

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the
Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and

operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D3.3 – WP 3 Scientific Report and
Prototype Description – Y3

Work Package WP3 – Data-driven Infrastructure Management

Lead Author (Org) Antonio Castillo Nieto (ATOS)

Contributing Author(s)
(Org)

Ismael Cuadrado-Cordero, Orlando Avila-García (ATOS)

Bernat Quesada (ATOS WDL),

Jean Didier Totow, Christos Lyvas (UPRC),

Sophia Karagiorgou (UBI),

Nikos Drosos (SILO),

Mauricio Fadel Argerich, Bin Cheng (NEC),

Patricio Martinez Gracia, Jose Maria Zaragoza (LXS),

Richard McCreadie, Zaiqiao Meng, Craig Macdonald (GLA),

Luis Tomas Bolivar (RHT)

Internal Reviewer(s)

Yosef Moatti (IBM),

Ricardo Jimenez-Peris (LXS),

Dimosthenis Kyriazis (UPRC)

Due Date 30.10.2020

Date 30.10.2020

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 2 of 116 bigdatastack.eu

Version 1.0

Dissemination Level
X PU: Public (*on-line platform)
 PP: Restricted to other programme participants (including the Commission)
 RE: Restricted to a group specified by the consortium (including the Commission)
 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 3 of 116 bigdatastack.eu

Versioning and contribution history
Version Date Author Notes

0.1 30.09.2020 Orlando Avila-García
(ATOS)

Creation of the skeleton and first draft as a copy of
D3.2.

0.2 06.10.2020 Orlando Avila-García
(ATOS)

Draft of the Table of Contents (ToC) following
contributions by ATOS, UPRC, GLA, NEC and
RHT.

0.3 09.10.2020 Orlando Avila-García
(ATOS)

Writing of Sections 1, 2, 3 and 4. Improvements of
Section 8 TME and QoS Evaluation, specifically in
Section 8.3 Section 8.4 and 8.5.

0.4 13.10.2020 Orlando Avila-García
(ATOS)

A few aesthetic changes

0.5 23.10.2020 Antonio Castillo
(ATOS)

Changes in sections 5, 6, 7 and 9 to reflect project
progress.

0.6 23.10.2020 Antonio Castillo
(ATOS)

Changes in section 6 Dynamic Orchestrator. New
section for Realization Engine component.

0.7 26.10.2020 Antonio Castillo
(ATOS)

Changes in section 9 TME.

0.8 26.10.2020 Antonio Castillo
(ATOS)

Changes in section 7 Dynamic Orchestrator.
Numbering corrections

0.9 27.10.2020 Antonio Castillo
(ATOS)

Some corrections suggested by the reviewers.
Changes in Executive Summary.

1.0 29.10.2020 Antonio Castillo
(ATOS)

 Added section 7.3.1.1 to describes the CEP
integration with the infrastructure building block of
BigDataStack.

1.1 30/10/2020 Antonio Castillo Nieto
(ATOS)

Final format amendments and release of final
version.

Disclaimer
This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack
Consortium.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 4 of 116 bigdatastack.eu

Table of Contents
1. Executive Summary ... 10

2. Introduction .. 12
2.1. Relation to other deliverables ... 12
2.2. Relevant aspects unchanged from D3.2 and D3.1 ... 13
2.3. Document structure .. 14

3. Solution Architecture .. 15

4. Implementation and Experimentation ... 16
4.1. Experimental Settings .. 16

4.1.1. Setting 5: Real-time Recommendation Model Building 16
4.1.2. Setting 6: Batch Recommendation Model Building 16

4.2. Implementation ... 17
4.3. Experimental Scenarios ... 19

4.3.1. Scenario 4: Real-time product recommendation analytics cost-readiness 19
4.3.2. Scenario 5: Batch product recommendation analytics throughput 21

5. Cluster Management .. 24
5.1. Requirements ... 24
5.2. Design Specifications and Implementation Details ... 24

5.2.1. Gateway ... 24
5.2.2. East/West Distributed Load Balancing ... 25
5.2.3. Cluster Management API extensions: Network Policy Support at Kuryr ... 26
5.2.4. Cluster Management API extensions: RWX PVs at OpenShift on
OpenStack through Manila support .. 28
5.2.5. Kubernetization of Kuryr-Kubernetes by adapting CRDs model 28

5.3. Integration Highlights .. 29
5.4. Experimentation Outcomes .. 30

5.4.1. Distributed OVN Load Balancer performance .. 30
5.4.2. Kuryr tuning for real use cases ... 31
5.4.3. Autoscale experiments through Infrastructure provided APIs 32

6. Realization Engine ... 34
6.1. Motivation ... 34
6.2. Requirements ... 35
6.3. Modular Object Design ... 38

6.3.1. (BigDataStack) Application ... 39
6.3.2. (BigDataStack) Object .. 39
6.3.3. (BigDataStack) Operation... 40
6.3.4. (BigDataStack) Operation Sequences .. 41
6.3.5. (BigDataStack) Events ... 42
6.3.6. (BigDataStack) Metric .. 42
6.3.7. (BigDataStack) Service Level Objective ... 43
6.3.8. (BigDataStack) Resource Template ... 44
6.3.9. (BigDataStack) Application State ... 44

6.4. Updated Playbook Formatting .. 45
6.5. Realization Engine Architecture ... 46

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 5 of 116 bigdatastack.eu

6.6. Containerized Services .. 48
6.6.1. Realization Engine and Application API ... 48
6.6.2. Realization UI ... 50
6.6.3. Cluster Monitoring .. 53
6.6.4. Operation Sequence (Container Service) ... 54

6.7. Generic BigDataStack Operations .. 54
6.7.1. Instantiate ... 55
6.7.2. SetParameters ... 55
6.7.3. GetParameterFromObjectLookup .. 56
6.7.4. Deploy .. 57
6.7.5. ExecuteCMD .. 57
6.7.6. Build ... 58
6.7.7. Delete ... 59
6.7.8. Scale .. 59
6.7.9. Wait .. 60
6.7.10. WaitFor ... 60

6.8. Summary .. 60

7. Dynamic Orchestration ... 61
7.1. Requirements ... 61
7.2. State-of-the-Art: RL for Applications’ Configuration .. 63
7.3. Design Specifications ... 64

7.3.1. Adaptable Distributed Storage and Complex Event Processing Interplay 66
7.3.2. CEP Integration with the Infrastructure building block of BigDataStack ... 67
7.3.3. canYouScale method ... 67
7.3.4. infrastructureFinishedScaling method .. 67
7.3.5. infrastructureFinishedScalingDown method ... 67
7.3.6. Interplay with the Realization Engine ... 68

7.4. Implementation and Integration Highlights ... 68
7.5. Experimentation Outcomes .. 69
7.6. Next Steps .. 74

8. ADS Ranking & Deploy .. 75
8.1. Changes Since D3.2 .. 75
8.2. Terminology .. 76
8.3. Requirements ... 77
8.4. Design Specifications ... 82

8.4.1. Updated Architecture .. 82
8.4.2. Recommend Resources Operation .. 84
8.4.3. Apply Operation .. 84
8.4.4. Connection with the Realization UI ... 85

8.5. ADS Ranking Tier 2 (Machine Learned Ranking) ... 85
8.5.1. Related Work .. 85
8.5.2. Modelling Deployment Ranking as a Learning Task 87
8.5.3. Aggregating Across Service Level Objectives .. 88
8.5.4. Models and Feature Sets ... 89

8.6. Experimentation Outcomes .. 91
8.6.1. Dataset Structure ... 91
8.6.2. Dataset 1: Real-time Data Server (Streaming) ... 92

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 6 of 116 bigdatastack.eu

8.6.3. Dataset 2: Training a Deep Learning Model (Batch Processing) 94
8.6.4. Metrics .. 96
8.6.5. Baselines .. 97
8.6.6. Training Procedure ... 98
8.6.7. ADS Ranking Performance Results ... 98

8.7. Summary .. 100

9. Triple Monitoring & QoS Evaluation ... 101
9.1. Requirements ... 102
9.2. Design Specifications ... 102

9.2.1. TME Scaling and Long-Term Persistence .. 104
9.3. Experimentation Outcomes .. 104
9.4. Implementation and Integration Highlights ... 105
9.5. Conclusions .. 105

10. Information-Driven Networking ... 107
10.1. Requirements ... 107
10.2. Design Specifications ... 107
10.3. Experimentation Outcomes .. 110
10.4. Implementation and Integration Highlights ... 113
10.5. Conclusions .. 114

11. References ... 115

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 7 of 116 bigdatastack.eu

List of tables
Table 1 - Data-driven Infrastructure Management capability experimentation phases. .. 18
Table 2 - Data-driven Infrastructure Management capability implementation plan. 19
Table 3 - Requirement (1) for Dynamic Orchestrator .. 62
Table 4 - Requirement (2) for Dynamic Orchestrator .. 62
Table 5 - Requirement (3) for Dynamic Orchestrator .. 62
Table 6 - Requirement (4) for Dynamic Orchestrator .. 63
Table 7 - SLO satisfaction for Vanilla DQN agent vs. Tutor4RL agent. 72
Table 8 - Requirement (1) for ADS Ranking .. 77
Table 9 - Requirement (2) for ADS Ranking .. 78
Table 10 - Requirement (3) for ADS Ranking .. 78
Table 11 - Requirement (4) for ADS Ranking .. 79
Table 12 - Requirement (5) for ADS Ranking .. 79
Table 13 - Requirement (6) for ADS Ranking .. 80
Table 14 - Requirement (7) for ADS Ranking .. 80
Table 15 - Requirement (8) for ADS Ranking .. 80
Table 16 - Requirement (1) for ADS Deploy .. 81
Table 17 - Requirement (2) for ADS Deploy .. 81
Table 18 - Requirement (3) for ADS Deploy .. 81
Table 19 - Requirement (4) for ADS Deploy .. 81
Table 20 - Requirement (5) for ADS Deploy .. 82
Table 21 - Requirement (6) for ADS Deploy .. 82
Table 22 - Realtime Data Server Deployment Ranking Dataset Statistics...................... 93
Table 23 - Statistics for the Deep Learning Deployment Ranking Dataset 95
Table 24 - Deployment Ranking Performance on the Real-time Data Server dataset

 ... Error! Bookmark not defined.
Table 25 - Deployment Ranking Performance on the Deep Learning dataset 99

List of figures
Figure 1: Data-Driven Information Management (DDIM) process. 15
Figure 2: Experimental setting 5 - Real-time analytics process to produce the Product

Recommendations table (data flow view) .. 16
Figure 3: Experimental setting 6 - Batch analytics process to produce the Product

Recommendations table (data flow view). ... 17
Figure 4: Throughput improvements (POD to POD) ... 31
Figure 5: Throughput improvements (POD to SVC) .. 31
Figure 6: Realization Engine Application Model .. 39
Figure 7: Updated BigDataStack Playbook Format ... 46
Figure 8: Realization Engine Architecture ... 47
Figure 9: Realization Engine Manager Architecture .. 48
Figure 10: Realization UI Namespace Overview ... 51
Figure 11: Realization UI Applications View .. 52
Figure 12: Realization UI Operation States View .. 53
Figure 13: Instantiate Operation Configuration.. 55
Figure 14: Set Parameters Operation Configuration ... 56

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 8 of 116 bigdatastack.eu

Figure 15: Get Parameters from Object Lookup Operation Configuration 57
Figure 16: Deploy Operation Configuration ... 57
Figure 17: ExecuteCMD Operation Configuration ... 58
Figure 18: Build Operation Configuration .. 59
Figure 19: Delete Operation Configuration .. 59
Figure 20: Scale Operation Configuration ... 59
Figure 21: Wait Operation Configuration ... 60
Figure 22: WaitFor Operation Configuration .. 60
Figure 23: High level vision of Tutor4RL ... 65
Figure 24: Register with Dynamic Orchestrator Operation Configuration 68
Figure 25: Example of streaming analytics application ... 69
Figure 26: Comparison of performance between Tutor4RL and a plain DQN agent. 71
Figure 27: DO performance to manage 2 SLOs: costPerHour < 0.03 and responseTime

< 200 .. 73
Figure 28: Guide (#1 and #2) and constrain (#3) functions for DO. 74
Figure 29: ADS-Ranking and ADS-Deploy Processing Architecture 83
Figure 30: Cost Per Hour Delta Scoring Function ... 88
Figure 31: Realtime Data Server Architecture ... 92
Figure 32: Deep Learning Architecture .. 94
Figure 33: Evaluation by data points ... 101
Figure 34: Evaluation by percentile ... 102
Figure 35: Architecture of the Triple Monitoring Engine .. 103
Figure 36: Example of configuration of TME & QoS Evaluation for experimental setting 5

for scenario 4. .. 104
Figure 37: Triple Monitoring Engine & QoS Evaluation integrations. 105
Figure 38: Proxy Pod prioritizes Weighted Load Traffic to the Producer App 108
Figure 39: Initialization of the Proxy Pod which splits the events 109
Figure 40: An indicative network policy definition for controlling HTTP GET/POST

requests ... 110
Figure 41: Mapping of Information-Driven Networking tool with BDS Use Cases 111
Figure 42: Producer logs according to the event type ... 112
Figure 43: Service Mesh Health Check through Kiali .. 113
Figure 44: Total requests collected by Prometheus .. 113

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 9 of 116 bigdatastack.eu

Acronyms
ADS Application and Data Services

ADW Application Dimensioning Workbench

AWS Amazon Web Services

CD Continuous Delivery

CDP Candidate Deployment Pattern

CEP Complex Event Processing

CI Continuous Integration

CNI Container Network Interface

CRD Kubernetes Custom Resource Definition

DDIM Data-Driven Infrastructure Management

DNS Domain Naming System

DO Dynamic Orchestration

EKS AWS Elastic Kubernetes Service

GCP Google Cloud Platform

KPI Key-Performance Indicators

K8S Kubernetes

LbaaS Load Balancer as a Service

OKD OpenShift Origin Kubernetes Distribution

OVN Open Virtual Networking

OVS Open Virtual Service

QoS Quality of service

QoSE Quality of service evaluation

RL Reinforcement Learning

RPS Request per second

TME Triple Monitoring Engine

SDN Software-Defined Network

SLA Service-Level Agreement

SLO Service-Level Objective

NIC Network Interface Controller

VM Virtual Machine

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 10 of 116 bigdatastack.eu

1. Executive Summary
This is the Scientific Report and Prototype Description (Y3), reflecting the work done in the
scope of the Data-Driven Infrastructure Management (DDIM) capability of the overall
BigDataStack environment, including Cluster Management, Dynamic Orchestration,
Realization Engine (known as ADS Ranking & Deploy in Y1 and Y2), Triple Monitoring & QoS
Evaluation, and Information-Driven Networking. For all components, additional
requirements have been identified and refined, new design solutions have been proposed,
experimentation has been conducted and evaluation results have been collected for the
respective implementations.

Cluster Management has been improved to provide extended APIs to manage the
Infrastructure and Applications (such as Network Policies for fine-grain network access
tuning for the applications), and to improve the performance such as the support for
distributed load balancing for East/West traffic; speed up on the control plane actions
(services creation time); resource consumption savings (remove the need of having a VM
per service); and Read Write Many (RWX) support to enable pods sharing the same
volumes.

The Realization Engine is a new component of the BigDataStack platform that has been
developed as an addition to Task 3.3 (Dynamic Deployment Patterns & Runtime Re-
Configuration). The goal of the Realization Engine is to provide a central suite of
containerized services that enable configuration, deployment and subsequent management
of user applications and their components.

The Dynamic Orchestrator has also been improved to make our Reinforcement Learning (RL)
algorithm more flexible and adequate to deal with the complexity needed for orchestrating
BigDataStack applications. We have developed a novel Reinforcement Learning-based
approach called Tutor4RL, which combines domain knowledge with machine learning for
achieving a good initial performance, a common problem in RL and in particular for DQN.
We have introduced constrain functions, to supervise the behavior of the agent at every
point, avoiding unnecessary and incorrect changes in the deployment of applications.
Finally, we have integrated the DO with the Data-as-a-Service layer of BigDataStack, which
contains stateful components such as the Adaptable Distributed Storage (ADS) and the
Complex Event Processing (CEP), for adapting these components dynamically during
runtime.

Both ADS Ranking and ADS Deploy were subject to significant updates to factor in the new
Realization Engine component of BigDataStack, as well as better integrate them with that
component via operations. The ADS Ranking component was updated to add support for
supervised ranking via learning to rank, demonstrating that it is able to produce effective
rankings of deployments for the user across two categories of application.

TME and QoSEvaluator was testing and evaluating in real-world conditions with high
scalability and availability. This results in the integration with Thanos1, and the open source
and highly available Prometheus setup with long term storage capabilities. This has allowed

1 https://thanos.io/

https://thanos.io/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 11 of 116 bigdatastack.eu

us to go one step further (beyond Prometheus) in the integration within the cloud-native
foundation ecosystem.

The development focus with respect to the Information-driven Networking includes the
deployment and configuration of Istio service mesh with sidecar injection enabled which is
exposed through the telemetry application of Kiali Dashboard. Furthermore, service mesh
interactions are recorded by the Triple Monitoring and QoS Evaluation which facilitates to
validate and realize the enforced network policies and therefore prioritize traffic through
weighted load balancing, perform access controls and limit traffic rates across diverse
protocols and runtimes.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 12 of 116 bigdatastack.eu

2. Introduction
This deliverable presents the Scientific Report and Prototype Description of Data-Driven
Infrastructure Management (DDIM) capability for Y3 of the BigDataStack Project,
specifically, work done under the WP3. The document presents the improvements in the
designs and implementations of the main components of the DDIM to give support to
advance experimental settings and scenarios addressed in Y3. Like in Y2, a particular focus
has been put on the Machine Learning (ML) algorithms used to bring data-driven decisions
and actions to infrastructure operations, located in the Dynamic Orchestrator (DO) and the
Realization Engine (formerly known as ADS Ranking & Deploy), respectively. The rest of
components play a supportive role within the DDIM capability and are implemented over
well-known CNCF (Could Native Computing Foundation)2 open source projects in the cloud-
native ecosystem: Cluster Management, based on Kubernetes (OpenShift distribution),
Information-Driven Networking, based on Istio service mesh framework, and Triple
Monitoring and QoS Evaluation, based on Prometheus monitoring system.

2.1. Relation to other deliverables
This document is related to the following past and immediately upcoming deliverables:

• D2.6 – Conceptual model and Reference architecture III (M30). The description of
the high-level architecture of BigDataStack as well as the interplay and integration
between the main components. The architecture of the Data-Driven Infrastructure
Management as well as the design of the components have been devised to fit into
the overall architecture.

• D2.3 – Requirements & State of the Art Analysis III (M22). The specification of
BigDataStack requirements is centralized in this deliverable. Only modifications in
the requirements of DDIM components have described in this deliverable, in the
component-specific subsections.

• D3.2 – WP3 Scientific Report and Prototype Description – Y3 (M23). It described the
solution as well as the experimental results produced in Y2. D3.3 presents the results
obtained in Y3, which are necessarily an increment or refinement with respect to
those presented in D3.2. Therefore, please note those aspects of the solution that
did not change during Y3 will be referred to in either D3.2 (Y2) or D3.1 (Y1) reports.

• D4.3 – WP4 Scientific Report and Prototype Description – Y3 (M34). D4.3 makes
references to some of the requirements and components which are designed,
implemented and experimented with at WP4, while also the D4.3 references and
raises requirements that are being described in the current document. In fact, the
Data-Driven Infrastructure Management is meant to provide infrastructure services
(Infrastructure-as-a-Service) to those components.

• D5.3 – WP5 Scientific Report and Prototype Description – Y3 (M34). D5.3 makes
references to some of the requirements and components which are designed,
implemented and experimented with at WP5; this is because the tools developed at

2 https://www.cncf.io/

https://www.cncf.io/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 13 of 116 bigdatastack.eu

WP5 will interact with the services and resources provided by the infrastructure to
implement certain functionality supporting the different BigDataStack stakeholders.

• D6.2 – Use case description and implementation – Y3 (M34). D3.3 describes partially
the use cases which are subject to the experimental validation carried out in Y3.
Refer to this deliverable for more details about the use case applications, their
motivation, requirements, development and results.

2.2. Relevant aspects unchanged from D3.2 and D3.1
As described in the previous section, this deliverable presents the Scientific Report and
Prototype Description for Y3 for the work done in WP3. Therefore, much of the
development and research work reported in this deliverable is a continuation or extension
of the work reported in an equivalent report for Y1 (D3.1) and Y2 (D3.2).

However, in order to avoid the duplication of content, those aspects of the work which have
remained unchanged for the last year are not reported again here but property referred to
in D3.2 and D3.1. This is the case for:

i. Unchanged from D3.1:

o The Solution Architecture (Section 3), including the architecture vision,
assumptions, platform roles, example scenarios and the high-level design of
the Data-Driven Infrastructure Management (DDIM) capability.

o Experimental settings 1 and 2—included for the reader’s convenience.

o Experimental scenarios 1—included for the reader’s convenience.

ii. Unchanged from D3.2:

o Experimental settings 3 and 4—included for the reader’s convenience.

o Experimental scenarios 2 and 3—included for the reader’s convenience.

o The requirements specification of four out of the five building blocks of the
architecture remained unchanged for the most part: Cluster Management
(Section 5), Dynamic Orchestrator (Section 6), Realization Engine (Section 7),
and Information-Driven Networking (Section 9).

o The design specification of four out of the five building blocks of the
architecture remained unchanged for the most part: Cluster Management
(Section 5), Dynamic Orchestrator (Section 6), Triple Monitoring Engine and
QoS Evaluation (Section 8), and Information-Driven Networking (Section 9).

o Global experimentation outcomes at M23 reported in Section 10 regarding
deployment and dynamic adaptation of one kind of big data analytics:
product recommendation systems—the Connected Consumer (WDL) use
case was taken as experimental subject.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 14 of 116 bigdatastack.eu

2.3. Document structure
The document is structured as follows: Section 3 describes the solution architecture of the
Data-Driven Infrastructure Management (DDIM) capability of BigDataStack. Section 4
reports the Implementation and Experimentation: Starting with the experimental settings
(Section 4.1), it describes the DDIM capability development roadmap giving support to the
research (Section 4.2), and then finalizes with the description of experimental scenarios
(Section 4.3).

The following five sections are dedicated to the requirements specification, design
specifications, the presentation of experimental results, the description of interesting
aspects of the implementation and integration of the component within the whole
architecture, and some next steps: Cluster Management (Section 5), Dynamic Orchestration
(Section 6), ADS Ranking & Deploy (Section 7), Triple Monitoring & QoS Evaluation (Section
8) and Information-Driven Networking (Section 9).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 15 of 116 bigdatastack.eu

3. Solution Architecture
For a full description of the technical solution for the Data-driven Infrastructure
Management (DDIM) capability architecture, please refer to D3.1 (WP3 Scientific Report and
Prototype Description ̶ Y1) and D3.2 (WP3 Scientific Report and Prototype Description ̶
Y2).

Figure 1: Data-Driven Information Management (DDIM) process.

Figure 1 shows the standard Data-driven Infrastructure Management (DDIM) process,
including the flow of the main messages, as a collaboration between components inside and
outside the DDIM: In green, components belonging to the DDIM capability (developed in
WP3); in grey, components belonging to the Data as a Service capability (developed in WP4);
in blue, components of the GUI (developed in WP5).

Main DDIM building blocks are: 1) Cluster Management (WP3-T3.1) based on OpenShift
container orchestration platform running on either OpenStack infrastructure-as-a-service
(IaaS) or bare metal; 2) Realization Engine (known previously as ADS-Ranking & Deploy in
D3.1 and D3.2, WP3-T3.3) as the self-optimized deployment realization service; 3) Dynamic
Orchestration (WP3-T3.2) providing runtime adaptation of big data analytics applications
and services; 4) Data-Driven Networking (WP3-T3.4), based on a serve mesh model to
enforce networking policies of application and data services; and 5) Triple Monitoring and
QoS Evaluation (WP3-T3.5) providing monitoring and QoS checks for big data analytics
systems at different levels (application, data, networking and cluster resources).

Apart from those 5 main DDIM building blocks, the cost monitoring (Cost Estimation
component of Realization Engine) provides support for the Triple Monitoring Engine and this
component belong to T3.3

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 16 of 116 bigdatastack.eu

4. Implementation and Experimentation
This section introduces the new experimental settings and scenarios WP3 developed in the
Y3 phase, to answer important questions and validate certain hypothesis to develop the
Data-Driven Infrastructure Management (DDIM) capability.

4.1. Experimental Settings

In the following sections, we describe the new experimental settings developed in Y3,
supporting experiments with big data analytics systems with an increasing level of
complexity with respect to Y1 and Y2, in terms of the number of use case application
components as well as BigDataStack Platform components engaged. Please refer to D3.2 for
a description of experimental settings from 1 to 4.

4.1.1. Setting 5: Real-time Recommendation Model Building
This setting deploys the real-time analytics process which keeps the Product
Recommendations table up to date in between runs of the batch analytics process. This
process is made of two services as shown by Figure 2.

Figure 2: Experimental setting 5 - Real-time analytics process to produce the Product Recommendations table

(data flow view)

The product recommendation real-time analytics process is split into two main services:
Feedback Collector, which receives behavioural events of users visiting the EROSKI’s
ecommerce web site, and Model Update, which runs the real-time event streaming analytics
that carry out incremental changes to the Product Recommendations table stored in
LeanXcale database (data flow view). The actual analytics is made by the Batch
Recommendation. Model Update runs as a Spark Streaming job. It keeps the
recommendation table up to date in between batch analytics process runs (see D6.2 for
more details of this process).

4.1.2. Setting 6: Batch Recommendation Model Building
This setting deploys the batch analytics process which produces the Product
Recommendations table used by the Recommendation Provider service to run its
recommendation inference. This process runs as a Spark job, and it is made of several
analytics services as shown by Figure 3 (see D6.2 for more details of this process).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 17 of 116 bigdatastack.eu

Figure 3: Experimental setting 6 - Batch analytics process to produce the Product Recommendations table

(data flow view).

The product recommendation batch analytics process is split into three main services, Data
Filtering, Transform Data and Collaborative Filtering, and returns Product Recommendations
table stored in LeanXcale database (see D6.2 for more details of this process).

