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Convex Polar Second-Order Taylor Approximation
of AC Power Flows: A Unit Commitment Study

K. Šepetanc, Student Member, IEEE and H. Pandžić, Senior Member, IEEE

Abstract—Modern mixed-integer quadratic solvers generally
handle binary variables more efficiently than nonlinear mixed-
integer solvers. This is relevant to the power system operation
models as the unit commitment formulations typically contain
a large number of binary variables. This paper investigates
how to achieve the accuracy level close to the one of the exact
nonlinear models, but by utilising convex models and solvers.
The presented unit commitment model is based on a Taylor-
series expansion where both the voltage magnitude and angle are
quadratically constrained. To achieve high accuracy, the model
takes advantage of the meshed transmission network structure
that enables replacement of the quadratic inequality constraints
that cause constraint relaxation errors with the linear equality
constraints. Quadratic constraints to be replaced as well as the
operating point parameters are determined based on the presolve.
The first presented case study validates the model’s accuracy and
the convergence of the iterative algorithm, while the second is
a non-iterative full unit commitment problem. Unit commitment
results show superior accuracy and similar computation times
to the existing quadratic formulations on one hand and faster
computation times than the exact nonlinear polar formulation on
the other.

Index Terms—Optimal power flow approximation, network-
constrained unit commitment, mixed-integer quadratically con-
strained quadratic program

NOMENCLATURE

A. Sets and Indices

N Set of buses, indexed by i and j.
NP Tuple set of paired buses aligned with branch E

orientation, indexed by pi, jq.
R Set of reference buses, indexed by i.
E,ER Tuple set of branches, forward and reverse orientation,

indexed by pe, i, jq.
Ei, E

R
i Array of tuple sets of branches at bus i, forward and

reverse orientation, indexed by pe, i, jq.
G,Gi Set of all generators and array of sets of generators at

bus i, indexed by k.
Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.
τ Set of time steps, indexed by t and h.
Ξ Set of decision variables.
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Šepetanc is funded by the Croatian Science Foundation under programme
DOK-2018-09. The research leading to these results has received funding
from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 864298 (project ATTEST). The sole responsibility
for the content of this document lies with the authors. It does not necessarily
reflect the opinion of the Innovation and Networks Executive Agency (INEA)
or the European Commission (EC). INEA or the EC are not responsible for
any use that may be made of the information contained therein.

B. Parameters

:ck, 9ck, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gshs , bshs Bus shunt conductance and susceptance.
ge, g

fr
e , g

to
e Branch π-section conductances.

be, b
fr
e , b

to
e Branch π-section susceptances.

τe,σe Branch tap magnitude and shift angle.
P g

k ,P
g

k Generator minimum and maximum active power
production.

Qg

k
,Q

g

k Generator minimum and maximum reactive
power production.

Se Branch maximum apparent power.
θi,j ,θi,j Bus-pair minimum and maximum voltage angle

difference.
V i,V i Bus minimum and maximum voltage magnitude.
V op
t,i ,θ

op
t,i Assumed bus voltage magnitude and angle op-

erating points.
csuk Generator start-up cost.
RUk,RDk Generator ramp-up and -down limits.
MUk,MDk Generator minimum up and down time.
Λt,e,Γt,i,j Boolean parameters which indicate whether to

use quadratic form of voltage and cosine repre-
sentations respectively.

C. Variables

Continuous variables
P g
t,k, Q

g
t,k Generator active and reactive power production.

Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V ∆
t,i , θ

∆
t,i Bus voltage magnitude and angle change.

Vt,i, θt,i Bus voltage magnitude and angle.
xcost,i,j Cosine approximation.
qVt,e Second-order Taylor series voltage magnitude

term approximation.
Binary variables

xt,k Generator activity state indicator.
yt,k, zt,k Generator start-up and shut-down indicators.

I. INTRODUCTION
A. Motivation

Unit commitment is an optimization problem that deter-
mines the least-cost production of the generators to satisfy the
demand while considering the generators’ physical limitations.
Besides generator capacity limits, it typically encompasses
output ramp limits, minimum up and down times and start-up
costs, whose modeling requires computationally expensive bi-
nary variables. Computational burden of the unit commitment
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problem can be assessed from two perspectives: the binary
formulation tractability and the grid formulation tractability.

Novel binary formulations are typically studied without
the network constraints to better demonstrate and isolate the
source of numerical difficulties. To this end, there is even a unit
commitment benchmark generally accepted by the scientific
community [1], but without the network constraints. How-
ever, the ISO-type electricity markets consider transmission
constraints already at the market-clearing phase. Hence, we
focus on the network-constrained unit commitment problem
and deliver a new transmission system power flow formulation
that retains an accuracy level close to the exact nonlinear
AC models, but allows for the use of more specific and
performant mixed-integer quadratically constrained quadratic
program (MIQCQP) solvers as opposed to the mixed-integer
nonlinear (MINLP) ones. It is a common practice in trans-
mission system modeling to reduce a MINLP to a mixed-
integer linear (MILP), e.g. by applying DC network ap-
proximation. However, linear models are inaccurate when it
comes to modeling reactive power flows, voltage magnitudes
and losses. On the other hand, the existing convex quadratic
approximations or relaxations of AC power flows may achieve
good or even perfect accuracy when there are no quadratic
constraint relaxation errors. These are a consequence of the
convexification process that requires the quadratic equality
constraints to be relaxed into quadratic inequalities. However,
when such errors do occur, they are very large. Since unit
commitment is a multi-period optimization problem thus sim-
ulating the grid under various conditions, including generating
units nonconvexities, the chances of having relaxation errors
in at least one of the simulated periods are relatively high,
rendering the relaxation model inaccurate. A motivation to
develop a model based on the Taylor expansion comes from
the thought that constraint relaxation errors, which in this case
can occur due to convexification of the second-order parts
of the expansion, can be avoided without otherwise gross
changes to the power flow equations by upfront neglecting
these terms on per-branch basis as determined by the presolve.
Constraint relaxation errors due to convexification are avoided
since when the second-order terms are neglected, the resulting
constraints are linear equalities instead of quadratic inequali-
ties. Additionally, meshed transmission network structure acts
favourably as it provides a sufficient number of quadratic
constraints to preserve the accuracy and iterative convergence
of the algorithm that reruns the model around an updated
Taylor operating point despite some neglected second-order
terms. A parallel can be drawn to the Newton’s power flow
calculation method that converges faster when using higher-
order modifications [2]. Fast convergence is important as it
allows us to achieve high warm-start single iteration accuracy
using the approximate warm-start operating point parameters
obtained by first solving the problem in its continuous version
where binary variables are relaxed into continuous in the
range from 0 to 1. Utilising the described features and the
proposed transmission system power flow formulation, we
solve the network-constrained unit commitment problem while
cooptimizing the real and reactive powers to exploit the unused
monetary value in the traditional separate optimization, as

