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Cortex

* Research conducted in the framework of the CORTEX Project

* Core monitoring techniques & experimental validation and demonstration for
improved reactor safety

* European Horizon 2020 Programme

* Launched in Brussels on 5-6 September 2017, will last for 48 months
* Total budget: €5.500.000

* Coordinated by Chalmers University

* Gathers 20 partners from | | countries from across Europe

* Artificial Intelligence & Learning Systems (AILS) Laboratory, School of Electrical &
Computer Engineering, National Technical University of Athens, Greece
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AILS@ECE.NTUA

One of the main research units of the ECE NTUA
* directed by Professor Andreas-Georgios Stafylopatis

Areas of Expertise

* Machine learning, artificial intelligence, neural networks, multimedia content analysis,
human interaction, fuzzy logics, ontological knowledge representation and reasoning,

39 Members

* 6 faculty, 7 senior researchers, 2 postdoc researchers, |8 researchers and Ph.D
students, 6 supporting and technical staff

Publications
* Over 200 in journals and over 400 in international conferences

Myself ©
* Teaching & Research Associate (Lab Profile)
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Main Objective

* Detect anomalies in nuclear reactors using non-intrusive methodologies

 Anomalies

» Excessive vibrations of core internals
Flow blockage
* Coolantinlet perturbations
 Combination of the above

* Non-intrusiveness

* Measure the inherent fluctuations in neutron flux recorded by in-core and ex-core
detectors

* No external perturbation of the system is required
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Induced neutron noise

* |dentify the driving perturbation(s) measured at the detectors
* Amplitude and Phase

e Extract the characteristic features
* Frequency of the perturbation

» "Relationships” between the induced neutron noise at different locations
* Spatial variation of the amplitude of the noise
* Spatial variation of the phase
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Overview of the procedure
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Signal types

* Real
* measured at the detectors

 characteristics
* may be due to more than one perturbation which are usually unknown
* noise, trend and intermittencies
* (possible) detector failure

e Simulated

* model the fluctuations in neutron flux resulting from known perturbations applied
to the system through the estimation of the reactor transfer function
 characteristics
* can model asingle, known perturbation
e can model noise, trend and intermittencies
* no detector failures (unless modelled!)
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Workflow

|. Data preprocessing
* Remove noise, trend and intermittencies
* Account for possible detector failure

2. Feature Extraction

* Transformation Methods

* Discrete Fourier Transform (DFT)
* Discrete Wavelet Transform (DVWVT)

* Non-parametric inversion methods
* Artificial Neural Networks (ANNs)

3. Feature Selection
4. Machine Learning Techniques
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Single fuel assembly vibrates
in one direction
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measured neutron flux at the in-core and ex-core detectors at the bottom
level
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Trend detection & removal



Trend

* Any systematic change in a time
series (signal) that does not appear
to be periodic

* Types of trend o
* Deterministic ]\ S

* increase or decrease consistently /V\/ 0

e Stochastic - /\/\/- ! -

* Increase or decrease inconsistently ; | \_/\/—- . -

* Scope \ oS /\,.\ N Voo -
+ Global VTN ;

* apply to the whole signal
* easier to identify

* Local
* apply to parts of the signal
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Removing trend

* Signals containing trend are characterized as non-stationary

* Detrending
* The process of removing trend from a signal
 Simplifies signal analysis
* Trend has to be modeled in order to be removed

* Trend modelling

* Deterministic (linear) trend is easier to be modelled
* e.g.through least-square regression

 Stochastic trend require more thorough analysis
* e.g. moving average trend lines can be detrended with the Baxter-King filter
* e.g. cyclical components can be removed with the Hodrick-Prescott filter
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Detrending
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Feature Extraction

Using transformation methods



The Discrete Wavelet Transform

* Suitable for analyzing signals with time-varying spectra
* DFT gives the spectral details of the signal without considering temporal properties

* Produces varying time and frequency resolutions
* DFT produces frequency spectrograms
* DWT scalograms depict transients

* High frequencies
* Good time resolution, poor frequency resolution

* Low frequencies
* Poor time resolution, good frequency resolution

* Need to decide on the mother wavelet function used

* Different wavelets produce different coefficients/scalograms
* DFT uses only sinusoidal functions
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Choice of the mother wavelet

* Mother wavelet families
* Haar, Daubechy, Symlet, Coiflet, Biorthogonal, Reverse Biorthogonal , Discrete
Mayer, ...
* Criterion
* How "close" is the reconstructed signal to the original?

