Reducing DNN Properties to Enable Falsification
with Adversarial Attacks

This artifact accompanies the paper Reducing DNN Properties to Enable Fulsifi-
cation with Adversarial Attacks. In this artifact, we provide the benchmarks and
scripts for reproducing the results of our study, and we also provide our tool,
DNNF for running falsification methods such as adversarial attacks on DNN
property specifications specified using the DNNP language of DNNV.

While many DNN verification techniques have been introduced in the past
few years to enable the checking of DNN safety properties, these techniques
are often limited in their applicability, due to simplifying assumptions about
DNN structure or to high computational cost. Falsification is a complementary
approach to verification that seeks only to find violations to a safety property.
In the context of DNNs, adversarial attacks can be viewed as falsifiers for DNN
local robustness properties. While these techniques often scale to large real-world
DNNs, they are currently limited in the range of properties they can falsify.

In Reducing DNN Properties to Enable Falsification with Adversarial Attacks, we
introduce an approach for reducing a DNN and an associated safety property --
a correctness problem -- into an equivalid set of correctness problems formulated
with robustness properties which can be processed by existing adversarial attack
techniques. We implement the approach in a tool which we call DNNF, and we
perform a study demonstrating that property reduction yields a cost-effective
approach to find violations of DNN correctness problems.

Install

We recommend using the provided Ubuntu 20.04 VirtualBox VM image with the
artifact pre-installed. Installation instructions are in included in INSTALL.pdf.
Execution

Open a terminal window in the provided virtual machine. The DNNF tool can
then be run as follows:

$ python -m dnnf PROPERTY --network NAME PATH

https://github.com/dlshriver/DNNF
https://dnnv.readthedocs.io/en/tacas21/usage/specifying_properties.html
https://github.com/dlshriver/DNNV/tree/f067a658de08d2bc67f44ce2bc9a67e7206e75a3
https://github.com/dlshriver/DNNF
https://TODO

Where PROPERTY is the path to the property specification, NAME is the name of
the network used in the property specification (typically N), and PATH is the
path to a DNN model in the ONNX format.

To see additional options, run:

$ python -m dnnf -h

Benchmarks

We provide the property and network benchmarks used in our evaluation here.
These benchmarks are already included in the provided VM.

The 4 benchmarks are split into 4 directories, 1 for each benchmark. Each of
these directories has a subdirectory, onnx that contains the networks used in
the benchmark in the ONNX format, another subdirectory, properties, that
contains the properties used in the benchmark in the DNNP format, and a csv
file, properties.csv, that lists the property and network pairs that make up
the benchmark. The csv file has 4 columns. The first column, problem_id,
gives a unique name to each problem in the benchmark. The second column,
property_filename, specifies the property to use. The third and fourth columns,
network_names and network_filenames, specify the name of the network used
in the property specification and the path to the ONNX formatted network
respectively.

Running the Tool

To execute DNNF on a problem in one of the benchmarks, first navigate
to the desired benchmark directory in artifacts (i.e., acas_benchmark,
neurifydave_benchmark, or ghpr_benchmark). Then run DNNF as specified
above. For example, to run DNNF with the Projected Gradient Descent
adversarial attack from cleverhans on an ACAS property and network, run:

$ cd artifacts/acas_benchmark

$ python -m dnnf properties/property_2.py \

> —--network N onnx/N_3_1.onnx \

> --backend cleverhans.ProjectedGradientDescent

Which will produce output similar to:

Falsifying: Forall(x0, (((x0 <= [[0.68 0.5 0.5 0.5 -0.45]]) &
([[0.6 -0.5 -0.5 0.45 -0.5 1] <= x0)) ==> (numpy.argmax(N(x0)) !'= 0)))

dnnf
result: sat
time: 2.6067

Several warnings may be produced by some of DNNF’s dependencies, which can
be safely ignored. The —-q option should suppress most of these warnings.

https://onnx.ai
http://cs.virginia.edu/~dls2fc/dnnf_benchmarks.tar.gz
https://github.com/tensorflow/cleverhans