demonstrated in [3], but by using an implementation without
any loop statements.

B. Literature Review

Unit commitment research started with the development of
the branch-and-bound algorithm [4], which is the basis of
modern mixed-integer solvers. The MILP approach is still
considered as the state-of-the-art due to its computational
tractability. The early works grasped the unit commitment
problem in its simple form without the network constraints,
thus focusing on tightening the binary formulation, which can
be expressed using three such variables per generator, as in [5],
[6] and [7], or using a single binary variable as in [8]. Because
of reliance on the branch-and-bound algorithm to solve mixed-
integer problems, less variables does not necessarily imply
better computational tractability. Size of the problem can be
decreased by clustering similar generators [9], but this requires
simplifications that reduce accuracy and applicability.

The subsequent unit commitment research branches out in
multiple directions, mainly focusing on uncertainties [10] se-
curity constraints [11], and network constraints [12]. Security
constraints add an additional contingency scenario dimension
to the unit commitment problem drastically increasing the
problem size. Our work and this literature review are focused
on network constraints, whose inclusion in the unit commit-
ment model also has a detrimental effect on the computational
time. The inclusion of both security and network constraints
forms an even more demanding problem, however in this work
we focus on the network constraints to better isolate their
difficulties and features. To reduce the problem complexity,
DC optimal power flow is widely used. This transmission
grid approximation results in good accuracy of the active
power flows [13]. There are various attempts to generalize
the DC model to include losses and reactive power, e.g., by
expanding the first-order Taylor series around the operating
point and adding only the voltage-angle-dependent nonconvex
piece-wise linear losses [14], which require integer variables,
or by linear loss estimation [15], which needs a penalty factor
to prevent negative losses. Quadratic approximations [16] are
much more accurate, but also more computationally demand-
ing than the linear models. Work [17] proposes a Taylor-
based piece-wise linearization with no integer variables, i.e.
linear programming approximation of AC power flows (LPAC)
of the initially quadratic approximation, that considers angle-
only dependent losses. In a post-publication in PowerModels
package [18], the author implemented an enhanced variant of
the model with better accuracy by using the quadratic losses
constraint instead of the piece-wise linear one.

Relaxations, on the other hand, have less persistent accuracy
that is highly dependent on the test case. Performance of Jabr’s
(Second-order Cone Programming – SOCP) [19], quadratic-
convex (QC) [20] and Shor’s (semi-definite programming –
SDP) [21] relaxations were analysed in [22], which showed
that Jabr’s relaxation is dominated in terms of tightness by
the both remaining formulations. Finally, there are nonconvex
exact rectangular current-voltage [23] and voltage-based rect-
angular [24], [25] and polar [24], [26] formulations that can
be directly utilised for unit commitment, but with the highest
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TABLE I
OVERVIEW OF OPTIMAL POWER FLOW TECHNIQUES (OP – OPERATING

POINT).

Name Type Form Convex Voltage
Reactive
power

Losses

DC [13] Approx. LP Yes 1 p.u. No No
DC extensions
[14], [15]

Approx. MILP/LP No/Yes OP`Var.* Yes Yes*

LPAC [17] Approx. LP/QCQP Yes OP`Var. Yes Yes
QPAC [16] Approx. QCQP Yes Variable Yes Yes
Jabr’s [19] Relax. SOCP Yes Variable Yes Yes
QC [20] Relax. SOCP Yes Variable Yes Yes
Shor’s [21] Relax. SDP Yes Variable Yes Yes
IV [23] Exact QCQP No Variable Yes Yes
Rectangular
[24], [25]

Exact QCQP No Variable Yes Yes

Polar [24], [26] Exact NLP No Variable Yes Yes

* some simple formulations do not include voltage variables nor losses

computational burden. An overview of the described optimal
power flow (OPF) techniques is provided in Table I. Our work
builds upon the quadratic implementation of the LPAC model
by introducing the voltage magnitude-dependent losses and by
expanding the Taylor series around a general operating point.

C. Paper Contribution and Structure

Contribution of the paper consists of the following:
‚ We develop new transmission network AC equations

based on the Taylor’s expansion that approximates the
second-order voltage terms. The approximation consists
of distributing power losses to both branch ends based on
the forward- and reverse-orientation power flows.

‚ We develop a presolve technique for deciding whether
to use the quadratic or the linear form of power flow
constraints to avoid constraint relaxation errors due to
convexification.

‚ The resulting MIQCQP solution is obtained much quicker
than the MINLP solution without sacrificing accuracy.

