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Summary 
This document provides clustering analysis1 of the quantitative data associated with the 
manuscript “Neurothreads: development of supportive carriers for mature dopaminergic 
neuron differentiation and implantation”. The overall conclusion is that clustering to 
biological replicates2 tends to be statistically relevant in experiments involving cell 
differentiation, morphology or in-vivo injections, but not in experiments concerning primarily 
physical or chemical processes such as viability testing after injection. This document 
provides the analysis underpinning this conclusion along with further technical details and 
results.  
 
As a result of this analysis, we generally report error bars and statistical hypothesis testing 
with values per independent biological experiment (“biological replicate”2) for cell 
differentiation, morphology and in-vivo experiments, whereas for experiments with 
anticipated primarily physical or chemical variability, we use directly the “technical 
replicates”2 for both the calculation of error bars and statistical hypothesis testing. This is 
succinctly outlined in the manuscript (statistics section). Quantitatively justified in this 
document, the approach is also in line with literature practice: For dopaminergic cell 
differentiation experiments, the results are typically reported per independent experiment.3,4 
On the contrary, for studies with a focus on cell handling, or the physical or chemical 
environment of cells, the technical replicates are often used directly5–7.    

Introduction 
 
Hierarchical data structure 
 
The manuscript “Neurothreads: development of supportive carriers for mature dopaminergic 
neuron differentiation and implantation” presents both in-vitro and in-vivo data about 
minimally invasively injectable cryogel carriers for neuronal differentiation, culture and 
implantation. Some of this data presents hierarchical structure1, also referred to as clustered1 
data, which is known to pose particular challenges in its statistical analysis1,8. The clustering 
arises here in the form of “biological” and “technical” replicates2. The biological replicates 
here reflect serial execution of distinct experiments, typically at different dates and therefore 
comprise at least some variation due to pipetting, changes in environmental conditions, and 
aliquots. The technical replicates on the other hand represent different wells, gels, image 
acquisitions or assay repetition within the same experiment. Since the technical replicates 
share are larger part of the experimental process, one can generally anticipate the variability 
between the biological replicates to be larger than the variability between technical replicates, 
although as shall become evident in our analysis, this tendency does apply uniformly. 
 
Statistical inference with clustered data 
Statistical inference in the presence of hierarchical data poses well-known problems1,8. 
Diminished variance within the clusters (here, the technical replicates belonging to a given 
biological replicate for a given condition) leads to decreased variability in the overall 
analysis. If no countermeasures are taken, this in turn leads to inflated statistics and incorrect 
inference8. The problem is particularly pronounced in imbalanced designs where the clusters 
are limited to individual conditions1. 
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Given the known hierarchical schemes with biological and technical replicates used to obtain 
some of the data presented here, it is necessary to check on a case-by-case basis whether or 
not this indeed leads to clustered data. Importantly, the mere fact of having used hierarchical 
schemes does not necessarily imply effectively clustered data1. Whether or not this results in 
diminished intra-cluster variability as compared to inter-cluster variability needs to be 
assessed explicitly on a case-per-case basis1. If substantial clustering is found on the basis of 
the analysis of the actual data, the statistical approach needs to be adapted. Averaging over 
the technical replicates prior to statistical testing can be used to resolve the problem in these 
case1; another possibility is the application of a corrective Moulton factor1. 
 

Methods 
 
Intraclass correlation 
 
 
The most commonly used measure to assess presence of statistically relevant clustering (as 
opposed to mere hierarchical experimental design) is the so-called “intraclass correlation”1, 
originally introduced in sibling calculations by R. Fisher9. Conceptually, the intraclass 
describes the balance between variance within and between clusters.1 Strong intraclass 
correlation signifies that the clusters (i.e. biological replicates) are nearly homogeneous and 
should thus be taken as the statistical unit of calculation, while weak intraclass correlation 
signifies that the variability within the clusters is similar to the general variability and that the 
clusters are in fact irrelevant for statistical analysis. In this second case, technical replicates 
can be used instead.  
 
