
Installation

For artifact evaluation and study replication, we highly recommend using the
pre-built VirtualBox VM. This VM was built using VirtualBox version 6.1. On
startup, login with the username dnnf and password dnnf.

Basic Usage
Open a terminal window in the provided virtual machine. The DNNF tool can
then be run as follows:

$ python -m dnnf PROPERTY --network NAME PATH

Where PROPERTY is the path to the property specification, NAME is the name of
the network used in the property specification (typically N), and PATH is the
path to a DNN model in the ONNX format.

To see additional options, run:

$ python -m dnnf -h

We provide the property and network benchmarks used in our evaluation here.
These benchmarks are also already included in the provided VM.

To execute DNNF on a problem in one of the benchmarks, first navigate
to the desired benchmark directory in artifacts (i.e., acas_benchmark,
neurifydave_benchmark, or ghpr_benchmark). Then run DNNF as specified
above. For example, to run DNNF with the Projected Gradient Descent
adversarial attack from cleverhans on an ACAS property and network, run the
following from within the artifacts/acas_benchmark directory:

$ cd artifacts/acas_benchmark
$ python -m dnnf properties/property_2.py \
> --network N onnx/N_3_1.onnx \
> --backend cleverhans.ProjectedGradientDescent

Which will produce output similar to:

Falsifying: Forall(x0, (((x0 <= [[0.68 0.5 0.5 0.5 -0.45]])
& ([[0.6 -0.5 -0.5 0.45 -0.5]] <= x0)) ==> (numpy.argmax(N(x0)) != 0)))

1

https://TODO
https://onnx.ai
http://cs.virginia.edu/~dls2fc/dnnf_benchmarks.tar.gz
https://github.com/tensorflow/cleverhans

dnnf
result: sat
time: 2.6067

Several warnings may be produced by some of DNNF’s dependencies, which can
be safely ignored. The -q option should suppress most of these warnings.

The available backends for falsification are:

• cleverhans.LBFGS, which also requires setting parameters --set
cleverhans.LBFGS y_target "[[-1.0, 0.0]]"

• cleverhans.BasicIterativeMethod
• cleverhans.FastGradientMethod
• cleverhans.DeepFool, which also requires setting parameters --set

cleverhans.DeepFool nb_candidate 2
• cleverhans.ProjectedGradientDescent

If a property uses parameters, then the parameter value can be set using
--prop.PARAMETER=VALUE, e.g., --prop.epsilon=1, similar to DNNV.

Troubleshooting
If any of the tools fail to run, these steps may help to fix the issue:

• Ensure the DNNF virtual environment is active. From within
/home/dnnf/DNNF/, run . .env.d/openenv.sh. The shell prompt
should be prefixed with (.venv) to indicate the virtual environment is
active.

2

https://github.com/dlshriver/DNNV

	Basic Usage
	Troubleshooting