Rest of the paper is structured as follows. Section II
mathematically derives and states the proposed model. It is
divided in three subsections: Subsection II-A presents the
Taylor expansion analysis, Subsection II-B introduces the
presolve technique and subsection II-C presents the model
components. Case study section III consists of the three main
parts: the description and set-up III-A; and two case studies. In
the first case study III-B we solve optimal power flow problem
on a number of networks to demonstrate convergence and
accuracy of the model. The second case study III-C solves unit
commitment problems to demonstrate computational tractabil-
ity and accuracy of the model. Section IV provides relevant
conclusions and guidelines for future work.

II. MATHEMATICAL MODEL

A. Taylor Expansion Analysis

Our analysis of the optimal power flow starts from the
polar formulation for the branch power flow in equations
(1.1) and (1.2). For clarity of the analysis, a general branch,
which encompasses lines and transformers according to the
PowerModels 0.13 standard [18], is simplified to a line without

the shunt sections, i.e. tap is 1=0˝ and gfre , g
to
e , b

fr
e , b

to
e “ 0.

Also, to shorten the expressions, two substitutions are made:
θt,i,j “ θt,i ´ θt,j and θopt,i,j “ θopt,i ´ θ

op
t,j . Otherwise, the

final presented model (2.1)–(2.20) and all the benchmarked
models include a general branch without any simplifications
or substitutions.

Pt,e,i,j “ V 2
t,i ¨ ge ´ Vt,i ¨ Vt,jpge ¨ cospθt,i,jq ` be ¨ sinpθt,i,jqq

(1.1)

Qt,e,i,j “ ´V
2
t,i ¨be´Vt,i ¨Vt,jpge ¨sinpθt,i,jq´be ¨cospθt,i,jqq

(1.2)
Full second-order Taylor series for the branch active and

reactive power flow is structurally written in expressions (1.3)
and (1.4). The first line contains the zeroth-order part (in blue),
the next three lines the first-order part (in green) and the last
six lines the second-order part (in red) of the Taylor series ex-
panded over variables Vt,i, Vt,j and θt,i,j around the operating
point parameters V op

t,i , V op
t,j and θopt,i,j . Variables representing

a change from the operating point (delta variables) are at the
beginning of the row, while the corresponding coefficients are
within the square brackets.

Pt,e,i,j “

pV op
t,i q

2 ¨ge´V
op
t,i ¨V

op
t,j pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqq

` V ∆
t,i ¨r2¨V

op
t,i ¨ge´V

op
t,j ¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

´ V ∆
t,j ¨rV

op
t,i ¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

´ θ∆
t,i,j ¨rV

op
t,i ¨V

op
t,j ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

` pV ∆
t,iq

2 ¨rges

´ V ∆
t,i ¨V

∆
t,j ¨rge ¨ cospθopt,i,jq`be ¨sinpθ

op
t,i,jqs

` pV ∆
t,jq

2 ¨ 0

` pθ∆
t,i,jq

2 ¨r
V op
t,i ¨V

op
t,j

2
¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

´ V ∆
t,i ¨θ

∆
t,i,j ¨rV

op
t,j ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

´ V ∆
t,j ¨θ

∆
t,i,j ¨rV

op
t,i ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

(1.3)

Qt,e,i,j “

´ pV op
t,i q

2 ¨be`V
op
t,i ¨V

op
t,j ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqq

` V ∆
t,i ¨r´2¨V op

t,i ¨be`V
op
t,j ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

` V ∆
t,j ¨rV

op
t,i ¨pbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

´ θ∆
t,i,j ¨rV

op
t,i ¨V

op
t,j ¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

´ pV ∆
t,iq

2 ¨rbes

` V ∆
t,i ¨V

∆
t,j ¨rbe ¨cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqs

` pV ∆
t,jq

2 ¨ 0

´ pθ∆
t,i,jq

2 ¨r
V op
t,i ¨V

op
t,j

2
¨pbe ¨ cospθopt,i,jq´ge ¨sinpθ

op
t,i,jqqs

´ V ∆
t,i ¨θ

∆
t,i,j ¨rV

op
t,j ¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

´ V ∆
t,j ¨θ

∆
t,i,j ¨rV

op
t,i ¨pge ¨cospθopt,i,jq`be ¨sinpθ

op
t,i,jqqs

(1.4)

Expressions (1.3) and (1.4) are nonconvex because i) they
are equalities, and no quadratic equality is convex; ii) pV ∆

t,jq
2

term is multiplied by zero. Convexification of the polar AC
OPF by Taylor series was studied in [17], where the model
was obtained by ignoring all but one of the second-order
terms, pθ∆

t,i,jq
2, and by taking θopt,i,j “ 0, which leaves
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the model voltage-wise loosely constrained, i.e. without the
voltage second-order terms.

We performed extensive tests to determine the importance
of different second-order terms by removing them one-by-one
from the series in expressions (1.3) and (1.4) and analysing
accuracy and iterative algorithm convergence which reruns
the model around an operating point obtained from a pre-
vious solve. Since the Taylor series is nonconvex (quadratic
equality), nonlinear IPOPT solver was used. As a result, all
combinations without the pV ∆

t,iq
2 term failed to algorithmi-

cally fully converge and the version with only pV ∆
t,iq

2 and
pθ∆

t,i,jq
2 terms converged extremely slowly, requiring over 100

iterations. However, the versions with pV ∆
t,iq

2, V ∆
t,i ¨ V

∆
t,j and

pθ∆
t,i,jq

2 exhibited fast convergence and good first iteration
accuracy, while V ∆

t,i ¨θ
∆
t,i,j and V ∆

t,j ¨θ
∆
t,i,j terms had little effect.