4.2. Implementation
Table 1 summarizes the experimentation (evaluation and validation) plan for the Data-
driven Infrastructure Management capability between M24 and M36:

 M24 M30 M36

Milestone Performance
Optimization with
settings 1, 2, 3, 4

Settings 5 and 6
Implementation and
Testing

Scenarios 5 and 6
Validation and
Optimization

Objective WP3, WP4 and WP5
components as well as
their collaboration
optimized to provide
cost-effective
orchestrated
capabilities for
scenarios 1, 2 and 3.

 WP3, WP4 and WP5
implement changes
needed to support big
data real-time and batch
analytics processes
outlined in settings 5 and
6, respectively.

 WP3, WP4 and WP5
components as well as
their collaboration
optimized to provide
cost-effective
orchestrated
capabilities for
scenarios 4 and 5.

Success
criteria

ALL WP3, WP4 and
WP5 services are fully
integrated and
deployed on
Kubernetes, validated
in scenarios 1, 2 and 3.

ALL WP3 services are
deployed and running on
Kubernetes to
implement experimental
settings 5 and 6.

ALL WP3, WP4 and
WP5 services are fully
integrated and
deployed on
Kubernetes, validated
in scenarios 4 and 5.

Experimentation with
Setting 3 and 4

Experimentation with
Setting 1

Experimentation with
Setting 2 and 3

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 18 of 116 bigdatastack.eu

Table 1 - Data-driven Infrastructure Management capability experimentation phases.

Table 2 summarizes the Data-driven Infrastructure Management capability implementation
roadmap for Y3:

 M24 M30 M36

Experimental
setting
supported

1, 2, 3, 4 5, 6 5, 6

Experimental
scenario
enacted

1, 2 3, 4 4, 5

Cluster
Management

OpenStack integration,
Cluster performance
improvements,
Operators,
Gateway
East/West Distributed
Load Balancing

- Complete the E/W
Distributed
LoadBalancing
support (not only the
kuryr part, but also
the integration into
OpenShift)
- Network Policy
Implementation in
Kuryr
- Extra
fixes/improvements
on the OpenStack
and Operators
integration

- Network Policy
testing coverage and
bug fixes
- Manila support to
enable pods with RWX
volumes
- Kuryr-kubernetes
modernization
through CRD model
adoption

Dynamic
Orchestrator

Agent
Interpreter
ADS Interplay

Tutor4RL: RL
framework for
combining ML with
external domain
knowledge
Implementation of
guides and constrains
to express domain
knowledge in
Tutor4RL
Improvements and
bug fixes in
interactions with
components in WP3

Refinements for
Tutor4RL, including
guide and constrain
functions
Refinements for
orchestration of
multiple applications
with different metrics,
SLOs and actions
simultaneously
Changes in
implementation of
interactions with
Realization Engine, CEP
and ADS, including the
implementation of
REST-RabbitMQ proxy
for communication

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 19 of 116 bigdatastack.eu

between DO and
components outside
WP3 that utilize REST
APIs

Ranking &
Deployment

ADS-Ranking,
ADS-Deploy
Global Decision
Tracker

Triple
Monitoring
Engine & QoS
Evaluation

Prometheus,
Graphana,
Metrics at application,
data, resources cluster
and networking levels,
Manager,
QoS evaluation
QoS evaluation proxy
Resource Cluster
metrics

QoS Evaluation
Confidence Levels

Triple Monitoring
Engine (TME) Scaling,
Long-Term Persistence

Information-
driven
Networking

Kubernetes
Networking & Policies
Enforcement,
Istio

- Implementation of
the Istio weighted
load balancing
mechanisms
- Integration with Kiali
and Triple Monitoring
Engine and QoS
Evaluation
- Implementation of
different network
policies coupled with
the Demos

- Network policy testing
coverage and bug fixes
- Access control and
policy enforcement

Table 2 - Data-driven Infrastructure Management capability implementation plan.

4.3. Experimental Scenarios
This section explains the new experimental use case scenarios, including success criteria,
developed in Y3 to be used in the context of WP3 to verify and validate the behavioural
invariances of DDIM components in order to ensure trustworthy run of component-specific
experiments. Please refer to D3.2 for a description of experimental scenarios from 1 to 3.

4.3.1. Scenario 4: Real-time product recommendation analytics cost-
readiness
This scenario deals with the real-time analytics of behavioural event streams of users visiting
the EROSKI’s ecommerce website. The analytics process makes incremental updates to the

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 20 of 116 bigdatastack.eu

Product Recommendations table based on micro-batches of events, to keep the table up to
date in between runs of the batch analytics process.

In this scenario, the Data Scientist is concerned with the time to value of certain type of
events, in particular, to speed up the changes the Product Recommendations table need to
undergo in the impact of events of type PRODUCT_RECOMMENDATION_REMOVED3 so that
the recommender is not recommending anymore a product that has been rejected to a
given user.

ID WP3-EXPSCE-04

Use Case ATOS Worldline

Name Real-time product recommendation analytics cost-readiness

Situation Increase in the volume of events produced by the users in the EROSKI’s
ecommerce website.

Settings

Preconditions What happened in the system before running the test? Initial conditions or
state; e.g. the product recommendation real-time analytics process is
deployed, which includes LXS database as well as Feedback Collector and
Model Update services (see Setting 5 in Section 4.1.5).

Trigger What triggers this scenario, the entire use case, e.g. the traffic or requests
per second (rps) to the Feedback Collector service spikes.

QoS
requirements

Response time < 300ms

Compute resource cost < 2$ per hour

QoS
preferences

Response time < 100ms

Compute resource cost < 1$ per hour

Postcondition Expected result, e.g. the response time as well as the compute resource
cost (CRC) meets the QoS requirements.

3 This event informs a given user has explicitly expressed through a click that she does not
find a given recommendation interesting.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 21 of 116 bigdatastack.eu

Scenario

Steps 1. The CRC is under 1$ per hour.
2. We increase the rps to the product recommendation service from

0 to 1000. The response time remains under the SLO warning
threshold.

3. We rise to 2000 rps. The response time goes beyond the SLO
warning threshold but still below the SLO error threshold.

4. We rise to 3000 rps. The response time goes beyond the SLO error
threshold.

5. The QoS Evaluator notifies a QoS violation to the DO.
6. The DO makes the decision to increase by one the number of

replicas of the product recommendation service. It sends a request
to the ADS-Ranking.

7. The ADS-Ranking produces the best re-redeployment to enact the
DO decision and sends a request to the ADS-Deploy.

8. The ADS-Deploy executed the deployment specified by the ADS-
Ranking by sending request to the cluster manager (OpenShift).

9. OpenShift increases by one the number of replicas of the product
recommendation pod.

10. The response time of the product recommendation service drops
below the SLO warning threshold.

11. The CRC rises to 1.5$ per hour so beyond the SLO warning
threshold but still below the SLO error threshold.

4.3.2. Scenario 5: Batch product recommendation analytics throughput
This scenario represents a situation where the application suffers a traffic spike that
obligates the DDIM to scale out the application deployment so to keep its response time at
certain SLO, like in Scenario 1, but adding a second SLO to ensure operational costs remain
under certain threshold. Thus, this scenario exemplifies how the operational “cost” can be
managed and enforced as just another SLO or QoS attribute by the DDIM.

ID WP3-EXPSCE-05

Use Case ATOS Worldline

Name Cost-effectiveness of the product recommendation service

Situation Spike in the volume of traffic (requests per second - rps) to the online
serving layer of the product recommendation system.

Settings

Preconditions What happened in the system before running the test? Initial conditions
or state; e.g. the product recommendation batch analytics process is

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 22 of 116 bigdatastack.eu

deployed, which includes LXS database as well as Data filtering,
Transform Data and Collaborative Filtering services (see Setting 6 in
Section 4.1.6).

Trigger What triggers this scenario, the entire use case, e.g. the periodic run of
the product recommendation table batch analytics process.

QoS
requirements

Throughput < 300 ms

Compute resource cost < 2$ per hour

QoS
preferences

Throughput < 100 ms

Compute resource cost < 1$ per hour

Postcondition Expected result, e.g. the throughput as well as the compute resource
cost (CRC) meets the QoS requirements.

Scenario

Steps 1. The CRC is under 1$ per hour.
2. We increase the rps to the product recommendation service

from 0 to 1000. The response time remains under the SLO
warning threshold.

3. We rise to 2000 rps. The response time goes beyond the SLO
warning threshold but still below the SLO error threshold.

4. We rise to 3000 rps. The response time goes beyond the SLO
error threshold.

5. The QoS Evaluator notifies a QoS violation to the DO.
6. The DO makes the decision to increase by one the number of

replicas of the product recommendation service. It sends a
request to the ADS-Ranking.

7. The ADS-Ranking produces the best re-redeployment to enact
the DO decision and sends a request to the ADS-Deploy.

8. The ADS-Deploy executed the deployment specified by the

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 23 of 116 bigdatastack.eu

ADSRanking by sending request to the cluster manager
(Openshift).

9. Openshift increases by one the number of replicas of the
product recommendation pod.

10. The response time of the product recommendation service
drops below the SLO warning threshold.

11. The CRC rises to 1.5$ per hour so beyond the SLO warning
threshold but still below the SLO error threshold.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 24 of 116 bigdatastack.eu

5. Cluster Management
The cluster management component’s responsibilities are both to deploy the BigDataStack
components as requested and to keep its status healthy overtime. This not only includes
containers but also the related services and even the OpenShift Kubernetes cluster itself by
exposing the needed Infrastructure APIs. The cluster management is in charge of adapt the
current deployments to the new preferred status requested by the upper layers, in order for
example to increase the size of the cluster, or scale up/down given applications. In addition,
during the last year of the project more improvements has been done at the cluster
management internals to provide extended APIs to manage the Infrastructure and
Applications (such as Network Policies for fine-grain network access tuning for the
applications), and to improve the performance such as the support for distributed load
balancing for East/West traffic; speed up on the control plane actions (services creation
time); resource consumption savings (remove the need of having a VM per service); and
Read Write Many (RWX) support to enable pods sharing the same volumes.

5.1. Requirements
The main change comparing to the requirements documented in D3.2 is described below.

 Id Level of detail Type Actor Priority

REQ-CM-0X System ENV Developer DES

Name Manila Support at OpenShift on OpenStack: Enable ReadWriteMany
(RWX) PVs when running OpenShift cluster on top of OpenStack VMs

Description Most of the OpenStack Cinder backend drivers do not support the
attachment of volumes to multiple VMs. This means that pods running
inside different OpenShift nodes (aka VMs) cannot access the same
Volume (i.e., the same PV/PVC). To avoid this problem we need to add a
new operator in charge of installing and configuring the needed
operators/controllers to make use of Manila (instead of Cinder) as a
storage class that pods can use to get their PVs attacked.

Additional
Information

This is needed by some applications that may require access to shared block
storage, not just object storage.
Note Manila is an OpenStack project whose main objective is to create
shared NFS as a service

5.2. Design Specifications and Implementation Details
The design for this component (specified in Section 5 of D3.1) has mostly remained valid for
Y2. The following sections describe the aspects of the design that have been changed.

5.2.1. Gateway
The gateway for the BigDataStack engine can also be implemented as part of OpenShift, in 2
different ways depending on the final requirements:

- By using OpenShift routes: Route is a way to expose OpenShift services by giving it
an externally reachable hostname, like www.example.com. It has the option to
perform the routing based on paths, i.e., we can use it to redirect some queries to

http://www.example.com/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 25 of 116 bigdatastack.eu

the CEP component (i.e., www.example.com/cep/…) and others to the Alarm
component (i.e., www.example.com/alarms/...). The initial design targets to use this,
being able to assign a common OpenStack Floating IP for all the ingress traffic to
OpenShift Apps, in this case BigDataStack components.

- By using Istio service mesh: A service mesh is a network of microservices that
enables applications and the interactions among them. It offers functionality like
load-balancing, fine grain traffic control, access control, logging, tracing, etc.,
through sidecars containers associated to the applications pods. One offered
functionality is Istio-Gateways which controls the exposure of services at the edge of
the mesh. This could be used to tie gateways to specific virtual services that can
perform the extra required actions that the gateway may require besides redirecting
the traffic to the desired endpoint.

Even though we are also using Istio service mesh internally, for the Cluster Gateway we are
using the OpenShift Ingress, I.e, the first option with the routes where a single public IP is
used for accessing all the applications by leveraging the OpenShift route support and the
services k8s models to expose applications.

5.2.2. East/West Distributed Load Balancing
In Kubernetes and OpenShift, the communication between the different application
components and between applications (i.e., between the Pods) is not meant to be pod to
pod (and using IPs) since pods are supposed to be disposable and therefore they can be
replaced/deleted at any time. Pods are usually behind a service which abstracts the IP/name
of the container(s) that is pointing to. This way, pods can talk to known services IPs (and
names) and containers after that service can be recreated at any time without impacting the
way the caller pods uses to reach them.

Given the above, the pod to svc to pod communication performance is quite important as it
is the most usual pattern. When using Kuryr, Services are implemented as Octavia load
balancers. This means that each K8s service will require Octavia load balancer, and with the
default ‘amphora’ driver that means an OpenStack VM. This has 4 main implications:

1. Resource waste since lots of VMs will be needed for backing the services.
2. User experience as services will need more time to be up and running since the

amphora VM must be created and configure.
3. Single point of failure for services as if the VM dies, a new one will need to be

created to replace it.
4. Network latency as traffic needs to do extra hops to reach the amphora VM.

For these reasons, we have worked on the integration of OVN load balancer into OpenStack,
including Octavia and Kuryr. The OVN load balancer is a distributed load balancer based on
OVS/OVN flows. This means that it does not require any amphora VM to load balance the
traffic and simply creates the needed flows locally on each OpenStack compute node. To
make it easier to understand, it is like if an iptable rule was changing the Kubernetes service
IP by one of the Kubernetes endpoints (pods) IPs and then the traffic was directly forwarded
to the selected pod.

Thanks to this integration, the next advantages have been achieved:

http://www.example.com/alarms/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 26 of 116 bigdatastack.eu

• Speed up on the time needed to create a K8s service. Now it is more similar to bare
metal OpenShift/Kubernetes deployment (with kube-proxy) and it will take only a
few seconds instead of around 1 minute

• Resource savings: There is no need for extra resource when creating services. This
approach used ovs flows instead of amphora VMs. In fact, this solution is also more
scalable than kube-proxy solution based on iptables

• Due to the OVN load balancer distributed nature (flows in every node instead of a
VM somewhere) there is no single point of failure

• Reduced latency with increased throughput: Distributed routing as the traffic goes
directly pod to pod instead of having to jump to the OpenStack node that has the
amphora VM and back

• No need to parse Security Groups at amphora load balancer to apply Kubernetes
Network Policies, with the consequent reduction on Neutron OpenStack load, as well
as in the time needed to enforce those policies.

This feature makes Kuryr-kubernetes a project much more appealing for companies and for
different use cases, where having a VM per service was an impediment to use it, not only for
the extra penalties on control and data plane performance, but mainly due to the excessive
number of resources needed for the amphora VMs.

5.2.3. Cluster Management API extensions: Network Policy Support at
Kuryr
Some applications need fine grain traffic control at the IP address or port level (OSI layer 3
or 4). For this reason, Kubernetes Network Policies API was defined. Network Policies are an
application centric construct which allow you to specify how a pod is allowed to
communicate (ingress and egress) with various network entities over the network. The
entities the pod can communicate with are identified through a combination of the
following, which is fully based on Kubernetes labels:

• Other pods that are allowed

• Namespaces that are allowed

• IP Blocks

In order to be able to provide this cluster management API for network management at
Kuryr-Kubernetes, we need Kuryr to:

• React to the Network Policy objects creation/deletion/updates and process them

• Generate the corresponding OpenStack resources that provide the same isolation
between pods and services as expected by the Network Policies. The OpenStack
resources available for this are the Neutron Security Groups and Security Group
Rules.

This is one of the largest and hardest features merged on upstream Kuryr-Kubernetes, with
a lot of implications, such as new handlers and drivers, as well as with modifications to
almost any existing handler to react to them. There have been more than 50 commits

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 27 of 116 bigdatastack.eu

upstream related to it between the different pieces for the feature, the extra testing code
and the follow up bug fixed due to uncover corner cases. For more information about the
proposed solution as well as the new handlers and drivers, and the modifications to the
existing ones, you can check the developer reference document that was created for it at:
https://github.com/openstack/kuryr-
kubernetes/blob/master/doc/source/devref/network_policy.rst

The flow that Kuryr drivers/handlers follow when a new network policy is created is the
following:

As it can be seen, the new policy handlers not only have to reach out the new network
policy drivers (3 of them) but also existing drivers such as the vif pool (for pods creation) and
the lbaas driver (for services creation). Changes are not only limited to that, but also other
handlers are affected, such as the vif handler (the one in charge of creating the resources
needed for the pods):

https://github.com/openstack/kuryr-kubernetes/blob/master/doc/source/devref/network_policy.rst
https://github.com/openstack/kuryr-kubernetes/blob/master/doc/source/devref/network_policy.rst

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 28 of 116 bigdatastack.eu

5.2.4. Cluster Management API extensions: RWX PVs at OpenShift on
OpenStack through Manila support
Applications that need to maintain some state or data (Pods) need access to persistent
volumes (PVs). The default backend for those when running OpenShift on top of OpenStack
is Cinder. However, Cinder does not have support for multi-attachment of volumes to
different VMs (at least not all the cinder backend drivers). This impose some limitations on
the applications running on top as each one will need to get them on PV/PVC and therefore
both of them won’t be able to read/write from the same one.

In order to avoid this limitation, we have added support for Manila at OpenShift. Manila is
an OpenStack project that derived from Cinder project, and that provides canonical storage
provisioning control plane for shared or distributed file systems, similarly to the way Cinder
provides such a canonical control plane for block storage. This allows to define a new type
of OpenShift Storage Class that enables the creation of volumes backed up by NFS and
therefore shareable between different pods at the same time, hence providing RWX (read
write many) access for them.

To add this support, we have created a new Manila CSI Driver Operator which is in charge of
the deployment and configuration, and that allows the provisioning of dynamic manila CSI
volumes. More information about its usage can be found at
https://docs.openshift.com/container-
platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html

5.2.5. Kubernetization of Kuryr-Kubernetes by adapting CRDs model
There is a current trend of moving containerized applications to the Kubernetes/operators
model which allows you to extend Kubernetes API with application specific object/APIs. This
model pursued by Kubernetes and CNCF communities, gives some advantages and de-facto
standardization that were fitting really well into the Kuryr-Kubernetes model. Therefore, we
initiated the effort on modernization the Kuryr internals by adopting this model.

In contrast to regular OpenStack projects like Nova or Cinder, Kuryr-Kubernetes behaviour is
driven by events happening in Kubernetes (e.g. Pod or Service being created) and not by
user calling OpenStack REST API. A pattern when application acts upon events received from
Kubernetes API and adjusts environment state accordingly is called "controller" in
Kubernetes world. Moreover, Kuryr does not use any database, and it used to store some
information on Kubernetes object annotations. Thanks to the adoption of Kubernetes
Custom Resources (called CRDs), we now store that state of the OpenStack resources on
specific CRDs on the Kubernetes environment instead. This give us several advantages such
as:

• Limit the number of calls to OpenStack, with the consequent performance
improvement as well as reduction on its load

• Easier to debug/check the status by looking at the existing Kubernetes objects, in
this case the Kuryr specific CRDs.

This CRDs adoption by Kuryr has been made at 4 main points:

https://docs.openshift.com/container-platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html
https://docs.openshift.com/container-platform/4.5/storage/container_storage_interface/persistent-storage-csi-manila.html

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 29 of 116 bigdatastack.eu

• KuryrNetworks: related to the namespace handling by Kuryr, which is in charge of
creating subnets in OpenStack for OpenShift/Kubernetes namespaces

• KuryrPorts: related to the pod handling by Kuryr, which is in charge of creating the
needed ports in OpenStack for OpenShift/Kubernetes pods

• KuryrLoadBalancers: related to the service handling by kuryr, which is in charge of
creating the Load Balancers in OpenStack for OpenShift/Kubernetes
services/endpoints

• KuryrNetworkPolicy: related to the network policy handling by Kuryr, which is in
charge of creating the SecurityGroups/SecurityGroupRules in OpenStack for
OpenShift/Kubernetes network policies.

This have been the biggest effort on Kuryr-Kubernetes during the last OpenStack release
(Victoria) and it has already being noticed by the community such as the blog post article
https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-
work/2020/10/ that mentioned the next:

The biggest move was the release of Victoria, which is the 22nd OpenStack release. Victoria
builds on the previous Ussuri launch with more than 20,000 code changes that include
native integration with Kubernetes and more support for diverse infrastructure deployments.

The Kubernetes integration is on the back of the Kuryr container networking plugin. It acts as
the link that delivers the OpenStack networking into containers. Kuryr now has support for
customer resource definitions (CRDs) that remove the need for it to use annotations to store
data about OpenStack objects in the Kubernetes API.

“Kuryr has adopted this as the way that it passes information back and forth between the
underlying infrastructure that a Kubernetes cluster may be running on and the Kubernetes
environment itself,” explained OSF Executive Director Jonathan Bryce, in a press
briefing. “This is great because it brings the two systems closer together using the native
components on each side.”

5.3. Integration Highlights
For the first part of the project, initial support for OpenStack was included into the
OpenShift-Ansible installer to handle the creation of OpenStack resources. This was based
on OpenShift 3.11 as OpenShift 4.X was currently at a being developed phase and an
OpenShift cluster was needed so as not to block the other components. As soon as the work
on moving OpenShift to the operator’s model was stable enough (OpenShift 4), we moved
our testbed to that release. We did this as part of our testbed migration to the
Massachusetts Open Cloud (MOC – https://massopen.cloud/). The objective of this cloud is
to create a self-sustaining at-scale public cloud based on OpenStack. It serves as a
marketplace for industry partners (Red Hat being one of them) as well as a place for
researchers and industry to innovate and expose innovation to real users. We obtained an
OpenStack user project with enough quota for our experiments and use cases:

• 1 TB RAM, >1 TB Storage (plus access to the ceph storage cluster), 30 volumes, 20
instances, 300 cores, 300 networks, ...

On top of this OpenStack cloud, and based on the extensions made to the OpenShift
Installer to have better support when can be installed on top of OpenStack, we deployed

https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-work/2020/10/
https://www.sdxcentral.com/articles/news/att-verizon-5g-deployments-boost-openstack-work/2020/10/
https://www.sdxcentral.com/articles/news/openstack-ussuri-update-tackles-reliability-security/2020/05/
https://www.sdxcentral.com/containers/definitions/what-are-containers-like-docker-linux-containers/
https://massopen.cloud/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 30 of 116 bigdatastack.eu

OpenShift (4.5 version) on the testbed. This support extends the OpenShift installer to
create/delete OpenStack VMs and later install the packages, configuration files, keys,
services, etc., needed to install and configure the OpenShift cluster on top of them. It
includes the basic operators and prepares the system for the new ones to be created as part
of the BigDataStack project.

We followed the best practices (configuration) for deploying OpenShift on top of OpenStack
already outlined within D3.1; the reader can also refer to that deliverable to see an account
of the minimum number of each OpenStack resource types that are needed for a minimal
installation of OpenShift on top of OpenStack.

On top of this OpenShift cluster, the rest of the Big Data Stack components are installed in a
containerized mode. They are able to take advantage of the extensions made to the cluster
management. Some of them transparently:

• Improved network performance thanks to Kuryr integration into the Cluster Network
Operators

• Improved performance for services, both control plane (faster to create and more
scalable), data plane (improved bandwidth with reduced latency), resource
consumption (no need for extra VMs), and fault tolerance (no single point of failure)

• Kuryr CRD adoption

And some other by leveraging the new APIs

• OpenShift Routes for the Gateway and access of applications from the outside of the
cluster

• OpenShift Cluster API that allow to easy scale up/down the cluster itself. Even with
automatic scaling based on usage, as covered here:
https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack

• Fine-grain network access control to the applications by using Network Policies,
thanks to its integration into Kuryr

• Support for Manila and thus the option to have RWX PVs in OpenShift, which makes
possible for pods to share data through volumes.

5.4. Experimentation Outcomes
5.4.1. Distributed OVN Load Balancer performance
We did some initial experimentation that focused on the initial integration testing and scale
testing of OVN-Octavia distributed load balancing for Kubernetes Services.

A performance comparison between Kuryr and OpenShift SDN was carried out, proving a
performance boost of up to nine times better for throughput, as presented in the following
figures, while additional results have been published online at the OpenShift blog4.

4 https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr

https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 31 of 116 bigdatastack.eu

Figure 4: Throughput improvements (POD to POD)

Figure 5: Throughput improvements (POD to SVC)

Thanks to the integration of the distributed OVN load balancer into Kuryr (and Octavia), the
customers interest on this has raised and consequently Red Hat is performing some bigger scale
testing with it, similarly to the already made scale testing for OpenStack itself in here but with
OpenShift with Kuryr on top: https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-
161-more-700-nodes

5.4.2. Kuryr tuning for real use cases
As part of the upstream development, components are not usually target to just one use
case and they have some configuration knobs to be able to be adapted to the specifics of
each case. This was the case for kuryr-kubernetes too.

Thanks to the Kuryr-Kubernetes extensions as part of BigDataStack, and due to its network
performance improvements as well as its simplified model to expose applications to the
outside work, some customer has already started testing OpenShift on top of OpenStack

https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-161-more-700-nodes
https://www.redhat.com/en/blog/scaling-red-hat-openstack-platform-161-more-700-nodes

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 32 of 116 bigdatastack.eu

with Kuryr. However, the above mention knobs needed to be adapted to the needs of the
specific use cases. This was gathered in the next blog post:

• https://developers.redhat.com/blog/2020/10/02/customizing-and-tuning-the-kuryr-
sdn-for-red-hat-openshift-3-11-on-red-hat-openstack-13/

As it can be seen there may be some needs to adapt, among others:

• Services and Load Balancer ranges, to accommodate for the specific ranges available
at the customer, as well as to adapt it to the expected OpenShift cluster usage, i.e.
number of expected services, pods, etc.

• Type of isolation required by the applications: namespace isolation vs network policy
isolation. This depends on the application needs and if fine grain control is not
needed (i.e., network policies), a simpler approach can be taken with the namespace
isolation.

