

CONNECTING THE BRIGHT & DARK SIDES OF MASSIVE GALAXIES What have we learned from HSC? What can we expect from NGRST?

Song Huang (黄崧), Alexie Leauthaud, Peter Behroozi, Andrew Hearin, Josh Speagle, Christopher Bradshaw, Felipe Ardila & HSC Collaboration

🕊 @dr_guangtou 🗘 dr-guangtou

2020-10-07 Roman 2020

Image credits: HSC Collaboration

Take Home Messages

Remember the Low Surface Brightness Stellar halo, Tidal feature & LSB dwarfs

See posters by Alejandro Borlaff & Mireia Montes; Also the talk by Yuan-Yuan Zhang on Fri.

Don't Forget the Dark Side Weak Lensing is a Unique Strength of NGRST

See talks by Risa Wechsler on Thu & Tommaso True on Fri; Also the posters by Stephanie O'Neil & Lorenzo Zanisi

A New Era for Galaxy-Halo Connection

- Massive galaxies trace the most massive dark matter halos, or clusters.
- At high-mass end of SHMR, we need better constraints of both <u>stellar</u> and halo mass!

Why Stellar Halo? Why Massive Galaxy?

Huang+2013a,b, 2016

- Massive galaxies have very extended stellar mass distribution
 - Very hard to observe and model
 - We have to reach to large radii to measure "true" stellar mass
- Outskirts of massive galaxies are dominated by "ex-situ" stars
 - Keeps crucial fossil records of the assembly history
 - Outer stellar halo may have a closer connection to DM halo

Image credits: HSC Collaboration

Evolution of the Stellar Mass Function at High-Mass End

- The lack of evolution of SMF at high-mass end is puzzling!
- The measurements out to larger aperture can help!

Behroozi+2011; Also see Bundy+2017

Huang et al. 2018

HSC

Large Diversity in the Stellar Halos of Massive Galaxies

- At similar "total" stellar mass, there is a large intrinsic scatter of outer profile.
- No clear separation of "<u>normal</u>" and '<u>cD</u>" galaxies.
- Likely due to the difference in mass assembly history (merger history).

The Shape of Stellar Halo also Depends on Stellar Mass

- Massive galaxies are, on average, more elliptical in the outskirt
- More massive galaxies tend to have more elliptical outer halo
- May help us study the *intrinsic shape of halo*, and halo assembly history
- Such subtle trend is easily washed out in stacking analysis

Huang + 2018b

Stellar Mass Distribution - Halo Mass Connection

- At similar "total" mass, massive galaxies with different outer profile live in dark matter halos with different halo mass.
- Massive galaxy with more prominent outer halo <u>lives in more massive</u> <u>halos</u>, thanks to HSC lensing capability.

HSC

<u>Galaxy-Galaxy Lensing in the Era of HSC</u>

- We extended the SHMR to connection halo mass with two aperture stellar mass as an empirical description of the relation between stellar mass distribution and halo mass.
- Still limited by sample size and S/N or lensing signals.

<u>Comparisons of Different Halo Mass Proxies</u>

The inner 30 kpc of these galaxies really don't care about their halos
Lower Halo Mass
Higher Halo Mass

What to Expect from NGRST

Incredible g-g lensing capability

Higher density of source galaxies; Higher mean source redshift; More accurate shear measurements

Near Infrared Imaging

Better tracer of stellar mass; Suffer less from the Galactic Cirrus; Help us extend to higher redshift

Mean redshift Survey N source per arcmin² of sources $\langle z_s \rangle$ COSMOS 39 1.2 18.5 HSC Wide 0.81 30 1.2 LSST Wide Euclid Wide 30 0.9 WFIRST HLS 45 1.1

Higher Resolution

Making deblending easier; Push the study to higher-z; Probe central profile at low-z

Better Redshift

Grism-z; Photo-z with LSST data; Separate central and satellites; Better deal with projection effect

HS

GALAXY-HALO CONNECTION Huang+2020 Huang+in prep

HSC

Improve SHMR; Extend beyond simple SHMR

Thank You Very Much !

Chinese Space Station Telescope (CSST or Xun-Tian 巡天)

- Launch Date: 2025?
- 2-m Telescope; Off-axis design
- NUV-Optical 5 (or 6)-band survey of ~10000 square degree; 0.15" PSF
- With Grism spectroscopy

HSC