Also, reactive power voltage second-order terms, which in the
tests were shown to be better ignored than approximated, have
small impact on convergence and overall accuracy due to an
absence of reactive power in the objective function. Based
on these results, we include the quadratic angle term pθ∆

t,i,jq
2

convexified by a relaxation in constraint (1.5), as well as the
voltage pV ∆

t,iq
2 and V ∆

t,i ¨ V
∆
t,j terms for active power flow by

convex approximation in (1.6). The relaxation in constraints
(1.5) and (1.6) refers to the swap of the equality sign with
the inequality. However, since the constraints are obtained by
the Taylor expansion, which is an approximation, even with
inequality sign they are still an approximation, albeit convex.

xcost,i,j ď 1´
pθ∆

t,i,jq
2

2
, @t, pi, jq P NP (1.5)

qVt,eě ge ¨ pV
∆
t,iq

2 ´ 2 ¨ ge ¨ cospθopt,i,jq ¨ V
∆
t,i ¨ V

∆
t,j

` ge ¨ pV
∆
t,jq

2, @t, pe, i, jq P E
(1.6)

Constraints (1.5) and (1.6) are embedded in the main
model as constraints (2.9.1) and (2.8.1), respectively, without
simplifications and substitutions introduced at the beginning of
this section. To retain similarity with the existing formulations
in the literature, the right-hand side of (1.5) is a second-order
Taylor series of a cosine function and, once multiplied with a
parameter in the power flow constraints (2.4)–(2.7), it forms
a part of the power flow zero-order Taylor term and pθ∆

t,i,jq
2

term. The approximation in expression (1.6) is obtained by
summing the voltage pV ∆

t,iq
2 and V ∆

t,i ¨ V
∆
t,j Taylor terms from

both the forward and the reverse orientations of the branch
active power flow, effectively representing losses evenly dis-
tributed between both branch ends in active power constraints
(2.4) and (2.5). Second-order voltage approximation is always
at least marginally convex, assuming ge ą 0.

While the second-order voltage approximation from (1.6)
could mathematically be applied to reactive power as well
(by simply extracting and transferring factor ge from the
approximation into the active power flow constraints and ´be
for the reactive power flow constraints), it was determined that
this approximation is in some cases inadequate for reactive
power, as it leads more commonly to an infeasible model using
the flat start operating point assumptions, i.e. V op

t,i “ 1 p.u.
and θopt,i “ 0 rad. Reactive power flows are generally about
an order of magnitude lower than active power flows, while

the dominant factor for the approximation in reactive power
flows, susceptance be, is an order of magnitude higher than
the dominant factor, conductance ge, in active power flows.
Applying approximation only to active power flows does not
limit its purpose to better constrain voltages since active power
has much stronger effect on the objective function and thus on
constraining the voltages. Also, no accuracy drawbacks were
observed when applying the approximation only on active
power flows in conditions where be/ge was close to 1 and
in lightly loaded networks. Constraint (2.8.1), the subsequent
of constraint (1.6), is applied in the model as a constraint for
every branch in the forward orientation E rather than bus-pairs
NP, so it can account for parallel conductances (gfre and gtoe )
and differing taps in parallel branches.

B. Presolve Technique

An important problem feature is a meshed structure of
the transmission networks. It makes all the delta variables
V ∆
t,i and θ∆

t,i quadratically constrained despite removing some
quadratic inequality constraints and swapping them with the
equality constraints since the delta variables appear in multiple
instances of (2.8.1) and (2.9.1) constraints. Swapping the
quadratic inequality constraints with linear equality constraints
avoids constraint relaxation errors due to convexifications, i.e.
errors due to a deviance from the inequality boundary, without
a significant loss in a single iteration accuracy or multiple
iterations convergence. Constraint (2.8.1) is a second-order
voltage approximation without the simplifications introduced
in the analysis, while (2.8.2) is its linear alternative. Similarly,
(2.9.1) and (2.9.2) are quadratic and linear representations of
the Taylor series cosine. Quadratic forms of the constraints are
used only if the respective Boolean parameter Λt,e or Γt,i,j

is true and if conductance ge is positive in the case of voltage
approximation constraint (2.8.1).

Our proposition is to determine the value of the Boolean
parameters, i.e. decide whether to use linear or quadratic forms
of the voltage and cosine approximation constraints, in the
presolve computation step. The AC unit commitment is a
difficult problem mostly due to binary variables needed for
generators in combination with network constraints, which
slow down the solution process and limit the selection of
solvers that can be used. However, if binary variables are
fixed, i.e. replaced with a parameter, the problem is relatively
easy to solve even if the network constraints are nonconvex
or nonlinear. Furthermore, since the constraint marginal rep-
resents the sensitivity of the objective function on adding a
small positive constant to the right-hand side of the constraint,
sign of the equality constraint marginal, which is computed
by default by, e.g., IPOPT and Knitro solvers, indicates if
this constraint would be binding if it was relaxed into an
inequality constraint. For constraint (2.8.1) to be binding, due
to its greater-or-equal sign, qVt,e should have a tendency to be
as small as possible. Adding a positive constant to the right-
hand side of (2.8.1) would in this binding scenario increase
qVt,e and thus worsen the objective function, i.e. the marginal
would be positive. Oppositely, for constraint (2.9.1) to be
binding, since its less-or-equal sign, its marginal needs to be
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negative. As a result, a nonconvex presolve with only quadratic
approximation constraints (2.8.1) and (2.9.1) in the equality
form and fixed binary variables is proposed. Values of the fixed
variables are determined simultaneously with an approximate
operating point as described in Subsection III-C. This way,
the main unit commitment solve will have only the convex
quadratic approximation constraints that the presolve flagged
as binding. All other quadratic constraints are replaced with
linear ones to avoid constraint relaxation errors.

