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Clustering algorithms are a cornerstone of machine learning applications. Recently, a quantum algorithm for
clustering based on the k-means algorithm has been proposed by Kerenidis, Landman, Luongo, and Prakash.
Based on their work, we propose a quantum expectation-maximization algorithm for Gaussian mixture models
(GMMs). The robustness and quantum speedup of the algorithm are shown. We also show numerically the
advantage of GMM over k-means algorithm for nontrivial cluster data.
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I. INTRODUCTION

Quantum computing has attracted much attention since the
discovery of Shor’s algorithm [1,2]. Recently, with the rapid
developments in machine learning, physicists have started to
consider utilizing quantum computers for machine learning
applications [3–8]. As a result, quantum machine learning
has emerged as an interdisciplinary field between quantum
computing and machine learning. Furthermore, a quantum
algorithm for the k-means algorithm [9,10] with proven quan-
tum speedup was proposed [11].

The k-means algorithm is an essential tool in many ma-
chine learning applications [9,10]. However, the k-means
algorithm is as a special case of the more general Gaussian
mixture model (GMM). In the k-means algorithm, each Gaus-
sian has the same weight and the covariance matrix of each
Gaussian function is the identity. As a result, the k-means
algorithm may provide poor estimates of the clusters since
the assumptions of the k-means algorithm are sometimes
too strong to capture all properties of complex data sets.
The expectation-maximization (EM) algorithm [9,10,12] and
variational Bayes (VB) inference [9,10] with the GMM are
often used to improve the clustering, since the general GMM
can deal with a wider class of data sets. Recently, one of
the authors proposed quantum-inspired algorithms for the
EM algorithm [13–15] and VB [16]. In Refs. [15,16], we
have succeeded in improving the performances of the EM
algorithm and VB. However, the aim of Refs. [15,16] is to
make use of quantum fluctuations as a numerical tool and not
to provide a quantum speedup over a classical algorithm; as a
result, the computational costs are almost the same.

In this paper, we propose a quantum algorithm to estimate
the parameters of the GMM, which we call the quantum
EM (q-EM) algorithm. To this end, following the spirit of
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com

Ref. [11], we first introduce a randomized variant of the EM
algorithm, i.e., the δ-EM algorithm which includes nondeter-
ministic readout of the data. Then, we formulate a quantum
algorithm that realizes a speedup of the δ-EM algorithm with
respect to the number of data points. The q-EM algorithm
may be an important step toward quantum machine learning,
since the EM algorithm is an essential algorithm in machine
learning.

This paper is organized as follows. In Sec. II, we provide
classical preliminaries. In particular, we review the EM al-
gorithm and then introduce the δ-EM algorithm. In Sec. III,
we present the detailed procedure of the q-EM algorithm.
Then, in Sec. IV, we show its computational cost. Section V
discusses the relationship between the EM algorithm and the
q-EM algorithm. In Sec. VI, we show numerical simulations
of the δ-EM algorithm to confirm that our starting point is
valid. In Sec. VII, we address the relationship between the
EM algorithm and the k-means algorithm. Finally, Sec. VIII
concludes this paper.

Independently of our work, Iordanis Kerenidis, Alessandro
Luongo, and Anupam Prakash proposed an extension of the
q-means algorithm to Gaussian mixture models similar to this
work using soft clustering [17].

II. CLASSICAL PRELIMINARIES

In this section, we first review the EM algorithm [9,10]
in detail. We then introduce a randomized variant of the EM
algorithm, which we call the δ-EM algorithm. The purpose
of introducing the δ-EM algorithm is the need of a robust
variant of the EM algorithm against noise which resembles
the nondeterministic quantum measurement of a superposed
state.

A. EM algorithm

The EM algorithm is a generic approach to estimate
parameters of probability distributions based on maximum
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Algorithm 1 EM algorithm.

1: t = 0
2: assign yi for i = 1, 2, . . . , N to clusters k = 1, 2, . . . , K randomly
3: while convergence criterion is not satisfied do
4: (E step) compute the responsibilities of cluster k on ri,k

t , Eq. (2)
5: (M step) estimate θt = {π k

t , μk
t , �

k
t }K

k=1 by Eqs. (3), (4), and (5)
6: t ← t + 1
7: end while

likelihood estimation. For simplicity, we focus on the GMM
and review the EM algorithm for the GMM. Let us consider a
d-dimensional feature space and assume that we have N data
points {yi}N

i=1. The GMM for x ∈ Rd is given by

p(y; θ ) =
K∑

k=1

π kN (y; μk, �k ), (1)

where N (y; μk, �k ) := 1

(2π )
d
2 |�k | 1

2
e− 1

2 (y−μk )(�k )−1(y−μk ) is the

d-dimensional Gaussian function with mean μk and covari-
ance �k and

∑
k π k = 1. To simplify the notation, we define

θ := {π k, μk, �k}K
k=1.

