Predicting Phenotype from Multi-Scale Genomic
and Environment Data using Neural Networks
and Knowledge Graphs: An Introduction to the

NSF GenoPhenoEnvo Project

Anne E Thessen, Michael Behrisch, Emily J Cain, Remco Chang, Bryan Heidorn,
Pankaj Jaiswal, David LeBauer, Ab Mosca, Monica C Munoz-Torres, Arun Ross,

Tyson Swetnam
vialt
Se v
Oregon State q

Unjversity Visual Analytics Lab @ Tufts

& CYVERSE

A THE UNIVERSITY
. OF ARIZONA.




Acknowledgements

e Translational and Integrative e NSF Ideas Lab
Sciences Lab OSU (tislab.org) e NSF Award 1940330 Harnessing
e Two new members: Ishita Debnath the Data Revolution

(MSU) and Ryan Bartelme (UA)

/\ TERRAPHENOTYPING
\/ REFERENCE PLATFORM




Predicting Phenotype from Genes and Environments

G + E = P only works
in the simplest
systems, if at all
There’s a lot we
don’t know about
how genes are
translated into
phenotypes

How do phenotypes
affect the
ecosystem?
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How can we predict phenotype given an organism’s environmental conditions and
genomic endowment?

State-of-the-art statistical
modeling has led to many
insights, but has been applied
to very controlled systems.
Getting the phenotype is only
part of the answer.

Can we use the predictive
model to reveal hidden
processes? Critical variables?
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Machine Learning for Results and Process

e Pros

o Capable of coping with non-linearity

in biological systems

o Find hidden relationships

“ Prepare and integrate multimodal inputs, including reference data
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GenoPhenoEnvo Project

e Goal: Develop a machine learning framework capable of predicting

phenotypes based on multi-scale data about genes and environments.
o Leverage existing, well-structured, cross-species reference data about genes and phenotypes
o Provide interactive data visualizations for examining and interpreting the “black-box” behavior

of ML models and their results
o Realize a new model for relating phenotypes, genetic endowment, and environmental

characteristics i § Y R P PR

e Just started Oct 1
e NowinYear1 Q2




Training Data vearz

e TERRA-REF wheat

Year 1 e NEON, EOS
e TERRA-REF sorghum e Citizen science phenology

e Heavily controlled and measured

. a Prepare and integrate multimodal inputs, including reference data
environment data
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What is a Knowledge Graph?
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How Can Knowledge Graphs Help?
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How Can Knowledge Graphs Help?
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Compare Phenotypes

Find models and diseases similar to a set of abnormal phenotypes of interest and then
visualize their overlap.
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How Can Knowledge Graphs Help?

e Constrain ML and prioritize results

e Quality control - sanity check
. SO

Integrate heterogeneous data
o Manage terminology monarCh

o Manage scale and granularity INTTITATIVE
e Find new relationships
e Fill in data gaps with inferencing

j
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Training Data - Genomic

List 1: TERRA-REF data for Y1

Gene Information (G)
e  Sorghum whole genome
e  Sorghum genotypes[219]
Phenotype Information (P)
e Emergence Date
e End of Season Biomass
e End of Season Height
e  Flowering Date
Environment Information (E)
e  Soil moisture
Air temperature
PAR (Irradiance)
Wind speed
Humidity
Precipitation and Irrigation
Fertilizer inputs

GWAS results can be combined
with the knowledge graph results to

reduce input variables for ML
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https://paperpile.com/c/WJ59eg/DzYE
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https://paperpile.com/c/WJ59eg/DzYE

Training Data - Environmental

List 1: TERRA-REF data for Y1

Gene Information (G)
° Sorghum whole genome
° Sorghum genotypes[219]
Phenotype Information (P)
° Emergence Date
° End of Season Biomass
° End of Season Height
° Flowering Date
Environment Information (E)
° Soil moisture
Air temperature
PAR (Irradiance)
Wind speed
Humidity
Precipitation and Irrigation
Fertilizer inputs

Data from weather station and gantry
Abstracted to daily average, min, and max

Air temperature

Relative humidity
Precipitation

Wind speed and direction
Growing degree days
Cumulative precipitation



https://paperpile.com/c/WJ59eg/DzYE

Machine Learning - Preliminary

1. Regression Models
2. Simple Neural Networks
3. Deep Neural Networks
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Year 2 - Expanding to Ecosystem

IZ] neon s
Leverage data and resources from ‘

multiple NSF supported programs:
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e Analyze genetic and remote
sensing data from NEON

(Preliminary)
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Extreme Science and Engineering
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Environment Information (E)
° Soil moisture (e.g., SMAP)

Precipitation (Daymet)

Air temperature (Daymet)

PAR (NARR)

Soil Type (USDA)

Temporal Resolution

List 2: Observational & EOS data for Y2

Phenotype Information (P)

Leafing date
Flowering date
Breaking leaf buds (#)
Ripe fruits (#)
Increasing leaf size (Y/N)
Falling leaves (Y/N)
Colored leaves (Y/N)
Flowers or buds (#)
Open flowers (#)
Pollen release (Y/N)
Recent fruit/seed drop
(YIN)

Fruits (#)

NDVI (EOS)



GenoPhenoEnvo Project Information

e Join our Google Group e Anne E Thessen
e Watch our GitHub Repo e annethessen@gmail.com

github.com/genophenoenvo
e Search Twitter hashtag
#GenoPhenoEnvo
e Visit the project web page

Questions?



https://groups.google.com/forum/#!forum/genophenoenvo
https://github.com/genophenoenvo
https://genophenoenvo.github.io/