C. Optimization Model

This section presents the whole network-constrained unit
commitment model. The objective function (2.1) is a variable
generation and start-up cost minimization. While the ISO
markets typically consider piecewise linear cost curves, we
tend to avoid further approximations and thus use the quadratic
cost curves. Constraints (2.2) and (2.3) are the bus balance
constraints, (2.4)–(2.7) are power flow equations which also
contain second-order term approximation variables qVt,e and
xcost,i,j from (2.8.1)–(2.9.2). Constraints (2.10) and (2.11) are
generator production constraints that disable production when
a generator is inactive (xt,k “ 0). (2.12) is the branch apparent
power constraint for both orientations, (2.13) is the reference
bus angle constraint, (2.14) and (2.15) are voltage magnitude
and bus-pair angle constraints, and (2.16) is the generator
ramp-up and -down constraint. Constraints (2.17) and (2.18)
model the interaction between the generator activity binary
variable and the start-up and shut-down binary variables.
Constraints (2.19) and (2.20) ensure generator minimum up
and down time requirements. Such start-up and shut-down
formulation using three binary variables was first presented in
[6] and was proven efficient in [27]. The presented problem
is of MIQCQP [28] class with convex objective function and
constraints, except for binary variables.

Min
Ξ

ÿ

t,k

p:ck ¨ pP
g
t,kq

2 ` 9ck ¨ P
g
t,k ` ck ¨ xt,k ` c

su
k ¨ yt,kq (2.1)

ÿ

kPGi

P g
t,k ´

ÿ

lPLi

P d
t,l ´

ÿ

pe,i,jqPEiYER
i

Pt,e,i,j

´ ppV op
t,i q

2 ` 2 ¨ V op
t,i ¨ V

∆
t,iq ¨

ÿ

sPSi

gshs “ 0, @t, i
(2.2)

ÿ

kPGi

Qg
t,k ´

ÿ

lPLi

Qd
t,l ´

ÿ

pe,i,jqPEiYER
i

Qt,e,i,j

` ppV op
t,i q

2 ` 2 ¨ V op
t,i ¨ V

∆
t,iq ¨

ÿ

sPSi

bshs “ 0, @t, i
(2.3)

Pt,e,i,j “
ppV op

t,i q
2 ` 2 ¨ V op

t,i ¨ V
∆
t,iq ¨ pge ` g

fr
e q

τ 2
e

`
qVt,e
2

´ pge ¨ cospθopt,i ´ θ
op
t,j ´ σeq ` be ¨ sinpθ

op
t,i ´ θ

op
t,j ´ σeqq¨

pV op
t,i ¨ V

op
t,j ¨ xcost,i,j ` V

∆
t,i ¨ V

op
t,j ` V

∆
t,j ¨ V

op
t,i q{τe

´ pbe ¨ cospθopt,i ´ θ
op
t,j ´ σeq ´ ge ¨ sinpθ

op
t,i ´ θ

op
t,j ´ σeqq¨

V op
t,i ¨ V

op
t,j ¨ pθ

∆
t,i ´ θ

∆
t,jq{τe, @t, pe, i, jq P E (2.4)

Pt,e,i,j “ ppV
op
t,i q

2 ` 2 ¨ V op
t,i ¨ V

∆
t,iq ¨ pge ` g

to
e q `

qVt,e
2

´ pge ¨ cospθopt,i ´ θ
op
t,j ` σeq ` be ¨ sinpθ

op
t,i ´ θ

op
t,j ` σeqq¨

pV op
t,i ¨ V

op
t,j ¨ xcost,j,i ` V

∆
t,i ¨ V

op
t,j ` V

∆
t,j ¨ V

op
t,i q{τe

´ pbe ¨ cospθopt,i ´ θ
op
t,j ` σeq ´ ge ¨ sinpθ

op
t,i ´ θ

op
t,j ` σeqq¨

V op
t,i ¨ V

op
t,j ¨ pθ

∆
t,i ´ θ

∆
t,jq{τe, @t, pe, i, jq P ER (2.5)

Qt,e,i,j “ ´
ppV op

t,i q
2 ` 2 ¨ V op

t,i ¨ V
∆
t,iq ¨ pbe ` b

fr
e q

τ 2
e

` pbe ¨ cospθopt,i ´ θ
op
t,j ´ σeq ´ ge ¨ sinpθ

op
t,i ´ θ

op
t,j ´ σeqq¨

pV op
t,i ¨ V

op
t,j ¨ xcost,i,j ` V

∆
t,i ¨ V

op
t,j ` V

∆
t,j ¨ V

op
t,i q{τe

´ pge ¨ cospθopt,i ´ θ
op
t,j ´ σeq ` be ¨ sinpθ

op
t,i ´ θ

op
t,j ´ σeqq¨

V op
t,i ¨ V

op
t,j ¨ pθ

∆
t,i ´ θ

∆
t,jq{τe, @t, pe, i, jq P E (2.6)

Qt,e,i,j “ ´ppV
op
t,i q

2 ` 2 ¨ V op
t,i ¨ V

∆
t,iq ¨ pbe ` b

to
e q

` pbe ¨ cospθopt,i ´ θ
op
t,j ` σeq ´ ge ¨ sinpθ

op
t,i ´ θ

op
t,j ` σeqq¨

pV op
t,i ¨ V

op
t,j ¨ xcost,j,i ` V

∆
t,i ¨ V

op
t,j ` V

∆
t,j ¨ V

op
t,i q{τe

´ pge ¨ cospθopt,i ´ θ
op
t,j ` σeq ` be ¨ sinpθ

op
t,i ´ θ

op
t,j ` σeqq¨

V op
t,i ¨ V

op
t,j ¨ pθ

∆
t,i ´ θ

∆
t,jq{τe, @t, pe, i, jq P ER (2.7)

qVt,eě
ge`g

fr
e

τ 2
e

¨pV ∆
t,iq

2´
2¨ge
τe

¨cospθopt,i´θ
op
t,j´σeq¨V

∆
t,i ¨V

∆
t,j

`pge`g
to
e q¨pV

∆
t,jq

2, @t, pe, i, jqPE : geą0^Λt,e (2.8.1)

qVt,e “ 0, @t, pe, i, jq P E : ge ď 0_ Λt,e (2.8.2)

xcost,i,j ď 1´
pθ∆

t,i ´ θ
∆
t,jq

2

2
, @t, pi, jq P NP : Γt,i,j (2.9.1)

xcost,i,j “ 1, @t, pi, jq P NP :  Γt,i,j (2.9.2)