The EM algorithm, which estimates θ , consists of the
following two steps which are iterated until convergence.
The first step, which is called the E step, is to compute the
responsibilities of cluster k for each datapoint yi:

ri,k
t := π k

t N
(
yi; μk

t , �
k
t

)∑
k′ π k′

t N
(
yi; μk′

t , �k′
t

) . (2)

The second step, which called the M step, is to compute θt by
using the responsibilities, Eq. (2):

π k
t+1 =

∑
i

ri,k
t , (3)

μk
t+1 =

∑
i

ri,k
t yi

ri,k
t

, (4)

�k
t+1 =

∑
i

ri,k
t

(
yi − μk

t

)(
yi − μk

t

)ᵀ
ri,k

t

. (5)

We iterate the E and M steps by substituting Eqs. (3), (4), and
(5) until convergence. Note that we can begin either of the E
step or the M steps for the first iteration. The EM algorithm
is summarized in Algorithm 1. Note that the procedure of the
EM algorithm can be generalized for mixture models [9,10].

As explained above, the EM algorithm has two steps. On
the other hand, the computational procedure of the q-EM
algorithm is divided into four steps. Roughly speaking, the
first two steps of the q-EM algorithm correspond to the E step
of the EM algorithm and the second two steps of the q-EM
algorithm correspond to the M step of the EM algorithm. This
point will be mentioned in Sec. V again.

B. δ-EM algorithm

As a prerequisite to the q-EM algorithm, we need to modify
the original EM algorithm, since we have to take into account
randomness associated with quantum measurement.

In Sec. II A, we explained that the EM algorithm has two
steps: the E and M steps. In the δ-EM algorithm, we modify
the E step in the spirit of the δ-k-means algorithm in Ref. [11].

To this end, we first introduce the square GMM distance by

dk
G(yi ) := (yi − μk )ᵀ�k (yi − μk ) + ln |�k| − 2 ln(Kπ k ).

(6)

Note that when π k = 1/K and �k is the identity matrix for
k = 1, 2, . . . , K , dk

G(yi ) = dk
E (yi ), where dk

E (·) is the square
Euclidean distance given by

dk
E (yi ) := (yi − μk )ᵀ(yi − μk ). (7)

We then define the set of labels given by

Lδ
G(yi ) := {

k
∣∣∥∥d∗

G(yi ) − dk
G(yi )

∥∥ � δ
}
, (8)

where d∗
G(yi ) := mink dk

G(yi ). In the E step of the δ-EM algo-
rithm, we take random samples from Lδ

G(yi ) in Eq. (8). We
note that for soft clustering, a more precise sampling scheme
may be useful, but this simple sampling works well in the
approach shown in Ref. [11].

In the M step of the δ-EM algorithm, we add small noise
to the estimated parameters after their estimation. As a result,
the δ-EM algorithm becomes robust, and its quantum version
will become implementable. In Sec. VI, we will show the
validity of this algorithm numerically. Remarkably, we find
that adding noise can even improve the quality of the studied
benchmark examples.

III. QUANTUM ALGORITHM FOR THE EM ALGORITHM
WITH THE GMM

In this section, we describe the procedure of the quantum
algorithm that realizes a quantum speedup of the EM algo-
rithm for the GMM.

To simplify the notation, we add the tilde for estimates
throughout this paper; that is, we denote, e.g., ã as the estimate
of a.

A. Overview of the q-EM algorithm

We begin with the initialization of the q-EM algorithm. In
the EM algorithm, we can begin either with the E step or the
M step for the first iteration. For simplicity, in the case of the
q-EM algorithm, we consider getting started with the E step;
then we set the initial parameter set θ0 = {π0, μ0, �0} with
π0 := [π1

0 , π2
0 , . . . , πK

0 ], μ0 := [μ1
0, μ

2
0, . . . , μ

K
0 ], and �0 :=

[�1
0 , �

2
0 , . . . , �

K
0 ].

The main procedure of the q-EM algorithm is composed of
four steps. In step I, we compute the square GMM distance,
and in step II, it is minimized for cluster assignment. Then,
in step III, we generate quantum states of weight vectors,
mean vectors, and covariance matrices, and in step IV, we
apply quantum vector state tomography. By using the classical
information on mean vectors and covariance matrices, we
repeat the whole procedures until convergence. The output of
this algorithm is θ∗ = {π∗, μ∗, �∗}. The q-EM algorithm is
summarized in Algorithm 2.In the rest of this section, we will
explain the four steps in detail.
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Algorithm 2 q-EM algorithm.