The available backends for falsification are:

e cleverhans.LBFGS, which also requires setting parameters --set
cleverhans.LBFGS y_target "[[-1.0, 0.0]]"
e cleverhans.BasicIterativeMethod

e cleverhans.FastGradientMethod

e cleverhans.DeepFool, which also requires setting parameters --set
cleverhans.DeepFool nb_candidate 2
¢ cleverhans.ProjectedGradientDescent

e tensorfuzz

If a property uses parameters, then the parameter value can be set using
—--prop.PARAMETER=VALUE, e.g., ——prop.epsilon=1.

The verifiers can be run using DNNV. For example, to run the ERAN deepzono
verifier on the same ACAS property and network as above, run:

$ cd artifacts/acas_benchmark

$ python -m dnnv onnx/N_3_1.onnx properties/property_2.py -—eran

Which should produce output similar to:

Verifying Network:
Input_O

Gemm_0O

ndarray (shape=(50,)))
Relu_0O

Gemm_1

ndarray (shape=(50,)))
Relu_1

Gemm_2

ndarray (shape=(50,)))
Relu_2

Gemm_3

ndarray (shape=(50,)))
Relu_3

Gemm_4

ndarray (shape=(50,)))
Relu_4

Gemm_5

ndarray (shape=(50,)))
Relu_5

Gemm_6

ndarray (shape=(5,)))

Verifying property:

Input([1 5],

: Relu(Gemm_O0)
: Gemm(Relu_O,

: Relu(Gemm_1)
: Gemm(Relu_1,

: Relu(Gemm_2)
: Gemm(Relu_2,

: Relu(Gemm_3)
: Gemm(Relu_3,

: Relu(Gemm_4)
: Gemm(Relu_4,

: Relu(Gemm_5)
: Gemm(Relu_5,

dtype=float32)

: Gemm(Input_O0, ndarray(shape=(50, 5)),

ndarray (shape=(50, 50)),

ndarray (shape=(50, 50)),

ndarray (shape=(50, 50)),

ndarray (shape=(50, 50)),

ndarray (shape=(50, 50)),

ndarray (shape=(5, 50)),

Forall(x0, ((([[0.6 -0.5 -0.5 0.45 -0.5 1] <= x0) &
(x0 <= [[0.68 0.5 0.5 0.5 -0.451]1)) ==> (numpy.argmax(N(x0)) != 0)))

https://github.com/dlshriver/DNNV/tree/f067a658de08d2bc67f44ce2bc9a67e7206e75a3

dnnv.verifiers.eran
result: unknown
time: 2.5711

Different verifiers can be used by replacing --eran with -—-VERIFIER, where
VERIFIER can be one of the following:

e eran
e neurify
e planet

e reluplex

Just like with DNNF, if a property uses parameters, then the value can be set
using —-prop.PARAMETER=VALUE, e.g., ——prop.epsilon=1.

Replicating the Evaluation

To run the full evaluation in our paper (WARNING: this may take several
hundred hours), run:

$ scripts/run_all.sh

This script will sequentially run all falsifiers and verifiers on all benchmarks.
It will save results in the results/ directory, as comma separated values files.
There will be one file for each method and benchmark variant. These files can
be combined into a single csv by running the following in the root directory:

$ python tools/combine_results.py

Which will generate a file called results.csv in the current directory. This
CSV file will have 6 columns: - Artifact specifies the artifact being run, e.g.,
ACAS Xu - Variant specifies a variant of the artifact, e.g., DroNet or MNIST
for GHPR - ProblemId specifies an identifier for the problem being checked -
Method specifies the method used to check the problem - Result specifies the
result of falsification or verification - TotalTime specifies the time to generate a
result

If you have access to a cluster with slurm, execution may be sped up by running
script scripts/run_all_slurm.sh, which will launch slurm jobs rather than
running each technique sequentially.

	Install
	Execution
	Benchmarks
	Running the Tool
	Replicating the Evaluation

