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Abstract.  

Citizen science is a promising field for the creation of human-machine systems with 

increasing computational abilities, as several projects generate large datasets that can 

be used as training materials for machine learning models. This paper aims to identify the 

forms of human-machine learning integration in citizen science projects. The fifty articles 

examined in this systematic review report on projects combining human and machine 

efforts for analyzing, coding, classifying, and clustering data provided, for example, by 

cameras and telescope images. Machine learning is used at various stages of the data 

life cycle, through algorithms that perform tasks like classification, regression, clustering, 

and association. The findings highlight the character of the projects as heteromated 

systems, wherein human participation remains crucial and volunteer and ML efforts are often 

positioned as complementary rather than mutually exclusive. While leveraging the 

complementarity of strengths is one of the main arguments to combine humans and 

machines and enhance their respective capabilities, essentializing the attributes of 

humans and machines should be avoided. Treating these attributes as stable and natural 

does not take into account that cognitive work will be shifting between humans and 
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machines, as the list of research tasks that machines can do is growing, although 

algorithms are still second to humans on recognizing patterns and they have longer 

learning curves. The findings can help researchers and practitioners to better understand 

human-machine integration in citizen science and point to unexplored areas. The 

emerging academic field of collective intelligence, increasingly interested in combining 

human intelligence with AI, can also find the review relevant. 

Keywords: citizen science; collective intelligence; function allocation; heteromation; 

human-machine integration; machine learning. 

Introduction 

Artificial intelligence (AI) has been used in citizen science (CS) for about 20 years 

(Ceccaroni et al. 2019). A subfield of AI, machine learning (ML), in particular, supervised 

learning, has been able to learn input/output relationships from data for years and thus 

solve problems such as classification or regression tasks with high accuracy. The creation 

of more complex human-machine systems with increasing computational abilities opens 

up new ways of collaboration between humans and machines. Citizen science is a 

promising arena for the design and implementation of these systems (Lintott & Reed, 

2013), as several projects have generated large datasets that can be used as training 

materials for ML models. Human-machine integration can help process these massive 

amounts of data more efficiently and accurately, and monitor the results. As ML enters 

the citizen science scene, which activities performed by citizens are potentially more 

automatable? Or, will humans continue to work alongside machines in heteromated 

projects, meaning that they combine capacities of humans and machines (Ekbia and 



 

 3 

Nardi 2017). With this in mind,  this paper aims to identify articles that report on forms of 

human-machine learning integration in citizen science projects. In this section, we briefly 

introduce the notion of human-machine integration and we present the rationale and 

research questions of this paper. In the Literature Search Process section, we elaborate 

on the methodology we used for collecting and assessing the papers under review. In the 

Results and Discussion sections, we present, visualize and reflect on the review findings. 

The last section presents conclusions from this study and points to future directions. 

Conceptualizations of human-machine integration 

Our review focuses on human-machine learning integration. The choice of what term to 

use has been an issue, as we are aware that terms should be chosen carefully and their 

use explained because no single term is appropriate for all contexts. In the articles 

reviewed, we did not encounter closely related terms such as human-machine 

cooperation or collaboration but only the term ‘human-machine integration’ (Trouille, 

Lintott, and Fortson 2019). In Kelling et al. (2013), we found the term human-computer 

learning network in connection with the eBird project. Zevin et al. (2017) discuss the 

development of a socio-computational system leveraging the power of human and 

machine computation in the Gravity Spy project. While several other articles do not 

employ explicit terms, they use specific vocabulary pointing at the joint efforts of humans 

and machines. The most commonly used words include combine and its derivatives (e.g., 

Wright et al. 2017; Coughlin et al. 2019; Keshavan et al. 2019), synergy (Beaumont et al. 

2014), and symbiotic relationship (Wright et al. 2019; Crowston et al. 2020). A summary 

table with the terms found in the literature is in Supplementary File 1. In this paper, we 
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use the term human-machine transformation because, in our reading, it broadly refers to 

humans working alongside machines. 

   

Rationale   

A systematic review of human-machine learning integration in citizen science is timely 

and relevant for at least two reasons. First, a comprehensive background is important for 

taking stock of current knowledge and highlighting the significance of human-machine 

integration in this field. Second, this review can help researchers and practitioners to 

identify gaps in the knowledge of this topic, thus helping them to identify questions or 

formulate hypotheses for future research. Furthermore, a better understanding of human-

machine integration in citizen science could be also relevant for the emerging academic 

field of collective intelligence, which is increasingly interested in combining human 

intelligence with AI (Mulgan 2018).     

Aim of the paper  

The purpose of this paper is, through a systematic review of papers in citizen science, to 

identify projects using machine learning, and critically analyze forms of human-machine 

integration. This review can benefit diverse stakeholders, including citizen science 

designers, researchers, and practitioners, by providing insights into the distribution of 

tasks between humans and algorithms to achieve projects’ stated goals. 