1: t = 0
2: prepare for the data structures
3: while convergence criterion is not satisfied do
4: compute the square GMM distance (step I)
5: assign clusters (step II)
6: generate the mean and covariance states (step III)
7: update the parameters (step IV)
8: t ← t + 1
9: end while

B. Step I: Computing the square GMM distance

In this step, we compute the square GMM distance, Eq. (6).
Mathematically, we apply the unitary operation:

1√
N

N∑
i=1

|i〉(⊗k∈[K]|k〉|0〉)

	→ 1√
N

N∑
i=1

|i〉[ ⊗k∈[K] |k〉|d̃k
G(yi )〉

]
, (9)

where dk
G(yi ) is the square GMM distance between yi and

the kth cluster, and [K] := {k}K
k=1. For this computation, we

require the precision given by ‖d̃k
G(yi ) − dk

G(yi )‖ � ε1. In the
next section, ε1 will be used to analyze the runtime.

Equation (9) includes summation, multiplication, and inner
products of quantum states. Among them, the computation of
summation and multiplication is straightforward with quan-
tum linear algebra while the implementation of inner products
is more involved. Let us thus focus on the computation of
inner products.

We assume that two unitary operations and their controlled
versions are available as follows:

|i〉|0〉 	→ |i〉Ĝk|yi〉, (10)

|k〉|0〉 	→ |k〉Ĝk|μk〉, (11)

where Ĝk := (�̂k )1/2 for k = 1, 2, . . . , K . We then begin with
the state

|φi,k〉 := |i〉|k〉 1√
2

(|0〉 + |1〉)|0〉. (12)

By using controlled versions of Eq. (10) and (11), we create
the following state from |φi,k〉:∣∣φC

i,k

〉
:= 1√

2
(|i〉|k〉|0〉Ĝk|yi〉 + |i〉|k〉|1〉Ĝk|μk〉). (13)

Then we apply the Hadamard gate on the third register of |φC
i,k〉

and the resulting state is∣∣φH
i,k

〉 = 1
2 |i〉|k〉[|0〉(Ĝk|yi〉 + Ĝk|μk〉)

+ |1〉(Ĝk|yi〉 − Ĝk|μk〉)]. (14)

Note that Eq. (14) is also represented as∣∣φH
i,k

〉 = |i〉|k〉(√pi,k|tari,k, 1〉 + √
1 − pi,k|gari,k, 0〉), (15)

where |tari,k, 1〉 := |1〉Ĝk (|yi〉 − |μk〉) and |gari,k, 0〉 is a
garbage state. That is, we have a unitary operator such that

Û1 : |i〉| j〉|0〉
	→ |i〉| j〉(√pi,k|tari,k, 1〉 + √

1 − pi,k|gari,k, 0〉). (16)

We also note that the probability that we get |1〉 by measuring
the third register is expressed as

pi,k = 1 − 〈yi|(Ĝk )2|μk〉
2

. (17)

We then apply all the operations except the measurement in
amplitude estimation in Ref. [11,18] on Û1 in Eq. (16). This
process realizes the following unitary operation:

Û2 : |i〉| j〉|0〉
	→ |i〉|k〉(√α| p̃i,k, 1〉 + √

1 − α|gari,k, 0〉), (18)

where ‖p̃i,k − pi,k‖ < 2π
√

pi,k (1 − pi,k )/Pae + π2/P2
ae and

α > 8
π2 [18]. Here M is a parameter to be determined (see

Sec. B 1). Next, applying the mode evaluation method [19] in
Lemma 8 of Ref. [7] and Theorem 2.2 of [11] to Eq. (18), we
get |	i,k〉 such that

‖|	i,k〉 − |0〉⊗L| p̃i,k〉‖2 �
√

2
. (19)

The last step is to estimate the square GMM distance of un-
normalized vectors ‖yi‖ and ‖μk‖ and to multiply the norms
of them and adding ln π k . A translation operator T̂ (r′) can
conduct the adding operation: T̂ (r′)|r〉 = |r + r′〉 for r, r′ ∈
RN . Note that we have assumed that we know the norms of
{‖yi‖}N

i=1 and the same assumption is used in Ref. [11].

C. Step II: Assignment of clusters

The purpose of step II is cluster assignment. In this step,
we utilize the following unitary operation:

Û3 : (⊗k∈[K]|ak〉)|0〉 	→ (⊗k∈[K]|ak〉)| arg min
k∈[K]

ak〉, (20)

where |ak〉 is a (ln p)-bit state for k = 1, 2, . . . , K . The com-
putational cost of this operation is O(K ln p) [11].