P g
k ¨ xt,k ď P g

t,k ď P
g

k ¨ xt,k, @t, k (2.10)

Qg

k
¨ xt,k ď Qg

t,k ď Q
g

k ¨ xt,k, @t, k (2.11)

P 2
t,e,i,j`Q

2
t,e,i,jďS

2

e, @t, pe, i, jqPE Y ER :DSe (2.12)

θopt,i ` θ
∆
t,i “ 0, @t, i P R (2.13)

V i ď V
op
t,i ` V

∆
t,i ď V i, @t, i (2.14)

θi,jďpθ
op
t,i `θ

∆
t,iq´pθ

op
t,j`θ

∆
t,jqďθi,j , @t,pi, jqPN

P (2.15)

RDk ď P g
t,k ´ P

g
t´1,k ď RUk, @t, k (2.16)

yt,k ´ zt,k “ xt,k ´ xt´1,k, @t, k (2.17)

yt,k ` zt,k ď 1, @t, k (2.18)

t
ÿ

h“t´MUk`1

yh,k ď xt,k, @t, k (2.19)

t
ÿ

h“t´MDk`1

zh,k ď 1´ xt,k, @t, k (2.20)
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III. CASE STUDY

A. Description and Set-Up

Although the main case study is elaborated in Subsection
III-C, where we demonstrate the effectiveness of the proposed
model, we start by applying the model on a number of OPF
problems to show convergence speed and accuracy of the
model. In all cases we compare the obtained results, both
in terms of accuracy and computational effort, to the exact
nonlinear polar model [24], i.e. based on constraints (1.1)
and (1.2), which serves as a reference. Additionally, in the
unit commitment case study, our results are compared with
the LPAC approximation in the warm-start and the quadratic
implementation [17], [18] and with the QC relaxation [20].
Our implementations of the existing models were verified in
a side-by-side comparison to match the PowerModels [18]
implementation.

In Subsection III-B all models were solved using IPOPT
solver that has proven to be numerically highly robust and was
set up to run with the HSL linear MA27 and scaling MC19
modules, option to always apply scaling and at most 500 solver
iterations. In Subsection III-C the convex MIQCQP/MISOCP
models were solved using Gurobi 9.0.2, while all the other
models using Knitro 11.1. Both Gurobi and Knitro were
run under the default settings on Intel i5 7600 CPU on 4
threads on a machine with 16GB of RAM, while IPOPT
was run on only one thread since it showed no performance
scaling using additional threads. The solvers were instructed
to compute to full optimality, unless the time limit of 1 hour
is reached. GAMS 31.1.1 was used as a modelling language
and all continuous variables were declared as free variables.
In the Subsection III-B, variable start values used to generate
the model’s Jacobian and Hessian matrices for the nonlinear
solvers were reset to flat start assumptions after every com-
putation. The specifics on bounds and variable starting values
are important since they affect nonlinear solvers. All variable
and parameter units are in p.u. or dimensionless.

B. Convergence and Accuracy Demonstration

This section demonstrates the accuracy of the model using
OPF under assumption that the constraint type selection is
known, i.e. determined by steps 4 and 5 in Algorithm 1. In an
iterative procedure, the model is first run in its nonconvex form
in which constraints (2.8.1) and (2.9.1) are equalities. Signs
of their marginal values determine which constraints would
deviate from the inequality boundary if they were relaxed.
Subsequently, the model is rerun but in its convex form with

Algorithm 1 Convergence and Accuracy Demonstration

1: Run exact polar model Ź results in Table II
2: V op

t,i Ð 1 p.u.; θopt,i Ð 0 rad
3: repeat
4: Run nonconvex model
5: Select constraints by evaluating marginals
6: Run convex model Ź results in Table II
7: Update operating point
8: until |gap| ă 0.005% Ź gap to exact polar

selected quadratic or linear constraints to avoid constraint
relaxation errors due to convexifications. The convex model
updates the operating point voltage and angle parameters
initially set to 1 p.u. and 0 rad. The procedure continues until
fully converged in comparison to the exact nonlinear polar
model [24], as described in Algorithm 1. The purpose of this
case study is purely to explore the model’s behavior on a large
number of cases and not to solve an OPF as there are better
existing options for problems with no integer variables, e.g.
using the exact nonlinear models.

A well-established power grid model benchmark PGLib-
OPF v19.05 [29] is used to perform a single time step
optimization. Thus, the unit commitment and ramping con-
straints (2.16)–(2.20) as well as the unit commitment binary
variables are removed. The resulting convex and nonconvex
models minimize (2.1) subject to (2.2)–(2.15) over variables
Ξ “ tP g

t,k, Qg
t,k, Pt,e,i,j , Qt,e,i,j , V ∆

t,i , θ
∆
t,i, xcost,i,j , qVt,e}.

The nonconvex model has only constraints (2.8.1) and (2.9.1)
in the equality form, while the convex one has both linear
and relaxed quadratic forms of constraints determined by the
nonconvex presolve.

Results of the described iterative procedure for the convex
step 6 in Algorithm 1 are shown in Table II. The iteration gap
is defined as a percentage deviation from the exact nonlin-
ear polar solution. Other metrics used are the computation
time, the number of linear voltage constraints (2.8.2) with
positive ge, the number of linear cosine constraints (2.9.2)
and the number of quadratic constraints (2.8.1) and (2.9.1)
that deviated from the inequality boundary. Total number of
voltage linear constraints is equal to the number of branches
with nonpositive ge plus those decided to be replaced by the
iteration’s presolve. For a better overview of the grids’ sizes,
there are also columns with number of branches and bus-pairs,
while the grid names contain the number of buses.