This systematic review aims to produce an in-depth account of reported forms of human-

machine integration in citizen science by collecting evidence about the tasks performed 

and the role played by citizen scientists, experts (e.g., professional researchers), and 
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algorithms. We focused on tasks because function allocation, that is, deciding which tasks 

or jobs should be allocated to humans and which ones to machines is a crucial step in 

the design of human-machine systems (de Winter & Dodou 2014). Therefore, the 

following research question (RQ) was addressed: 

● RQ 1: what tasks citizen scientists, experts, and algorithms performed to achieve 

the goals of citizen science projects, and why? 

Literature Search Process 

This section outlines the search procedure and sampling of relevant articles across three 

databases: SCOPUS, Web of Science, and the ACM Digital Library. These databases 

are well-established, multi-disciplinary research platforms, including a wide variety of 

peer-reviewed journals, and they are being updated regularly. These three databases 

were used they constitute a baseline for search of published peer-reviewed articles. 

However, we are aware that, in the case of citizen science publications, the true extent of 

these publications can be larger as studies can be published in non-peer-reviewed 

literature sources and would not be referred in these three databases. We did not include 

preprints.  

We reviewed the existing literature for articles reporting on examples of human-machine 

integration in citizen science projects. Two search procedures were conducted. First, we 

searched for articles containing “citizen science” and “artificial intelligence”, or “machine 

learning” in the title, abstract, and keyword sections. However, after a brief initial scanning 

of the resulting articles, we added several other search terms to include the most widely 

used machine learning paradigms and methods, such as supervised learning, 

unsupervised learning, reinforcement learning, reinforcement algorithm, deep learning, 
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neural network(s), and transfer learning. The search was limited to articles written in 

English and published until July 2020. A total of 170 results were collected across the 

three databases, 100 of which were unique. The search terms used and the number of 

results per database are presented in Table 1.  

Table 1. Search procedure 1. Databases, search strings. and result count. 
 
Database Search strings Results 

Web of 

science 

TOPIC: ("citizen science" OR "citizen scientist*") AND TOPIC: 

("artificial intelligence" OR "machine learning" OR "supervised 

learning" OR "unsupervised learning"  OR "reinforcement 

learning"  OR "reinforcement algorithm"  OR "deep learning"  

OR "neural network*"  OR "transfer learning") 

Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT 

TYPES: (ARTICLE) 

Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, 

CPCI-S, CPCI-SSH, ESCI. 

83 

SCOPUS ( TITLE-ABS-KEY ( "citizen science"  OR  "citizen scientist*" )  

AND  TITLE-ABS-KEY ( "artificial intelligence"  OR  "machine 

learning"  OR  "supervised learning"  OR  "unsupervised 

learning"  OR  "reinforcement learning"  OR  "reinforcement 

algorithm"  OR  "deep learning"  OR  "neural network*"  OR  

"transfer learning" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  

AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  

86 
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Database Search strings Results 

ACM [[Abstract: "citizen science"] OR [Abstract: "citizen scientist"] 

OR [Abstract: "citizen scientists"]] AND [[Abstract: "artificial 

intelligence"] OR [Abstract: "machine learning"] OR [Abstract: 

"supervised learning"] OR [Abstract: "unsupervised learning"] 

OR [Abstract: "reinforcement learning"] OR [Abstract: 

"reinforcement algorithm"] OR [Abstract: "deep learning"] OR 

[Abstract: "neural network"] OR [Abstract: "neural networks"] 

OR [Abstract: "transfer learning"]] 

 Applied filters: Research article, Journals 

1 

Total   170 

  

The initial examination of the resulting articles revealed that the chosen search strategy 

did not fully cover the articles focused on citizen science games, such as EteRNA or 

Eyewire. This could be because some authors choose to use the game title in the abstract 

rather than refer to it as a “citizen science game”. To overcome this limitation, we used a 

list of citizen science games (Baert 2019) as a source of search terms for the second 

search procedure. Table 2 contains the employed search strings and the number of 

generated results. While we tested searches with all of the game titles, only those that 

generated at least one result were included. The search using the ACM Digital Library did 

not produce any results, thus it was excluded from the table. The search generated 17 
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results, nine of which were unique. Out of the remaining nine articles, five were not 

covered by the first search procedure. 

Table 2. Search procedure 2 (citizen science games). Databases, search strings, and 

result count. 

Database Search strings Results 

Web of 

science 

TOPIC: (Foldit OR Eyewire OR “Project Discovery” OR 

“NeMO-net”) AND TOPIC: ("artificial intelligence" OR 

"machine learning" OR "supervised learning" OR 

"unsupervised learning" OR "reinforcement learning" OR 

"reinforcement algorithm" OR "deep learning" OR "neural 

network*" OR "transfer learning") 

Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT 

TYPES: (ARTICLE) 

Timespan: All years. Indexes: SCI-EXPANDED, SSCI, 

A&HCI, CPCI-S, CPCI-SSH, ESCI. 