To find cluster assignment, we perform the unitary opera-
tion given by

Û4 :
1√
N

N∑
i=1

|i〉[ ⊗k∈[K] |k〉|dk
G(yi )〉

]

	→ 1√
N

N∑
i=1

|i〉|labelt (yi )〉, (21)

where labelt (yi ) is the optimal label of yi at time t .
Finally, by uncomputing the square GMM distances, we

obtain

|ψt 〉 := 1√
N

N∑
i=1

|i〉|labelt (yi )〉. (22)

This uncomputation is required to repeat iterations.
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D. Step III: Generation of the mean and covariance states

In this step, we generate states that store information on the
weights, mean vectors, and covariance matrices. Let us recall
that Eq. (22) is also expressed as

|ψt 〉 =
K∑

k=1

√
Nk

t

N

⎛
⎝ 1√

Nk
t

∑
i∈Ck

t

|i〉
⎞
⎠|k〉, (23)

=
K∑

k=1

√
Nk

t

N

∣∣χ k
t

〉|k〉. (24)

Thus, by measuring the label register of |ψt 〉 in Eq. (22), we
obtain, with probability Nk

t /N ,∣∣χ k
t

〉 = 1√
Nk

t

∑
i∈Ck

t

|i〉, (25)

where Ck
t is the set of labels that belong to cluster k at time t .

Then, χ k
t = [. . . , (χ k

t )i−1, (χ k
t )i, (χ k

t )i+1, . . . ]ᵀ ∈ RN is

(
χ k

t

)
i =

{
1/Nk

t

(
i ∈ Ck

t

)
0

(
i ∈ Ck

t

) , (26)

for i = 1, 2, . . . , N .
We here define V1 ∈ RN×d , V2 ∈ RN×d×d , and V0,i for i =

1, 2, . . . , N on a quantum random access memory (QRAM):

V1 := [y1, y2, . . . , yN ], (27)

V2 := [y1 ⊗ y1, y2 ⊗ y2, . . . , yN ⊗ yN ], (28)

V0,i := [�0, �0, . . . , �0︸ ︷︷ ︸
i−1

, �1, �0, �0, . . . , �0︸ ︷︷ ︸
N−i−1

]. (29)

To obtain mean vectors, we multiply V1 to the state |χ k
t 〉 in

Eq. (25) by using quantum linear algebra [20,21]:∣∣μk
t+1

〉 = V1

∣∣χ k
t

〉
. (30)

The associated error is ε
μ
2 . Similarly, we compute a state

involving information on �k by using quantum linear algebra
[20,21]: ∣∣vec

[
�k

t+1

] + μk
t+1 ⊗ μk

t+1

〉 = V2

∣∣χ k
t

〉
. (31)

The associated error is ε�
2 . Note that ε

μ
2 and ε�

2 appear only in
logarithms; thus, we do not explicitly consider them.

We finally deal with {π k}K
k=1; it is relatively easy to

compute the weights of the GMM, {π k
t }K

k=1. We here utilize
Eq. (29) as follows:

(V0,i )
∣∣χ k

t

〉 =
{(

Nk
t

)−1|�1〉 (
i ∈ Ck

t

)
|�0〉 (otherwise)

. (32)

Thus, we can estimate Nk
t similarly. Note that we assume that

the sizes of all clusters are (N/k).

E. Step IV: Update of the parameters

At the end of each iteration, we obtain classical infor-
mation on πt+1, μt+1, and �t+1 by performing the quantum
state tomography algorithm for |χ k

t 〉, |μk
t+1〉, and |vec[�k

t+1]〉.
Quantum vector state tomography is explained in Ref. [11].

The quantum state tomography algorithm in Ref. [11] requires
a unitary transformation U : |0〉 	→ |x〉; however, the proce-
dure to find l (yi ) is not deterministic. Then, we have to devise
some deterministic methods to find l (yi ). One solution is to
determine l (yi ) by the rule

l (yi) = k, (33)

if dk
G(yi ) < dk′

G (yi ) − 2δ for k′ = k, and we discard the points
to which no label can be assigned.

By introducing επ
4 , ε

μ
3 , ε

μ
4 , ε�

3 , and ε�
4 , we require

the following precision in this step: ‖‖π k‖ − ‖π̃ k‖‖ �
επ

4 , ‖|μk〉 − |μ̃k〉‖ � ε
μ
3 , ‖‖μk‖ − ‖μ̃k‖‖ � ε

μ
4 ‖μk‖, ‖|�k〉 −

|�̃k〉‖ � ε
μ
3 , and ‖‖�k‖ − ‖�̃k‖‖ � ε

μ
4 ‖�k‖. In the next sec-

tion, επ
4 , ε

μ
3 , ε

μ
4 , ε�

3 , and ε�
4 will be used to analyze the

runtime.

IV. ANALYSIS OF ERRORS AND RUNTIME

This section is dedicated to error and runtime analysis of
the q-EM algorithm. We first state the main claim and then
explain it.