The model converges fully on all grids within three iter-
ations from the first feasible iteration step. Full convergence
results in 0.00% approximation error since the Taylor expan-
sion is exact at the expansion point and there are no relaxation
errors related to constraints (2.8.1) and (2.9.1), as displayed in
Table II. This is because the presolve removes those relaxed
quadratic constraints that would deviate from the inequality
boundary with their linear equality alternatives. However, the
flat start operating point assumption at the first iteration is
not good enough for the model to provide a feasible solution
in all cases. The solver usually does not recognise infeasible
models, but reaches iteration limit marked by ”it/inf” in the
gap column. Despite being infeasible, a solution is returned
by the solver and used to update the operating point for the
next iteration. The only two grids that did not converge within
four iterations are 6468 rte and 6495 rte. Very similar grids,
6470 rte and 6515 rte, did converge because they got updated
with more favorable operating points quicker than the former
two grids. It took seven iterations for 6468 rte and 6495 rte
grids to fully converge as their first feasible solution was
reached in the fifth iteration. Fast convergence indicates that
very high accuracy can be achieved if the model is warm-
started with a reasonably good operating point and constraints
to be linearized selected by the presolve, which is pivotal for
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Subsection III-C.
The model’s working principle can be well described on

the 3 lmbd grid, which is small but congested. The second-
order voltage approximation variable seldom deviates from
the inequality boundary in (2.8.1) since such deviation would
only increase active power losses at both branch ends. Cosine
variable deviation from its bound in quadratic constraint
(2.9.1) causes much higher reactive power losses than the
active power losses due to branch susceptance being much
higher than conductance. In 3 lmbd grid the ratio be{ge is´30
for the branch with (2.9.2) applied. That branch in the optimal
solution is congested and also producing reactive power. Thus,
reactive power losses are favorable as they enable greater
transfer of active power. To prevent false losses by the cosine
approximation constraint relaxation, the presolve determined
that the linear equality constraint should be applied. However,
congestion is not a necessary condition for potential cosine
variable relaxation errors. Some branches simply operate at
such state that a deviation is favorable even without conges-
tion. That occurs more commonly with high negative be{ge
ratios.

Iterations that were infeasible or reached the iteration limit
have an unrealistic number of linear constraints due to equivo-
cal information from the proposed nonconvex presolve that is
also infeasible. It is important that the network data contains
entries for branch conductances as otherwise the model would
contain only linear voltage constraints (2.8.2), making it insuf-
ficiently quadratically constrained for convergence and warm-
start accuracy. This case study demonstrates, however, that
even with partial conductance data, the model operates well as
grid 179 goc has 27% of all branches with null conductances.

C. Unit Commitment

We use a 24-hour network-constrained unit commitment
to evaluate accuracy and computational performance of the
model. Due to availability of a limited amount of unit com-
mitment network data, grids from the OPF benchmark [29]
are adapted for unit commitment purposes using generic ramp
limits, start-up costs, minimum up- and down-times, load
curve and generator costs. Ramp limits are set so the mean of
the allowed production range can be reached within a single
time period, i.e. p|P g

k |`|P g
k |q{2, start-up costs are set to 1500

cost units for all generators, minimum up- and down-times are
set to 2 hours for generators with ď1 p.u. (100 MW) and 4

Algorithm 2 Unit commitment (UC)

1: Run exact polar model using relaxed binary variables to
determine operating point (NLP) Ź comp. time tA

2: Run nonconvex quadratic presolve using fixed binary
variables and operating point from the previous solve
to select constrains for the main UC computation by
evaluating constraint marginals (nonconvex QCQP)

Ź comp. time tB

3: Run the UC (MIQCQP) Ź comp. time tC

4: Run exact polar model with fixed binary variables to UC
solution to determine approximation error (NLP)

Ź comp. time tD

hours for larger ones, generator fixed costs ck are modified to
10% of the linear costs 9ck if their original value is zero. Loads
use scaling factors for the winter weekday periods from IEEE
RTS-96 [30].

The proposed quadratic approximation model is designed to
operate well in the vicinity of the operating point parameters
V op
t,i and θopt,i . Thus, the first step is to provide a good

operating point by solving the continuous exact nonlinear
model with relaxed binary variables. The next step is to run the
nonconvex continuous quadratic presolve, i.e. with (2.8.1) and
(2.9.1) as equalities, using fixed (replaced with a parameter)
binary variables and around the operating point computed in
the previous solve. The fixed binary variables inherit relaxed,
i.e. continuous, values. Its solution is the same as in the first
step, but it returns the constraints’ marginal values whose sign
determines the constraint type (linear or quadratic) for every
branch and bus pair of the main unit commitment solve. The
third step is to run the mixed-integer unit commitment. The
last, fourth step is to determine the approximation error by
running the exact continuous polar formulation [24], but with
binary variables fixed to the solution of the mixed-integer unit
commitment run from the previous step. Inexact models may
return binary variable values for which no solution is possible.
In that case the approximation error is marked with ”inf”
in Table III. Compared to the existing LPAC, the proposed
model has an additional, but easy to solve, second step to
select constraints to be linearized. The described procedure is
itemized in Algorithm 2. Optimization source code is provided
on GitHub [31].