• Ports pre-creation to save time and expensive OpenStack calls. This allow to have
certain amount of Neutron ports ready to be used by the OpenShift/Kubernetes
pods. This improves the time needed for pods to be running by one order of
magnitude as well as remarkably decreases the load on Neutron server on pods
creation spikes. However, it comes at the expenses of more ports being created per
OpenShift node and depending on the size of the network it may lead to problems,
such as running out of subnet IPs. As a consequence, its configuration is needed
considering both the size of the available networks (/24, /26, …) as well as the size of
the cluster (number of nodes).

5.4.3. Autoscale experiments through Infrastructure provided APIs
Thanks to leveraging the CRD usage model and the OpenShift on OpenStack integration, it is
possible to expose the infrastructure through OpenShift/Kubernetes APIs. In turns, this
allows us for an easy way to increase or decrease the size of the OpenShift cluster, with just
one single command (or click) and in an exactly the same way as you would do with the
number of pods for an applications, i.e., just increasing the number of replicas.

What is more, this opens the floor for more advanced autoscaling techniques, based on
either usage or predictions/estimations about future needs, which could trigger the scale
up/down of the cluster to either get more resources for your applications or reduce the
resource consumption when not needed.

As part of the OpenShift integration on top of OpenStack we have also added support for
the autoscaler that automatically can trigger the OpenShift cluster scaling actions based on
load, where both the maximum and minimum number of workers can be specified, e.g.:

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 33 of 116 bigdatastack.eu

For more information about this you can see the blog post and demo video in here:

https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack

https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 34 of 116 bigdatastack.eu

6. Realization Engine
The Realization Engine is a new component of the BigDataStack platform that has been
developed within WP3 in Y3 by the GLA partner as an addition to Task 3.3 (Dynamic
Deployment Patterns & Runtime Re-Configuration). The goal of the Realization Engine is to
provide a central suite of containerized services that enable configuration, deployment and
subsequent management of user applications and their components. The main
functionalities provided by the Realization Engine are:

• Registration and storage of user applications (either via complete BigDataStack
Playbooks or in smaller units).

• Deconstruction of BigDataStack Playbooks into constituent components for easier
management. These components are: the application definition; comprised object
definitions (Deployment Configs, Jobs, Services, Routes, etc.); exported metrics;
service level objectives; operation sequences; and application states.

• Provision of built-in object-level management actions for the user’s application
• Support for complex deployment or alteration actions in the form of operation

sequences.
• Live OpenShift cluster state monitoring, enabling synchronisation of application

states between the cluster and Realization Engine supporting automated action
triggering.

• Short-term time-series data storage for Realization Engine managed metrics.
• Provision of a REST API for accessing application, component, and cluster status, as

well as triggering actions.
• Provision of a graphical user interface enabling run-time application monitoring and

management
• Integration with the other WP3 components (e.g. ADS Ranking and ADS Deploy).

In the remainder of this section we will discuss why the Realization Engine was introduced
as well as provide a technical overview for it. In particular, in Section 6.1 we summarise the
motivation for the introduction of the Realization Engine. Section 6.2 describes the
additional requirements identified for the Realization Engine. In Section 6.3 we describe
how internal modelling of user applications has changed to enable better division of
complex applications into components. Meanwhile, Section 6.4 details updates made to the
BigDataStack Playbook format to reflect these modelling changes. Section 6.5 provides an
architectural overview of the Realization Engine, while Section 6.6 provides a brief overview
of each of the services comprised within it. Finally, Section 6.7 summarizes the different
built-in operations within the Realization Engine and what they are used for.

6.1. Motivation
For the BigDataStack M18 review, a demonstration system was developed to illustrate the
different components and added value of the BigDataStack project. Post the M18 review,
the consortium internally performed a separate review of this system to identify potential
issues with the platform design. As outcome of this review, there were two main
architectural limitations identified that impacted WP3:

• The first limitation was that from a user-facing perspective, the application engineer

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 35 of 116 bigdatastack.eu

lacked a means to manage their application post deployment. In effect, once the
application was launched, management was fully automatic and if the user disagreed
with alterations that the platform implemented they could not intervene. Hence,
there was a need for additional (manual) management capabilities that had not been
originally envisaged.

• The second limitation that was identified was regarding the underlying application
modelling. In the original design, a user application was considered to be atomic, and
as such could be orchestrated as a single unit. The implications of this are many-fold,
however we summarize some of the more important down-stream impacts here.
First, all deployment and alteration actions had to be natively supported by the user
application (e.g. via a Kubernetes Operator) and then have a supported trigger
within one of the BigDataStack components (e.g. ADS-Deploy or Adaptive
Networking). This made the BigDataStack platform very rigid and difficult to adapt to
new application types. Second, as any complex deployment and alteration actions
had to be defined within the application, progress regarding those complex actions
could not be tracked or visualised by BigDataStack. This could lead to incorrect
statuses being shown to the user, while also causing issues for any active automated
orchestration systems that rely on those states for decision making. As a result, it
was decided that applications needed to be divisible into components that could be
independently managed and tracked, as well as that all deployments and alterations
needed to have clearly defined stages that were managed by BigDataStack.

To address these limitations, it was clear that there needed to be a centralized system that
could track and manage the user application at component-level, which was not in the
original platform architecture. Hence, the Realization Engine was designed and developed.

6.2. Requirements
In this section we provide an overview of the requirements that were identified for the
Realization Engine. Realization Engine requirements are REQ-RE-XX.

 Id Level of detail Type Actor Priority

REQ-RE-01 System FUNC Data
Toolkit

MAN

Name BigDataStack Playbook Registration

Description Once the application engineer and/or data scientist has defined the
application via the Data Toolkit (or has generated a BigDataStack Playbook
manually), the Realization Engine needs to ingest the application definition
and divide it into individual components and store them.

Additional
Information

Sending of the application definition is performed by REST API in YAML
format as a BigDataStack Playbook.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 36 of 116 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-RE-02 System FUNC Application
Engineer

MAN

Name Operation Triggering

Description Once an application has been registered, the user should be able to trigger
pre-defined actions that deploy or alter their application. Operations may
be atomic or be comprised of multiple tasks.

Additional
Information

 Id Level of detail Type Actor Priority

REQ-RE-03 System FUNC Realization
Engine

MAN

Name Application Component State Tracking

Description Once an application component is deployed on the cluster, the Realization
Engine needs to monitor the state of that component and generate alerts
when state-changes occur.

Additional
Information

This enables state reporting within the Realization Engine itself as well as
can be used to inform other orchestration software of component states.

 Id Level of detail Type Actor Priority

REQ-RE-04 System FUNC Application
Services

MAN

Name API Suite

Description The Realization Engine should enable other components or services to
access the information about applications that it manages, as well as
enable actions to be triggered for them.

Additional
Information

This enables other components like the Dynamic Orchestrator to both get
information about applications for decision making, as well as expose what
actions can be performed at any one time.

 Id Level of detail Type Actor Priority

REQ-RE-05 System FUNC Application
Engineer

MAN

Name GUI

Description The Realization Engine should provide a graphical user interface that
enables access the information about applications that it manages, as well
as enable actions to be triggered.

Additional
Information

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 37 of 116 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-RE-06 System FUNC ADS-
Ranking

MAN

Name Integration with ADS-Ranking

Description The Realization Engine should provide native support for the ADS-Ranking
(Deployment Recommender Service) also developed within T3.3.

Additional
Information

 Id Level of detail Type Actor Priority

REQ-RE-07 System FUNC ADS-Deploy MAN

Name Integration with ADS-Deploy

Description The Realization Engine should provide native support for the ADS-Deploy
to facilitate deployment of application components

Additional
Information

 Id Level of detail Type Actor Priority

REQ-RE-08 System FUNC Dynamic
Orchestrator

MAN

Name Integration with the Dynamic Orchestrator

Description The Realization Engine should provide native support for Dynamic
Orchestrator configuration upon deployment of an application
component.

Additional
Information

This involves sending information about the application component and
service level objectives to the dynamic orchestrator.

 Id Level of detail Type Actor Priority

REQ-RE-09 System FUNC - MAN

Name Local Timeseries Metric Storage

Description The Realization Engine should also provide optional support for local time-
series data for cases where it is deployed without the Triple Monitoring
Engine.

Additional
Information

This de-couples the Realization Engine from the Triple Monitoring Engine,
enabling it to optionally be used in a stand-alone mode.

 Id Level of detail Type Actor Priority

REQ-RE-10 System FUNC Application
Engineer

MAN

Name BigDataStack Pilot Support

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 38 of 116 bigdatastack.eu

Description The Realization Engine should support sufficient operations out-of-the-box
to enable deployment and management of the BigDataStack Pilots

Additional
Information

6.3. Modular Object Design
To meet the above requirements (particularly REQ-RE-01, REQ-RE-02 and REQ-RE-03) as well
as to tackle the second limitation discussed in Section 6.1, how the user application was
modelled, needed to be revised. The core of this revision was the transition from a user
application being considered a single atomic unit to an application being instead seen as a
grouping of interconnected components that can have actions performed upon them. This
enables more granular tracking and alterations to be made to a user application. At the
same time, we also added explicit modelling of supporting data structures to hold
information linked to an application component, such as exported metrics, resource
templates and service level objectives.

The following figure illustrates the new conceptual application model used by the
Realization Engine. In particular, under this model, the user account or ‘owner’ owns one or
more applications and can also define metrics. A single application has a state, zero or more
object (templates) representing the different components of the application, zero or more
operation sequences representing actions that can be performed for the application, and a
series of events generated about the application. An object template (application
component) can be instantiated multiple times, producing object instances. Object
instances may have an associated resource template describing the resources assigned to
that object. An object instance contains a definition of an underlying Kubernetes or
OpenShift object that contains the deployment information. Operation sequences represent
actions to perform on the application and contain multiple atomic operations. An operation
targets either an object template or instance, performing either some alteration or
deployment action upon it. Service level objectives can be attached to an object instance,
which track a metric exported by or about that object.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 39 of 116 bigdatastack.eu

Figure 6: Realization Engine Application Model

In the remainder of this section we summarize each of the main objects/classes that the
Realization Engine uses internally to model a user application.

6.3.1. (BigDataStack) Application
The Application class represents at a high-level
the concept of a user application. A user
application has an owner (a
Kubernetes/OpenShift user), a
namespace/project (the Kubernetes
namespace or OpenShift project that the
application will be deployed to) and an
identifier (appID). Together, these three pieces
of information uniquely identify the
application. An application also has zero or
more types associated to it. These types specify
information about how components within
that application should be processed, typically
during first registration. For example, the
‘inferMissingValues’ type tells the Realization Engine to check that all application metadata
is specified within a component during registration, and if not to add it. Finally, an
application also has a name and a description associated to it. These are used for
visualisation within the Realization Engine graphical user interface.

6.3.2. (BigDataStack) Object
A BigDataStack Object is the structure that the Realization Engine uses to represent a single
component within a user application. To aid in compatibility with both Kubernetes and
OpenShift, a BigDataStack Object has a 1-to-1 relationship with an underlying Kubernetes or
OpenShift object, such as a Deployment Config, Job, Service, Volume Claim, etc. The

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 40 of 116 bigdatastack.eu

differences between a BigDataStack Object
and one of these underlying objects are
two-fold. First, a BigDataStack Object can be
either a Template or an Instance. When a
BigDataStack Object is first registered it is
stored as a Template. Instances can then be
spawned from stored templates (via the
Instantiate Operation discussed later),
enabling a single template to be reused to
create multiple instances. It is also worth
noting that a template can be stored in an
incomplete form, and then be modified
during instantiation to fill in missing
information, enabling customisation at
deploy-time. The second main difference is
that as multiple instances of a template can
exist at one time, each BigDataStack Object has an instance number that is needed to
uniquely identify an instance.

In terms of fields comprising a BigDataStack Object, each object contains the secondary keys
owner, namespace and appID, connecting that object to a user application. To uniquely
identify an individual object within an application, an objectID (that uniquely identifies the
template) and instance number are used (where the template is instance 0). Additionally, a
BigDataStack Object has a type, which corresponds to the underlying type of the Kubernetes
or OpenShift object, a status which represents the aggregate state of the underlying
instances and finally a yamlSource field, that contains the raw source for the underlying type
of the Kubernetes or OpenShift object.

6.3.3. (BigDataStack) Operation
A BigDataStack Operation is a representation
of an ‘action’ that can be performed on a
BigDataStack Object. For example, spawning
an instance from an object template is an
(Instantiate) operation. Similarly, deploying an
object instance onto a cluster is an (Apply)
operation. The Realization Engine defines a set
of standard operations that can be performed
on any BigDataStack Object. It is through these
operations that users (or programmatic orchestrators) can deploy or alter their applications.

A BigDataStack Operation is mapped to a (java) class within the Realization Engine that
contains the logic for executing that operation. An operation always targets an object, and
hence requires an objectID as a target, although additional parameters may be provided
depending on the implementation. For example, the ExecuteCMD operation (which
executes one or more commands on one or more containers) requires an ‘instancelookup’
string, which defines the matching criteria to determine which instances of the specified

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 41 of 116 bigdatastack.eu

object should be targeted. In cases where multiple operations are grouped together into an
operation sequence (see the next section), then the state of each operation will be recorded
an updated. An operation can be in the following states: ‘NotStarted’, ‘InProgress’,
‘Completed’ or ‘Failed’. The currently supported operations within the Realization Engine
are summarized later in Section 6.7.

6.3.4. (BigDataStack) Operation Sequences
A BigDataStack Operation Sequence, as its name suggests, is a sequence of BigDataStack
Operations. The goal of an Operation Sequence is to provide a way to group atomic
Operations together, enabling the formation of more complex higher-level actions that the
user may wish to perform. For example, a common deployment pattern is comprised of
‘Instantiate’ (create a new instance of an object), ‘SetSequenceParameters’ (that sets
parameters within the new object instance), and ‘Apply’ (which creates the object instance
on the cloud/cluster). However, for more complex applications, an operation sequence may
contain 10’s to 100’s of individual operations. For instance, for the ATOSWL Grocery
Recommendation Pilot, an operation sequence exists to deploy that application from first
principles, which is comprised of 46 operations.

Like a BigDataStack Object, an Operation
Sequence can be either a template or an
instance. When the user registers a new
operation sequence it is stored as a template.
When the user triggers that operation
sequence, an instance of that sequence is
spawned, and then executed in a separate
container. An operation sequence will process
the operations contained within in sequential
order. The ‘mode’ field of an operation
sequence defines the behaviour of the
processing in the case of sequence restarts or
failures. An operation sequence can be run in
the following modes:

• Run: Executes all operations regardless
of state, will exit on an operation
failure.

• Continue: Will execute all operations
that are not in ‘Completed’ state already. This enables an operation sequence to be
restarted in the event of a transient failure.

• RunIgnoreFailures: Will execute all operations regardless of state and will still
continue to the next operation even if a failure is detected.

Regarding the internal representation of a BigDataStack Operation Sequence, each
sequence contains the secondary keys: owner, namespace and appID, linking the sequence
to an application. A sequence is uniquely identified within an application by its sequenceID
and instance number (where the template is instance 0). A sequence has both a name and

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 42 of 116 bigdatastack.eu

description, which are used for display within the Realization Engine graphical user
interface. Finally, the mode field defines the mode of operations, the parameters field is a
<key,value> mapping that contains parameters that can be used to customise objects
created or used by the sequence, and the operations field specifies the operations to
perform.

6.3.5. (BigDataStack) Events
A BigDataStack Event represents a notification of some underlying change relating to an
application. An event may be generated for a variety of reasons, such as the user registering
a new application, a state change in a component detected by OpenShift, operation
completion, or a quality of service violation, among others. The goal of a BigDataStack Event
is to provide a standardised format for reporting application changes that can both be
displayed to the user in an informative manner, while also being a functional trigger that can
be used for automated orchestration.

Events are keyed to a particular application (i.e. have
the secondary keys owner, namespace and appID).
Most events will reference a particular object
instance that the event is about (defined by objectID
and instance). The event itself then has a number
(eventNo), to uniquely identify that event for the
application. For the purposes of display, an event
has a title and description. Finally, a type field
specifies the type of event (which is usually used to
specify what caused the event to be created) and a
severity level.

BigDataStack events are most commonly generated
by the Realization Engine itself, as it makes changes
to the user’s application and observes run-time state
changes in that application. However, other
components can create new events via an API
endpoint. Events are persistently stored within the
Realization Engine. Additionally, if enabled, events can be pushed to a RabbitMQ mailbox
that other services can subscribe to in cases where push notification of application changes
is desirable.

6.3.6. (BigDataStack) Metric
User applications and other services within the
BigDataStack ecosystem export metrics that
provide valuable run-time information about
user applications and the cluster itself. A
BigDataStack metric is a high-level description
of the properties of such a metric. Note that a
metric definition here only represents the

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 43 of 116 bigdatastack.eu

concept of the metric, it does not directly refer to a concrete time-series being generated by
an object. A BigDataStack Metric has two main uses within the Realization Engine, namely:
1) BigDataStack Metrics and BigDataStack Objects are linked together within Service Level
Objectives (see Section 6.3.7); and 2) the details of the metric are used for display within the
Realization Engine graphical user interface.

Metrics are high-level constructs and as such are not directly linked to an application, but
rather only to a particular user that registered them. A metric is uniquely identified by its
name. It also contains a display summary that explains what the metric measures, in
addition to a display unit. A metric definition also has functional information about that
metric that is useful when performing comparisons with that metric. In particular, the
metric definition provides valid bounds for the metric value (maximumValue and
minimumValue), along with a reference to the (java) class that can be used to parse such
values (metricClassname). A higherIsBetter field is also included, indicating whether higher
or lower values are typically seen as desirable for this metric.

6.3.7. (BigDataStack) Service Level Objective
To enable down-stream monitoring of a user’s
application for quality of service failures, as well as
to enable subsequent automated orchestration to
rectify such failures, the user needs to have a way
to define what quality of service means for their
application. This is achieved via BigDataStack
Service Level Objective (SLO) definitions. In effect,
a Service Level Objective connects a BigDataStack
Object (the application component to track) and a
BigDataStack Metric (what to track about the
component). The SLO definition then sets a target
value or threshold to compare against (value)
along with a type of comparison to perform (e.g.
‘lessThan’). To enable users to set hard targets that
must be met, as well as softer targets that should
be met if possible, each SLO specifies whether it is
a requirement (hard target) or not, along with how
severe a failure it is if the SLO is not met.

SLOs are primarily used by the Quality of Service
(QoS) Evaluation component of BigDataStack, which is responsible for monitoring the status
of each SLO. Some SLOs are also used by ADS-Ranking to help in validating different
resource templates for a user application, i.e. to estimate whether it is likely that a
deployment with a fixed set of resources will meet the SLOs set by the user (see Section
8.5).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 44 of 116 bigdatastack.eu

6.3.8. (BigDataStack) Resource Template
A Resource Template represents a set of resources
to be allocated to a BigDataStack Object from the
cluster. When deploying a BigDataStack Object, it is
good practice to include a Resource Template, such
that the cluster knows what the object needs to
function, reducing the risk that the component will
fail due to a lack of resources later on. Resource
capacity can be specified either in terms of a
request (the minimum amount of the resource
needed for the object to function) and/or a limit
(the maximum amount of the resource that the
object would like). When considering resources,
there are three resource types of interest: CPU,
Memory and GPUs. CPU capacity represents the
number of compute cores that the object has
available to it. Memory capacity is the amount of
RAM available to the object. GPU capacity is simply
the number of GPU cards assigned to the object5.
As a work-around for the current limitations of in-built GPU scheduling within Kubernetes
and OpenShift, the resource template also contains a node selector field. This is useful in
cases where the underlying infrastructure uses homogeneous GPU configurations (i.e. one
physical compute node only contains one type of GPU) with appropriate labels, effectively
enabling the GPU type to be set by forcing the scheduler to place the object on a particular
node type.

6.3.9. (BigDataStack) Application State
As an optional feature, it is possible for the user to
define custom states for their application along
with criteria that must be met for the application
to be considered as in those states. In a simple
case, the user might define a state ‘Services OK’,
where the criteria to be met is that all of the
application components are in a ‘Running’ state.
This can be useful to an application engineer or
other user maintaining the application, as they can
easily get a view on whether the application is
functioning correctly. A more complex application
of state definitions would be to encode all possible
states that an application could be in, and then

5 GPU support in OpenShift and Kubernetes clusters is still in beta, and hence is not
currently fully featured. In the future it would be desirable to be able to specify GPU types
as well as share GPUs among multiple objects, but this is not currently possible.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 45 of 116 bigdatastack.eu

use those states as triggers for automated orchestration.

An application state has an identifier that uniquely
identifies it (appStateID), along with a name (for
display to the user). For the purposes of
identifying whether the application is in a
particular state, a list of application conditions are
specified. An application condition can check
either the state of an object or the state of an
operation sequence, dependant on the
information specified. If one or more objectIDs are
specified, the condition will return true if there are
at least the target number of instances of each
object with the specified state. Meanwhile, if the
sequenceID is specified, it will return true if the specified sequence is in the target state and
not in any of the other states as listed within the ‘notInStates’ field of the condition. As well
as the conditions, the application state can also define a separate ‘notInStates’ field, which
enables checking whether the application is currently in any other of a list of application
states. This is useful if the user wants to stop an application from being in multiple states
simultaneously.

Finally, the application state can also contain a list of operation sequence identifiers. This is
such that the user can set particular actions to become available depending on the state of
the application. If the sequence identifier list exists, the Realization Engine will filter the
available list of operation sequences shown to the user based on the current application
state.

6.4. Updated Playbook Formatting
As the way that the underlying application is modelled has changed, this in turn mandated
associated changes to the format of the BigDataStack playbook that it ingests (see REQ-RE-
01). A BigDataStack playbook represents a single application, and should be able to provide
all of the needed information about that application (although some information can be
omitted and then added later). As such, the updated format playbook is structured into the
different modular objects specified above. In particular, the BigDataStack Application data is
specified at the top, followed by lists of related objects (BigDataStack Objects, BigDataStack
Metrics, BigDataStack Service Level Objectives, BigDataStack Operation Sequences and
BigDataStack Application States), as illustrated in Figure 7.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 46 of 116 bigdatastack.eu

Figure 7: Updated BigDataStack Playbook Format

6.5. Realization Engine Architecture
Having discussed the internal modelling that the Realization Engine uses to represent the
user application and associated information, we next describe the overall architecture of the
Realization Engine itself. The Realization Engine is implemented as a series of containerized
services, with distinct roles and functionalities designed to meet the requirements discussed
in Section 6.2. Figure 8 provides an overview of the different containerized services within
the Realization Engine along with the communication flows between those services. The
green boxes denote the core containerized services provided by the Realization Engine.
Orange boxes indicate off-the-shelf data-stores or data exchange services. Meanwhile blue
boxes indicate other BigDataStack services used by the Realization Engine. The role of each
of the main services (green boxes) are as follows:

• Realization Engine (and Application API): This is a containerized service that houses
the main application management logic. It also exposes the Realization Engine API
that provides other components with access to user application states and actions
(REQ-RE-04), as well as enabling the registration of new applications by the Data
Toolkit (REQ-RE-01).

• Realization UI: This is a graphical user interface exposed by the Realization Engine
that enables users to view the state of their applications, as well as trigger actions
for them (REQ-RE-05).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 47 of 116 bigdatastack.eu

• Cluster Monitoring: This component is responsible for synchronizing the state of the
underlying Kubernetes/OpenShift objects running on the cluster with their
associated BigDataStack Object definitions stored in the State DB.

• Resource Monitoring: This component acts as a bridge between OpenShift
Monitoring (a built-in set of services to OpenShift that track node and pod-level
resource usage) and the Realization Engine. This enables the Realization Engine to
access live CPU and Memory usage by the application components.

• Cost Estimation: The cost estimation component, as its name suggests, generates
estimated costs (in US dollars) for the different application components. By doing so,
it enables service level objectives such as cost per hour or total cost to be evaluated.

• Log Search: This component hosts a search engine that indexes the logs of each
running container within the user application and provides custom search
functionality for those logs.

The other main component of the Realization Engine is the Operation Sequence (shown as a
red box in Figure 8). Previously in Section 6.3.4 we introduced the idea of an operation
sequence as a representation of a high-level ‘action’ that the user could trigger for their
application, which was comprised of a series of atomic operations. When one of these
operation sequences is triggered (e.g. via API call to the Realization Engine), a new
temporary containerized service will be launched that performs the operation sequence.
Internally, the operations called within that sequence may then interact with other
BigDataStack services to obtain needed functionalities. For example, ADS-Ranking may be
called to produce a Resource Template for a BigDataStack Object (REQ-RE-06), ADS-Deploy
may be called to deploy a BigDataStack Object (REQ-RE-07), and the Dynamic Orchestrator
may be called to register a new BigDataStack Object to be managed (REQ-RE-08). In the
following section we describe each of the BigDataStack services in more detail, while in
Section 6.7 we describe the operations that can be included within an operation sequence
(high-level action).

Figure 8: Realization Engine Architecture

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 48 of 116 bigdatastack.eu

6.6. Containerized Services
In this section we describe the main containerized services within the Realization Engine in
more detail. In particular, we describe: the Realization Engine and Application API; the
Realization UI; Cluster Monitoring; and the Operation Sequence services. Information about
the Resource Monitoring and Cost Estimation components can be found in D5.3 (as they
were developed as part of the Application Dimensioning Workbench and then later moved
to the Realization Engine).

6.6.1. Realization Engine and Application API
The Realization Engine (and associated API) containerised service is the core of the suite of
services that comprised the Realization Engine as a whole. This service is responsible for
registering new user applications, updating or adding new objects to those applications,
performing actions on those applications (or at least launching a separate service to do so),
providing access on-demand to application information and state, as well as providing in
some cases short-cuts for accessing information from dependant services (e.g. application
cost). Internally, the Realization Engine is a Java-based program compiled as a Jar. The core
of this program the Manager class that contains the logic for all of the responsibilities listed
above. To achieve this, the Manager maintains a wide array of configured clients, enabling it
to both send and receive information about any managed application, access information
about the cluster itself, create/delete objects on the cluster, send/receive events, as well as
access time-series data stored in the local Prometheus metric data store. The structure of
these clients is shown in Figure 9. Of note is that it is this wide availability of information in a
central location that makes the Realization Engine a powerful tool, as it effectively makes
the Realization Engine a ‘one-stop-shop’ for all of the distributed and disparate information
about the user’s application.