10 

SCOPUS (TITLE-ABS-KEY ( Foldit  OR Eyewire OR “Project 

Discovery” OR “NeMO-net” )  AND  TITLE-ABS-KEY ( 

"artificial intelligence"  OR  "machine learning"  OR  

"supervised learning"  OR  "unsupervised learning"  OR  

"reinforcement learning"  OR  "reinforcement algorithm"  OR  

"deep learning"  OR  "neural network*"  OR  "transfer 

7 
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learning" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  ( 

LIMIT-TO ( LANGUAGE ,  "English" ) )  

Total   17 

 

Table 3. Exclusion criteria and number of excluded articles. 

Exclusion criteria Count 

Not related to artificial intelligence 9 

Not related to citizen science 18 

Citizen science data and machine learning procedures are independent of 

each other 

12 

Citizen science data/procedure are simulated 3 

Not empirical studies 7 

Irrelevant topics 6 

Total 55 

  
Since we aimed to focus on empirical evidence from the projects combining citizen 

scientists and machine learning efforts, several selection criteria were applied to filter out 

irrelevant and theoretical articles. Papers were assessed based on their titles, abstracts, 

keywords, and, if necessary, full-text reading. We excluded non-empirical papers as well 
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as articles that do not apply or develop ML methods or do not report citizen science 

projects. We also filtered out those articles that compare the results produced by citizen 

scientists with the outcomes of ML algorithms trained on expert-produced data. Table 3 

presents the exclusion criteria and the number of excluded articles. As a result of the 

selection process, 50 articles were selected for the review (The list of the 50 articles is in 

Supplementary file 2).  

Results 

The results section is divided into three parts. First, we provide a descriptive overview of 

the dataset, including some basic characteristics of the reviewed publications and the 

fields of citizen science projects addressed in them. Second, we present the analysis of 

the 50 reviewed papers in terms of tasks performed by humans, including citizen 

scientists and experts, and machine learning algorithms. Third, we present two major 

approaches to integrating the described tasks into a single workflow within the reviewed 

projects. 

Overview of the dataset 
First, we present a descriptive overview of the dataset. The reviewed articles were 

published between 2011 and 2020, with substantial growth in the number observed 

starting from 2018: 35 out of the 50 articles were published between 2018 and 2020 

(Supplementary file 2 contains the list of the 50 articles). The increasing interest in 

combining machine learning (ML) and citizen science (CS) is also evident from the 

growing diversity of research fields with which the described CS projects are associated. 

The review demonstrated a considerable variety of citizen science projects (n=42) with 



 

 11 

some papers reporting on using data from several projects. The three main areas that 

attract the most attention across the whole timespan are astronomy and astrophysics 

(e.g., Galaxy Zoo, Gravity Spy, and Supernova Hunters), biology (EteRNA, EyeWire, and 

Project Discovery), and ecology and biodiversity (e.g., eBird, Bat Detective). However, 

starting from 2017, we observe a larger variation including archeology (e.g., Heritage 

Quest, and field expeditions), neuroimaging (Braindr.us), seismology (MyShake app), 

and environmental issues (recruiting volunteers to measure the quality of air or water). 

 

Tasks performed by citizen scientists 

The two main categories of tasks performed by citizen scientists are collecting data in the 

field and classifying observations. Other tasks include generating new taxonomies, 

validating the algorithm classification results, solving in-game puzzles, and going through 

training. Supplementary file 3 presents a summary table of the references regarding these 

tasks. Here, we describe these tasks in more detail.  

Collecting data in the field is a set of tasks widely assigned to citizen scientists in the 

areas of ecology, biodiversity, and environmental monitoring. Delegating the collection of 

data to volunteers allows researchers to map geographical distributions and spatial 

variation in unprecedented scope and details, which is especially relevant when 

monitoring by researchers is not feasible or efficient enough. The most common types of 

data contributed by volunteers include photos of plants or animals, accompanied by some 

context information (such as location and date/time of observation), and sometimes by a 

description (e.g., Derville et al. 2018; Capinha 2019). Less common types are videos and 

audio recordings (e.g., Zilli et al. 2014; Hardison et al. 2019). These observations were 
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often accompanied by species classification, as citizen scientists were asked to submit 

observations of a particular species (e.g., Jackson, Gergel, and Martin 2015). 

Alternatively, volunteers submitted observations that they classified with the help of an 

instrument, such as using mobile app suggestions, without attaching a photo, as in the 

eBird app (Curry et al. 2018). Several articles also reported on citizens sending a 

specimen to researchers, e.g., bee trap nests (Kerkow et al. 2020; Everaars et al. 2011).  

Another type is a relatively passive data collection that does not require analysis on the 

part of citizens. Lim et al. (2019) and Adams et al. (2020) reported on projects aimed at 

sampling air quality: volunteers were equipped with AirBeam sensors and asked to 

sample several routes by walking or cycling there. In Winter et al. (2019), an Android app 

was presented that allowed for identifying and classifying charged particles in camera 

image sensors. The only task outsourced to the citizens, in this case, was installing the 

app.  