The simulation results are provided in Table III. Convex
nature of the presented model allows for the use of traditional
solvers typically used to solve MILP problems as they handle
binary variables more efficiently than MINLP solvers. Thus,
the presented model outperforms the exact polar MINLP in
all but one test case, with computation times up to 77 times
faster for 39 epri grid. Test cases 24 ieee rts and 73 ieee rts
are difficult due to a large number of generators resulting in
a large number of binary variables, which severely impacts
computational tractability. It was found that in these two
test cases the other solvers outperformed Gurobi. For the
proposed MIQCQP model applied to 24 ieee rts, CPLEX
12.10 reached 0.09% MIP gap as compared to 1.26% achieved
by Gurobi. The best performance on 73 ieee rts was achieved
with Xpress 8.8, which reached 2.78% MIP gap, while Gurobi
did not find a feasible solution. Furthermore, this MIP gap is
much lower than the 10.29% gap obtained using Knitro 11.1
with the exact polar MINLP model. Both grids at the solution
point had 0.00% objective function approximation errors. Test
cases 162 ieee dtc and 179 goc were infeasible even for the
QC relaxation and were eliminated from the study, as well
as networks larger than 200 tamu as they are too difficult to
solve.

The most significant result of the study is very low, almost
nonexistent, approximation error. For 13 test cases, the highest
objective function error is ´0.02%. The presented model is
very accurate around a broad vicinity of the operating point,
which can be sufficiently well estimated by solving the model
with relaxed binary variables. Furthermore, at the operating
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point the quadratic constraints that can cause large errors by
deviating from the inequality bounds are replaced with the
linear ones. Quadratic constraints that finally do deviate from
the inequality bound in the unit commitment solve cause a
very small relaxation error. If this error was larger, quadratic
constraints would deviate at the operating point and thus
be replaced with linear ones. Furthermore, we evaluate the
approximation errors of the individual variables using average
and maximum normalized distance of solution variables [32].
Normalization is carried out by dividing the absolute variable
error value by the variable feasible range. For Pt,e,i,j and
Qt,e,i,j , the feasible range is 2Se, for Vt,i it is V i´V i and for
the branch angle difference θt,i,j it is θi,j ´ θi,j . The results
are displayed in Table IV. The highest average active power
flow variable distance is 0.06%, reactive power flow distance
0.14%, voltage distance 1.42% and branch angle distance
0.02%, which is significantly lower than what can be expected
from the competing QC and even Shor’s model that normally
achieve overall average distances in the range from 5 to 10%
(see Fig. 3 in [32]). The approximation errors can be even fur-
ther reduced by iteratively running the unit commitment solve
by updating the operating point and retesting the constraints
for that new operating point. However, as an alternative, due to
a low objective function approximation error, we recommend
using the verified solution, i.e. Algorithm’s 2 step 4, as the
final solution to the unit commitment problem.

TABLE IV
NORMALIZED DISTANCE OF THE SOLUTION VARIABLES (IN [%]).

Name
pglib opf case

Pt,e,i,j Qt,e,i,j Vt,i θt,i,j
avg max avg max avg max avg max

3 lmbd 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
5 pjm 0.00 0.06 0.02 0.06 0.02 0.11 0.00 0.01
14 ieee 0.00 0.01 0.00 0.11 0.03 0.56 0.00 0.13
24 ieee rts 0.00 0.11 0.03 1.27 0.17 3.43 0.01 0.16
30 as 0.02 0.43 0.12 3.07 0.54 3.62 0.01 0.07
30 fsr 0.02 0.56 0.14 10.44 0.28 5.92 0.01 0.38
30 ieee 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00
39 epri 0.00 0.11 0.04 3.89 0.24 9.99 0.00 0.29
57 ieee 0.01 0.15 0.02 0.80 0.14 3.65 0.00 0.11
73 ieee rts - - - - - - - -
89 pegase 0.03 1.95 0.13 12.03 1.42 15.16 0.02 0.81
118 ieee 0.06 2.20 0.08 3.64 0.41 15.47 0.02 0.58
200 tamu 0.00 0.00 0.00 0.15 0.02 0.37 0.00 0.15

Achieving great accuracy in unit commitment is important
for two reasons: a) active power losses are only about 2% of
the total production, thus the accuracy needs to be far greater
than 2% to account for them properly; b) inaccurate solutions
can result in infeasible decisions for generator activity status,
i.e. binary variables. The LPAC model in its more accurate
quadratic variant, despite being warm-started similarly like
the proposed model, has the highest approximation errors -
0.72%, -0.39% and -0.33% and three out of 13 cases are
infeasible. QC relaxation, despite proven to be tighter than
the Jabr’s relaxation, is still overly optimistic and thus results
in 7 infeasible cases, while the greatest error of feasible
models is -0.56%. These results highlight the importance of
quadratically constraining the voltage in combination with the
constraint type selection procedure. Computation-time-wise,

the proposed MIQCQP model is in between the faster LPAC
approximation and the slower QC approximation.

IV. CONCLUSION

The presented case studies demonstrate that the proposed
MIQCQP model is moderately accurate assuming flat start
operating point parameters, but almost perfectly accurate if
the assumed operating point is in a broader vicinity of the
optimal solution. Accuracy is achieved by having both the
voltage magnitude and the angle quadratically constrained and
by replacing some of the quadratic inequality constraints with
linear equality constraints to avoid constraint relaxation errors
due to convexification as determined by the presolve. Meshed
transmission network structure acts favourably to further con-
strain the model so it can withstand the replacement of some
quadratic constraints with linear ones and stay accurate and
convergent.

Since the model’s power-flow-related constraints are con-
vex quadratic, the model supports solvers that handle bi-
nary variables more efficiently than the MINLP solvers. The
proposed model displays average computational tractability
for the MIQCQP/MISOCP problem class, which means it is
slightly slower than the quadratic implementation of the LPAC
approximation [17], [18] and quicker than the QC relaxation
[20]. Accuracy of the existing quadratic models is insufficient
for network-constrained unit commitment leading to frequent
infeasible decisions for binary variables or significant approx-
imation or relaxation errors.
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