A. Main result

The runtime of the q-EM algorithm is represented by

Õ

{
K2

ε1
(
επ

4

)2 + Kd
κ (V1)(
ε

μ
4

)2

[
μ(V1) + K

ημ

ε1

]

+ K2

ε1

ημκ (V1)μ(V1)

ε
μ
3

+ Kd2 κ (V2)(
ε�

4

)2

×
[
μ(V2) + K

η�

ε1

]
+ K2

ε1

η�κ (V2)μ(V2)

ε�
3

}
, (34)

where μ(·) is given in Eq. (B8), κ (·) is the condition number,
ημ := maxi ‖yi‖2, and η� := maxi ‖yi ⊗ yi‖2. The definition
of Õ(·) is given in Appendix A. Equation (34) implies that
there exists a constant number k such the numerical cost of
the q-EM algorithm is given by

O[lnk (N )], (35)

where O(·) is the Landau’s big O notation.
This result states that the runtime of each iteration of the

q-EM algorithm is exponentially faster than that of the EM
algorithm.

B. Error analysis

We first summarize the errors in the q-EM algorithm to
analyze the total runtime of the q-EM algorithm in the follow-
ing subsection. In step I, we compute dk

G(yi ); the error on this
computation is ∥∥d̃k

G(yi ) − dk
G(yi )

∥∥ < ε1. (36)

For consistency between the EM algorithm and the δ-EM
algorithm, we take ε1 < δ/2.

In steps III and IV, we compute μ and �. The errors on
‖μk‖ and |μk〉 are

√
ημε

μ
3 and ε

μ
4 , respectively. Then, the error

on the estimation of μ takes the form

‖μ̃k − μk‖ � √
ημ

(
ε

μ
3 + ε

μ
4

)
. (37)
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See also Appendix C for the above calculation. Next, we turn
our attention to �. The errors on

√
η�ε�

3 and
√

η�ε�
4 are√

η�ε�
3 and ε�

4 , respectively. Similarly to the case of μk , the
error on the estimation of � is shown as

‖vec[�̃k] − vec[�k]‖ �
√

η�
(
ε�

3 + ε�
4

)
. (38)

Finally, we mention the error associated with the estimation
on π k for k = 1, 2, . . . , K . The error on π k is shown as

‖π̃ k − π k‖ � επ
4 . (39)

We estimate {π k}K
k=1 via the distribution of labels in quantum

vector state tomography.

C. Runtime

In the following, Eq. (34), i.e., the runtime of each iteration
of the q-EM algorithm is derived using Hoeffding’s inequality.
The required number of quantum vector state tomography of
K mean vectors is given as follows [11]:

Õ

[
Kd ln K ln d(

ε
μ
4

)2

]
. (40)

Similarly, that for covariance matrices is

Õ

[
Kd2 ln K ln d2(

ε�
4

)2

]
. (41)

Next, we turn our attention to the runtime to prepare single
copies of |μk〉 and |vec[�k]〉. The time to prepare a copy of
|μk

t 〉 is

O
{
κ (V1)

[
μ(V1) + T μ

χ

]
ln(1/ε2)

}
, (42)

and that to prepare a copy of |vec[�k
t ]〉 is

O
{
κ (V2)

[
μ(V2) + T �

χ

]
ln(1/ε2)

}
, (43)

where μ(V1) is given in Eq. (B8), κ (V1) is the condition
number of V1, ημ := maxi ‖yi‖2 and η� := maxi ‖yi ⊗ yi‖2.
Furthermore, T μ

χ , which is the time to prepare |χ k
t 〉 for esti-

mating {μk}K
k=1, is given by

T μ
χ = Õ

[
Kημ ln(
−1) ln(Nd )

ε1

]
, (44)

= Õ

(
Kημ

ε1

)
. (45)

Similarly, T �
χ is given by

T �
χ = Õ

[
Kη� ln(
−1) ln(Nd )

ε1

]
, (46)

= Õ

(
Kη�

ε1

)
. (47)

In addition, T π
χ is given by

T π
χ = Õ

[
K ln(
−1) ln(Nd )

ε1

]
, (48)

= Õ

(
K

ε1

)
. (49)

We also need to estimate the norms of |μk〉 and |vec[�k]〉.
The time for the norm estimation of |μk〉 is

Õ

[
KT μ

χ κ (V1)μ(V1)

ε
μ
3

]
, (50)

and that of |vec[�k]〉 is

Õ

[
KT �

χ κ (V2)μ(V2)

ε�
3

]
. (51)

We then estimate the runtime for estimating {π k}K
k=1. Due

to Hoeffding’s inequality [22], we need to perform sam-
pling 2K

(επ
4 )2 ln 2


π
each

times to realize ‖p̃k − pk‖ � επ
4 for k =

1, 2, . . . , K with probability (1 − 
π
each )K since the distri-

bution of π is the K-state discrete distribution. By setting
1 − 
π := (1 − 
π

each )K , we have 
π
each = 1 − (1 − 
π )1/K .