Figure 9: Realization Engine Manager Architecture

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 49 of 116 bigdatastack.eu

On initialization, the Realization Engine container instantiates a new instance of Manager,
loading relevant credentials from a file, and performs a check that the minimum required
services for the Realization Engine to function are running and accessible, i.e. a copy of the
Application State Database, the OpenShift API, and the local Prometheus timeseries
database. Assuming this succeeds, the container will then start a Jetty webserver and hosts
a set of REST API endpoints that exposes the functionality of Manager to other services. In
particular, the API endpoints exposed are listed below. Within an endpoint, values in {}
indicate a parameter, e.g. {owner} should be replaced with the owner to target. HTTP POST
endpoints require an appropriate object to be included in the message body (if not
otherwise specified in JSON format):

Category HTTP

Request
Type

Endpoint Return Type

Register
Application
Model (YAML
Format)

POST /registeryaml/playbook/{owner}/{namespace} boolean
POST /registeryaml/playbook boolean
POST /registeryaml/application boolean
POST /registeryaml/object boolean
POST /registeryaml/slo boolean
POST /registeryaml/metric boolean
POST /registeryaml/namespace boolean
POST /registeryaml/operationSequence boolean

Register
Application
Model (JSON
Format)

POST /registerjson/playbook/{owner}/{namespace} boolean
POST /registerjson/playbook boolean
POST /registerjson/application boolean
POST /registerjson/object boolean
POST /registerjson/slo boolean
POST /registerjson/metric boolean
POST /registerjson/namespace boolean
POST /registerjson/operationSequence boolean

Retrieve User
Applications

GET /list/{owner} List<BigDataStack
Application>

GET /list/{owner}/apps List<BigDataStack
Application>

Retrieve Object
Templates

GET /list/{owner}/objectTemplates List<BigDataStack Object>
GET /list/{owner}/{appID}/objectTemplates List<BigDataStack Object>
GET /get/{owner}/{appID}/objects/{objectID}/template BigDataStack Object

Retrieve Object
Instances

GET /list/{owner}/objects List<BigDataStack Object>
GET /list/{owner}/{appID}/objects List<BigDataStack Object>
GET /list/{owner}/{appID}/objects/{objectID} List<BigDataStack Object>
GET /get/{owner}/{appID}/objects/{objectID}/instance/{instance} BigDataStack Object

Retrieve
Sequence
Templates

GET /list/{owner}/{appID}/sequenceTemplates List<BigDataStack
Operation Sequence>

GET /get/{owner}/{appID}/sequence/{sequenceID}/template BigDataStack Operation
Sequence

Retrieve
Sequence
Instances

GET /list/{owner}/{appID}/sequences List<BigDataStack
Operation Sequence>

GET /list/{owner}/{appID}/sequence/{sequenceID} List<BigDataStack
Operation Sequence>

GET /get/{owner}/{appID}/sequence/{sequenceID}/instance/{instance} BigDataStack Operation
Sequence

Retrieve Pod
Statuses

GET /list/{owner}/{appID}/objects/{objectID}/pods List<BigDataStack Pod
Status>

Retrieve Service
Level Objectives

GET /list/{owner}/{appID}/objects/{objectID}/slos/{metricName} List<BigDataStack Service
Level Objective>

GET /list/{owner}/{appID}/objects/{objectID}/instance/{instance}/slos/{metricName} List<BigDataStack Service
Level Objective>

Retrieve
Metrics

GET /list/{owner}/metrics List<BigDataStack Metric>
GET /get/{owner}/metrics/{metricName} BigDataStack Metric

Retrieve Metric
Values

GET /list/{owner}/{appID}/metrics/{metricName} List<BigDataStack Metric
Value>

GET /list/{owner}/{appID}/metrics/{metricName}/{objectID} List<BigDataStack Metric
Value>

Retrieve Events
for Application

GET /list/{owner}/{appID}/events List<BigDataStack Event>
GET /list/{owner}/{appID}/events/{objectID} List<BigDataStack Event>

Retrieve Events
for a User

GET /list/{owner}/events List<BigDataStack Event>
GET /list/{owner}/events/all List<BigDataStack Event>
GET /list/{owner}/events/error List<BigDataStack Event>
GET /list/{owner}/events/alert List<BigDataStack Event>

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 50 of 116 bigdatastack.eu

GET /list/{owner}/events/info List<BigDataStack Event>
GET /list/{owner}/events/warning List<BigDataStack Event>
GET /list/{owner}/events/all/{type} List<BigDataStack Event>
GET /list/{owner}/events/error/{type} List<BigDataStack Event>
GET /list/{owner}/events/alert/{type} List<BigDataStack Event>
GET /list/{owner}/events/info/{type} List<BigDataStack Event>
GET /list/{owner}/events/warning/{type} List<BigDataStack Event>

Retrieve the
Most Recent K
Events for a
User

GET /list/{owner}/kevents?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/all?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/error?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/alert?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/info?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/warning?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/all/{type}?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/error/{type}?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/alert/{type}?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/info/{type}?k={depth} List<BigDataStack Event>
GET /list/{owner}/kevents/warning/{type}?k={depth} List<BigDataStack Event>

Instant
Prometheus
Queries

GET /query/{owner}/{appID}/{namespace}/metrics/{metricName}/{objectID} BigDataStack Metric Value
GET /query/{owner}/{appID}/{namespace}/metrics/{metricName}/{objectID}/{instanceID} BigDataStack Metric Value

Register New
Event

POST /event/{owner}/{appID}/{objectID} boolean

Execute
Operation
Sequence

GET /exe/{owner}/{appID}/{sequenceID}/start boolean
POST /exe/{owner}/{appID}/{sequenceID}/start boolean

6.6.2. Realization UI
The Realization UI is an optional component that hosts a Web-based front-end, enabling
configuration, deployment and monitoring of user applications by the application engineer
or other users. In effect, it provides a user-friendly way for the application engineer to
access the functionality of the Realization Engine. The Realization UI integrates with the
larger BigDataStack offering through integration with the BigDataStack Visualisation Service
(the primary UI for BigDataStack).

The Realization UI is implemented using the Play Framework, which combines a Java/Scala
back-end service with an HTML/JavaScript front-end. Communication between the backend
and the user browser is handled via asynchronous websockets, enabling the back-end server
to push updates to the user as they happen. The component is compiled and run within a
container using the SBT build tool, and then exposed via a service and route in OpenShift.

When the user first opens the Realization Engine UI, they will be asked for their OpenShift
credentials as well as the project/namespace that they want to manage. This is such that
any data requests or actions triggered are performed as that particular user, rather than as
whomever launched the realization engine itself. Once the user has submitted their
credentials, they are forwarded to the project/namespace overview screen, as shown in
Figure 10. The namespace overview screen provides a high-level view of the state of the
project/namespace itself, and is a useful way to determine if there is anything that urgently
needs the application engineer’s attention. In particular, as can be seen from Figure 10, the
overview screen provides visual indicators for the state of the Realization Engine itself in the
first row (which can be important, as if a component like cluster monitoring was not active,
then component states may not be up-to-date). Below that event statistics are provided,
such that the user can see if there have been any warnings, errors or other alerts recently. If
there were such alerts, the user can use the notifications side bar on the right-hand side to
view those events. The final row at the bottom of the overview page gives statistics of the
different types of BigDataStack Objects currently running on the cluster.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 51 of 116 bigdatastack.eu

Figure 10: Realization UI Namespace Overview

The second screen of the Realization UI is the Applications screen, which is shown in Figure
11. This screen provides the user access to information about the different applications that
are registered to the current namespace/project as well as allows them to trigger actions for
those applications. The main part of the view is comprised of a list of registered applications
along with descriptions for those applications. Clicking on an application will load
information about that application. In particular four pieces of information are checked and
displayed:

• Available Operations and Sequences: This is the list of actions that the user can
perform for the application. By default, a request is made to the Realization API to
get all operation sequences registered for the application, which are then rendered
within the UI, from where the user can choose to trigger them. However, if the user
application contains application states and sequences associated to those states,
then only the sequences that are valid for the active states will be shown.

• External Endpoints: This renders a list of BigDataStack Objects of type ‘Route’, which
represent external HTTP endpoints being exposed by the application, such as
application specific user interfaces.

• Active Deployments: This renders the list of currently running application
components, along with their states.

• Ended Deployments: This renders the list of ended (deleted or failed) application
components.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 52 of 116 bigdatastack.eu

Figure 11: Realization UI Applications View

The third screen within the UI is the Operation States screen, which is illustrated in Figure
12. The goal of this screen is to provide the user more insights into the state of applications
while actions are taking place. The user can either enter this screen via the tab at the top of
the UI, or they will be sent here if they trigger the launch of a new operation sequence from
the Applications screen. As with the Applications screen, the main view is comprised of a list
of applications registered to the namespace/project. However, instead of focusing on
application information, this view shows information about the different operation
sequences triggered for each application. In particular, for an application, operation
sequences are grouped by their current state (Running, Complete, Failed or Pending). When
an operation sequence is clicked, it will expand to show a detailed state view for that
sequence. In particular, the sequenceID and instance is shown at the top, with the creation
time and stage information shown directly below. Below that is the sequence description
followed by a breakdown of the sequence state. The left-hand pane lists the different
BigDataStack Operations that comprise the sequence, along with their individual states,
followed by information about any custom parameters that were set for the sequence.
Meanwhile the right-hand pane lists any events that were generated by the current
operation sequence, where events are colour coded. It is worth noting that the Operation
States screen is dynamic, in that any operation sequence that is currently running will have
its information automatically updated within the screen when a state change is detected.
Furthermore, operation sequences in Running or Pending states can be cancelled by the
user by pressing a button.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 53 of 116 bigdatastack.eu

Figure 12: Realization UI Operation States View

Through the use of the Realization UI, the user can check to see what application
components are currently active, track changes as they are made to the application and
intervene (cancel) that sequence if needed. They are also able to manually trigger new
operation sequences (actions) as needed, as well as monitor application status and changes
via the events system. This solves the first limitation that was discussed previously in Section
6.1, as well as meeting REQ-RE-05.

6.6.3. Cluster Monitoring
One of the challenges when adding an additional modelling layer on-top of Kubernetes and
OpenShift is how to enable state tracking (REQ-RE-03). When a BigDataStack Object is
deployed onto a Kubernetes/OpenShift cluster, associated Kubernetes/OpenShift objects
are created (e.g. a DeploymentConfig or Job), which may then spawn further objects (e.g.
Pods). To facilitate the effective management of BigDataStack Objects, the run-time state of
those objects is needed, which is derived from the states of the underlying
Kubernetes/OpenShift objects. Hence, a service is needed that generates states for each
BigDataStack Object by analysing the states of the associated Kubernetes/OpenShift objects
on the cluster. This is the role of the Cluster Monitoring service.

Functionally, the cluster monitoring service periodically (every 10 seconds) looks up the list
of BigDataStack Objects for which associated state information can be collected, i.e. any
BigDataStack Object that will result in a Pod object being spawned on the cluster. It then
sequentially processes each BigDataStack Object in turn, querying the cluster via the
OpenShift API to determine the states of the associated Kubernetes/OpenShift objects, to
determine the BigDataStack Object state. In most cases, this simply replicates the current
states assigned to the Kubernetes/OpenShift object to the BigDataStack Object. However, as
the cluster can be in states where a BigDataStack Object exists but no underlying
Kubernetes/OpenShift object exists (e.g. because the underlying object was deleted or has
not been created yet), additional logic exists to detect and set appropriate states for those
scenarios.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 54 of 116 bigdatastack.eu

Furthermore, the cluster monitoring service has a second function, which checks all Pod
objects running in the managed namespace/project, maps them to BigDataStack Objects
where possible, and saves their states in the Application State DB. The reason for this is two-
fold. First, it enables Pod states to be queried within the Realization Engine for a given
BigDataStack Application or BigDataStack Object. Second, it enables changes in the
underlying Pods connected to a BigDataStack Object to be detected, tracked and exposed
(such as cases where a Pod is moved to a different physical host).

The final function of the cluster monitoring service is as an event generator. Any changes
detected by either function of the cluster monitoring service will result in a BigDataStack
Event being generated and published. By default, these events will be saved in the
Application State DB for the containing BigDataStack Application. Meanwhile, if a RabbitMQ
instance is available, the Event will also be published as a push notification. In this way,
application changes are exposed in such a way that they can be used as triggers for
orchestration.

6.6.4. Operation Sequence (Container Service)
The Operation Sequence container service is a unique service within BigDataStack, in that it
is not a continuous service. Instead, an operation sequence container is a temporary service
that is solely concerned with processing a BigDataStack Operation Sequence that has been
triggered (either by the application engineer or by some other orchestration service). The
reason for this service is that as operation sequences become more complex, it can take
multiple minutes to complete them and depending upon the operations involved, may
require a non-negligible amount of resources. Hence, it is good practice to separate out the
processing of an operation sequence from the rest of the platform.

When an operation sequence is triggered within the Realization Engine, internally this first
takes the operation sequence template and generates an instance from it, and stores that
instance in the Application State DB. The Realization Engine then creates a new Pod object
on the Kubernetes/OpenShift cluster to run the operation sequence service targeting the
new instance. Once the Pod object has been created, the responsibility for that operation
sequence is passed to the Pod, freeing the Realization Engine for other work. Once the new
Pod reaches running state, it will first load the target BigDataStack Operation Sequence
instance from the Application State DB. Subsequently, it will process each BigDataStack
Operation within the sequence in order, reporting operation outcomes as BigDataStack
Events, whilst simultaneously updating the state information housed within the
BigDataStack Operation Sequence instance itself. Once the operation sequence is complete,
the Pod exits, freeing those resources back into the cluster.

In the next section, we describe the different BigDataStack Operations that can be included
within a BigDataStack Operation Sequence.

6.7. Generic BigDataStack Operations
As described previously, within the Realization Engine the different ‘actions’ that the user
can perform on an application are defined in terms of atomic BigDataStack Operations,

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 55 of 116 bigdatastack.eu

where multiple such operations can be combined into a BigDataStack Operation Sequence.
A single BigDataStack Operation conceptionally performs a single alteration or deployment
action on a BigDataStack Object. By combining different BigDataStack Operations together,
the application engineer can encode complex processing logic into actions that can be
executed with a single click.

The Realization Engine provides several built-in operations that enable common tasks to be
performed on the cluster. We can divide these into generic operations (Instantiate,
SetParameters, GetParameterFromObjectLookup, Deploy, ExecuteCMD, Build, Delete, Scale,
Wait and WaitFor) and BigDataStack-specific operations (RecommendResources, Apply,
RegisterWithDynamicOrchestrator, Benchmark and GetResourceTemplates). Each operation
loads a configuration mapping when first initialized, which is how an application engineer
can customise an operation for their particular application. In the remainder of this section
we will describe the generic set of operations. Information regarding BigDataStack-specific
operations can be found alongside their associated component descriptions (e.g.
information about RecommendResources that is part of ADS-Ranking can be found later in
this deliverable in Section 8.4.2).

6.7.1. Instantiate
The Instantiate operation is a core part of the deployment process of a user application. As
discussed earlier, when the application engineer registers a component of their application,
that component is stored as a BigDataStack Object template. However, it is not templates
that are deployed, but instead instances produced from those templates. The instantiate
operation is responsible for generating a BigDataStack Object instance from a BigDataStack
Object template.

When an Instantiate operation is started, it first loads the ‘objectID’ of the BigDataStack
Object template that it targets. Assuming a valid template is found, it then clones that
template and assigns it a unique instance number, and stores the new BigDataStack Object
instance back to the Application State Database. The final step of the instantiate operation
is to record a mapping between the new instance and a reference key, such that the new
instance can be referred to by subsequent operations within a surrounding sequence. This is
achieved by loading a user-defined key ‘defineInstanceRef’ from the operation configuration
and then storing a mapping between that key and the <objectID, instance> pair that
uniquely identifies the new object instance. An example operation configuration for an
instantiate operation is shown below:

Figure 13: Instantiate Operation Configuration

6.7.2. SetParameters
The SetParameters operation is a generic operation that enables placeholder values within a
BigDataStack Object to be replaced with defined parameters. In particular, a BigDataStack
Object is allowed to contain placeholder values, which are represented by a key token,

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 56 of 116 bigdatastack.eu

where key can be any basic character string. The idea is that when an application engineer
initially configures an operation sequence, there may be information needed that cannot be
known until run-time, or that they want to be set at run-time. For example, if a component
requires the IP address of a database that is deployed earlier in the operation sequence,
then that cannot be known until the database starts. Otherwise, in the case of machine
learning jobs, the application engineer may deliberately leave configurable such as
hyperparameters as placeholders, such that they can easily launch multiple learning jobs
with different parameter sets using the same operation sequence.

SetParameters sources a set of key-value pairs to replace placeholders with from the
parameters field in the containing operation sequence (see Section 6.3.4), which is a string
to string map. In particular, for each key ‘k’ within that map, it performs a regular expression
search for all instances of ‘k’ and replaces any matches with the associated value from the
map. The parameter map itself can be populated in three main ways:

• Automatic Application and Object Population: By default, the Realization Engine will
insert key-value pairs detailing information about the application and target object
into this mapping. This will typically provide values for: owner, namespace, appID,
objectID and instance.

• User Specified Defaults within the Operation Sequence: The operation sequence
definition contains a parameters field where values can be set.

• User Specified Values Provided at Trigger Time: When the user triggers an operation
sequence, they can optionally provide a set of key-value pairs that are used to
update the parameter map.

• Via Operations: Other operations may update this parameter map as the operation
sequence progresses.

To enable SetParameters to only alter a specified BigDataStack Object, which may have
been created via a previous Instantiate operation, the operation configuration for
SetParameters requires an ‘instanceRef’ value, as illustrated below:

Figure 14: Set Parameters Operation Configuration

6.7.3. GetParameterFromObjectLookup
A relatively common scenario is where we need to set an application parameter at run-time
through an object look-up. An example use-case here could be that we need to determine at
run-time the name or IP address of a dependant Pod or Service, which could not have been
known when the operation sequence was originally created. This is the role of the
GetParameterFromObjectLookup operation. More precisely, this operation performs a
query of OpenShift/Kubernetes objects and sets a parameter within the containing
operation sequence based on the response (e.g. that can be used later by the
SetParameters operation).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 57 of 116 bigdatastack.eu

Figure 15: Get Parameters from Object Lookup Operation Configuration

The GetParameterFromObjectLookup operation takes as input a key (‘parameter’) which is
the parameter name that will be written into the parent operation sequence parameter
map. To facilitate the search operation over the OpenShift/Kubernetes objects on the
cluster, it also takes as input a ‘criteria’ string, which is the query, and a ‘multipleMatches’
field that specifies what to do if multiple objects are found that match the query. The query
is formatted as follows:

• <namespace/project to search>:<object type>:<object name java regular
expression>

The multiple matches criteria can then be any of the following:

• SelectFirst: It will select the first object found as the parameter value

• Allow: It will write an array containing all matched objects as the parameter value

6.7.4. Deploy
Deploy is a simple operation that takes a BigDataStack Object instance and then creates the
underlying OpenShift/Kubernetes Object on the cluster using the built-in OpenShift
operation client within the Realization Engine. This operation is rarely used in BigDataStack,
as the ‘Apply’ operation (see Section 8.4.3) provides similar base functionality, while
integrating with ADS-Deploy to provide additional functions. In practice, Deploy acts as a
back-up option in scenarios where the Realization Engine is deployed stand-alone without
ADS-Deploy. Deploy uses an ‘instanceRef’ field in its configuration to identify the
BigDataStack Object instance to target for deployment. This is typically defined as part of
the ‘Instantiate’ operation, although it can also be set through a
GetParameterFromObjectLookup operation.

Figure 16: Deploy Operation Configuration

6.7.5. ExecuteCMD
Within BigDataStack, some of the Pilot use-cases involve what we refer to as ‘tier 2’
applications. These are applications that require multiple consecutive steps to deploy,
because they first need to deploy a management framework, and then once that is ready,
launch the true application on-top of the management framework. Apache Spark is a
common example of a tier 2 app, where the spark cluster first needs to be deployed

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 58 of 116 bigdatastack.eu

(comprised of master and worker nodes), and then once the spark cluster reports ready, the
application is launched by submitting the application Jar to one of the master nodes. To
make this type of applications possible, we need the ability to queue operations to perform
the different steps, as provided by operation sequences. However, we also (like in the case
of Spark) need the ability to execute commands on a container to complete the process (e.g.
submitting a Spark Job Jar to a master node). This is the role of the ExecuteCMD operation.

Figure 17: ExecuteCMD Operation Configuration

The ExecuteCMD operation targets a BigDataStack Object instance, and then can run a
command on one or more of any underlying Pods (and associated containers) connected to
that object. To achieve this, it takes as input from its configuration an ‘objectID’ (identifying
the BigDataStack Object instance and a ‘instanceLookupCriteria’ field, which can have the
following values:

• First: The commands will be run only on the first running Pod connected to the
target object instance (if a Pod has multiple containers, then the command will be
attempted on all containers).

• All: The commands will be run on all running Pods connected to the target object
instance.

Commands to run are specified as a two-layer array via the ‘commands’ value in the
configuration. The first layer array represents the different commands to run in sequence,
while the second layer of the array contains the components of each command to run.

6.7.6. Build
The Build command is a simple operation that enables the triggering of a container build
process within OpenShift, using its source-to-image sub-system. It takes as input within its
configuration a target BigDataStack Object, which must be a template and be of type
BuildConfig, otherwise the operation will fail. The operation will then simply trigger the start
of the build process. This operation is almost always followed by a WaitFor operation
targeting the same object, i.e. waiting for the new image to be ready.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 59 of 116 bigdatastack.eu

Figure 18: Build Operation Configuration

6.7.7. Delete
The delete command enables a user to delete the underlying OpenShift/Kubernetes objects
for one or more BigDataStack Object instances. Note that this does not delete the
BigDataStack Object instance itself, which will remain with a ‘deleted’ state (this is to allows
for persistent history for a BigDataStack Object). To identify the object to perform the
deletion for it uses an ’instanceRef’ in the same way as the ‘Deploy’ operation. This is
typically set via a previous GetParameterFromObjectLookup operation which performs a
run-time look-up of the object(s) to delete.

Figure 19: Delete Operation Configuration

6.7.8. Scale
The Scale operation provides an in-built method for altering the replication factor for
BigDataStack Object instances of type DeploymentConfig at run-time. In effect, this allows
continuous applications a means to scale up and down in response to the environment (e.g.
user traffic volumes). However, in general, it is not recommended to use this operation for
Realization managed apps. Instead, scaling should be handled through the creation/deletion
of instances for the BigDataStack Object template, rather than altering the replication factor
of an existing instance. The reason for this is that the Realization Engine can track (and
report events) for individual object instances, but cannot distinguish between different
replicas for the same instance when reporting events, making data-driven orchestration
more difficult.

Figure 20: Scale Operation Configuration

To identify the object(s) to scale, it uses an ’instanceRef’ in the same way as the ‘Deploy’
and ‘Delete’ operations. This is typically set via a previous GetParameterFromObjectLookup
operation which performs a run-time look-up of the object(s) to scale. The other
configuration provided to the Scale operation is ‘replication’, which sets the replication
factor. This is a string, that can either contain a target replication number (e.g. “3”) or can
be a relative adjustment (e.g. “+1” or “-1”).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 60 of 116 bigdatastack.eu

6.7.9. Wait
The Wait operation simply inserts a pre-defined wait in seconds before starting the next
operation. This can be used in cases where a fixed amount of time is needed for some
internal application process to complete that is not exposed by the Pod state. The Wait
operation takes only a single configuration value ‘seconds’, which is the number of seconds
to wait for.

Figure 21: Wait Operation Configuration

6.7.10. WaitFor
The WaitFor operation enables an application sequence to pause until a particular
BigDataStack Object instance reaches a pre-defined state. This is often used where there are
dependencies between application components, where one needs to be available (e.g. a
database) before the next can start.

Figure 22: WaitFor Operation Configuration

To identify the object(s) to wait for, it uses an ’instanceRef’ in the same way as the ‘Deploy’
‘Scale’ and ‘Delete’ operations. WaitFor is commonly used during deployment operations,
and hence the instanceRef is normally generated via the Instantiate operation. Additionally,
a ‘waitForStatus’ value is provided in the configuration, that specifies the state that the
BigDataStack Object instance must be in for the wait process to end.

6.8. Summary
In this section we have summarized why the Realization Engine was introduced as well as
provide a technical overview for it. In particular, we have provided a summary of the
modelling changes to the overall deployment and management of applications within
BigDataStack, as well as summarized the services and operations provided by the Realization
Engine. At the time of writing, the Realization Engine is fully functional and meets the
requirements listed in Section 6.2, although it is under continuous further development. It is
currently envisaged that the Realization Engine will undergo an open source release later in
2020 as a stand-alone component.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 61 of 116 bigdatastack.eu

7. Dynamic Orchestration
The Dynamic Orchestrator (DO) works alongside the Triple Monitoring Engine (TME) to
monitor and trigger the redeployment of BigDataStack applications during runtime to
ensure they comply with their Service Level Objectives (SLOs.) The DO receives and manages
monitoring requests when a new application or service is deployed into the BigDataStack
platform, informing the TME and the Quality of Service (QoS) component what metrics and
SLOs should be monitored. When any violation to these SLOs exist, the QoS informs the DO,
and the DO is in charge of deciding what redeployment change is necessary, if any.
Since month 18, we have worked on several improvements for the DO:

- In M18, the DO decision mechanism was based on a Tabular Q-learning logic; this
has been updated to use Deep Q-learning, in particular DQN (Mnih, 2013), allowing
us to deal with a larger action space and a continuous state space, two
improvements that make our Reinforcement Learning (RL) algorithm more flexible
and adequate to deal with the complexity needed for orchestrating BigDataStack
applications.

- We have developed a novel Reinforcement Learning-based approach called
Tutor4RL, which combines domain knowledge with machine learning for achieving a
good initial performance, a common problem in RL and in particular for DQN. This is
done through programmable functions – called guide functions - that guide the
behavior of the agent in its initial steps and until the agent gathers sufficient
experience to manage the application properly.