Various approaches have been proposed to calculate intraclass correlations, and their 
suitability depends on the exact requirements1,10–12. We use here the generalized formula1 
based on Fisher’s pioneering work in sibling problems.9  For a collection of sample values zig, 
where i indicates the i-th member of the group g (i.e. cluster), the expression is (see reference 
1, eq. 8.2.5):  
 

 𝜌(𝑧) =
∑ ∑ "#!"$#%"##"$#%!$#g

&"#!"%∙∑ (""("$)%"
 eq. 1 

 
where V(zig) denotes the variance of the sample values regardless of the group structure (i.e. 

𝑉(𝑧*+) =
∑ ∑ "#!"$#%

&
!g

(
), with 𝑛 = ∑ 𝑛+g  the total number of observations. ng designates the 

individual group sizes and 𝑧 is the arithmetic mean of all the observations across all the 
groups.  
 
Eq. 1 materialises the notion of intraclass correlation. In the presence of strong clustering all 
the 𝑧*+ values in a given cluster g are similar, and so all the crossed product terms 
)𝑧*+ − 𝑧+)𝑧-+ − 𝑧+ will be positive and sum up to a substantial contribution to the intraclass 
correlation coefficient 𝜌(𝑧). On the contrary, in the absence of intra-cluster correlation, the 
signs of the )𝑧*+ − 𝑧+ and )𝑧-+ − 𝑧+ are random, and so summing up the crossed terms 
)𝑧*+ − 𝑧+)𝑧-+ − 𝑧+ will mostly lead to cancellation of terms of opposing signs and ultimately 
to a 𝜌(𝑧) close to 0. The denominator in eq. 1 serves to normalize  𝜌(𝑧) to an anticipated 
range of approximately 0 (no intraclass correlation) to 1 (homogeneous clusters). 



 4 

 
 
Moulton factor 
 
Intraclass correlation (clustering) by itself does not directly lead to inflation of the test 
statistics, it generates problems particularly in unbalanced designs where the cluster groups 
do not regularly span the values of the regressors1. The Moulton factor1,8 takes into account 
both intra-class correlation of the observed values yig and regressors xig. Its general expression 
is1: 
 𝑀 = 1 + /&"("%

(
+ 𝑛 − 10 ∙ 𝜌(𝑥) ∙ 𝜌(𝑦) eq. 2 

with an explicitly symmetric contribution of intra-class correlation of both the observed 
values y and the regressor values x. In our case, the experimentally observed values y are 
numerical observations, for example the fraction of viable cells or the number of neurites per 
cell. The regressors x can be binary in the case of t-testing (i.e. 0 for condition A and 1 for 
condition B), unordered factors (i.e. laminin, Matrigel, fibronectin, …, coating) or numerical 
values (i.e. EDC concentrations). The clusters g are the experimental runs and thus represent 
the biological replicates, while the values within the clusters are the technical replicates. A 
Moulton factor of 1 indicates no inflation of test statistics. 
 
The worst-case scenario arises where groups are uniquely associated with given conditions1, 
resulting in 𝜌(𝑥) = 1. In this case, the Moulton factor M assumes its maximum value: 
 
 
 𝑀max = 1 + /&"("%

(
+ 𝑛 − 10 ∙ 𝜌(𝑦) eq. 3 

 
Since we generally perform a series of statistical comparisons on any given dataset, with only 
partially balanced designs, we use the worst-case Moulton factor values given by eq. 3 to 
assess whether we there is overall low intra-class correlation (𝑀max ≤ 1.1) or whether it is 
advisable to aggregate the observed values within the clusters and perform statistics solely on 
averaged per-cluster values. In this latter case, the fundamental unit of the statistical analysis 
becomes the biological replicate rather than the technical replicate.  
 
Analysis of residual error 
 
The clustering analysis explicitly refers to the residual error structure1,13, not the data 
structure by itself. When fitting hierarchical models,2,13 this is automatically taken into 
account. Here, we separate the clustering analysis from actual modelling and testing, and so 
to be accurate, it is necessary to remove the main effect of the conditions. We do so by 
subtracting the mean for the appropriate conditions before performing the clustering analysis. 
 