Thus, we have

Nπ = 2K(
επ

4

)2 ln
2

1 − (1 − 
π )1/K
, (52)

= Õ

[
K(

επ
4

)2

]
. (53)

Furthermore, we have to repeat the estimation process K times
for estimation of π compared to those of μ and �, since we
have to sample i from Ck , K times, for k = 1, 2, . . . , K . Thus,
the runtime for estimating π has an additional multiple of K .

Thus, the total runtimes for estimating {π k}, {μk}, and {�k}
are, respectively,

Õ

[
K3

ε1
(
επ

4

)2

]
, (54)

Õ

{
Kd

κ (V1)(
ε

μ
4

)2

[
μ(V1) + K

ημ

ε1

]
+ K2

ε1

ημκ (V1)μ(V1)

ε
μ
3

}
, (55)

Õ

{
Kd2 κ (V2)(

ε�
4

)2

[
μ(V2) + K

η�

ε1

]
+ K2

ε1

η�κ (V2)μ(V2)

ε�
3

}
.

(56)

In total, we have obtained Eq. (34).

V. CORRESPONDENCE BETWEEN THE EM ALGORITHM
AND THE Q-EM ALGORITHM

In this section, we discuss the correspondence between
the EM algorithm and the q-EM algorithm. As explained in
Sec. II A, the EM algorithm has two steps called the E and M
steps. In the E step, we compute the responsibilities. Roughly
speaking, the first and second steps of the q-EM algorithm
correspond to this step since cluster assignment is computed
in the first and second step in the case of the q-EM algorithm.
On the other hand, the M step of the EM algorithm computes
parameters. Similarly, the third and fourth steps of the q-EM
algorithm correspond to this step since parameters are updated
in the third and fourth steps of the q-EM algorithm.

We also add some remarks on the similar and different
points between the EM algorithm and the q-EM algorithm.
The similar point is that, at the end of each iteration, both
algorithms have updated parameters. The different point is the
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FIG. 1. Log-likelihood of the k-means algorithm (red lines) and
the δ-k-means algorithm (green lines). We perform the simulation 10
times, respectively. The difference of (a) and (b) is the scale of the
vertical axis.

data structure on cluster assignment. In the EM algorithm,
the responsibilities are computed; on the other hand, the
superposed state is stored in the q-EM algorithm. Roughly
speaking, this leads to the advantage of the q-EM algorithm
over the EM algorithm.

VI. NUMERICAL SIMULATION

To devise a quantum version of the EM algorithm, we
proposed the δ-EM algorithm in Sec. II. In this section, to see
that the EM and δ-EM algorithms are equivalent when δ is suf-
ficiently small and that the δ-EM algorithm improves upon the
δ-k-means algorithm, we show numerical simulations of the
EM algorithm, the δ-EM algorithm, the k-means algorithm,
and the δ-k-means algorithm.

In Ref. [23], the comparison between the k-means algo-
rithm and the EM algorithm with GMM is shown. Then
we use similar synthetic data sets used in Ref. [23]. In the
numerical simulations, we set δ = 0.2 except the numerical
simulation for the δ dependence of the δ-EM algorithm. For
simplicity, we add Gaussian noise to the parameters estimated
in the M step of the δ-EM algorithm and the centroids esti-
mated in the δ-k-means algorithm [24].

A. Example I

We begin with the explanation of the data set used in
this subsection. We generated by drawing 1000 data points
from the mixture of two Gaussian functions. The means
of the two Gaussian functions are μ1 = [0.3, 0.0]ᵀ and
μ2 = [−0.3, 0.0]ᵀ, respectively, and the covariances are,
respectively,

�1 =
[

1.0 0.98
0.98 1.0

]
, (57)

�2 =
[

1.0 −0.98
−0.98 1.0

]
. (58)

We also put π1 = π2 = 0.5.
In Figs. 1 and 2, we show the log-likelihood of the k-means

algorithm and the δ-k-means algorithm and that of the EM
algorithm and the δ-EM algorithm, respectively. We plot 10
trials for each algorithm. These figures show that the k-means
and δ-k-means algorithms have similar performance and that
the EM and δ-EM algorithms have similar performance. For
clarity, we graphically show the parameters estimated by the
δ-k-means algorithm and the δ-EM algorithm in Fig. 3 [25].
We have chosen the best estimates of the δ-k-means algorithm
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FIG. 2. Log-likelihood of the EM algorithm (red lines) and the
δ-EM algorithm (green lines). We perform the simulation 10 times,
respectively. The difference of (a) and (b) is the scale of the vertical
axis.

and the δ-EM algorithm in one hundred trials. These figures
demonstrate that the δ-EM algorithm outperforms the δ-k-
means algorithm.