- In Y3, we have introduced constrain functions, to supervise the behavior of the agent
at every point, avoiding unnecessary and incorrect changes in the deployment of
applications. This results in a more stable and robust behavior for the DO without
sacrificing the agent’s learning capabilities.

- In addition, in Y3 we have implemented and tested different guide and constrain
functions that generally work for most applications, adjusting the general Tutor4RL
framework to be able to manage changing action and state spaces, necessary to
manage multiple BigDataStack applications with different metrics, SLOs and
redeployment actions.

- Finally, we have integrated the DO with the Data-as-a-Service layer of BigDataStack,
which contains stateful components such as the Adaptable Distributed Storage (ADS)
and the Complex Event Processing (CEP), for adapting these components dynamically
during runtime as described in section 6.2.1.

7.1. Requirements
Modified requirements:

 Id Level of detail Type Actor Priority

REQ-DO-01 System FUNC Application
Engineer, Data
Engineer

MAN

Name Playbook Enrichment

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 62 of 116 bigdatastack.eu

Description The Dynamic Orchestrator shall ingest the monitoring request when an
application or service is deployed and enrich its playbook with information
about the QoS metrics and intervals to be considered by the Triple
Monitoring to monitor the QoS during runtime.

Additional
Information

N/A

Table 3 - Requirement (1) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC Application
Engineer, Data
Engineer

MAN

Name Runtime Re-deployment

Description When an application or service is running, the Dynamic Orchestrator shall
determine if a deployment change should be performed when there is a
violation of an application requirement or Service Level Objective (SLO)
and send a signal to the Realization Engine to trigger a change in the
deployment to try to satisfy the requirements or SLOs.

Additional
Information

The Triple Monitoring detects this violation and sends an alert to the
Dynamic Orchestrator to start this process.

Table 4 - Requirement (2) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-04 System FUNC Application
Engineer, Data
Engineer

MAN

Name Resources Limits

Description The orchestrator shall be able to retrieve the possible actions, or
sequences, for each application through the Realization Engine, and use
this information in its own decisions.

Additional
Information

The complete list of deployment parameters might vary according to the
application/service and its actual deployment.

Table 5 - Requirement (3) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-07 System FUNC Application
Engineer

DES

Name Orchestration of Data-as-a-Service components

Description The orchestrator will also orchestrate the redeployment of stateful
components of the Data-as-a-Service layer, such as the Adaptable
Distributed Storage and CEP components, for improving applications’
performance in terms of adaptable storage and replication of CEP queries.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 63 of 116 bigdatastack.eu

Additional
Information

N/A

Table 6 - Requirement (4) for Dynamic Orchestrator

7.2. State-of-the-Art: RL for Applications’ Configuration
There is extensive research in the fields related to the use of RL for applications and
systems’ configuration. Natural Adaptive Video Streaming with Pensieve6 presents a system
that generates adaptive bit rate (ABR) algorithms using RL. These algorithms are used for
video streaming and must balance a variety of Quality of Experience (QoE) goals. This work
successfully uses a variant of deep RL, A3C, to create algorithms that adapt to a wide range
of environments and QoE. In Chameleon7, the performance of video analytics applications is
optimized by performing automatic adaptation of its configurations. The application’s
behavior is customized to the execution context by selecting different parameter
configurations; the best parameter configuration is selected by a logic inspired by greedy hill
climbing combined with periodical online profiling. However, these two works are centered
around applications that use deep convolutional neural networks for video
processing/streaming use cases, while in BigDataStack we aim to offer a flexible
orchestration logic that can be applied to any kind of application.
In addition, there are also different approaches for bootstrapping RL, obtaining a better
performance from the first moment the agent begins to operate. A simple approach is to
explore the state space randomly, but this approach is usually time-consuming and costly
when the state/action space is large. The drawback of this approach has been reported by
our previous study8 in the case of leveraging RL to automatically decide the configuration
and deployment actions of a data processing pipeline in a cloud and edge environment.
Another approach, is to gain experience via simulation. With enough computational
resources we can easily produce lots of experience data in a short time, but it is difficult to
ensure that the simulated experiences are realistic enough to reflect the actual situations in
the observed system.
Recently, there has been a new trend to leverage external knowledge to improve the
exploration efficiency of RL agents. For example, in 9 and 10, prior knowledge like pre-trained

6 Mao, H., Netravali, R., & Alizadeh, M. (2017, August). Neural adaptive video
streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (pp. 197-210).
7 Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., & Stoica, I. (2018, August).
Chameleon: scalable adaptation of video analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (pp. 253-
266).
8 Argerich, M. F., Cheng, B., & Fürst, J. (2019, April). Reinforcement learning based
orchestration for elastic services. In 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT) (pp. 352-357). IEEE.
9 Moreno, D. L., Regueiro, C. V., Iglesias, R., & Barro, S. (2004). Using prior
knowledge to improve reinforcement learning in mobile robotics. Proc. Towards
Autonomous Robotics Systems. Univ. of Essex, UK.
10 Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., ... & Osband,
I. (2017). Deep q-learning from demonstrations. arXiv preprint arXiv:1704.03732.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 64 of 116 bigdatastack.eu

models and policies are used to bootstrap the exploration phase of a RL agent. However,
this type of prior knowledge still originates in previous training and is limited by the
availability of such data.
Instead of relying on any pre-trained model, we explore how to utilize a set of
programmable knowledge functions to guide the exploration of a RL agent so that we can
quickly bootstrap a RL agent to make effective decisions, even just after a few exploration
steps. We call our method Tutor4RL.Unlike existing approaches, Tutor4RL requires not any
previous training. Therefore, it is a more practical approach for the use of RF in real systems.
To the best of our knowledge, Tutor4RL is the first to apply programmable knowledge
functions into RL for improving the sample efficiency problem of RL.

7.3. Design Specifications
During the second phase of the project, we have Finalized the development of our new
approach called Tutor4RL. Tutor4RL takes as input domain knowledge guidelines that are
used to constraint, explore and learn from the environment in which the agent is deployed,
while learning from its own experience the best actions to achieve its goal in different
states.

We have modified the RL framework by adding a component we call the Tutor. The tutor
possesses external knowledge and helps the agent to improve its decisions, especially in the
initial phase of learning when the agent is inexperienced. In each step, the tutor takes as
input the state of the environment and outputs the action to take, in a similar way to the
agent's policy. However, the tutor is implemented as a series of programmable functions
that can be defined by domain experts and interacts with the agent during the training
phase. We call these functions knowledge functions and they can be of two types:

• Constrain functions: are programmable functions that constrain the selection of actions
in a given state, “disabling” certain options that must not be taken by the agent. For
example, if the developer of the application has decided a maximum budget for the
application, even the application load is high and this could be fixed by adding more
resources to the deployment, this should not be done if the budget of the user has
already reached its maximum.

• Guide functions: are programmable functions that express domain heuristics that the
agent will use to guide its decisions, especially in moments of high uncertainty, e.g. start
of the learning process or when an unseen state is given. Each guide function takes the
current RL state and reward as the inputs and then outputs a vector to represent the
weight of each preferred action according to the encoded domain knowledge. For
example, a developer could create a guide function that detects the number of current
users for an application and if the number is higher than a certain threshold, more
resources might be deployed for the application.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 65 of 116 bigdatastack.eu

Figure 23: High level vision of Tutor4RL

The benefit coming from using Tutor4RL is twofold:

• During training, the tutor enables a reasonable performance, opposed of the
unreliable performance from an inexperienced agent, while generating experience
for the agent's training. Furthermore, the experience generated by the tutor is
important because it provides examples of good behaviour, as it already uses
domain knowledge for its decisions.

• The knowledge of the tutor does not need to be perfect or extensive. The tutor
might have partial knowledge about the environment, i.e. know what should be
done in certain cases only; or might not have a perfectly accurate knowledge about
what actions should be taken for a given state. Instead, the tutor provides some
“rules of thumb” the agent can follow during training, and based on experience, the
agent can improve upon the decisions of the tutor, achieving a higher reward than it.

The main functioning of Tutor4RL is as follows:

1. Application developer (i.e., the domain expert) defines guide and constrain functions
These functions encode domain knowledge of the developer that guide and
constrain the RF agent during its initial stage. This is important for new applications
and/or a new system execution context, where traditional RL would need to explore
the state space randomly and thereby negatively impact QoS of the application. If
the application has been deployed before, Tutor4RL can use the historical data from
that previous deployment and encodes it as a guide function.

2. The Triple Monitoring Engine and QoS Evaluation informs the Interpreter about the
current system metrics and the SLO violations, respectively.

3. These metrics are taken as input by the agent and the tutor and both output a vector
with valuations for each action.

The RL agent selects an action, from its policy or from the suggestions provided by the tutor,
which should be executed by the Realization Engine and sends it.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 66 of 116 bigdatastack.eu

7.3.1. Adaptable Distributed Storage and Complex Event Processing
Interplay
The Adaptable Distributed Storage and Complex Event Processing (CEP) components (as
described in 4.2) will interact with the DO to scale in/out its resources. As a result, the
storage can be re-configured automatically, moving data regions across its current nodes
and scale in or out to be adapted under diverse workloads. And CEP sub-queries can be
replicated to increase throughput and process a higher number of events per second if the
system was overloaded with the previous configuration. To realize these redeployments, the
DO monitors several metrics related to each of these components and triggers the changes
in deployment when necessary via a request to the component.In the case of the Adaptable
Distributed Storage, the re-configuration can be started by the Elasticity Manager, a
subcomponent of the Adaptable Distributed Storage, or by the DO. The DO needs to
consider that there is a second dynamic adaptation mechanism acting at the storage layer
level. This second adaptation component (i.e. Elasticity Manager) will request the DO for
more resources if needed; in fact, this has been specified as a requirement imposed on the
Adaptable Distributed Storage (see REQ-ADS-06) by the DO. More specifically, the Adaptable
Distributed Storage will notify information regarding pending redeployments of the storage,
when the process of data reconfiguration starts and finishes, along with the current
deployment of this layer.

In the setting of Tutor4RL, the Adaptable Distributed Storage logic is seen as a Guide
function, so it is used by the agent to improve its performance. This information helps the
DO to determine in what cases the Adaptable Distributed Storage should be scaled up or
down, first by observing the behaviour of the already implementing logic, and then
repeating and potentially, improving these decisions thanks to having a broader picture of
the application and system status.

The communication with both, the Adaptable Distributed Storage and the CEP is
implemented via REST API calls. These calls are structured as follows:

1. Monitoring request: everytime a new CEP query or an ADS engine is launched, a new
monitoring request is sent to the DO, with information about the SLOs and metrics to be
monitored.

2. Once the query or engine is running and a change is needed, a request for redeployment
can be sent
2.1. The ADS requests the DO to scale up, the DO will return “True” if resources allow it

and update its internal state (learning step.)
2.1.1. If resources do not allow this change, the DO will return False and flow

finishes here. 
2.2. DO requests ADS/CEP to scale up/down, the component will return “True” if its

state allows this change
2.2.1. If the state does not allow this change, the component returns “False” and

flow finishes here. 
2.2.2. If the request is to scale down and the component’s state allows this, the

ADS/CEP will scale down and the flow finishes. 
3. The DO will request the Realization Engine (RE) to scale up the CEP/ADS.
4. The RE will execute the deployment change. 

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 67 of 116 bigdatastack.eu

More information about the protocol between the DO and the Data-as-a-Service
components can be found at the D4.3.

7.3.2. CEP Integration with the Infrastructure building block of
BigDataStack

The CEP interacts with the mechanisms described in Section 6.4.1 of D4.3 to integrate with
the infrastructure building block. The CEP driver implements the methods needed by the
infrastructe (Section 6.5.2 of D4.3): canYouScale, infrastructureFinishedScaling and
infrastructureFinishedScalingDown.

7.3.3. canYouScale method
The canYouScale method sends a can_scale action to the orchestrator indicating the query
and subquery to be scaled and checks if the subquery is registered and deployed in the
system. If the subquery is not registered, the orchestrator sends back a response of type
SQ_NOT_ABLE_TO_SCALE. If the subquery is deployed, checks if the subquery is stateful and
if the tuples are not grouped by some fields, the subquery cannot be scaled and the
SQ_NOT_ABLE_TO_SCALE message is sent Back. Otherwise, if the query is stateless or is
stateful and the tuples are grouped in different windows, the subquery can be scaled and
the response message of type SQ_CAN_BE_SCALED is sent back.

7.3.4. infrastructureFinishedScaling method
The infrastructureFinishedScaling method sends a scale_out action to the orchestrator
indicating the pod where the new subquery instance is going to be deployed, the query,
subquery and subquery instance to scale out. Once the orchestrator receives all this
information starts the scale out process.s

7.3.5. infrastructureFinishedScalingDown method
The infrastructureFinishedScalingDown method is called at least three times by the Dynamic
Orchestrator (DO) component (WP3). The can_scale_down action is sent to the orchestrator
to check if the subquery instance to be scaled down is deployed in the system and if there is
more than one instance of this subquery running. A message is returned to the DO with the
answer, YES or NO.

The second time the DO calls this method, the orchestrator replies with a WAIT message,
specifying the amount of seconds to wait (30 seconds) and the pod where the subquery
removed was running. Then, the DO waits in order to check if the scale_down process has
finished. Next time the DO calls this method, a message with a YES or WAIT will be send
back. If the answer is YES, the DO can remove the pod where the subquery instance was
running in order to save resources.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 68 of 116 bigdatastack.eu

7.3.6. Interplay with the Realization Engine
To enable applications to be registered with BigDataStack to be managed by the Dynamic
Orchestrator (DO), the DO needs to integrate with the Realization Engine to obtain
information about the application (components) to manage. This is achieved via a
BigDataStack-specific Operation (see Section 6.3.3), ‘RegisterWithDynamicOrchestrator’ that
can be included within an application deployment. In particular, once an application
component, represented by a BigDataStack Object instance has been launched (either by
the Deploy or Apply operations) and has reached running state, this new operation can be
called, which will pass information about the component and any associated service level
objectives to the DO, such that data-driven orchestration can commence.

Figure 24: Register with Dynamic Orchestrator Operation Configuration

To identify the target object to orchestrate, it uses an ’instanceRef’ in the same way as the
‘Deploy’, ‘Scale’ and ‘Delete’ operations. RegisterWithDynamicOrchestrator is normally used
during deployment operations, and hence the instanceRef is normally generated via the
Instantiate operation. Internally, the RegisterWithDynamicOrchestrator operation queries
the Application State Database to collect up-to-date information about the target
BigDataStack Object instance, as well as connected information about service level
objectives, resource templates and exported metrics. This is then sent via REST API call to
the DO, which starts its orchestration process. There is also a related operation
‘EndDynamicOrchestration’, that notifies the DO to stop orchestration for a BigDataStack
Object instance.

7.4. Implementation and Integration Highlights
The DO has been fully designed and implemented to provide the following overall
functionality:

1. Every time a new application is launch, the Realization Engine (RE) sends a monitoring
request to the DO. This request contains all the information necessary for the DO to
track the application: application and object identifiers, metrics and SLOs to monitor
and possible redeployment actions to execute for this application.

2. The DO informs the Triple Monitoring Engine (TME) and QoS Evaluation (QoS) about
the new application with details about the metrics and SLOs that need to be tracked.

3. Periodically, the TME and QoS inform the DO about the current system metrics and
the SLO violations if any, respectively.

4. When all the metrics for a given application have been updated since their last
processing, the DO converts them into states and rewards. The states represent the
system status as a continuous vector of fixed length. The rewards indicate to the
Reinforcement Learning agent if an executed action was “good” or “bad” in terms of

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 69 of 116 bigdatastack.eu

requirements and SLOs compliance (e.g. if the requirements and SLO violations
disappeared after the execution of an action).

5. At this point, the DO triggers a new step in the RL (Reinforcement Learning) agent. In
this step, the state and reward are fed to the RL agent and the agent selects an
action, from its policy or from the suggestions provided by the tutor, that should be
executed by the RE. The actions are type of changes in the deployment such as
change the number of replicas, change the number of vCPUs or change the vRAM
assigned—note these are just some of the changes that are being considered, the full
list of deployment changes still needs to be determined. The action to keep the
current deployment, called “none” action, is valid for all applications.

6. If the action is different to the “none” action, the DO requests this action to the RE.
7. The process is repeated from step 3.

For Tutor4RL, we have defined a set of guides and constrains that are used for all
applications. These guides and constrains work for most applications and provide a starting
behaviour for the DO, that will learn from the experience of orchestrating each application
and will improve over time upon this default behaviour.

7.5. Experimentation Outcomes
In the first half of this project, we have implemented an early version of the DO using
Tabular Q-learning and tested it in simulations of a streaming application in which the load
of the application increases (see [44]) for a detailed description and evaluation of this
prototype). This streaming application can find lost children based on the processing of
camera data. It can be split in two components: (1) an offline module, which is trained
with pictures of the child in a server and (2) an online module, a face detection and
matching service that is deployed in several devices and is in charge of finding the child
(see [44]).

Figure 25: Example of streaming analytics application

We have shown that RL can be used efficiently (up to 25% better precision than a state-of-
the-art heuristics) to dynamically orchestrate such a data processing pipeline like the ones in
BigDataStack. However, we noticed two issues with applying traditional RL:

i. Bad performance during the “training phase” of the RL agent, and
ii. Missing constrains to avoid clearly wrong actions.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 70 of 116 bigdatastack.eu

Both issues are very relevant to BigDataStack: BigDataStack applications need to be ready
from the start and the DO should ideally avoid clearly wrong actions. We started to address
both issues with Tutor4RL.

Tutor4RL adds two features to traditional RL: Guide Functions and Constrain Functions.
These functions enable the user to give some initial knowledge to the RL agent to direct its
initial exploration.

During the second phase of the project, we implemented a prototype of Tutor4RL with
standard RL libraries in order to provide a fair comparison of it against other heavily used RL
algorithms. Specifically, we have modified the library Keras-RL to implement a tutored Deep
Q-Network (DQN) agent.

An important question towards our model is when the tutor should decide for the agent and
vice-versa. In a similar way on how Epsilon greedy exploration works, we defined Tau as the
threshold parameter for the agent to control when it will use the suggested actions from the
tutor instead of using its own. The initial value of Tau is a parameter of our model and the
best value to initialize it depends on the use in which Tutor4RL is used. This parameter is
linearly reduced while the agent gathers more experience and learns to take better
decisions.

To test Tutor4RL, we have used the library OpenAI gym [42], which provides several
environments ready to be used with RL. As we are testing a DQN agent, we decided to use
the Atari game Breakout [43] which is a complex use case in which we can observe how the
agent performs in cases in which reward is sparse and episodes are long in time steps. This
is a different use case than the one we are addressing in BigDataStack, but we have chosen
it because it is heavily used in the RL literature, so it lets us compare Tutor4RL with the
state-of-the-art in a straightforward manner.

In Breakout, the state of the environment in each time step is the video games’ frame in
pixels. The actions are four: no operation, fire (which throws the ball to start the game), left
and right. The reward is the points achieved in the game, given each time a brick is broken.

We implemented a simple guide function that encapsulates some basic knowledge about
the game: the function takes as input each frame, searches for the ball and the position of
the bar, and moves the bar to the left if the ball is to the left of the bar or to the right if the
ball is on that side. If the ball is not seen, then the action chosen is “fire” to start the game.

We have compared the functioning of Tutor4RL by also training a plain DQN agent for the
same use case. The results can be seen in the plot below:

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 71 of 116 bigdatastack.eu

Figure 26: Comparison of performance between Tutor4RL and a plain DQN agent.

As it is possible to see, from the initial steps the DQN agent with Tutor4RL manages to
achieve a reasonably high reward while the plain DQN agent performs very poorly, because
of its inexperience. As the agents perform more steps, the plain DQN agent catches up, but
it’s not until step 1 million that it manages to achieve a similar reward to the tutored DQN
agent. Tau is decreased in every step, starting with a value of 1 and reaching 0 in step 1.5
million. It is important to note that after this step, the tutor is not used anymore but the
agent keeps up with its high reward.

In Y3, we completed the implementation of Tutor4RL for the DO. We have added the
mechanisms for managing constrain functions, and a way to manage changing state and
action spaces with the same Tutor. The latter is a requirement that we have noticed for the
BigDataStack use case: each application can have a different state space, i.e. it can have
different metrics and SLOs, as well as a different action space, i.e. different sequences or
redeployment changes. However, we want the tutor to support all different applications,
with guides and constrains that express rule of thumbs for applications’ deployment in the
cloud. An example of this can be as simple as: “if no SLO is being violated, do not perform
any change”, and this in fact, constitutes a guide for our agents. A constrain for example, is
“if response time or latency are close to a maximum threshold, do not remove replicas of
the process”. These are simple examples we have included in our current tutor and work in
most cases for applications. The set of guides and constrains can be modified by a
BigDataStack platform administrator.

We have compared Tutor4RL performance against vanilla DQN in a scenario where the DO is
in charge of controlling two metrics: cost per hour (which varies according to resources used
by application) and response time. These are two opposite objectives: if we increase the use
of resources, the response time decreases but the cost per hour increases, and if we
decrease the use of resources, the opposite is true. However, the SLOs specify thresholds
for each metric: cost per hour should be less or equal to $0.03 and response time should be
less than 200ms.

The DO must find the sweet spot that satisfies these two SLOs as long as the application
allows it. In fact, it might happen that the application load is too high, and then there is no
way of satisfying both SLOs, in these cases the DO behaviour will tend to find the

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 72 of 116 bigdatastack.eu

configuration that violates the SLOs proportionally less. However, we believe this are corner
cases in which even a human might not be sure what to do and therefore we have not
evaluated the DO’s performance in these situations.

In Figure 27, we see the performance of the vanilla DQN agent (left) and the Tutor4RL agent
(right) for managing this scenario with two SLOs. Note than on the images we have marked
with horizontal lines the thresholds for SLOs and with a vertical line, the moment in which
the guide functions from the Tutor are not used anymore, until that point the functions are
used on and off with a diminishing frequency from 0.9 to 0. As we can see, the Tutor4RL
agent performs better than the vanilla agent, reducing the amount of deployment changes
performed and achieving a better satisfaction of SLOs as shown in Table 7. We still see that
once the guides are completely abandoned, the agent commits some mistakes, but it can
quickly correct its error. We can avoid this by adding constrains such as not changing the
deployment configuration if no SLO is violated, but we wanted to show a case in which the
agent is freer e in its actions and therefore show its learned behaviour better.

SLO satisfaction Vanilla DQN Tutor4RL

Response time (< 200ms) 82.37% 84.03%

Cost per hour (< $0.03) 56.23% 95.75%

Table 7 - SLO satisfaction for Vanilla DQN agent vs. Tutor4RL agent

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 73 of 116 bigdatastack.eu

Figure 27: DO performance to manage 2 SLOs: costPerHour < 0.03 and responseTime < 200

On the figure above, Vanilla DQN is shown on the left, while Tutor4RL, with 2 guides and 1 constrain, is shown
on the right. The horizontal blue dashed lines show the SLO threshold for the metrics and the pink dotted line
show the moment in which guides are not used anymore.

This has been achieved by using 2 guides and 1 constrain for the Tutor, showing the benefits
of our approach. The guide (#1 and #2) and constrain (#3) functions are shown in Figure 28.
In #1, we avoid unnecessary deployment changes if the reward is positive, i.e. no SLO is
being violated. This has been implemented as a guide and will therefore stop being used
when Tau equals to 0. #2 is another guide function and checks the response time, if it is less
than 100ms (50% of the maximum threshold for the response time SLO), a replica might be
removed. Function #3 is a constrain and will be always applied to the agent’s action vector.
This function avoids the removal of a replica when response time is 80% of the maximum
threshold.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 74 of 116 bigdatastack.eu

Figure 28: Guide (#1 and #2) and constrain (#3) functions for DO.

7.6. Next Steps
Beyond BigDataStack, we plan to continue the improvement of the DO, by integrating it and
testing it with FogFlow. This activity is currently under development and it will give us
important insights about how generally applicable is Tutor4RL as well as the guide and
constrain functions we have developed for BigDataStack.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 75 of 116 bigdatastack.eu

8. ADS Ranking & Deploy
The role of the ranking and deployment module of BigDataStack is to decide how to deploy
the user’s application and then operationalize that deployment via a container orchestration
platform (e.g. Kubernetes). Ranking and deployment is part of the application deployment
back-bone that enables a user to get their application running on a hardware cluster. Prior
to ranking and deployment, the user will have defined in a conceptual manner what their
application is comprised of and how the different services within that application interact,
forming a BigDataStack Playbook. This conceptual definition will have then been
extrapolated into multiple deployment options, representing different ways that the
application/services can be mapped onto compute resources. Finally, these options will
have been benchmarked, providing estimated resource usage and quality of service
information for each. Ranking and deployment takes these deployment options and
associated benchmarking information as input, identifies the optimal deployment
configuration based on needed resources, and also handles subsequent deployment on the
cluster or cloud.

As its name suggests, ranking and deployment is split into two distinct components, namely:
ADS (Application and Data Services) Ranking and ADS (Application and Data Services)
Deployment. ADS Ranking is responsible for taking the different deployment options and
associated benchmarking information, and deciding which is the most suitable based on the
user requirements and preferences. This has two uses within BigDataStack, namely: to
determine what compute resources to request for a user’s application when first deploying
it; and to re-estimate compute resource needs in cases where a current deployment is
predicted to miss one or more Service Level Objectives. ADS Ranking is also sometimes
referred to as the Deployment Recommender Service, as it produces a recommended
deployment configuration for the user. Meanwhile, ADS Deploy is responsible for taking the
selected deployment option and using the configuration information contained within, to
operationalize deployment of the user’s application on the cluster or cloud infrastructure.

8.1. Changes Since D3.2
Over the last year since the previous WP3 deliverable, there have been significant changes
in how user application management within BigDataStack is handled. In particular, the
introduction of the Realization Engine as a new suite of services that enable the user to
more effectively define, configure and manage their applications altered the previous
deployment flow. Previously, upon ingestion of a BigDataStack playbook, deployment was
largely automated, with that playbook being fed in a serial manner through Pattern
Generation, Benchmarking, ADS-Ranking (the Deployment Recommender Service) and
finally to ADS-Deploy. This is no longer the case, instead BigDataStack playbooks now go
through a registration process with the Realization Engine, where it is de-constructed into
modular components that can be independently managed. The user can then trigger atomic
operations or aggregate operation sequences, which represent ‘actions’ to perform on the
user application. As such, resource recommendation via ADS-Ranking and the underlying
deployment process via ADS-Deploy were re-built to function within the atomic operations
‘RecommendResources’ and ‘Apply’, respectively. These operations can then be included as

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 76 of 116 bigdatastack.eu

part of any operation sequence, providing users significantly more customisation than was
previously possible.