The second popular set of tasks performed by citizen scientists is related to image 

analysis and includes classifying images into predefined categories, describing objects 

by choosing all relevant categories from a predefined list, as well as identifying and 

counting objects. The research fields setting up citizen science projects to outsource 

these tasks to volunteers include astronomy and astrophysics, ecology and biodiversity, 

archeology, biology, and neuroimaging. The tasks are performed in web interfaces: the 

majority of the projects run on the Zooniverse platform, but there are also separate 

initiatives such as the Braindr.us website (Keshavan, Yeatman, and Rokem 2019) and 

the Project Discovery implemented in the Eve online game (Sullivan et al. 2018). 

Allocating classification tasks to citizen scientists is often related to the extremely large 
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size of currently available datasets that makes expert classification unfeasible. The 

projects leverage human ability for pattern recognition and benefit from the scope of 

citizen science projects. The resulting classifications constitute training datasets for ML 

analysis. Citizen scientists classified objects from images into predefined categories. It 

can be a binary classification task, e.g., citizens decided whether a supernova candidate 

is a real or a ‘bogus’ detection (Wright et al. 2017; Wright et al. 2019). Alternatively, there 

could be a larger number of categories. For example, four studies reported on the Gravity 

Spy project, where users were presented with spectrograms and asked to classify glitches 

into predefined categories according to their morphology (Bahaadini et al. 2018; Crowston 

et al. 2020; Jackson et al. 2020; Zevin et al. 2017). Another task performed by citizen 

scientists was about describing an object in an image using a set of predefined 

characteristics. Examples include describing circumstellar debris disk candidates 

(Nguyen et al. 2018); classification of protein localization patterns in microscopy images 

(Sullivan et al. 2018); and morphological classification of galaxies (Jiménez et al. 2020; 

Kuminski et al. 2014; Shamir, Diamond, and Wallin 2016). Last, the projects benefiting 

from citizen scientists identifying and counting objects asked citizens to identify and locate 

animals of particular species (Bowley et al. 2019; Torney et al. 2019); mark potential 

archeological sites (Lambers et al. 2019), and identify and locate Moon craters (Tar et al. 

2017), and interstellar bubbles on images (Beaumont et al. 2014; Duo and Offner 2017). 

Another task outsourced to citizen scientists is related to generating new taxonomies of 

objects. Coughlin et al. (2019) discussed that Gravity Spy project volunteers did not only 

classify spectrograms into already known classes of glitches but can also suggested new 

classes, being aided by the initial ML clustering of morphologically similar objects. Citizen 
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scientists also performed validation of algorithm classification or object detection results. 

Participants of the Leafsnap project submitted photos of leaves, and if the shape-

matching algorithm did not classify the plant with high enough probability, citizens were 

offered several options to choose from (Kress et al., 2018). A larger-scale validation 

procedure was reported by Lambers et al. (2019). The reported algorithm detected 

potential archeological objects in the remotely sensed data. Then, citizen scientists 

together with heritage managers and/or academic researchers participated in field 

expeditions to validate the ML results.  

A distinct type of citizen science projects are games wherein citizens were asked to solve 

in-game puzzles. In a number of these games, the tasks performed by volunteers differ 

considerably when compared to other projects. Kim et al. (2014) reported on the EyeWire 

game project, where players contributed to mapping 3D structures of retinal neurons by 

coloring the area that belongs to one neuron and avoiding coloring other neurons on a 

2D slice image. Koodli et al. (2019) and Lee et al. (2014) discussed the EteRNA project, 

where players solved two-dimensional puzzles to design sequences that can fold into a 

target RNA structure.  

A standard task required of citizen scientists is going through training, which was 

sometimes done face-to-face if citizens were asked to collect specific types of data in the 

field (Hardison et al. 2019). In other cases, this training occurred mainly online, as citizens 

went through guidelines prepared by project authors (Keshavan et al. 2019). The training 

could also be guided, facilitated, and assessed using ML algorithms (Zevin et al. 2017). 

While we may suggest that all citizen scientists go through some kind of training, not all 

of the reviewed articles included related information. 
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Tasks performed by experts and researchers 

Tasks performed by researchers and field experts are the most varied. They include 

collecting and processing the original data before it is presented to volunteers or 

algorithms, creating the gold-standard datasets, processing and curating the data 

collected or classified by citizen scientists, and preparing the training datasets for ML. 

Several tasks are related to recruiting, training, and supporting volunteers. Finally, 

researchers are involved in the evaluation and validation of results. It is important to note 

that some tasks performed by researchers may not be discussed in papers in detail, since 

they occur naturally in every project, or because they may not be relevant for the 

discussion. Therefore, this section outlines only those tasks that are discussed in 

sufficient detail.  

Several studies on biodiversity reported on researchers collecting observation data of 

species occurrence in the field (Derville et al. 2018; Jackson et al. 2015; Zilli et al. 2014). 

Researchers also obtained pre-classified data from external sources, such as the records 

of ladybirds sourced from the UK Biological Records Centre (Terry et al. 2020). These 

observations together with observational data collected by citizen scientists were further 

used to train and test ML algorithms. In cases when ML methods were used to predict 

species distribution or environmental conditions (e.g., coral bleaching), researchers were 

also responsible for sourcing data related to the characteristics of the environment. 