* Measures of similarity
* Cross-correlation (statistical)

. _ I&-X) -7
YY) = Taro e
* Energy to entropy (information-theoretical)

i Sizlogsi2

+ {(n) =
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Cross-correlation vs Energy-to-Entropy

Best wavelet: Biorthogonal (3.1) Best wavelet: Biorthogonal (5.5)

Cross-correlation coefficient between each mother wavelet and the internal sensor signals Energy over entropy for each type of mother wavelet
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Scalograms

* Detector signals
represented as
scalograms

* the “spectrogram” of DWT

* X-axis: time

* y-axis: frequency

* color: intensity

* Treated as images by the
Deep Learning (DL)
techniques discussed next




Anomaly Detection



System Architecture

 Two DL Convolutional

[ - } Neural Networks (CNNs)
|. Perturbation
|dentification Network
I D  Output a binary vector of
\ T“"”I"'""' the detected perturbation(s)
v P — 2. Localization Network
Perlurbalion Localization
\\tnmmmn Nalwork/ | s * For certain type of
' ' ' ' perturbations locate them in
it et pe rlurbiation by pes xy coordinates the reactor core

* eg single fuel assembly
perturbation




Identification & Localization Networks:

ResNet
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Experimental Implementation

* Swiss pre-KONVOI pressurized water reactor (PVWR)
* 3-loop reactor, | 77 FAs

* Simulated data only

* Provided by the Paul Sherrer Institute (PSI)
* CASMO-5/SIMULATE-3 code system, coupled with SIMULATE-3K transient nodal code

* Four perturbation types
* Individual FA vibrations, inlet coolant, inlet flow & their combinations

* Three modes of vibration (for the FA case)
* Cantilevered, C-shaped, S-shaped

* Three core conditions
* Beginning, middle & end of cycle
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Procedure

* Preprocessing
* Detrend signals, compute DWT, construct scalograms
* Covert scalograms to |-channel grayscale images
* Construct a 44-channel image from all detectors

 Results of the identification network on the test data

0.97 0.96 0.96
Inlet temperature  0.95 0.93 0.94
Inlet coolant 0.94 0.91 0.92

Combinations 0.92 I 0.96

25 ML techniques for anomaly detection & the alignment of simulated perturbations with PP measurements, |3 January 2021




Results of the localization network

 Accuracyontestdata
mT——— SR TN 1
Exact 0.73 i;ng‘:fEfif? SESSEESSEEE
+1 difference 0.21
+2 difference o5
more than +2 difference 0.0l .
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Robustness analysis

* Adapt to cases of faulty detectors signals

* Consider only a subset of incore/excore detectors function normally
* 6 different combinations

* Accuracy on the test data

Prediction |Comb |l [ Comb2 [ Comb3 [Comb4 [ Comb5 |Combé
Proximity

exact 0.52 0.58 0.48 0.65 0.43 0.66
11 diff. 0.31 0.32 0.32 0.26 0.34 022
+2 diff. 0.1 0.07 0.13 0.07 0.15 0.09
> 12 diff. 0.06 0.03 0.07 0.02 0.08 0.03

e More details on our ANS M&C 2021 submission

* Thanos Tasakos, George loannou,Vasudha Verma, Georgios Alexandridis,Abdelhamid Dokhane and
Andreas Stafylopatis - Deep learning-based anomaly detection in nuclear reactors
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Align simulated
perturbations with plant
measurements




Intuition

* Power plant measurements are usually unlabeled data
* |t is not known whether (& which) perturbations occur within the core

* Use modelling tools to simulate the induced noise produced by
various “‘known’ perturbations

* Compare the simulated signals with the plant measurements in order
to locate similarities & dissimilarities

* These comparisons may form the basis for more advanced machine-
learning based techniques

* eg clustering




Procedure

* Preprocessing
* Detrend plant measurements & simulated signals
* Compute the DFT of the above
* Compute the Auto Power Spectral Density (APSD) of the plant measurements

* ldentify frequency peaks of APSDs
* Welch algorithm
* Candidate frequencies for the existence possible perturbations

* Compute the Cross Power Spectral Density (CPSD) between
* all n detectors of the plant measurements, creating an nxn matrix

* the corresponding simulated data for the frequency peaks identified above (again
creating nxn matrices)

* Compare the CPSDs between real measurements & simulated data
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System architecture
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Example APSDs
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Experimental Implementation

* German pre-KONVOI| PWR

* 4-loop reactor

* Actual plant measurements

e Simulated data

* Provided by Chalmers University
* CORE SIM+ tool

* Four perturbation types

* Individual FA vibrations
* Modes: cantilevered, simply supported, cantilevered & simply supported

e Coolant flow vibrations

* Core barrel vibrations
* Modes: beam, pendular
* Generic (absorber of variable strength)
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Example results
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* Similarity Heatmap for axially
traveling perturbation at the

velocity of the collant flow at 0.3
Hz.

 More details on our ANS M&C
2021 submission

* George loannou, Thanos Tasakos,
Antonios Mylonakis, Georgios
Alexandridis, Christophe Demaziere,
Paolo Vinai and Andreas Stafylopatis —
Feature extraction and identification
techniques for the alignment of
perturbation simulations with power
blant measurements
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