Results 
 
Main figures 
 
Table 1 below shows the results of the clustering analysis for the main figures. For some 
figures (Fig. 2b, 2c, 6c), the dataset corresponds to a single biological experiment and thus 
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clustering analysis is not applicable by definition. For the remainder of the data, the general 
observation is that where cell differentiation and morphology is important, there is relevant 
clustering as evidenced by at least some Mmax values substantially above one (i.e. Fig. 3, 4 
and 6b). On the contrary, for viability testing after injection (Fig. 5), there is no sign of 
clustering along biological replication. This should not be surprising: while cell passage 
number and exact media composition are an important source of variation regarding the 
aspects of cell morphology and differentiation, the main variability in injection testing is 
expected to arise from exact gel handling, dominating the one arising from the biological gel 
preparation prior to injectability testing.   
 
 
Figure Mmax (eq. 3) Approach 
Fig. 2b, 2c N.A. (unique 

experiment) 
This is a single experiment, no clustering => 
use values directly 

Fig. 3c 1.7 Use aggregated values (1 value per biological 
replicate obtained by averaging of 
corresponding technical replicates). 3e: We 
included cell density as a mechanistically 
interfering covariate into the regression 

Fig. 3d 6.3 
Fig. 3e 1.6 

Fig. 4b SOX2: 3.8 
Ki67: 1.0 
TH: 1.34 
 

Use aggregated values (1 value per biological 
replicate obtained by averaging of 
corresponding technical replicates) 

Fig. 4c SOX2: 1.0 
Ki67: 2.7 
Map2: 1.2 

Fig. 5b 1.0 Negligible clustering, use technical replicate 
values directly 

Fig. 6b Transcripts with 
positive intra-class 
correlation 
(Mmax>1): 
EN1: 1.9 
MAP2: 1.1 
TH: 1.03 

By precaution, since there are individual genes 
with higher Mmax, average corresponding 
technical replicates to single values per 
biological replicate and condition 

Fig. 6c N.A. (unique 
experiment) 

This is a single experiment, no clustering => 
use values directly 

 

Table 1. Results of the clustering analysis for the main figures. Values of Mmax<1.0 truncated 
to Mmax=1.0 (these result from small negative intraclass correlation values as a result of 
random effects with the unbiased expression for intraclass correlation given by eq. 1).  

 
Supplementary figures 
 
Table 2 below shows the results of the clustering analysis for the supplementary figures 
portraying quantitative data. Fig. Fig. S1, S2 and S3 analyse additional readout and data 
similar to the corresponding main Fig. 3 and 5, and their clustering analysis confirms the 
tendencies found for the main figures. Fig. S6-S9 concern experiments for which at least part 
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of the results stem from single experiments. These figures are therefore not amenable to 
aggregation at the level of biological replicates, and additional considerations for clustering 
apply. The quantitative in-vivo data provided in Fig. S10 and S11 reflects low numbers of 
mice and remains preliminary regardless of aggregation.   
 
 
Supplementary 
Figure 

Mmax (eq. 3) Approach 

Fig. S1a 3.2 Use aggregated values (1 value per biological 
replicate obtained by averaging of 
corresponding technical replicates), in 
agreement with main Fig. 3. 

Fig. S1b 3.0 
Fig. S1c 1.14 
Fig. S1d 1.6 
Fig. S2 1.01 Negligible clustering, use technical replicate 

values directly. This is in agreement with main 
Fig. 5. 

Fig. S3 1.08 Negligible clustering, use technical replicate 
values directly. This is in agreement with main 
Fig. 5. 

Fig. S6 N.A. (unique 
experiment) 

This is a single experiment, no clustering => 
use values directly 

Fig. S7 N.A. (unique 
experiment) 

This is a single experiment, no clustering => 
use values directly 

Fig. S8 Unique experiment 
for pH 6 => cannot 
use aggregation to 
biological 
replicates for 
testing.  
Mmax=1.5 

The pH 6 condition was added from a separate, 
unique experiment during the review process. 
Aggregating to biological replicates 
(experiments) would therefore lead to n=1 for 
the pH 6 condition, removing the possibility to 
perform t-tests. However, the actual statistical 
test result is non-significant (see 
Supplementary S8), so potential inflation is 
irrelevant, implementing the Moulton 
correction would indeed only increase the P-
value1. 