Examples of such data were mean temperature and precipitation (Capinha 2019; Jackson 

et al. 2015), and geospatial data including roads and types of land usage (Lim et al. 2019). 

Additionally, original data obtained from cameras or sensors were preprocessed by 

researchers to be further presented to citizen scientists. For example, the audio 

recordingsfrom bat observations were split into short sound clips and converted to 
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spectrograms for the Bat Detective project (Mac Aodha et al. 2018), while in the Serengeti 

Wildebeest Count project, images from trap cameras were filtered to remove the empty 

ones and thereby reduce the number of images for citizen scientists to classify (Torney 

et al. 2019).  

One of the tasks traditionally performed by researchers and field experts is creating the 

gold-standard dataset. However, the application of these datasets varied. Expert 

classifications were used to perform the initial training of the algorithm (Crowston et al. 

2020; Jackson et al. 2020), to calibrate and fine-tune the machine learning performance 

(Beaumont et al. 2014; Jiménez et al. 2020), or to provide testing set for ML classification 

methods (Crowston et al. 2020; Tar et al. 2017). Expert-labeled data was also included 

in the guidelines for volunteers (Keshavan et al. 2019), and used to assess the accuracy 

of citizen scientists classifications and give feedback to volunteers (Jackson et al. 2020; 

Zevin et al. 2017), as well as to create the weighting of each citizen scientist’s vote in the 

final label based on how much their labels corresponded to the gold-standard set 

(Keshavan et al. 2019). 

Researchers involved in the development of citizen science projects were responsible for 

recruiting, training, and supporting volunteers. In those projects where volunteers were 

asked to collect data in a specific location (e.g., air quality measurements along certain 

routes, or coral bleaching measures on specific beaches), researchers recruited 

volunteers and performed face-to-face training (Adams et al. 2020; Hardison et al. 2019; 

Kumagai et al. 2017). When citizen participation was not bound to a particular space, 

volunteers received written guidelines (Bowley et al. 2019; Torney et al. 2019; Wright et 

al. 2017). Supporting user motivation and engagement was another task performed by 
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researchers. Examples include ensuring that volunteers were involved in real 

classification tasks that led to the advancement of the project (Crowston et al. 2020). In 

projects that required volunteers to collect observations in the field, researchers followed 

up on citizens’ contributions (Jackson et al. 2015; Kerkow et al. 2020), and provided online 

support and feedback (Lambers et al. 2019). Kim et al. (2014) also reported on integrating 

leaderboard and online chats in the EyeWire project to motivate players to compete and 

communicate with each other. 

The data provided by citizen scientists, be it observations or classifications, was further 

processed and curated by researchers. The observations provided by citizen scientists, 

such as cicada call recordings or ladybird recordings, were classified by field experts to 

be further used by an ML algorithm (Terry et al. 2020; Zilli et al. 2014). Other related tasks 

included processing citizen scientist contributions (e.g., returned bee nests) for future 

analysis (Everaars et al. 2011; Kerkow et al. 2020); deciding on the number of volunteer 

votes required before the final classification label for an image was generated and used 

to train or test ML algorithm (Lambers et al. 2019; Sullivan et al. 2018; Wright et al. 2019; 

Wright et al. 2017); and choosing a limited amount of volunteer-produced data for training 

an algorithm (Koodli et al. 2019). Preparing the training dataset for machine learning also 

included such tasks as generating pseudo-absences when the information provided by 

volunteers only indicates presences observed (Jackson et al. 2015); generating synthetic 

observations of bubbles in dust emission to improve ML classification (Dou and Offner 

2017); or augmenting the training dataset by transforming existing images to increase the 

accuracy of ML classification (Dou and Offner 2017). 
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Researchers were also involved in the evaluation of results, while the actual tasks 

depended on the goals of the studies. Researchers evaluated the predictive accuracy of 

species distribution models using other occurrence datasets (Botella et al. 2018; Kerkow 

et al. 2020). Bowley et al. (2019) reported on comparing the results of ML training using 

citizen science data and using expert classifications. A low error level demonstrated the 

viability of engaging citizen scientists to produce training data for ML. Several articles 

reported on comparing the performance of different ML and statistical models to predict 

species distribution (Curry et al. 2018; Jackson et al. 2015). Lee et al. (2014) discussed 

that EteRNA volunteer players outperformed previous algorithms in discovering RNA 

design rules. Furthermore, the results of ML classifications were compared with manual 

classifications done by field experts (Nguyen et al. 2018; Pearse et al. 2018; Wright et al. 

2017). A similar approach was reported on by Kress et al. (2018) in relation to the 

Leafsnap app. However, since Leafsnap participants needed to confirm the classification 

suggestions of an algorithm, the validation of accuracy referred to the results from both 

citizen scientists and ML. Unique were the validation procedures reported by Lambers et 

al. (2019), as experts together with citizen scientists validated the new potential 

archaeological objects identified using ML by going into the field. 