In Table I, we summarize the success rates of the EM
algorithm, the δ-EM algorithm, the k-means algorithm, and
the δ-k-means algorithm. Here, the success rate means the
ratio of the number of the successfully predicted hidden
variables [26] to the number of the total data points. This
table shows that the δ-EM algorithm works better than the
δ-k-means algorithm. Thus, we insist that it is meaningful to
devise a quantum version of the δ-EM algorithm.

In Fig. 4, we show the δ dependence of the best success
rates of the δ-EM algorithm in 100 trials. This figure shows
that the δ-EM algorithm is robust for small δ, but the perfor-
mance decreases rapidly for large values of δ. We need to set
δ small, since the critical value depends on data sets.

B. Example II

We again start with the data set used in this subsection. The
data points are also generated by the mixture of two Gaussian
functions, but the parameters are different. We set [π1, π2] =
[0.7, 0.3], μ1 = [0.0,−0.5]ᵀ, μ2 = [0.0, 0.0]ᵀ, and

�1 =
[

1.0 0.0
0.0 1.0

]
, (59)

�2 =
[

10.0 0.0
0.0 0.10

]
. (60)

Furthermore, we draw 1000 data points from the mixture of
two Gaussian functions.

We first show the parameters estimated by the δ-k-means
algorithm and the δ-EM algorithm in Fig. 5. We have chosen
the best estimates of the δ-k-means algorithm and the δ-EM
algorithm in 100 trials. These figures represent that the δ-EM
algorithm outperforms the δ-k-means algorithm. In particular,
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FIG. 3. Pictures of estimated functions by (a) the δ-k-means
algorithm and (b) the δ-EM algorithm.
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TABLE I. Success rates of the EM algorithm, the δ-EM algo-
rithm, the k-means algorithm, and the δ-k-means algorithm. These
scores are best ones in 100 trials with randomized initial inputs.

EM δ-EM k-means δ-k-means

93.9% 94.3% 72.4% 72.5%

in the case of the δ-k-means algorithm, the covariances are
fixed at the identity matrix; then each cluster tries to exclude
each other.

In Table II, we summarize the success rates of the EM
algorithm, the δ-EM algorithm, the k-means algorithm, and
the δ-k-means algorithm. Here the success rate means the
ratio of the number of the successfully predicted labels to the
number of the total data points. This table shows that the δ-EM
algorithm works better than the δ-k-means algorithm.

VII. DISCUSSIONS

We here discuss the relationship between the EM algorithm
with the GMM and the k-means algorithm. The EM algorithm
with the GMM is an extension of the k-means algorithm; thus
we explain the two conditions that the EM algorithm with the
GMM becomes identical to the k-means algorithm.

The first condition is that ri,k
t takes 1 for a certain k and

0 otherwise. This implies that the k-means algorithm is an
algorithm for hard clustering, while the EM algorithm is one
for soft clustering. The second condition is that π k = 1/K and
�k = Id , where Id is the d-dimensional identity matrix for k =
1, 2, . . . , K . This is the reason why the k-means algorithm
does not explicitly deal with weights and covariance matrices.
From the viewpoint of a probability distribution, the k-means
algorithm is an algorithm to estimate {μk

t }K
k=1 in

p
(
x; {μk}K

k=1

) = 1

K

1

(2π )
d
2

K∑
k=1

e− 1
2 ‖x−μk‖2

. (61)

As shown in Sec. VI, the weights and the covariances of
the GMM play an important role; thus, we also insist that the
δ-EM algorithm is a meaningful extension of the δ-k-means
algorithm.
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FIG. 4. δ Dependence of success rates. Each success rate is the
best one in 100 trials.
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FIG. 5. Pictures of estimated functions by (a) the δ-k-means
algorithm and (b) the δ-EM algorithm.

VIII. CONCLUSION

In this paper, we have proposed a quantum algorithm
for the EM algorithm and showed that it realize a quantum
speedup compared to the classical EM algorithm. The key
idea is to generalize the distance that is minimized in the k-
means algorithm by considering also weights and covariances.
Though we have focused on the GMM, we can generalize this
condition to other mixture models. In machine learning, the
EM algorithm with the GMM is more often used than the
k-means algorithm; thus, this work is an important step toward
quantum machine learning. The algorithm requires a QRAM
oracle which has so far not been implemented in experiments
yet. As a future direction we will investigate the applicability
of superposition designs as proposed in Refs. [27,28].
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APPENDIX A: BIG O NOTATION

We here introduce the big O notation, which is often used
in computer science. For functions f (x) and g(x), one writes

f (x) = O[g(x)], (A1)

if and only if

∃x0, ∃M > 0, s.t. x > x0 ⇒ ‖ f (x)‖ < M‖g(x)‖. (A2)

Similarly, we say

f (x) = Õ[g(x)] (A3)

TABLE II. Success rates of the EM algorithm, the δ-EM algo-
rithm, the k-means algorithm, and the δ-k-means algorithm. These
scores are best ones in 100 trials with randomized initial inputs.