Fig. S9 Unique experiment 
for hESC => 
cannot use 
aggregation to 
biological 
replicates for 
testing.  
Neurites per DAPI: 
Mmax=1.0 
Neurite length : 
Mmax=2.1 

Similar case to S8: The hESC data corresponds 
to a separate, unique experiment. Aggregating 
to biological replicates (experiments) would 
therefore lead to n=1 for the hESC, removing 
the possibility to perform t-tests.  
 
With Mmax=2.1, there is substantial clustering, 
and therefore using technical replicates only 
would unduly inflate the test statistics. To 
address the problem, we average the data per 
biological replicates for the Luhmes data. This 
reduces  Mmax to 1. The statistical question 
regarding the hESC then becomes whether or 
not the various hESC values from the one 
experiment performed are significantly 
different from what one would expect for a 
typical Luhmes experiment.      
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Fig. S10-1c 1.5 Use aggregated values: 1 value per mouse 
(=biological replicate) obtained by averaging 
of corresponding histological slices 
(=technical replicates). 

Fig. S10-3 1.85 Use aggregated values: 1 value per mouse 
(=biological replicate) obtained by averaging 
of corresponding histological slices 
(=technical replicates). An additional analysis 
based on individual images is also carried out, 
but necessitates confirmatory studies due to the 
low number of biological replicates with 
possible inflation of inference due to clustering 
(i.e. in Fig. S10-3a, non-significant P=0.13 
with aggregation per mouse, significant 
P=0.022 when using the technical replicates, 
and marginal P=0.077 with Moulton 
correction) 

Fig. S11 (1.0) Use cumulated cell counts for assessment of 
proportions of Ki67+ cells. Limited sample. 

Fig. S14-2 Beta-III tubulin 
positive fraction: 
Mmax=1.0 
Syn1-positive 
among BIII-
positive: 
Mmax=1.0 

Use technical replicates directly; there is 
relatively high inherent variability in the 
limited regions covered by the confocal images 
overshadowing possible biological variation.  

Fig. S14-3 N.A. (unique 
experiment) 

This is a single experiment, no clustering => 
use values directly 

 

Table 2. Results of the clustering analysis for the supplementary figures. Values of Mmax<1.0 
limited to Mmax=1.0 (these result from small negative intraclass correlation values as a result 
of random effects with the unbiased expression for intraclass correlation given by eq. 1). 

 

Discussion and Conclusions 
 
Globally, the clustering analysis described in this document confirms that clustering in 
biological units or biological experimental runs is more important in fundamentally 
biological experiments such as cell differentiation and morphology, and also in-vivo 
experiments. On the contrary, experiments regarding mainly physical processes such as 
viability assessment after injectability testing show little clustering along the biological 
repetitions. We therefore empirically confirm the anticipated main sources of variability. 
 
The statistical problem of data clustering is particularly important with large, unbalanced 
experimental designs, and therefore has been a longstanding subject in social sciences, from 
where the techniques and concepts used here stem1. In experimental biological sciences, it is 
more typically addressed by the choice of “technical” vs. “biological” replicates as the 
primary unit of statistical evaluation2. Here, we use the Moulton factor formalism1 to decide 
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between the two scenarios2 based on the actual data. Reassuringly, the overall conclusion 
drawn corresponds to commonly encountered literature practice3–7: focus on biological 
replicates for experiments involving primarily biological processes such as dopaminergic cell 
differentiation3,4, and direct use of technical replicates for experiments addressing physical 
processes such as cell handling5–7.  
 
Overall, our approach allows to rationally navigate between statistical power and 
conservativeness. Where clustering to biological units is statistically relevant, we use 
aggregation to the biological units in both statistical evaluation and figure display. This 
approach is conservative1, preventing potential inflation of statistical test results due to undue 
data clustering. Where clustering effects are quantitatively negligible, the more numerous 
technical replicates can be used to provide statistical power. Finally, by using clustering 
analysis upstream of actual data analysis, statistical hypothesis testing remains simple and 
transparent.  
 