Tasks performed by machine learning algorithms 

Tasks assigned to algorithms can be subdivided into several categories, such as 

classification and object detection; clustering; improving the performance by learning from 

citizen science feedback; modeling species distribution, predicting the environmental 

conditions (e.g., air quality, or variations in the data); addressing biases in the original 
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data or in CS classification and detection results; guiding citizen science training; and 

finally learning from player moves in a citizen science game. 

Classification and object detection are the most popular tasks performed by ML 

algorithms in a variety of projects in the fields of ecology and biodiversity, astronomy and 

astrophysics, etc. Examples include an algorithm trained on citizen science and expert 

labels and used to classify galaxy images (Jiménez et al. 2020), or an algorithm trained 

on Serengeti Wildebeest Count project data used for counting wildlife in aerial survey 

images (Torney et al. 2019). It is argued that with the limited number of citizen scientists 

and increasingly large databases of images, ML offers an approach to scale up data 

processing, overcome the analysis ‘bottleneck’ problem, and also relieve some burden 

from researchers and citizen scientists who would only have to classify enough images 

for ML training and not the whole dataset (Torney et al. 2019; Wright et al. 2017).  

Clustering is another task performed by ML (Coughlin et al. 2019; Wright et al. 2019). 

Coughlin et al. (2019) reported on the algorithm facilitating the discovery of new glitches 

by citizen scientists in the Gravity Spy project. Due to the sheer volume of available 

images, it is extremely difficult for volunteers to identify new classes by finding a sufficient 

number of similar objects that do not belong to any of the known classes. Thus, an ML 

algorithm clustered similar images together and offered this set to volunteers to make 

their judgment. Wright et al. (2019) reported on using ML clustering to produce an initial 

grouping of similar images. Grouped images were shown to citizen scientists in the 

Supernova Hunters project, who had to mark all of the objects belonging to one glitch 

class. Then, citizen scientists’ labels were fed back to the algorithm to make the clustering 

purer, thus the algorithm learned from citizen science feedback. Compared to the 
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standard image-by-image presentation, this approach allowed to considerably reduce the 

amount of volunteer effort operationalized as the number of clicks required to classify a 

dataset. Lambers et al. (2019) also reported on improving the results of the algorithm 

using contributions from citizen scientists. Volunteers participated in field expeditions to 

validate archeological objects detected by ML, and the results were used to tune the 

algorithm object detection results. 

The articles related to the EteRNA game also discussed the development of ML 

algorithms that learn from player moves. Lee et al. (2014) developed the EteRNABot 

algorithm trained using design rules uncovered by players and used to predict the design 

of RNA structures. Koodli et al. (2019) described the development of EternaBrain-SAP 

algorithm trained on the compilation of expert player moves. 

ML was also employed in biodiversity and ecology-related projects to model species 

distribution, e.g., to predict the probability of White-taled Ptarmigan occurrence over 

Vancouver Island (Jackson et al. 2015), or to predict the distribution area of the Asian 

bush mosquito (Kerkow et al. 2020). The datasets used for training were usually 

combined from different sources: observations collected and reported by citizen scientists 

and sometimes by experts as well, and environmental or climate data extracted by the 

researchers. Another ML task was to predict water quality (Thornhill et al. 2017), air 

quality (Lim et al. 2019), or coral bleaching (Kumagai et al. 2017), using data collected by 

citizen scientists in the field and environmental or urban data collected by scientists. 

ML methods were used to mitigate biases or errors in the data collected and/or classified 

by citizen scientists. Adams et al. (2020) reported on developing an ML model to adjust 

the AirBeam sensor observations that demonstrated errors in high humidity period. 
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Another issue addressed by using ML is that citizen scientists' participation in collecting 

data is not uniformly distributed in space and is naturally biased towards recording 

observations rather than absences. For instance, Derville et al. (2018) compared several 

algorithms modeling species distribution based on how they account for the sampling bias 

present in the nonsystemic citizen science observations of humpback whales. Several 

articles also reported on employing transfer learning techniques, if only a small training 

dataset was available in a particular project. Willi et al. (2019) trained a model on the data 

from the larger Snapshot Serengeti citizen science project, and then applied transfer 

learning approach to achieve higher accuracy when only smaller datasets were available 

as in the Camera CATalogue project. 

One of the arguments for applying ML is that volunteers are different in terms of expertise 

levels and are prone to human error, thus they may misclassify data. This issue is 

addressed in several ways. Tar et al. (2017) used predictive error modeling to evaluate 

the false positive contamination in the Moon Zoo project classifications. Keshavan et al. 

(2019) fitted the model with citizen science ratings weighted by how much their 

classifications matched the golden standard created by experts. Shamir et al. (2016) 

suggested using a pattern recognition algorithm to evaluate the consistency of 

annotations made by individual volunteers in the Galaxy Zoo project.  