The other main addition was the Tier 2 implementation of ADS-Ranking, which transitions
from the heuristic deployment scoring mechanisms used in Tier 1 to a new machine learned
scoring function based on Learning to Rank. Associated to this, as second deployment
ranking dataset was developed to enable evaluation of ADS-Ranking for machine learning
based applications. Additional information regarding this can be found later in this section.

8.2. Terminology
As a result of the changes to the underlying application management process via the
introduction of the Realization Engine, some of the underlying application modelling has
similarly changed. This had down-stream impacts on the input formats used by ADS-Ranking
and ADS-Deploy. Hence, it is worth summarizing the updated terminology that we use later
and how that maps to the terminology used previously in D3.1/D3.2.

Name Description Relation to Previous
Deliverables

BigDataStack
Playbook

This is the conceptual representation of
a user application that is registered with
the Realization Engine. It can include
one or more of the following: 1)
application definition; 2) comprised
object definitions; 3) metrics; 4) service
level objectives; 5) operation sequences;
6) application states.

This new BigDataStack
playbook is more structured
and can contain significantly
more information than those
used in D3.1/D3.2.

BigDataStack
Object

A BigDataStack Object is the internal
representation of a Kubernetes/
OpenShift object (e.g. a
DeploymentConfig or Service) within the
Realization Engine. Such objects can
either be templates or instances, where
templates represent the blueprint for
creating the object on the cluster, while
an instance represents an actual object
post-deployment.

BigDataStack Objects did not
exist previously. The closest
approximation under the old
system is an old format
BigDataStack Playbook.

Resource
Template

This is a specification of a set of
resources that can be associated to a
BigDataStack Object, typically covering
CPU, Memory and GPU requests and
limits.

A Candidate Deployment
Pattern (CDP) was the
aggregation of a Resource
Template and old format
BigDataStack Playbook. Now

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 77 of 116 bigdatastack.eu

Resource Templates are
managed independently.

Benchmark
Results

This is a set of features describing the
run-time performance for a
BigDataStack Object and Resource
Template pair as outcome from a
benchmarking run.

A Dimensioned Deployment
(DD) Playbook was the
aggregation of a Benchmark
Result, a Resource Template
and old format BigDataStack
Playbook. Benchmark Results
are now managed
independently.

Workload A workload describes a data in-load
scenario for a user application. This is
used during benchmarking to specify
how heavily loaded a BigDataStack
Object instance is.

This remains unchanged from
previous deliverables.

8.3. Requirements
To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.3,
updated to reflect the above terminology changes and included into this section. Note that
the requirements themselves have not changed (only the wording has been updated) and
are included in here simply for the reader’s convenience.

This section contains the requirements for both the ADS Ranking and ADS Deployment
components, denotated as REQ-ADSR-XX and REQ-ADSD-XX, respectively.

 Id Level of detail Type Actor Priority

REQ-ADSR-01 System FUNC Application
Dimensioning
Workbench

MAN

Name Ingest BigDataStack Objects, Resource Templates and Benchmark Results

Description The Application Dimensioning Workbench sends a series of deployments
(BigDataStack Object and Resource Template pairs) and Benchmark
Results to the ADS Ranking component. ADS Ranking needs to collect
these for subsequent scoring/ranking based on the user requirements and
preferences.

Additional
Information

Communication is now handled via REST API, where the process is
mediated via the Realization Engine.

Table 8 - Requirement (1) for ADS Ranking

 Id Level of detail Type Actor Priority

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 78 of 116 bigdatastack.eu

REQ-ADSR-02 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name Deployment Suitability Feature Extraction

Description Once a series of deployments (BigDataStack Object and Resource
Template pairs) and associated Benchmark Results has been received, the
next step is to determine how each is predicted to perform based on the
benchmarking information. In effect, this involves defining a series of
functions that relate individual or groups of user requirements to the
predicted performances produced by benchmarking. The output of this
step is a vector representation for each candidate deployment,
representing how that deployment is predicted to perform under different
user requirements.

Additional
Information

Features produced here are dependent on the capabilities of the
benchmarking system and the amount of information the user provides in
terms of requirements and preferences.

Table 9 - Requirement (2) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-03 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name Deployment Scoring (Heuristic)

Description Given a vector representation for a deployment (BigDataStack Object and
Resource Template pair), we next need to map this vector into a single
score, representing how suitable that deployment will be overall (such
that we can compare different deployments). This involves combining the
different elements within the vector (that each represent some aspect of
pattern suitability, such as cost, or predicted compute wastage). The first
version of this component will use a hand-tuned linear combination.

Additional
Information

N/A

Table 10 - Requirement (3) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-04 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

DES

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 79 of 116 bigdatastack.eu

Name Deployment Scoring (Supervised)

Description Given a vector representation for a deployment (BigDataStack Object and
Resource Template pair), we next need to map this vector into a single
score, representing how suitable that deployment will be overall (such
that we can compare different deployments). This involves combining the
different elements within the vector (that each represent some aspect of
pattern suitability, such as cost, or predicted compute wastage). The
second version of this component will learn how to combine the elements
based on logging information from past deployments. Models may be non-
linear in nature.

Additional
Information

Depends on REQ-ADSR-06.

Table 11 - Requirement (4) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-05 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name Deployment Selection

Description Once all candidate deployment patterns have been scored, the final step is
to select one of those deployments to pass to ADS Deploy. In many cases
this will simply involve selecting the highest scoring pattern. However, the
user may have the option to select an alternative configuration at this
stage.

Additional
Information

N/A

Table 12 - Requirement (5) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-06 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

DES

Name Supervised Model Training

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react
to changes in the deployment environment over time, this model needs to
be frequently updated based on new information from current
deployments. This model needs to be trained based on logging data being
collected by the Triple Monitoring Framework.

Additional Requires logging information produced by the Triple Monitoring

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 80 of 116 bigdatastack.eu

Information Framework and stored in the Realization Engine.

Table 13 - Requirement (6) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-07 System FUNC Dynamic
Orchestrator

MAN

Name Deployment Re-Scoring

Description It is envisaged that in (rare) scenarios, an ongoing application deployment
will fail to meet the user’s quality of service requirements. For instance,
this might occur due to assumptions on data input volumes being violated.
In this case, we may not be able to solve this issue without fully
redeploying the user application with different resources. To support such
re-deployment activities, ADS Ranking supports a re-scoring function,
where a previous set of candidate deployments for a user’s application can
be re-scored based on updated preferences provided by the Dynamic
Orchestrator, as well as data about how the previous deployment
performed (and failed).

Additional
Information

N/A

Table 14 - Requirement (7) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-08 System FUNC ADS
Ranking

DES

Name Deployment Dataset Generation

Description To support REQ-ADSR-06 and hence REQ-ADSR-04, significant volumes of
logging data from past deployments are needed to enable effective model
creation. To this end, a framework and methodology for generating this
data is needed. Such logging data can be produced through either
benchmarking, live deployment of the end-user applications and via
simulated application deployment.

Additional
Information

Data storage for this task is handled by the Triple Monitoring Framework
and Realization Engine. Data generation is supported by deployments by
the application dimensioning workbench and other dedicated deployment
applications.

Table 15 - Requirement (8) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSD-01 Stakeholder FUNC ADS Deploy MAN

Name Performance Measurability

Description Each environment should be measurable according to a set of
characteristics, that is, Key Performance Indicators (KPIs).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 81 of 116 bigdatastack.eu

Additional
Information

The KPIs considered must include:
- vCPUs
- Memory

Table 16 - Requirement (1) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-02 Stakeholder FUNC Application
Engineer, Data
Engineer

MAN

Name Standardised Object Loading

Description The description of the environments and deployments (i.e., BigDataStack
Objects) will follow a specification language that is intuitive and as close
(similar) as possible to well-known and widely-used schemas to describe
software application deployments in cloud infrastructures, such as Docker
Compose or Kubernetes Deployment.

Additional
Information

N/A

Table 17 - Requirement (2) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-03 System FUNC Application
Engineer, Data
Engineer

MAN

Name Standard deployment information

Description When communicating with other components, as described in Section 8.2,
these components will use the standard defined in REQ-RD-02.

Additional
Information

N/A

Table 18 - Requirement (3) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-04 System FUNC ADS Ranking MAN

Name Application Scoring System

Description The ranking system evaluates each environment’s deployment, which
keeps track of the most suitable configuration for each application. When
trying a deployment configuration for a new application, this ranking will
be used to select the most suitable one.

Additional
Information

The evaluation needs to be performed following the measurements
defined in REQ-RD-01.

Table 19 - Requirement (4) for ADS Deploy

 Id Level of detail Type Actor Priority

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 82 of 116 bigdatastack.eu

REQ-ADSD-05 Software FUNC Cluster
Management

MAN

Name Compatibility with Kubernetes

Description Since the technology used to run and orchestrate the applications is based
on Kubernetes (OKD11). Thus, the ADS-Deployment component is required
to be compatible with Kubernetes.

Additional
Information

The ADS-Deploy component should translate from the playbook standard
defined in REQ-RD-01 into Kubernetes primitives.

Table 20 - Requirement (5) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-06 System PERF ADS Ranking MAN

Name Synchronous communication

Description The communication with and within ADS Ranking and ADS Deploy must be
done through an API REST.

Additional
Information

N/A

Table 21 - Requirement (6) for ADS Deploy

8.4. Design Specifications
The design for ADS-Ranking and ADS-Deploy was originally specified in Section 7 of D3.1 and
later updated in Section 7 of D3.2. The primary changes made in Y3 are: 1) an updated
process flow to account for the introduction of the Realization Engine; 2) the introduction of
the RecommendResources and Apply operations with associated updated communication
interfaces for ADS-Ranking and ADS-Deploy that enables interoperability with the
Realization Engine; 3) the integration with the new Realization UI (rather than the more
general BigDataStack Visualisation service as was used previously); and 4) the extension of
ADS-Ranking to Tier 2, enabling support for machine learned evaluation of candidate
deployments. The following sub-sections describe these changes in more detail, with the
exception of the changes of ADS-Ranking that is described in Section 8.5.

8.4.1. Updated Architecture
An updated architecture diagram is provided in Figure 29 below (contrasting the original
architecture provided in Figure 12 of D3.1). As can be seen from Figure 29, the process flow
for the usage of ADS Ranking and ADS Deploy is now as follows: First, the user (application
engineer) can interact with the Realization UI to access the functionality of ADS Ranking and
ADS Deploy (and indeed all of the other services connected to the Realization Engine). For
illustration, let us assume that the user had an application registered that contains a
BigDataStack Object ‘InsuranceClassifierService’. Furthermore, let us assume that a
BigDataStack Operation Sequence (action) has been registered named ‘deploy’ that contains

11 OKD - https://www.okd.io/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 83 of 116 bigdatastack.eu

the three in-built operations: ‘RecommendResources’; ‘Instantiate’; and ‘Apply’. From the
Realization UI, the user can trigger the ‘deploy’ action. This sends a request to the
Realization Engine via its API (in this case the Executions endpoint), which in turn will start
processing the specified operations within the sequence in order. When the
RecommendResources operation starts it will collect the needed information about the
target object template (InsuranceClassifierService) and sends that information to ADS
Ranking, which will in turn produce new recommended resources for that object and store
that resource definition within the State Database. Once the recommended resource
definition is ready, the RecommendResources operation concludes, and passes control to
the next operation in the sequence, i.e. Instantiate. The Instantiate operation is responsible
for generating a new BigDataStack Object Definition instance based on a BigDataStack
Object Definition template. In this case, it will produce a new InsuranceClassifierService
instance from the associated template, and then store that instance within the State
Database. Finally, once instantiation is complete, control is passed to the Apply Operation.
The Apply operation takes the InsuranceClassifierService instance along with the
recommended resources definition previously produced by ADS-Ranking, and passes them
to ADS Deploy, which operationalizes the creation of the associated object (and hence
service) on the cloud or cluster infrastructure via the OpenShift API. Once running,
adaptations to the deployment can be triggered via operation sequences in the same
manner either manually or programmatically. For instance, the Dynamic Orchestrator may
trigger an alteration action that involves RecommendResources as one of the operations in
the sequence.

Figure 29: ADS-Ranking and ADS-Deploy Processing Architecture

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 84 of 116 bigdatastack.eu

8.4.2. Recommend Resources Operation
Previously, as described in Section 7 of D3.1, ADS-Ranking used a publisher-subscriber
mechanism to ingest the user application details it needs to generate a set of recommended
resources. This design decision was reasonable at the time, as the entire deployment flow
was encapsulated within a stream processing pipeline, where a playbook was provided as
input at one end and a deployment was the output at the other end. With the introduction
of the Realization Engine, this process was converted to be user (or at least business-logic)
triggered, and the various sub-components of the process were isolated such that they
could be triggered independently as atomic operations.

To enable this, ADS-Ranking was altered to support ingestion of BigDataStack Objects,
Resource Templates and Benchmarking Results via REST API, rather than through a
subscription. In particular, all communication with ADS Ranking is now abstracted behind a
pre-defined operation that is built into the Realization Engine, namely:
‘RecommendResources’. When this operation is triggered for a particular BigDataStack
Object, it in turn performs the following steps:

1. Retrieves the BigDataStack Object Template from the State Database

2. Retrieves the available Resource Templates for the current cluster from the State
Database

3. For each Resource Template, Benchmark Results are requested from the
Benchmarking component (Flexibench)

4. The resultant <BigDataStack Object, Resource Template, Benchmark Result> tuples
are then sent via HTTP POST request in JSON format to an endpoint exposed by the
ADS-Ranking service.

5. The operation waits until updated resource definitions are detected in the State
Database.

Note that the request at Step 4 only responds with whether the request was accepted (as
validated based on correct formatting), it does not directly respond with the results.
Internally, ADS-Ranking is still a stream processing system (see D3.1), and hence output is
asynchronous to the input. Hence, Step 5 exists to periodically check whether the updated
resources are yet available.

8.4.3. Apply Operation
‘Apply’ is a new operation that is built into the Realization Engine to facilitate the
deployment of the user application via ADS-Deploy. When Apply is triggered, it internally
performs the following steps:

1. Retrieves the BigDataStack Object instance to deploy from the State Database

2. If the BigDataStack Object instance is either of type DeploymentConfig, Job or Pod,
then the State Database is checked to see whether one or more Resource Templates
are associated to that Object. If so, the Resource Templates will be merged into the
object.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 85 of 116 bigdatastack.eu

3. The resultant object is sent via REST API to ADS-Deploy.

Along with the new Apply operation, some minor changes were made to ADS-Deploy itself
to support the new object modelling introduced with the Realization Engine. In particular,
previously ADS-Deploy expected a Playbook as input. Instead, it now takes a BigDataStack
Object instance definition, which fulfils the same purpose. It is however notable that as
BigDataStack Objects are more general and support a wider range of Kubernetes/OpenShift
objects, ADS-Deploy also benefits from this increased support natively (providing better
support for REQ-ADSD-05 than previously).

8.4.4. Connection with the Realization UI
In D3.2 (and demonstrated at the M18 review) the user interacted with ADS Ranking, via the
top-level BigDataStack user interface, which is known as the BigDataStack Visualisation
Service. However, with the introduction of the Realization Engine it became clear that there
was a need for a separate user interface with an increased feature-set, which would enable
the user to do more than simply deploy their application. This resulted in the development
of the separate Realization UI, that enables the user to also manage their applications pre-
and post-deployment.

ADS Ranking is one of the in-built services within the Realization Engine, and as such the
Realization Engine UI integrates some additional features for it. In particular, if the user
triggers an operation sequence (action) that involves the deployment of a container (e.g.
one that instantiates a BigDataStack Object of type ‘DeploymentConfig’ or ‘Job’) then the
associated BigDataStack Object(s) will be checked to see if they include a complete Resource
Template. If so, the operation sequence will be started as normal. If not, the operation
sequence is checked to see whether it contains a RecommendResources operation targeting
the object. If not, then the Realization Engine UI will prompt the user to either manually
provide the missing information or trigger the RecommendResources operation to generate
the missing information automatically. In this way, the Realization Engine UI leverages direct
integration with ADS-Ranking to prompt the user to follow good practice when deploying
cloud/cluster applications, by always specifying the resources they think they need prior to
deployment.

8.5. ADS Ranking Tier 2 (Machine Learned Ranking)
In this section we describe the new machine learned model used for evaluating the
suitability of different deployment options in ADS Ranking (Tier 2). The section is structured
as follows. In Section 8.5.1 we provide a brief summary of related works in the field of
machine learning. Section 8.5.2 describes how we formulate the problem of ranking
deployment options for various service level objectives as a machine learning task. Finally, in
Section 8.5.3 we discuss how to tackle the issue of multiple competing service level
objectives when ranking.

8.5.1. Related Work
Previously in D3.2 we proposed to tackle the problem of determining what resources to
allocate to a particular application component (a container to be more precise) as a learning

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 86 of 116 bigdatastack.eu

to rank problem. Generally, ranking problems can be defined as a derivation of ordering
over a list of items, where the goal is to maximize the utility of the entire list [45]. The
theory is that in scenarios where multiple options will be shown to the user, it is more
effective to optimise for the entire ordered list of items rather than consider each item
individually. Learning to rank is the application of supervised learning technologies to such
ranking problems, and has been widely used in several domains, most notably for search
and natural language processing applications [10].

It is worth noting that machine learned ranking is a fundamentally different problem to
either item classification or regression, where the goal is to construct a function for
automatic assignment of labels or numerical values to single items, respectively (although
you can use regression models for point-wise ranking as discussed later). This is because the
goal of learning to rank is to maximise the utility of the entire list, hence it is the ordering of
items that matters, not their individual score [10] .

A common method for distinguishing different learning to rank approaches is based on how
they define a surrogate loss function over the ranked lists of items during training. In
particular, the simplest (and least effective) class of learning to rank approaches use point-
wise scoring of items [46]. These approaches are simply the direct application of regression-
based supervised learning to the problem of ranking, where the goal is to assign a score to
each item individually. These approaches have been shown to be less effective than later
methods as they lack the contextual information from the rest of the ranked list. The other
two classes of learning to rank algorithms, referred to as pair-wise and rank-wise
approaches, both incorporate this contextual information. Pair-wise approaches calculate
loss over every pair of items within the ranked list to capture the relative ordering of items
[47]. Meanwhile, list-wise approaches calculate loss over the entire ranked list as a whole
[48,49].

In general, list-wise approaches have been shown to be the most effective in practice. List-
wise approaches can use a range of different metrics as a surrogate for loss, such as
Normalized Discounted Cumulative Gain (NDCG) [9], Expected Reciprocal Rank (ERR) [50],
and Mean Average Precision (MAP). These metrics score a ranking based on the number
(and in cases like NDCG the quality) of relevant/suitable items near the top of the ranking,
following the probability ranking principle [45].

In terms of the algorithm used to operationalize the learning process, classical learning to
rank techniques can be primarily divided into either linear or tree-based learners. A linear
learner will produce a model that linearly combines the feature scores for an item.
Meanwhile, a tree-based learner builds a decision tree-like structure, where the branch
nodes denote decisions based upon the features and each leaf node represents a final score
to return. Over the last couple of years there has been a resurgence of research targeting
the learning to rank problem, examining how the emergence of deep neural networks can
also be applied to this problem, such as TensorFlow Ranking [51]. However, it was still
unclear at this stage whether these are better than classical approaches, and the black-box
nature of the underlying model is a problem when explainability is a desirable characteristic.
Hence, we decided to focus on classical tree-based learners in this work, as they have been
shown to be effective [52].

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 87 of 116 bigdatastack.eu

8.5.2. Modelling Deployment Ranking as a Learning Task
When considering the problem of ranking deployment options for the user, the first
question that needs to be asked is ‘what are the items to be ranked’? In our scenario, an
item corresponds to the deployment of an application component, which is comprised of a
BigDataStack Object and Resource Template. When considering this as a ranking task, the
goal is for a given BigDataStack Object, to produce a ranked list of Resource Templates,
where suitable Resource Templates are ranked above less suitable Resource Templates. In
this case, suitability is defined in terms of the service level objectives (slos) attached to the
BigDataStack Object.

Having defined the task formulation, the second question that needs to be answered is ‘how
can items be modelled’? For any machine learning task, the items need to be represented in
the form of a fixed length numerical vector. The constraint is each vector must exist within
the same conceptual vector space, such that the vectors for two items are comparable. As a
general rule of thumb when modelling items for any task, all distinct information about the
item itself, contextual information about the ranking environment, as well as predicted
indicators of suitability should be encoded within the item vector. Within the context of our
ranking task, there are then four categories of information that we can potentially encode
within the item vector:

• BigDataStack Object Features: These are the representation of the actual
application component being deployed. Such features can be extracted from the
BigDataStack Object, such as from its description or performance characteristics if
available.

• Benchmarks: For each <BigDataStack Object, Resource Template> pair, we also
assume that we have predictive benchmark results for that application produced by
Flexibench component of WP5 or equivalent.

• Service Level Objective Features: These represent the service level objectives
provided by the user for the BigDataStack Object.

• Suitability Indicators: Given a set of Benchmarks and also the Service Level
Objectives provided by the user, it is often possible to produce suitability indicators
that contrast the Benchmark outcomes with one or more Service Level Objectives,
e.g. contrasting predicted latency vs. a latency target.

However, there are two problems with attempting to model an item using all of these
categories of information. The first problem is that the benchmarks produced for an item
depend on the application type. For instance, for a streaming application, benchmarking
might report information about processing throughput for the stream. Meanwhile, for a
batch application, the information reported might be completion time or records processed
per minute. As such, applications of very different types cannot be directly compared.
Practically, there is no means to work around this problem using a single model, hence the
solution to this is to train a different model for each broad type of application. We discuss
the features included in our test models in Section 8.5.4. The second problem is in regard to
the user’s service level objectives. Specifically, there are no constraints on the number of
service level objectives that a user can define for a given BigDataStack Object. Recall that
the item vector must be of constant length and comparable to other item vectors, hence

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 88 of 116 bigdatastack.eu

simply encoding all service level objectives would result in variable-length vectors. To solve
this, instead of directly reporting service level objective features, we instead define an
intermediate scoring function that calculates a suitability indicator, aggregating data from
across all of the service level objectives and the benchmarking results, outputting a single
predictive performance number, which we discuss in the next section.

8.5.3. Aggregating Across Service Level Objectives
As discussed above, to tackle the issue with variable numbers of service level objectives, we
need to devise a means to represent any combination of such objectives as a fixed length
vector. To do so, we define a function that takes in a list of service level objectives along
with associated benchmark data, producing a score. The aim is that this score should
capture the degree to which the benchmark data indicates that the service level objectives
will be met.

From a high-level perspective this function simply calculates the degree to which each
service level objective is predicted to be met by the current deployment (a score), and then
averages those scores across all objectives to produce a final predicted suitability score:

where SLOs is the set of all service level objectives, B is the set of benchmark results,
slo.metric is the associated metric that the slo targets and loss[x] is a function that estimates
the degree to which B[slo.metric] satisfies slo or not. Note that this internal scoring function
loss[x] changes depending on the particular metric being evaluated. This is needed since we
aim to capture the degree to which each slo is met, not simply whether it will be met.
Hence, we need different scoring functions that account for the fact that different metrics
have different working ranges and meanings. For example, consider a slo targeting
throughput more than 100 messages per second. We might receive predicted benchmarking
results indicating that throughput will be 110 messages per second, a success. But how do
we quantify the degree of that success? This is the role of each loss[x] function.

ADS-Ranking currently supports scoring functions for the following metrics (and hence slo
types):

• CPU Utilisation

• Memory Utilization

• Latency

• Throughput

• Completion Time

• Cost Per Hour

• Total Cost

For each one of these metrics we define a
function that takes in a delta between the
predicted value (produced by benchmarking)

Figure 30: Cost Per Hour Delta Scoring Function

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 89 of 116 bigdatastack.eu

and the target value (specified by the slo) and produces a value between 0 and 1. As this is a
loss function, lower values are better. For example, we visualise the Cost Per Hour function
in Figure 30, where the x axis is the cost delta in US dollars and the y-axis is the output score.
As we can see, this function will return a positive score if the cost per hour is higher than the
target (a failure), and a negative value if it is lower than the target (a success), where a
maximum positive or negative value is achieved at 1 US dollar above or below the target
respectively. Note that as we desire a loss value between 0 and 1 as output, as a final step
we scale the range by adding 1 and dividing by 2 to produce the final score as a loss for this
particular function.

By defining loss[x] functions covering the common types of service level objectives that a
user might care about, we can support automated evaluation for a wide range of user
applications. Internally, these functions are implemented as classes that extend a common
interface, keyed by metric name. As such new functions can be added over time to increase
support for new application types.

Furthermore, it is worth highlighting that the aggregate predicted suitability of a
deployment can be calculated over different sub-sets of slos. In particular, each slo is
labelled as either a requirement (something that the application must meet) vs. a
preference (something that is desirable to meet). Hence, in practice when generating
features for learning, we calculate aggregate predicted suitability for: all slos, requirements
only; and preferences only. In this way, the learner is provided evidence with which it can
distinguish between the different slo types.