EM δ-EM k-means δ-k-means

88.8% 89.2% 57.9% 55.4%
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if and only if

∃k, f (x) = O[g(x) lnk (x)]. (A4)

These definitions will be utilized to describe the q-EM algo-
rithm and to perform error analysis.

APPENDIX B: QUANTUM PRELIMINARIES

We provide some tools that are required for the q-means
algorithm [11] in this section. These tools are also utilized in
a quantum algorithm for the EM algorithm.

1. Amplitude estimation

Here we summarize the amplitude estimation algorithm
that was proposed in Ref. [18]. Assume that we have UA given
by

UA : |0〉 	→ √
p|tari,k, 1〉 +

√
1 − p|gari,k, 0〉. (B1)

Then there exists an amplitude estimation algorithm that
outputs p̃ such that

‖p̃ − p‖ � 2π

√
p(1 − p)

Pae
+

(
π

Pae

)2

, (B2)

with probability at least 8/π2. The algorithm perform UA Pae

times. Note that if p = 0, then p̃ = 0, and if p = 0 and Pae is
even, then p̃ = 0.

Furthermore, to raise the probability to obtain a good
estimate on distances, we utilize a tool in Ref. [7]. We make
multiple copies of the amplitude estimates, apply the quantum
mode evaluation algorithm proposed in Lemma 8 of Ref. [7]
in Sec. B 2, and reverse the circuit to remove the garbage state.
We note that very recently an amplitude estimation algorithm
without phase estimation was introduced [29].

2. Median evaluation

The time complexity of the mode evaluation algorithm is
given in Lemma 8 of Ref. [7]. Let us summarize the main idea
of this Lemma. Let U be a unitary operation given by

U : |0⊗n〉 	→ √
a|x, 1〉 + √

1 − a|gar, 0〉 (B3)

for 1/2 < a � 1 in time T . Then there exists a quantum
algorithm that produces a state |	〉 such that

‖|	i,k〉 − |0〉⊗nL|x〉‖2 �
√

2
 (B4)

for 
 > 0, 1/2 < a0 < a, and integer L in time
2T � ln(1/
)

2(|a0|−1/2)2 �.

3. Quantum random access memory

In the q-means and q-EM algorithms, it is crucial to prepare
data as a quantum state efficiently. To this end, we exploit

the QRAM introduced in Refs. [30,31]. Here, we consider a
device that performs the operation∑

j

ψ j | j〉a
QRAM→

∑
j

ψ j | j〉a|Dj〉d . (B5)

We follow the application of the QRAM as in Ref. [11]. Let
V1 ∈ RN×d ; then there is a data structure to store the rows of
V1 such that the time to insert, update, or delete a single entry
vi, j is O(ln2 N ) and a quantum algorithm on the data structure
can be performed in time O(ln2 N ) that realizes the following
unitaries:

|i〉|0〉 	→ |i〉|vi〉 for i ∈ [N], (B6)

|0〉 	→
∑
i∈[N]

‖vi‖|i〉. (B7)

4. Quantum linear algebra

Some useful subroutines that are used in q-means and q-
EM are given as follows:

Theorem 1. Let M ∈ Rd×d that satisfies ‖M‖2 = 1 and x ∈
Rd . If M is stored in QRAM and the time to prepare |x〉 is Tx,
then there exist quantum algorithms that return

(i) a state |z〉 such that ‖|z〉 − |Mx〉‖ � ε in time
Õ{[κ (M )μ(M ) + Txκ (M )] ln(ε−1)},

(ii) a state |z〉 such that ‖|z〉 − |M−1x〉‖ � ε in time
Õ{[κ (M )μ(M ) + Txκ (M )] ln(ε−1)},

(iii) the norm z ∈ (1 + δ)‖Mx‖ with relative error δ in
time Õ[Txκ (M )μ(M )δ−1 ln(ε−1)],

where

μ(M ) := min
p∈[0,1]

[‖M‖F ,
√

s2p(M )s1−2p(Mᵀ)], (B8)

sp(M ) := max
i∈[n]

∑
j∈[d]

M p
i, j, (B9)

and κ (M ) is the condition number of M.

APPENDIX C: INEQUALITY FOR ERROR ANALYSIS

The following holds for general �a and �b:

‖‖�a‖ · |�a〉 − ‖�b‖ · |�b〉‖
� ‖‖�a‖ · |�a〉 − ‖�a‖ · |�b〉‖ + ‖‖�a‖ · |�b〉 − ‖�b‖ · |�b〉‖ (C1)

= ‖�a‖ · ‖|�a〉 − |�b〉‖ + (‖�a‖| − ‖�b‖)‖|�b〉‖. (C2)

We used the above equation to derive Eq. (37).
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