Kelling et al. (2013) used a probabilistic machine learning approach to measure the 

expertise of eBird volunteer observers. They employed the occupancy-detection 

experience model to measure the probability of a particular species being identified in a 

particular site, and to distinguish expert observers from novice observers who are more 

likely to misclassify common bird species. This approach allowed researchers to provide 
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volunteers with feedback on their observation accuracy, and also to improve the quality 

of a training dataset for an ML algorithm. Gravity Spy is one of the few projects (in addition 

to eBird mentioned above), wherein the information about the quality of citizen 

contribution was used to give feedback and training to volunteers (Crowston et al. 2020; 

Jackson et al. 2020; Zevin et al. 2017). ML system scaffolded volunteers by guiding them 

through several training levels: at first showing glitches belonging to two classes with a 

high level of ML-determined probability and then - as a volunteer learned to classify them 

- increasing the number of possible classes and offering images with lower ML confidence 

score. Crowston et al. (2020) also described the development of a model to trace 

volunteer learning based on the agreement of CS classifications with ML classifications. 

Integrating tasks into one workflow 

The human and machine tasks described in the previous sections are integrated into a 

single workflow in different ways. The most common type of integration of human and 

machine efforts is when citizen scientists make some sort of contribution, which is then 

used to train and test one or several machine learning approaches. It could include 

citizens collecting the data and ML algorithms classifying the data or modeling species 

distribution. Alternatively, citizens can classify data, and ML trained on these 

classifications is used to classify a larger dataset. The roles of researchers and experts 

here are related to the orchestration of the whole process. They are responsible for 

recruiting and training volunteers, collecting more data, creating the gold-standard 

dataset of classifications, as well as testing and evaluating the overall performance of the 

systems. When these studies aim to address the biases and errors in citizen scientists’ 

observations and classifications, the methods include employing specific ML approaches, 
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generating synthetic training data for an algorithm, or weighing citizen scientist labels 

based on their levels of performance. When existing datasets are employed, sometimes 

from finished CS projects as well, volunteers’ input is included only in the first stage of the 

process, when they provide or process the original data.  

Although the goal of several ML approaches is to reduce the required volunteer efforts 

(Willi et al. 2019), or overcome the need to rely on citizen scientists’ contributions (Sullivan 

et al. 2018), volunteer and ML efforts are often positioned as complementary. The 

discussions of leveraging the complementary strengths of humans and machines are 

particularly relevant for studies that have classification or object count as a shared task 

(Keshavan et al. 2019; Lukic et al. 2018; Torney et al. 2019). It is argued that volunteers 

are better at harder pattern recognition tasks (Kuminski et al. 2014; Lukic et al. 2018), 

need less training examples to make judgments about new images (Wright et al. 2017), 

and are capable of serendipitous discoveries (Beaumont et al. 2014). Meanwhile, 

algorithms allow to process extremely large datasets (Kuminski et al. 2014; Wright et al. 

2017) and are capable of reproducible analysis (Beaumont et al. 2014). Thus, it is 

generally argued that synergy is the most productive strategy (Beaumont et al. 2014) and 

that it is not yet possible to replace human input (Lukic et al. 2018). 

However, several articles report on keeping citizen scientists involved in the process 

beyond the stage of initial contributions. This is another type of integrating human and 

machine efforts into one workflow. The articles can be grouped into three subsets of 

studies on the ground of tasks performed by different agents: (1) algorithm used to train 

and provide feedback to volunteers; (2) algorithm used to help volunteers perform their 

tasks efficiently; (3) volunteers validating ML results.  
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The first subset includes articles on eBird and Gravity Spy projects. Kelling et al. (2013) 

described the human-machine combination as a human/computer learning network that 

benefited from ML speed and scalability and volunteers’ identification of bird species in 

the eBird project. The study described a feedback loop, as ML was used to evaluate the 

accuracy of citizens’ observations and provide feedback to volunteers. This, in turn, was 

argued to increase their level of expertise and improve the quality of the training dataset. 

Moreover, the algorithm was also used to address the sampling bias by suggesting 

volunteers where to sample next. In Gravity Spy, the combination of human and machine 

efforts to classify glitches is related to algorithms guiding the learning of citizen scientists 

(Crowston et al. 2020; Jackson et al. 2020; Zevin et al. 2017). Volunteers were 

progressing from the beginner to the advanced level, as the algorithm compared their 

classification accuracy with the gold-standard and gradually offered images with lower 

ML confidence scores.  

The second subset of studies is characterized by ML algorithms helping volunteers to 

perform their tasks most efficiently. Coughlin et al. (2019) reported on using ML to cluster 

similar images to make it easier for volunteers in Gravity Spy to identify new glitch classes. 

Wright et al. (2019) described the symbiotic relationship between ML and citizen scientists 

in the Supernova Hunters project. Since ML required an extensive training dataset, it 

could take a long time for volunteers to classify enough images. Thus, an initial clustering 

of similar images was suggested to help reduce volunteer effort in labeling the dataset. 