8.5.4. Models and Feature Sets
For the purposes of supporting the Pilots within BigDataStack we develop two different
models with associated feature sets, representing two common application types: 1) stream
processing applications; and 2) batch model training. The pipeline for training each of these
two models is the same. What distinguishes these models is the features that they work
from, as both the information provided from benchmarking and the types of service level
objectives that the user cares about in each case differ. The features used for each of these
two models are listed below:

Feature Name Type Summary Stream
Processing
Model

Batch Training
Model

Object Description
Embedding

BigDataStack
Object
Feature

Word embedding derived
from the object description
field

Yes Yes

CPU Average Benchmark Average predicted CPU
utilization over the container
lifetime (millicores)

Yes Yes

CPU Peak Benchmark Peak predicted CPU
utilization over the container
lifetime (millicores)

Yes Yes

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 90 of 116 bigdatastack.eu

Memory Average Benchmark Average predicted Memory
utilization over the container
lifetime (Megabytes)

Yes Yes

Memory Peak Benchmark Peak predicted Memory
utilization over the container
lifetime (Megabytes)

Yes Yes

Average Latency Benchmark Average end-point response
latency (milliseconds)

Yes No

Peak Latency Benchmark Maximum end-point
response latency
(milliseconds)

Yes No

Average Throughput Benchmark Average items processed per
second

Yes No

Peak Throughput Benchmark Peak items processed per
second

Yes No

Completion Time Benchmark Total time needed to
complete training (seconds)

No Yes

Precision Benchmark Resultant Model Precision No Yes

Recall Benchmark Resultant Model Recall No Yes

NDCG Benchmark Resultant Model Normalised
Discounted Cumulative Gain

No Yes

Predicted Suitability All Suitability
Indicator

Output of the predicted
suitability scoring function
discussed above for all slos

Yes Yes

Predicted Suitability
Requirements

Suitability
Indicator

Output of the predicted
suitability scoring function
discussed above for slo
requirements

Yes Yes

Predicted Suitability
Preferences

Suitability
Indicator

Output of the predicted
suitability scoring function
discussed above for slo
preferences

Yes Yes

Predicted Proportion of
SLOs Passed

Suitability
Indicator

The proportion of all slos
that are predicted to be met

Yes Yes

Predicted Proportion of
Requirements Passed

Suitability
Indicator

The proportion of
requirement slos that are
predicted to be met

Yes Yes

Predicted Proportion of
Preferences Passed

Suitability
Indicator

The proportion of
preference slos that are
predicted to be met

Yes Yes

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 91 of 116 bigdatastack.eu

8.6. Experimentation Outcomes
In this section we evaluate the performance of ADS Ranking at identifying effective and
efficient deployment configurations. As its name suggests, ADS Ranking is a ranking service
at its core, i.e. it ranks a set of items provided to it, which are Resource Templates for a
BigDataStack Object in our case. Some of those Resource Templates will be more suitable
than others. By suitability, we refer to whether the user’s requirements and preferences will
be met or exceeded, if we use that Resource Template to deploy the user’s application.
Hence, we can measure how effective ADS Ranking is for an application by evaluating to
what extent the top-ranked Resource Templates are suitable. By evaluating the
effectiveness of ADS Ranking at deploying different types of application, we can determine
the overall effectiveness of ADS Ranking as a whole. In this section we describe the
experimental framework and setting we use to perform an evaluation of ADS Ranking in
terms of datasets, methodology, metrics and baselines. We then report the performance of
ADS Ranking Tier 1 (Heuristic-based) and Tier 2 (Machine Learned), along with two baselines
under these datasets and metrics.

8.6.1. Dataset Structure
As discussed in D3.1 Section 8.5, the idea of producing an automatic system to estimate
what resources are needed to deploy a user application is novel. Hence, there are not
readily available standard datasets that we can leverage to evaluate ADS Ranking. Instead,
for our evaluation we generate new datasets. In effect, a dataset for this task can be
considered to be comprised of six main parts:

- BigDataStack Objects: The definition of application components that we are going to
deploy onto the cluster infrastructure. Each BigDataStack Object describes a service
within a user’s application and is typically either of type DeploymentConfig, Job or
Pod.

- Service Level Objectives: These are the quality of service factors that the user cares
about in terms of hard requirements and softer preferences for a particular
BigDataStack Object. These are needed as input to the evaluation function to
estimate suitability of a deployment.

- Workload: The workload for an application represents the amount of work that the
application needs to do. For a real-time streaming application, this might represent
the stream of records or requests that need to be processed. Meanwhile for batch
operations, this would be the statistics of the dataset or database that needs to be
processed or queried.

- Resource Templates: For a BigDataStack Object that describes a single service, we
also need a series of resource templates that describe the different ways that we
might deploy that service on the cluster infrastructure in terms of resources (CPU,
GPU, memory, per service).

- Benchmark Performances: As part of the ranking process, ADS Ranking utilizes
predicted performance estimates produced by the Benchmarking (Flexibench)
component of the Application Dimensioning Workbench. In effect, for each
BigDataStack Object and Resource Template pair, Benchmarking provides a series of

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 92 of 116 bigdatastack.eu

indicators (features) about how well the service is expected to perform if deployed
using the resources described within the specified Resource Template.

- Ground-truth Performances: To evaluate to what extent each Resource Template is,
in fact suitable for a BigDataStack Object and set of Service Level Objectives, we
need to have ground truth information about how the service actually performs on
the cluster infrastructure when deployed. Note that this is different to what the
Benchmark Performances provide, as those are only (predictive) estimates and are
subject to error.

To evaluate ADS Ranking, we report performance using two datasets, each representing a
different type of application (streaming vs. batch processing) as summarized in the following
two sections.

8.6.2. Dataset 1: Real-time Data Server (Streaming)
The first dataset that we develop to evaluate the quality of ADS Ranking targets the scenario
of a real-time service that responds to user traffic (e.g. an insurance recommendation
service). In this type of scenario, we have a stream of request traffic being sent to the
service and we care about the amount of time it takes for the user to receive a response
(referred to as response time or latency), along with the cost of running the service. This is a
very common scenario with services that drive user-facing applications.

Figure 31: Realtime Data Server Architecture

Figure 31 illustrates the overall architecture of the real-time data service that this dataset
models. As can be seen from Figure 31, within this type of system, there is an external
service (e.g. a user’s web browser) that makes an API request to the main data service. This
in turn performs a data lookup into an external database located on another machine. Once
the data has been retrieved, some local processing takes place, before a response is
generated for the user. Within this type of system, there are a range of properties that can
influence the response time that the user experiences, such as latency for the request to the
database, the available bandwidth for data transfer between the service and database, as
well as the complexity of response generation and compute capacity available on the data
service itself. To create this dataset, we implemented a simulation framework that allows us
to produce deployable variants of this system for testing, with different properties. For
example, one variant might require more cpu cycles to produce each response, while
another might involve moving a large record from the database.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 93 of 116 bigdatastack.eu

Table 22 - Realtime Data Server Deployment Ranking Dataset Statistics

Realtime Data Server
Dataset

BigDataStack Objects (Service Variants) 24
Service Level Objectives (Unique Scenarios) 4 (x 3)
Workloads 1
Resource Templates 35
Total Deployments 2,520

In particular, we created 24 variants of the service. Each of these variants have different
processing properties, such as start-up time, per-record processing time, memory usage,
maximum throughput and more. We then defined three quality of service levels, which we
refer to as medium, high and extreme, where each quality of service level specifies the
response time bounds and cost for the application (service level objectives, or slos) that are
acceptable for different classes of user, as follows:

• Medium QoS:

o Requirements: Response Time less than 200ms, Cost less than $1.9/hour

o Preferences: Response Time less than 100ms, Cost less than $0.7/hour

• High QoS:

o Requirements: Response Time less than 150ms, Cost less than $1.9/hour

o Preferences: Response Time less than 70ms, Cost less than $0.7/hour

• Extreme QoS:

o Requirement: Response Time less than 70ms, Cost less than $1.9/hour

o Preference: Response Time less than 50ms, Cost less than $0.7/hour

Next, we generated one BigDataStack Object for each service variant and quality of service
pair, resulting in 72 combinations (24 services x 3 QoS levels). For this dataset, we define a
single stream processing workload (to limit the number of tests needing run), where the
average input rate is 300 requests per second, with a peak input rate of 500 requests per
second. We refer to the combination of a <BigDataStack Object, QoS scenario, Workload>
tuple as an experimental scenario.

For each of the generated BigDataStack Objects, we then submitted them to the ADW
Pattern Generation component deployed on our local testbed, which in turn produced
Resource Templates for each. Based on the underlying available hardware, each
BigDataStack Object has 35 possible Resource Templates to consider, hence 35 possible
deployments are generated per experimental scenario, creating a total of 2,520
deployments (72 scenarios x 35 Resource Templates). At this point, we deployed each of the
2,520 combinations in turn, collecting resource usage and quality of service information.
More precisely, we tracked average and peak CPU and memory usage, along with average
and peak response time. In this way, we collected our ground truth performances. There
was no competing for resources during these tests and so performances should be
comparable between scenarios.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 94 of 116 bigdatastack.eu

Finally, to generate the benchmark performances that are used as features within ADS-
Ranking, we use a local Benchmarking Simulation service that we developed, which simply
takes the true ground truth performances and generates benchmark performances from
them, with a randomised degree of performance error (+/- 20%) added to represent
imperfect benchmarking. This allows us to evaluate ADS Ranking while avoiding systematic
biases potentially introduced by Flexibench.

8.6.3. Dataset 2: Training a Deep Learning Model (Batch Processing)
The second dataset that we develop represents a second common type of job that is run on
cluster infrastructure, i.e. a job that trains a machine learned model and saves the result to
a datastore. For this type of job, the user typically cares about two main quality of service
indicators (from the deployment perspective), namely: the time to complete the job; and
the cost of training the model. This is because it is common for users to either have a fixed
budget for preparing their models, and/or time constraints for completion (e.g. the new
model must be available by business open on Monday morning). Cost in particular for
training models can be significant with the introduction of new deep learning models that
require expensive GPU infrastructure to run.

Figure 32: Deep Learning Architecture

Figure 32 shows the architecture of a standard deep learning job that this dataset models.
As we can see, initially the dataset being used for training will be transferred to the compute
node that will perform the learning. Next, a data preparation stage will be performed, which
may involve feature generation and/or data sampling. Once the data is ready, that data will
be loaded sequentially in batches into the learning process, where one pass of the data is
known as a training epoc. At the end of a training epoc, the current model effectiveness is
validated against a ground truth and if an exit condition is not yet reached, the next training
epoc will start. Once an exit condition is met, the final model is saved to a datastore. The
key factors that can affect cost and completion time for this type of model are: time to
transfer the dataset from the database, the compute capacity available for data
preparation, the compute available for learning (which may be CPU or GPU bound),

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 95 of 116 bigdatastack.eu

compute available for validation (that can be very expensive for some scenarios like product
recommendation); and time for writing the final model.

Table 23 - Statistics for the Deep Learning Deployment Ranking Dataset

Deep Learning Dataset BigDataStack Objects (Service Variants) 9
Service Level Objectives (Unique Scenarios) 8 (x 2)
Workloads 4
Resource Templates 35
Total Deployments 2,520

As for dataset 1, we construct a simulator framework to generate variants of this type of job
with different properties. In this case, the framework is based on the BetaRecsys framework
that we also developed and is described in more detail in D6.2. In particular, we generate 9
variants of this job, where the primary variables were the properties of the model type
being trained (e.g. Triple2Vec [53] vs. VBCAR [54]) and the volume of training data used. We
then defined two quality of service levels to evaluate the job under, which we refer to as
`slow and cheap’ and `expensive but fast’. In this case, each quality of service level specifies
goals for completion time and cost, either as hard requirements or softer preferences:

Slow and Cheap:

• Requirements:

o Completion Time less than 2.8 hours

o Total Cost less than $5

• Preferences:

o Completion Time less than [1.9, 1.4, 1] hours

o Total Cost less than [$4, $3, $2]

Expensive but Fast:

• Requirements:

o Completion Time less than 1.4 hours

o Total Cost less than $10

• Preferences:

o Completion Time less than [1.11, 1, 0.83] hours

o Total Cost less than [$8, $6, $4]

Note that unlike for dataset 1, we define multiple of the same type of service level objective
(i.e. completion time or cost) for the preferences here. This is to enable distinctions to be
drawn between multiple deployments that all meet the higher-level preferences. To
represent varying datasets that the machine learned models might be trained upon, we

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 96 of 116 bigdatastack.eu

define four workloads, where we vary the number of training samples used per training
epoc and the total number of epocs to use (the training exit condition):

• Workload 1: 1,000,000 samples per epoc, 120 epocs

• Workload 2: 500,000 samples per epoc, 120 epocs

• Workload 3: 1,000,000 samples per epoc, 50 epocs

• Workload 4: 500,000 samples per epoc, 50 epocs

As for dataset 1, we refer to the combination of a <BigDataStack Object, QoS scenario,
Workload> tuple as an experimental scenario. For each variant, we pass the associated
BigDataStack Object to the Pattern Generation component deployed on our testbed, which
produces a similar set of 35 Resource Templates as for dataset 1, with the exception that
each also includes a single RTX Titan graphics card, as all of the variants tested here build a
deep learned model that requires a GPU. The combination of 9 BigDataStack Objects, 2 QoS
scenarios, 4 Workloads and 35 Resource templates results in 2,520 deployments. We
subsequently deployed these on our testbed and recorded the completion time, along with
the average and peak cpu and memory usage, forming our ground truth. As with dataset 1,
we generate benchmark data from this ground truth by adding a randomised degree of
performance error (+/- 20%) to represent imperfect benchmarking.

8.6.4. Metrics
For each of the BigDataStack Objects (representing an application component to deploy),
ADS Ranking will output a ranking of the associated Resource Templates along with scores
for each. However, to determine how effective each of these rankings are, we need a means
to determine the true suitability of each deployment within the rankings. During dataset
creation described above, we have two pieces of information to aid in this task. First, we
have the quality of service requirements and preferences set by the user. Second, our
ground truth performances tell us how well each service performed when given the
resources specified within each Resource Template. Hence, we need a mapping function
that takes these two pieces of information and produces a suitability score, where a higher
score indicates that the user’s requirements and preferences were better met. Hence, we
use a simple scoring function that produces a suitability score between 0 and 3, where 0
indicates that the deployment (object, workload, QoS scenario and resource template) was
unsuitable and 3 indicates that all requirements and preferences were met. Scoring is
performed as follows:

• If either response time or cost exceeds the user requirement, or the deployment
failed (i.e. the container crashed due to a lack of resources) the deployment receives
a score of 0.

• If the user requirements are met, but none of the user preferences are met, the
deployment receives a score of 1.

• If the user requirements are met, and any (but not all) of the user preferences are
met, the deployment receives a score of 2.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 97 of 116 bigdatastack.eu

• If all requirements and preferences are met, then the deployment receives a score of
3.

We use this function to produce a ground truth suitability score/label for each deployment.

Once the deployments have been scored, we need to use these scores to evaluate the
performance of ADS Ranking as a whole. To do so, we use standard ranking metrics from the
information retrieval literature. In particular, we report:

- Success@1: This simply evaluates whether the top-ranked deployment met at least
the requirements specified by the user over all BigDataStack Objects tested.

- Precision@5: This evaluates whether the top ranked deployments were suitable (had
a score equal to or greater than 1) over all BigDataStack Objects tested.

- Mean Average Precision (MAP): Average precision (at a particular rank) is the
proportion of suitable (has a score equal to or greater than 1) deployments down to
that rank. MAP is average precision calculated at the maximum rank (35 in this case)
over the BigDataStack Objects tested. [13]

- NDCG: Discounted Cumulative Gain (DCG) is a measure of the usefulness, or gain, of
an item based on its position in a ranking. Total gain is accumulated starting from the
top of the result list (ranking) and moving downwards to a set rank (the number of
deployments ranked in our case, i.e. 35). Gain of each result is discounted at lower
ranks and can incorporate different (suitability) grades. Hence, unlike the above two
metrics, this metric considers whether the preferences were met in addition to the
requirements. NDCG is DCG normalized across (in our case) different application
deployments to account for some deployments being easier to find suitable patterns
for than others. [9]

8.6.5. Baselines
Using the above dataset and metrics, we can score ADS Ranking in terms of its effectiveness.
However, such a score in isolation can be misleading, as it does not provide us information
about how difficult the task is. Hence, we also need reference baselines to compare against,
providing us context. As this is a new task, there are no standard baselines. Hence, we
propose two new baselines here, representing simple strategies that a human might employ
when selecting a Resource Template:

• RankByCost: This baseline simply ranks each deployment by its cost on the cluster
hardware, where the cheapest deployment is ranked first. In particular, cost is
calculated as the sum of the cost of the requested resources across the services
defined by the BigDataStack Object, where a mapping between resources and a US
dollar cost from a commercial cloud provider (Amazon Web Services EC2) is used.

• MidTierFirst: This second baseline represents a user selecting resources that are in
the middle of the available range, as they don’t know what they need. To represent
this, we manually ordered the available Resource Templates by requested resources,
placing those using mid-tier hardware first, followed by high-tier hardware, and
finally putting the lowest-tier hardware at the bottom of the ranking.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 98 of 116 bigdatastack.eu

8.6.6. Training Procedure
For ADS-Ranking Tier 2, we need to train supervised learning to rank models for each of the
two datasets. This in effect creates one model for resource prediction for use with stream
processing applications, and one model for use with batch learning applications. To train
these models, within each dataset we split the BigDataStack Objects (application
components to test) into 5 separate folds. Following a standard cross-fold validation
procedure, we then train a model using 4 folds (with 3 folds being used for training and 1
fold used for validation) and 1 fold used for testing. This process is repeated for all 5 fold
configurations and performance averaged across the folds.

8.6.7. ADS Ranking Performance Results
In this section we report the performance of the ADS Ranking component when using both
the heuristic ranking model (tier 1) and the supervised learning to rank model (tier 2)
against the baselines summarized above for each of our two datasets (representing
resource prediction scenarios for two different application types). Table 33 reports
deployment ranking performance for the Real-time Data Server dataset, while Table 34
similarly reports performance under the Deep Learning dataset. For both datasets we report
Success@1, Precision@5, MAP and NDCG metrics. * indicates a statistically significant
increase/decrease in performance over the MidTierFirst baseline (paired t-test, p<0.05). A
bold highlight indicates an increase in performance over the baselines.

Starting with the Real-time Data Server dataset in Table 33, we first observe that ADS-
Ranking with the heuristic model is significantly better at recommending deployment
configurations than the baselines tested (e.g. 0.5582 vs. 0.2793 NDCG). Moreover, the
increase in performance is larger under Precision@5 and MAP (that only consider the user
requirements) than under NDCG (which factors in requirements and preferences), indicating
that ADS Ranking is much better at meeting at least the minimal user requirements for this
application type. Second, comparing the performance of the learning-to-rank approach, we
see a further increase in performance (0.5925 vs. 0.5582 NDCG), indicating that the
learning-to-rank approach is more effective. On the other hand, current average
performance of ADS Ranking appears to be around 0.6, which may indicate that there is still
significant scope to improve ranking performance. However, upon further investigation of
per-deployment performance, we observed that much of the loss in the reported
performances was due to 0-scored experimental scenarios under metrics that score to
maximum depth (e.g. MAP and NDCG). A 0-score here means that no valid deployment
existed in the Resource Template set, i.e. this is either a failure on the part of Pattern
Generation (i.e. it did not produce good Resource Templates), or the quality of service level
was impossible to achieve. For this case, it is the latter, where the extreme QoS level could
not be met in some cases (i.e. no deployment could successfully meet both the cost per
hour and response time requirements).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 99 of 116 bigdatastack.eu

Table 24 - Deployment Ranking Performance on the Real-time Data Server dataset

Considering our second application type, i.e. a deep learning job, we see from Table 34 a
slightly different picture. First, the performance of both the baselines (RankByCost and
MidTierFirst) are both much more effective ranking strategies here, as demonstrated by
performances in the mid-0.60’s). This result tells us something about the dataset itself, i.e.
that ranking is ‘easier’ than for the Real-time Data Server dataset. This is primarily because
there are a larger number of deployments that meet the requirements and preferences
specified in the QoS levels, meaning that it is much easier to produce a good ranking by
chance. Second, comparing the performance of ADS-Ranking against the baselines, as with
the Real-time Data Server dataset, we observe that ADS-Ranking using the learning-to-rank
model is more effective (by a statistically significant margin, except under Success@1) than
the baselines tested, although the degree of improvement is smaller. We also see that the
heuristic model is not as effective here, resulting in a small but significant decrease in
performance in comparison to the MidTierFirst baseline. This appears to be largely due to
the Heuristic model overly favouring lower cost deployments, which can out-right fail due to
out-of-memory errors in some learning scenarios.

Table 25 - Deployment Ranking Performance on the Deep Learning dataset

To conclude on the performance of ADS-Ranking, we have seen that over the two different
application types (a real-time data server and a deep learning job), the supervised ADS-
Ranking model based on learning-to-rank is effective at recommending deployment
configurations.

Approaches Success@1 Precision@5 MAP NDCG

RankByCost 0.0000 0.0111 0.1407 0.2793

MidTierFirst 0.1111 0.1778 0.2260 0.3532

ADS Ranking Tier 1 (Heuristic) 0.5278 0.5500* 0.5204* 0.5582*

ADS Ranking Tier 2 (List-wise LTR,
LambdaMART)

0.5972* 0.5611* 0.5887* 0.5925*

Approaches Success@1 Precision@5 MAP NDCG

RankByCost 0.6389 0.6556 0.6639 0.6734

MidTierFirst 0.6944 0.6500 0.6607 0.6736

ADS Ranking Tier 1 (Heuristic) 0.6667* 0.6361* 0.6397* 0.6530*

ADS Ranking Tier 2 (List-wise LTR,
LambdaMART)

0.6944 0.6833* 0.6836* 0.6896*

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 100 of 116 bigdatastack.eu

8.7. Summary
In this section we described the changes made to the ADS Ranking and ADS Deploy
components during Y3, along with associated evaluation. In summary, both ADS Ranking
and ADS Deploy were subject to significant updates to factor in the new Realization Engine
component of BigDataStack, as well as better integrate them with that component via
operations (see Section 8.4). Meanwhile, the ADS Ranking component was updated to meet
the final missing requirements, i.e. to add support for supervised ranking via learning to
rank (see Section 8.5). Furthermore, a new dataset was created that represents
deployments for deep learning-type jobs (see Section 8.6.3). Finally, extending the
evaluation that was reported in D3.2, the final version of ADS-Ranking was evaluated across
both datasets, demonstrating that it is able to produce effective rankings of deployments
for the user across two categories of application.

In terms of software requirements, ADS-Ranking and ADS Deploy are complete. ADS-
Ranking is able to ingest information about the user application from the Realization Engine
(REQ-ADSR-01), and also extract features about that application based on predicted
Benchmarking Results (REQ-ADSR-02). Two scoring functions are supported, namely
heuristic scoring (REQ-ADSR-03) that is unsupervised, and supervised learning-to-rank
scoring (REQ-ADSR-04), and these are used to rank deployments for the user (REQ-ADSR-
05). These models can also be used for re-ranking in the same manner as part of an
operation sequence that performs application adaptation (REQ-ADSR-07). The supervised
learning-to-rank model can be trained using metrics exposed by the BigDataStack platform
(REQ-ADSR-06) via the Realization Engine. To support the training of this model, we also
produced two datasets (REQ-ADSR-08). Meanwhile, for ADS-Deploy, it supports deployment
using standardized data formats defined by the Realization Engine for metrics (REQ-ADSD-
01), an application definition (REQ-ADSD-02) and resources (REQ-ADSD-03), which extend
Kubernetes style objects (REQ-ADSD-05). It also supports deployment integration with the
Realization Engine via API (REQ-ADSD-06) that handles deployment scoring (REQ-ADSD-04).

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 101 of 116 bigdatastack.eu

9. Triple Monitoring & QoS Evaluation

Enabling cloud application adaptation, service level objective must be evaluated constantly
according to the desired range value defined by the application owner. The platform adapts
the application if the collected value violated the agreement. The collection of metrics is
performed by scraping each “I” interval of time. For each scrape request, Prometheus
gather many samples (data points). This strategy provides the evaluation tools enough data
points for avoiding the adaptation on outliers.

Figure 33: Evaluation by data points

On the response time of the time series shown on the figure above, we can observe that for
most of the time, the value in less than 150ms. If the threshold is set to 150ms in the
agreement, the QoS evaluator will raise unnecessary violation which will cost in term of
resource since many operations will be take place for readapting (scaling) the application
and cost to the application owner because of the increase of the resource allocated to the
application.

The QoS Evaluator can guarantee the compliance of a SLO for the most part or a given
period or time window. We define “for the most part” as the level of confidence we can
have in the evaluation of the SLO.

There exist different ways in which we can “assess” a group of data points or measurements
to determine whether they comply with the objective “for the most part”. One way is to
aggregate data points in groups of n and determine whether the group as a whole complies
with the objective. Again, there are different aggregation functions we can use: from
quantiles/percentiles to mean (average) and median; we chose the former In other words,
that, metric’s value is lower or higher than the objective for the percentage of
measurements collected in the time window.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 102 of 116 bigdatastack.eu

Figure 34: Evaluation by percentile

• Response time < 900ms for 99% measurements collected in 10min

This percentage can be calculated as the percentile 99th or 0.99 quantile (also known as 99%
quantile), depending on the nomenclature we want to use.

The implementation is the percentile computation is performed in a streaming mode. The
manager starts the computation of the percentile when its receives a “qos” request. This
request contains the name of the queue to reply to, the name of the request and a list
where each element is an object composed by the name of metrics, the percentage, the
name of the application producing the corresponding metric, the interval of time of the time
window. This request has the following format:

{"request":"qos","queue":"qos",
"metrics":[{"application":"tester","metric":"scrape_duration_seconds","interval":10,"percen
tage":90}]}

The manager creates a bucket based on the interval of time specified in the request, then it
computes the percentile taking into account the percentage.

The output has the following format:

{"application": "tester", "metric": "scrape_duration_seconds", "percentile": "0.016867146",
"request": "qos"}.

9.1. Requirements
Requirements did not change from D3.2.

9.2. Design Specifications
The monitoring is collecting metrics from the infrastructure, applications (application
specific metrics) and data (data transaction). Achieving this collection requires an
extendable/scalable monitoring engine. BigDataStack infrastructure is based on OpenShift

Time window

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 103 of 116 bigdatastack.eu

which has its own monitoring system, gathering information related to the nodes, pods and
services etc. BigDataStack components are deployed by namespace which provides the
flexibility of grouping metrics by component since they can be collected by namespace. The
monitoring engine exploits service discovery provided by Prometheus to detect all
Prometheus exporter (endpoint exposing metrics in Prometheus format). Some components
of BigDataStack such as the CEP engine and the realization engine have internal Prometheus
instances. The monitoring engine disposes of technique to extend its collection capability by
adding these Prometheus instances. This functionality is provided through the operator and
the capability of Thanos components.