Replicating the clustering analysis 
 
Software environment 
 
We performed the clustering analysis in R, so if not already installed, the first step would be 
to wownload and install the R statistics program (i.e. from https://cran.r-project.org). In 
addition, two R packages are needed. The first is the CRAN package “readxl”, the second is 
the “moultonTools” library from our public Github software repository. “readxl” can be 
installed via the usual R package installation (Package installer from the R menu or at R the 
command line with an “install.packages” command). The difficulty with readxl is its reliance 
on Perl for reading Excel files, it may be necessary to install Perl as well (various packages 
depending on operating system, see https://www.perl.org).  
 
To install the “moultonTools” package from Github, there are several options. The simplest, 
out-of-the-box approach is to use the “devtools” library to automatically download and install 
from Github. The devtools library itself may already be installed on a given R installation, 
otherwise, it can be downloaded in the usual way (Package manager or R command line). 
With devtools installed, the moultonTools library can be installed in an automated fashion: 
 
library(devtools) 
install_github("tbgitoo/moultonTools") 
 
This should install the public R library moultonTools. As given above, the install_github 
command will install the most recent issue of moultonTools. For reference, to download and 
install the version used to estimate the Moulton factor values in this document, the specific 
Github commit used here can unambiguously be installed via: 
 
install_github("tbgitoo/moultonTools", 
ref="2b6346d7866790743b6d0218be7192df25e2c5a2") 
  
  We have had issues with the “install_github” function itself due to encoding problems, but 
could resolve this by explicitly setting the default encoding in R. On MacOSX, we used the 
system command line (“Terminal”) for this, the command is something of the type “defaults 
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write org.R-project.R force.LANG en_US.UTF-8” depending on the desired default 
encoding. 
 
An alternative is to download the entire source code of the moultonTool package from 
https://github.com/tbgitoo/moultonTools (green “Code” button, download as zip, unzip 
locally) and install it with the R CMD utility from a system command prompt. As for the 
automatic installation with install_github, the specific Github version used here can be 
retrieved by accessing the suitable specific Github commit (at 
https://github.com/tbgitoo/moultonTools/tree/2b6346d7866790743b6d0218be7192df25e2c5a
2).  
  
Scripts and data files 
 
With the moultonTools and readxl library in place, the software environment for the scripts in 
“clustering_analysis_R_scripts.zip” is set. In addition to the general software environment, 
the scripts contained in the “clustering_analysis_R_scripts.zip” archive need access to 
specific data files. The easiest approach is to set the working directory in R (command 
“setwd” or from the menus) to the directory where you download the raw data files from this 
repository (https://doi.org/10.5281/zenodo.4441090). Table 3 lists the data files required for 
the various scripts.  
 
Script Data files 
Clustering analysis for main figures 
Rscript_3c.R Fig_3c.xlsx 
Rscript_3d.R Fig_3d.xlsx 
Rscript_3e.R Fig_3e.xlsx 
Rscript_4b.R Fig_4b.xlsx 
Rscript_4c.R Fig_4c.xlsx 
Rscript_5b.R Fig_5b.xlsx 
Rscript_6b.R Fig_6b.xlsx 
Clustering analysis for supplementary figures 
Rscript_S1a.R Supplementary_Fig_S1.xlsx 
Rscript_S1b.R 
Rscript_S1c.R 
Rscript_S1d.R 
Rscript_S2.R Supplementary_Fig_S2.xlsx 
Rscript_S3.R Supplementary_Fig_S3.xlsx 
Rscript_S8.R Supplementary_Fig_S8.xlsx 
Rscript_S9.R Fig_3c.xlsx, Supplementary_Fig_S9.xlsx 
Rscript_S10_1c.R Supplementary_Fig_S10.xlsx 
Rscript_S10_3a.R Supplementary_Fig_S10.xlsx 
Rscript_S11.R Supplementary_Fig_S11.xlsx 
Rscript_S14_2.R Supplementary_Fig_S14_2_and_3.xlsx 

 

Table 3. Results of the clustering analysis for the supplementary figures. Values of Mmax<1.0 
limited to Mmax=1.0 (these result from small negative intraclass correlation values as a result 
of random effects with the unbiased expression for intraclass correlation given by eq. 1). 
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