overall, the design and implementation of this component required the deployment and 
configuration of the Istio service mesh, Kiali Dashboard and Prometheus Dashboard coupled 
with service mesh observability functionalities. Specifically, Istio enabled to create a mesh 
network over the BigDataStack pods for better traceability and monitoring of the deployed 
services with weighted load balancing and service-to-service interaction capabilities.  

At the same time, Kiali facilitated to monitor traffic flows produced by the services of the 
mesh, visualise how they are connected as well as operations, updates, prioritized processes 
by means of network policies which can be enforced. In the context of BigDataStack project 
we worked towards the definition and set up of some complex scenarios focusing on 
weighted load balancing which resulted in traffic prioritization and therefore featuring data 
flows distribution controls over the Testbed. In this way, we manage to prioritize traffic to 
the workload instances which better serve the application requirements and are met by 
improving / updating the accuracy of the ML model. Finally, this ML model is part of the 
front-end application which calculates the recommendations delivered to the customers / 
end users.  
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