The third subset refers to studies that report on volunteers validating the ML results. Users 

of the Leafsnap app uploaded photos of leaves, and if the shape-matching algorithm 

classification did not reach the required level of confidence, users were given several 
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options to help identify the species (Bowley et al. 2019). Lambers et al. (2019) presented 

an integrated approach in the domain of archeology. The algorithm was trained to detect 

potential archaeological objects in remotely sensed data, then citizens and experts 

validated findings through three validation steps. The results were fed to the algorithm to 

improve object detection accuracy. 

To summarize, the discussed workflows represent continuous interdependent 

relationships between citizens and algorithms, where citizens develop expertise, make 

discoveries, and help validate ML results, while ML algorithms train citizens, help them, 

and continuously improve as well, due to the ongoing feedback from citizens. 

Discussion 

The results of this review show that several projects have already integrated human 

efforts and ML to perform data-centered tasks. In citizen science, the integration of human 

efforts and algorithmic processing has taken different directions but, currently, it is 

represented by ML, especially applied to computer vision, which includes diverse 

methods of automatically identifying objects from digital photographs (Ceccaroni et al. 

2019). 

Our review has revealed which problems are commonly addressed by combining citizen 

science and ML efforts, which tasks are allocated to humans and machines, and how 

those tasks are integrated into one workflow. Currently, several citizen science projects 

using ML are centered around analyzing, coding/classifying, and clustering data provided, 

for example, by cameras and telescope images. Collecting, coding/classifying, and 

interpreting data are some of the most common activities that participants carry out, 

depending on their level of engagement in the research process (Shirk et al. 2012). 
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Similarly, ML is used at various stages of the data–science life cycle, through algorithms 

that perform tasks like classification, regression, clustering, and association, especially 

when dealing with huge amounts of data. 

Unlike automated systems that tend to remove or reduce the need for humans, the 

reported projects can be considered heteromated systems that do not function without 

the necessary mediation of engaged citizens (Ekbia and Nardi 2017). Both citizens and 

experts constitute the “human infrastructure”, without which citizen science projects 

cannot exist. According to Ekbia and Nardi, citizen science projects are not heteromated 

in terms of experts’ work, but through the participation of volunteers who act as 

indispensable mediators. Their heteromated systems push critical tasks to citizens, as 

they seek them to provide, classify, and annotate data, or solve problems. In heteromated 

systems, efficiency is not opposed to engagement (Ekbia and Nardi 2017), as they cater 

to people’s motivations to participate in projects that offer opportunities for meaningful 

tasks. In citizen science projects, researchers are involved in recruiting, training, and 

supporting volunteers. 

Leveraging the complementarity of strengths is one of the main arguments to combine 

humans and machines. For example, machines cannot yet match the human ability to 

identify certain objects and it is unclear to what extent they will ever succeed. Conversely, 

manual classification or identification of objects from images in a large data set can be 

made more efficient in combination with ML. Even so, the participation of citizens remains 

critical to perform certain tasks, such as creating data sets with correctly tagged data to 

feed algorithms (Torney et al. 2019). Galaxy Zoo and the classification and identification 

of galaxy morphological shapes is a good case in point (Walmsley et al. 2019).  
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While the complementarity of humans and machine is commonly acknowledged to 

enhance their respective capabilities, essentializing the attributes of humans and 

machines, as in Fitt’s MABA-MABA – Men Are Better At -vs- Machines Are Better At – 

list (1951), should be avoided. Treating his list of attributes as stable and natural does not 

take into account that cognitive work will be shifting between humans and machines 

(Ekbia and Nardi 2017), as the range of research tasks that machines can do is growing, 

although algorithms are still second to humans on recognizing patterns and they have 

longer learning curves. 

Conclusions 
In this paper, we have summarized the results of a systematic review of human-machine 

integration in citizen science projects. Although we conducted this review to include all relevant 

articles and collect and synthesize the data from them in a meaningful way, there can be 

articles we did not include as we left out preprints, reports, and other types of non-peer-

reviewed literature. Most of the reviewed articles are methodology papers aimed at 

designing or comparing various ML algorithms. Only a limited number of articles in this 

review focus on the development of integrated systems, where both humans and 

machines would benefit from collaboration. The questions of using AI-generated feedback 

to train citizen scientists, increase their engagement, or inform them about the quality of 

their contributions – while insightfully addressed in few articles – largely remain under-

researched. Finally, most of the reviewed research used citizen contributions in the form 

of data collection or classification, while only a few investigated how ML can facilitate 

serendipitous discovery (Trouille, Lintott, and Fortson, 2019).  
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We discussed the “character” of human-machine systems in citizen science as heteromated 

systems, wherein citizen participation remains crucial and volunteer and ML efforts are often 

positioned as complementary rather than mutually exclusive. Future research should 

examine how algorithms taking over some human tasks will affect the balance between 

humans and machines in citizen science. Further exploration of the kind of partnership 

and delegation of skills that are created when integrating humans and machines should 

also be considered. A close examination of some specific cases could reveal what and 

how ML contributes to the creation of knowledge and whether it will result in skill-biased 

technological change. The results of such studies may achieve designs that have an 

impact on citizen science and the field of collective intelligence.     
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