Figure 35: Architecture of the Triple Monitoring Engine

The above picture shows the latest architecture of the TME. For each Prometheus instance
we assign a sidecar (Thanos component) which will be connected to the querier. The
Querier implement all Prometheus HTTP API. Metrics collected by different Prometheus
instances in the platform can be accessed in a single point. The Ingestor requests metrics to
the Querier then, publish them to the queue specified in the subscription object. The
interval of time by which metrics are published can be altered in the subscription object. To
allow the collection of metrics from application that don’t have the ability to embed a
Prometheus exporter (based on architecture constraint). The triple monitoring engine is
receiving their metrics through the Universal exporter collected to RabbitMQ. These
applications can publish their metrics over HTTP to an endpoint available through Logstash.
Logstash by its capability of handling huge data flux, publishes these metrics to the queue
listened by the Universal exporter.
Through the Realization engine which creates the OpenShift object (application pods),
applications (use case applications) running on BigDataStack receives the “application ID”

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 104 of 116 bigdatastack.eu

which is the unique identification of the application on BigDataStack and the “object ID”
which is the name of the component. Those elements are passed to the application as
environmental variable and assigned to each metric. The Triple monitoring engine combines
the application id and the object ID to create a unique BigDataStack application identifier
which is present in the QoS start request as application field. The manager can create the
correct subscription object which will enable the Ingestor to filter the correct metric.

9.2.1. TME Scaling and Long-Term Persistence
The current architecture uses Minio as metric storage for long term retention. Each
Prometheus instance connected to the monitoring engine is configured such way to retain
metrics for 2 hours. TSDB blocks are moved from each Prometheus instance (volume
assigned) to Minio. For storage optimization, samples are compressed (aggregated) then
stored to Minio. This operation is performed as routine by the Compactor (Thanos
component).

9.3. Experimentation Outcomes
Like in D3.2 “no individual or specific experiments are conducted for this component; the
Triple Monitoring engine and QoS Evaluation (QoSE) play a supportive role to the
components bringing the intelligence to the DDIM capability: the ADS Ranking & Deploy and
the Dynamic Orchestrator (DO).” Therefore, for experiments where the TME & QoSE
participate are engaged please refer to Sections 7 and 8.

Figure 36: Example of configuration of TME & QoS Evaluation for experimental setting 5 for scenario 4.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 105 of 116 bigdatastack.eu

For example, Figure 36 shows an example of configuration of the TME & QoS Evaluation for
the experimentation of real-time product recommendation analytics cost-readiness
(scenario 4). In this scenario, the traffic of users’ behavioural events at the EROSKI’s
ecommerce webpage towards the Feedback Collector service rises dramatically, which
poses a challenge to the Dynamic Orchestrator, that is trading off between the response
time (i.e. data freshness or time to value) of the real-time analytics process and the
infrastructure resources cost.

9.4. Implementation and Integration Highlights

Figure 37 shows the main interactions in the context of the TME & QoS Evaluation
component. There is a close collaboration based on asynchronous message passing among
the main subcomponents of that component: QoS Evaluator, RabbitMQ (message queue),
Manager and Prometheus-based monitoring system.

Figure 37: Triple Monitoring Engine & QoS Evaluation integrations.

Within BigDataStack, the Dynamic Orchestrator (DO) is the only consumer of the TME & QoS
Evaluation service. This ensures low coupling in the architecture as well as high cohesion.
This collaboration ensures that the DO gets notifications of violations of the QoS with
respect to certain levels of QoS, and a specific confidence level (e.g. 95%, 99%, 99.99%, etc.
See D2.3 for a full description of the QoS Evaluation Confidence Levels feature).

9.5. Conclusions
The design of this component, with clear distinction and assignment of responsibilities
between the monitoring system (e.g. TME) and the QoS evaluation system, has provided the
necessary flexibility to serve the specific needs of the Dynamic Orchestrator. In particular,
the requirements for the management of multiple levels of QoS as well as confidence levels,
posed a challenge that was analysed and designed in Y2, and implemented and tested in Y3.

Furthermore, more of Y3 was dedicated to the testing and evaluation of the component in
real-world conditions. This pinpointed lacks the Y2 designs that needed to be solver in order
to provide the solution with high scalability and availability. This results in the integration
with Thanos12, and the open source and highly available Prometheus setup with long term
storage capabilities. This has allowed us to go one step further (beyond Prometheus) in the

12 https://thanos.io/

https://thanos.io/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 106 of 116 bigdatastack.eu

integration within the cloud-native foundation ecosystem. Furthermore, we plan to submit
this component as a CNCF sandbox13 project in the upcoming months.

13 https://www.cncf.io/sandbox-projects/

https://www.cncf.io/sandbox-projects/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 107 of 116 bigdatastack.eu

10. Information-Driven Networking
The development focus and enhancements compared with Y2 technical activities are that
the respective networking mechanisms (i.e. Kuryr integrated into the OpenShift enabling to
avoid the double encapsulation problem due to using two (2) different overlays, namely
OpenStack SDN and OpenShift SDN on top, as well as Istio service mesh with sidecar
injection enabled) were fully integrated, parameterized and validated in order to serve the
application requirements derived by the demonstrators. Specifically, in Y3, we have focused
in:

i. Deployment and configuration of Istio service mesh with sidecar injection enabled
at the BigDataStack Testbed;

ii. Deployment and configuration of the telemetry application of Kiali Dashboard to
monitor and visualize the structure of the BigDataStack service mesh and display its
topology;

iii. Set up and configuration of interactions with the Triple Monitoring and QoS
Evaluation (i.e. which works along with the Prometheus monitoring system) in order
to analyse the enforcement of network policies and prioritization schemes (i.e.
response time, requests per second, etc.) based on defined metrics;

iv. Description of the deployed microservices by means of network rules configuration
(i.e. YAML files) that realize the BigDataStack applications and the interactions
between them;

v. Implementation, network policies enforcement and experimentation over a
pluggable layer enabling traffic prioritization through weighted load balancing,
access control and rate limit across diverse protocols and runtimes.

10.1. Requirements
Requirements did not change from D3.2.

10.2. Design Specifications
Through the Information-Driven Networking component the Data Scientist declares her
intend to be realized by the underlying system to translate either the data flows or the
application requirements into specific networking primitives that achieve the desired
Service-Level Objective (SLO). This objective may refer to efficiently handling various kinds
of traffic – streams, batches and micro batches – get the isolation/priority of availability and
bandwidth that are needed to serve the application. With the convergence of all data and
services in the same network mesh, the Information-Driven Networking manages traffic
according to the network utilisation, the applications requirements and the communication
latency without compromising the functionality of the services. Using policy statements,
either the Network Administrators or the Data Scientists can specify which kinds of service /
pod need to be given weighted load priorities, at what times and on what part of their
communication protocol (TCP, HTTP, etc.). By deploying and configuring Istio service mesh
at the BigDataStack testbed all the data metrics are collated by Mixer and stored in
Prometheus. Kiali uses the data stored in Prometheus to show the service mesh topology,
metrics, traffic information and more. A common set up which concretises the data flow
events and the respective logical design is presented as follows.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 108 of 116 bigdatastack.eu

Figure 38: Proxy Pod prioritizes Weighted Load Traffic to the Producer App

In more details, the Proxy Pod based on Istio rules acts as a gateway which receives external
traffic. The Proxy Pod through Istio service mesh sidecar splits the requests/traffic based on
the application requirements. In Figure 38, the event of “product recommendation
rejections” gets more priority compared to the events related with other user interactions
to the application, because the former contributes in the re-training/re-calculation of the
ML model delivering products recommendations to the end users (i.e. improve the accuracy
of the model).

The deployed microservices / pods and their interaction are described in YAML files. In order
to enable Istio service mesh for pods at OpenShift Platform, we add "sidecar.istio.io/inject:
"true" in the YAML file. The other fields remain the same as in the default OpenShift
deployment. The necessary commands are presented as follows:

oc apply -n istioapp proxy.yaml

oc apply -n istioapp producer.yaml

oc apply -n istioapp feedbackcollector.yaml

The commands below contain the Destination Rule (app subsets) and the Virtual Services
(weight and routes) that define the mesh network policies in Istio:

oc apply -n istioapp destination_rule.yaml

oc apply -n istioapp routing_subset.yaml

In the following, we present an example of initializing the Proxy Pod at the BigDataStack
testbed.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: feedbackcollector-proxy
spec:
 hosts:
 - "*"
 gateways:
 - feedbackcollector-gateway
 http:
 - match:
 - uri:
 exact: /feedbacks
 route:

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 109 of 116 bigdatastack.eu

 - destination:
 host: proxy
 port:
 number: 8083

Figure 39: Initialization of the Proxy Pod which splits the events

In addition to this, to address the challenges of a specific application, its requirements and
the respective policies enforcement, a set of mechanisms operating at the services layer
have been deployed. At the same time, to realize the appropriate attributes in order to
weight the traffic towards concrete microservices / pods, we give priority to events of
interest based on their type. This functionality implements the policy enforcement endpoint
inside the pod as sidecar container in the same network namespace. This approach is highly
flexible and HTTP aware and facilitates to apply policies in the support of operational goals,
such as service routing, prioritization schemes over data flows, retries, circuit-breaking, etc.

The Information-Driven Networking mechanisms also operate at the application layer. The
latter gives the advantage of being universal. Our focus is to address the challenges arising
from the diverse data types (i.e., stream, micro-batch, batch) to enforce policies to DNS,
storage services (i.e., scalable storage of LeanXscale, Object Store, etc.), real-time streaming,
ML model incremental training/update and a plethora of other services that do not use
HTTP. The workloads in the BigDataStack environment can communicate without IP
encapsulation or network address translation for bare metal performance, which enables
easier troubleshooting, and better interoperability. In settings that require an overlay, the
Information-Driven Networking mechanisms also support tunnelling. This approach is
universal, highly efficient, and isolated from the pods and facilitates to apply policies also
related with data privacy goals. In the following, we present the main service / networking
configuration of controlling communications to HTTP GET/POST requests by giving an
indicative network policy definition which prioritizes events accordingly.

On poll producer service handles weighted traffic (i.e. with 90-10 priority).

On feedbacks events are being prioritized towards the defined subsets / destinations.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: producer
spec:
 hosts:
 - producer
 - proxy
 - feedback-collector
 http:
 - match:
 - uri:
 exact: "/poll"
 route:
 - destination:
 host: producer
 subset: v1
 weight: 90
 - destination:
 host: producer
 subset: v2

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 110 of 116 bigdatastack.eu

 weight: 10
 - match:
 - uri:
 exact: "/feedbacks/PRODUCT_RECOMMENDATION_REMOVED"
 route:
 - destination:
 host: producer
 port:
 number: 8083
 subset: v1
 - match:
 - uri:
 exact: "/feedbacks/PRODUCT_VISUALIZED"
 route:
 - destination:
 host: producer
 port:
 number: 8083
 subset: v2
 - match:
 - uri:
 exact: "/feedbacks/PRODUCT_ADDED_TO_BASKET "
 route:
 - destination:
 host: producer
 port:
 number: 8083
 subset: v2
 - match:
 - uri:
 exact: "/feedbacks/PRODUCT_REMOVED_FROM_BASKET"
 route:
 - destination:
 host: producer
 port:
 number: 8083
 subset: v2

Figure 40: An indicative network policy definition for controlling HTTP GET/POST requests

10.3. Experimentation Outcomes
The Data Scientist uses the Information-Driven Networking (IDN) tool to define metadata
and means of service mesh communication in order to apply tailored controls to data
intensive operations (e.g. data streams requiring concrete prioritization schemes or
weighted load balancing) and applications related with data intensive tasks (e.g. prioritizing
user-generated data to facilitate an ML model update/recalculation based on events of
special focus) according to specific requirements, by also considering:

• The identification of the end-to-end application objectives in terms of specifying KPIs
and criteria for optimal networking management and engineering (i.e. response
time, requests per second, throughput, jitter);

• The definition of the constraints arising from the type of data to be processed
(prioritization of specific events, liveness, readiness among services) and the
requirements of the application (time criticality, accuracy improvement of ML
model, security, privacy);

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 111 of 116 bigdatastack.eu

• The validation of the applied network controls through the assessment of the
corresponding metrics exposed by Prometheus used by the Triple Monitoring and
QoS Evaluation. The validation step is required in order to evaluate that the policies
have been correctly enforced and that resources are distributed among consumer or
producer services/applications, as requested.

Figure 41: Mapping of Information-Driven Networking tool with BDS Use Cases

The IDN plays a supportive role to the components bringing the intelligence to the Data-
Driven infrastructure Management: the ADS Ranking & Deploy and the Dynamic
Orchestrator (DO). It also interacts with the Triple Monitoring and QoS Evaluation to collect
metrics w.r.t. response time, requests/traffic rate per second, request volume, request
duration, etc., which are relevant to the application requirements. The experimental
settings of the Information-Driven Networking are broken into 3 steps, as follows:

i. Flow of Requests, which includes the Initialization of the respective services at the
Istio/Kiali contexts. The Proxy Pod receives data from external sources based on the
defined rules and splits the traffic in other serving pods (i.e. producer subset).
Finally, feedback collector makes an HTTP GET request at the producer which
responds based on the defines traffic (e.g. v1 = 90% and v2 = 10%).

ii. The decomposition of the respective services within the Istio service mesh, as

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 112 of 116 bigdatastack.eu

presented in the below figures. Kiali communicates with Prometheus and gets
metrics (i.e. % weighted requests) about how producer service interacts with input
(left side) / output (right side) requests.

iii. The Visualization of the results in Kiali including response time (figure on the left
hand side) and request per second (figure on the right hand side) for the
incremental ML model updates.

iv.

The producer log records according to the prioritized events are split between EVENTS of
TYPE A (i.e. PRODUCT_RECOMMENDATION_REMOVED) and EVENTS of TYPE B (i.e. the rest
of customer events), as depicted in the following.

Figure 42: Producer logs according to the event type

Kiali Dashboard visualizes mesh network health between the interacting services where the
producer routes the weighted loads (v1 vs. v2) to the feedback collector. It is shown that in
some cases (i.e. 92.9%) the requests reach their destination while in some extreme cases
(i.e. 7.1%) the Proxy Pod faces some requests loss.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 113 of 116 bigdatastack.eu

Figure 43: Service Mesh Health Check through Kiali

The Prometheus graph depicted in the following presents the total requests for the
producer (i.e. the case of this destination app) where the prioritized data flow is greater (i.e.
v1) than the common data flow (i.e. v2).

Figure 44: Total requests collected by Prometheus

10.4. Implementation and Integration Highlights
The Information-Driven Networking component combines the OpenShift Network Policies14,
services and routes to handle Ingress or Egress traffic in the cloud infrastructure at the
Network, Transport and Application Level with the Istio15 open source service mesh that

14 https://docs.openshift.com/container-platform/4.1/networking/configuring-networkpolicy.html
15 https://istio.io

https://istio.io/

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 114 of 116 bigdatastack.eu

transparently layers the services / pods. The service mesh is used to describe the network of
containerized microservices / pods that interact in the BigDataStack Testbed. As the service
mesh grows in size and complexity, it achieves efficiency in service discovery, load
balancing, failure recovery, metrics, and monitoring. In more details, we implemented 3
spring boot applications in the support of the respective services: proxy, producer, and
feedback collector. In the frame of interactions of IDN with the Triple Monitoring & QoS, the
metrics are stored in Prometheus, while Kiali uses these metrics to show the service mesh
topology, metrics, traffic information and more.

In this direction, we deploy special sidecar proxies throughout the BigDataStack
environment which intercept all network communication between microservices. The key
capabilities include the efficient traffic management, incorporating the rules configuration
and traffic routing, which controls the traffic flows and API calls between services / pods.

10.5. Conclusions
Overall, the design and implementation of this component required the deployment and
configuration of the Istio service mesh, Kiali Dashboard and Prometheus Dashboard coupled
with service mesh observability functionalities. Specifically, Istio enabled to create a mesh
network over the BigDataStack pods for better traceability and monitoring of the deployed
services with weighted load balancing and service-to-service interaction capabilities.

At the same time, Kiali facilitated to monitor traffic flows produced by the services of the
mesh, visualise how they are connected as well as operations, updates, prioritized processes
by means of network policies which can be enforced. In the context of BigDataStack project
we worked towards the definition and set up of some complex scenarios focusing on
weighted load balancing which resulted in traffic prioritization and therefore featuring data
flows distribution controls over the Testbed. In this way, we manage to prioritize traffic to
the workload instances which better serve the application requirements and are met by
improving / updating the accuracy of the ML model. Finally, this ML model is part of the
front-end application which calculates the recommendations delivered to the customers /
end users.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 115 of 116 bigdatastack.eu

11. References
[1] Network Policies in Kubernetes. Available Online:
https://kubernetes.io/docs/concepts/services-networking/network-policies/

[2] Project Calico. Available Online: https://www.projectcalico.org/

[3] Istio. Available Online: https://istio.io/

[4] de Vaulx, Frederic J., Eric D. Simmon, and Robert B. Bohn (2018). “Cloud computing
service metrics description.” Special Publication (NIST SP)-500-307. 2018.

[5] William Voorsluys, James Broberg, Srikumar Venugopal, Rajkumar Buyya, Martin Gilje
Jaatun, Gansen Zhao, Chunming Rong (2009). “Cost of Virtual Machine Live Migration in
Clouds: A Performance Evaluation”, Cloud Computing, Springer Berlin Heidelberg, 2009, P
254-265

[6] D. Guyon, A. Orgerie, C. Morin and D. Agarwal (2017). “How Much Energy Can Green
HPC Cloud Users Save?” in 25th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), St. Petersburg, 2017, pp. 416-420.

[7] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., & Valduriez, P. (2012).
“Streamcloud: An elastic and scalable data streaming system.” IEEE Transactions on Parallel
and Distributed Systems, pp. 2351-2365.

[8] H. Rui et al. (2014). “Enabling cost-aware and adaptive elasticity of multi-tier cloud
applications.” Future Generation Computer Systems, pp. 82-98.

[9] Kalervo and Jaana. (2002). “Cumulated gain-based evaluation of IR techniques.” ACM
Transactions on Information Systems (TOIS), pp. 422--446.

[10] L. Tie-Yan. (2009). “Learning to rank for information retrieval.” Foundations and Trends
in Information Retrieval, pp. 225-331.

[11] M. Ferdman et al. (2012). “Clearing the clouds: a study of emerging scale-out workloads
on modern hardware.” ACM SIGPLAN Notices, pp. 37-48. ACM.

[12] Raschke, R. (2010). “Process-based view of agility: The value contribution of IT and the
effects on process outcomes.” International Journal of Accounting Information Systems,
11(4), pp. 297-313.

[13] Salton and McGill. (1986). “Introduction to modern information retrieval.” McGraw-Hill,
Inc.

[14] Sergey and Christian. (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” arXiv preprint.

[15] Z. Jia et al. (2013). “Characterizing data analysis workloads in data centers.” IEEE
International Symposium on Workload Characterization (IISWC), pp. 66-76. IEEE.

[38] Mossalam, H., Assael, Y. M., Roijers, D. M., & Whiteson, S. (2016). Multi-objective deep
reinforcement learning. arXiv preprint arXiv:1610.02707.
[39] Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016, November). Resource
management with deep reinforcement learning. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks (pp. 50-56). ACM.

 Project No 779747 (BigDataStack)
 D3.3 – WP 3 Scientific Report and Prototype Description – Y3
 Date: 30.10.2020
 Dissemination Level: PU

 page 116 of 116 bigdatastack.eu

[40] Mao, H., Netravali, R., & Alizadeh, M. (2017, August). Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (pp. 197-210). ACM.
[41] Bu, X., Rao, J., & Xu, C. Z. (2009, June). A reinforcement learning approach to online
web systems auto-configuration. In 2009 29th IEEE International Conference on Distributed
Computing Systems (pp. 2-11). IEEE.
[42] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &
Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[43] Breakout-v0 – Openai gym. https://gym.openai.com/envs/Breakout-v0/

[44] Fadel Argerich, M., Cheng, B., & Fürst, J. (2019). Reinforcement Learning based
Orchestration for Elastic Services. arXiv preprint arXiv:1904.12676.
[45] Norbert Fuhr. 1989. Optimum Polynomial Retrieval Functions Based on the Probability
Ranking Principle. ACM Transactions on Information Systems , Vol. 7, 3 (1989), 183--204.
[46] Fredric C. Gey. 1994. Inferring Probability of Relevance Using the Method of Logistic
Regression. In 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 222--231.
[47] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and
Greg Hullender. 2005. Learning to rank using gradient descent. In 22nd International
Conference on Machine Learning . 89--96.
[48] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. 2018b.
The LambdaLoss Framework for Ranking Metric Optimization. In 27th ACM International
Conference on Information and Knowledge Management. 1313--1322.
[49] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise Approach
to Learning to Rank: Theory and Algorithm. In 25th International Conference on Machine
Learning. 1192--1199.
[50] Olivier Chapelle, Donald Metzler, Ya Zhang, and Pierre Grinspan. 2009. Expected
Reciprocal Rank for Graded Relevance. In 18th ACM Conference on Information and
Knowledge Management. 621--630.
[51] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil and Stephan Wolf. 2019.
Tf-ranking: Scalable tensorflow library for learning-to-rank. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2970—2978.
[52] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An
Overview . Technical Report Technical Report MSR-TR-2010--82. Microsoft Research.
[53] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Representing
and Recommending Shopping Baskets with Complementarity, Compatibility and Loyalty. In
Proceedings of the 27th ACM International Conference on Information and Knowledge
Management. 1133–1142
[54] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2019. Variational
Bayesian Context-aware Representation for Grocery Recommendation. In Workshop on
Context-Aware Recommender Systems.

https://gym.openai.com/envs/Breakout-v0/

	Table of Contents
	List of tables
	List of figures
	Acronyms
	1. Executive Summary
	2. Introduction
	2.1. Relation to other deliverables
	2.2. Relevant aspects unchanged from D3.2 and D3.1
	2.3. Document structure

	3. Solution Architecture
	4. Implementation and Experimentation
	4.1. Experimental Settings
	4.1.1. Setting 5: Real-time Recommendation Model Building
	4.1.2. Setting 6: Batch Recommendation Model Building

	4.2. Implementation
	4.3. Experimental Scenarios
	4.3.1. Scenario 4: Real-time product recommendation analytics cost-readiness
	4.3.2. Scenario 5: Batch product recommendation analytics throughput

	5. Cluster Management
	5.1. Requirements
	5.2. Design Specifications and Implementation Details
	5.2.1. Gateway
	5.2.2. East/West Distributed Load Balancing
	5.2.3. Cluster Management API extensions: Network Policy Support at Kuryr
	5.2.4. Cluster Management API extensions: RWX PVs at OpenShift on OpenStack through Manila support
	5.2.5. Kubernetization of Kuryr-Kubernetes by adapting CRDs model

	5.3. Integration Highlights
	5.4. Experimentation Outcomes
	5.4.1. Distributed OVN Load Balancer performance
	5.4.2. Kuryr tuning for real use cases
	5.4.3. Autoscale experiments through Infrastructure provided APIs

	6. Realization Engine
	6.1. Motivation
	6.2. Requirements
	6.3. Modular Object Design
	6.3.1. (BigDataStack) Application
	6.3.2. (BigDataStack) Object
	6.3.3. (BigDataStack) Operation
	6.3.4. (BigDataStack) Operation Sequences
	6.3.5. (BigDataStack) Events
	6.3.6. (BigDataStack) Metric
	6.3.7. (BigDataStack) Service Level Objective
	6.3.8. (BigDataStack) Resource Template
	6.3.9. (BigDataStack) Application State

	6.4. Updated Playbook Formatting
	6.5. Realization Engine Architecture
	6.6. Containerized Services
	6.6.1. Realization Engine and Application API
	6.6.2. Realization UI
	6.6.3. Cluster Monitoring
	6.6.4. Operation Sequence (Container Service)

	6.7. Generic BigDataStack Operations
	6.7.1. Instantiate
	6.7.2. SetParameters
	6.7.3. GetParameterFromObjectLookup
	6.7.4. Deploy
	6.7.5. ExecuteCMD
	6.7.6. Build
	6.7.7. Delete
	6.7.8. Scale
	6.7.9. Wait
	6.7.10. WaitFor

	6.8. Summary

	7. Dynamic Orchestration
	7.1. Requirements
	7.2. State-of-the-Art: RL for Applications’ Configuration
	7.3. Design Specifications
	7.3.1. Adaptable Distributed Storage and Complex Event Processing Interplay
	7.3.2. CEP Integration with the Infrastructure building block of BigDataStack
	7.3.3. canYouScale method
	7.3.4. infrastructureFinishedScaling method
	7.3.5. infrastructureFinishedScalingDown method
	7.3.6. Interplay with the Realization Engine

	7.4. Implementation and Integration Highlights
	7.5. Experimentation Outcomes
	7.6. Next Steps

	8. ADS Ranking & Deploy
	8.1. Changes Since D3.2
	8.2. Terminology
	8.3. Requirements
	8.4. Design Specifications
	8.4.1. Updated Architecture
	8.4.2. Recommend Resources Operation
	8.4.3. Apply Operation
	8.4.4. Connection with the Realization UI

	8.5. ADS Ranking Tier 2 (Machine Learned Ranking)
	8.5.1. Related Work
	8.5.2. Modelling Deployment Ranking as a Learning Task
	8.5.3. Aggregating Across Service Level Objectives
	8.5.4. Models and Feature Sets

	8.6. Experimentation Outcomes
	8.6.1. Dataset Structure
	8.6.2. Dataset 1: Real-time Data Server (Streaming)
	8.6.3. Dataset 2: Training a Deep Learning Model (Batch Processing)
	8.6.4. Metrics
	8.6.5. Baselines
	8.6.6. Training Procedure
	8.6.7. ADS Ranking Performance Results

	8.7. Summary

	9. Triple Monitoring & QoS Evaluation
	9.1. Requirements
	9.2. Design Specifications
	9.2.1. TME Scaling and Long-Term Persistence

	9.3. Experimentation Outcomes
	9.4. Implementation and Integration Highlights
	9.5. Conclusions

	10. Information-Driven Networking
	10.1. Requirements
	10.2. Design Specifications
	10.3. Experimentation Outcomes
	10.4. Implementation and Integration Highlights
	10.5. Conclusions

	11. References

