- 1 Quantifying use of lethal ZnCl₂ on Black Lives Matter demonstrators by United States Homeland Security
- 2
- 3 Juniper L. Simonis¹
- 4
- 5 ¹DAPPER Stats, Portland, Oregon, United States of America
- 6 <u>simonis@dapperstats.com</u>
- 7 ORCID: 0000-0001-9798-0460
- 8
- 9 Short title: US Homeland Security uses lethal gas on demonstrators

ABSTRACT

1	1
T	T

12	Law enforcement's use of chemical weapons is a threat to human and environmental health,
13	exemplified during 2020 racial justice protests in Portland, Oregon, USA. In July, US Department of
14	Homeland Security (DHS) agents used an exceptionally toxic and unknown weapon to quell free speech in
15	support of Black lives and against federal presence. With significant help from the community, I combined
16	first-hand accounts, videos and photos of munitions, primary literature, and analytical chemistry to identify
17	the weapon as gaseous ZnCl ₂ from Hexachloroethane (HC) "smoke" grenades. Using hierarchical Bayesian
18	methods, I estimated that DHS deployed 26 (25 – 30; 95% CI) HC grenades. Given the toxicity of $ZnCl_2$,
19	that many canister could have killed hundreds of people. Although no fatalities were reported, the exposed
20	population experienced acute, delayed, and persistent health issues. DHS's wanton use of ZnCl2 will have
21	lasting impacts and was identified through a community standing up for racial justice.
22	
23	INTRODUCTION
24	
25	"The use of poison in any manner, be it to poison wells, or food, or arms, is wholly excluded from modern
26	warfare. He that uses it puts himself out of the pale of the law and usages of war."
27	General Orders No. 100, Article 70, signed President Abraham Lincoln 18631
28	
29	Following the killing of George Floyd by Minneapolis police officers in Minnesota on 25 May 2020,
30	Black Lives Matter (BLM) protesters took to the streets around the world to demand justice ² . In solidarity
31	with Minneapolis, BLM demonstrations in Portland, Oregon began on 27 May3 and continued for over a
32	hundred days, only interrupted by hazardous wildfire smoke4,5. In response to these protests, city, county,
33	state, and federal law enforcement agencies deployed a variety of chemical weapons such as 2-
34	chlorobenzalmalononitrile (CS), oleoresin capsicum (OC) and caustic munitions smokes ^{2,4-7} , building upon a
35	legacy of chemical weapons usage by Portland Police Bureau ² . Indeed, since the start of the 2020 BLM

protests, Portland has not only had the most number of publicly reported instances of police violence at BLM protests among US cities (403 of 1,281; 31.5%) but also over a third of all such instances involving chemical weapons (180 of 522; 34.4%)⁶, despite only having 0.2% of the total US population (Fig.1)^{6,8}. Seattle, Washington (1.2 times the population of Portland) had the next most number of incidents involving chemical weapons by police at BLM protests: 40, which is less than 25% of Portland's 180 such incidents (Fig.1)⁶

41

42 Chemical weapons were outlawed for American wartime use by Abraham Lincoln via the Lieber 43 Code in 1863¹ and internationally in the Hague Conventions of 1899 and 1907^{9,10} and the Geneva Protocol of 44 1928¹¹, yet they have a long history of domestic use by law enforcement against civilians to quell unrest¹²⁻¹⁴. 45 This is despite chemical weapons being fundamentally indiscriminate, often deployed against specifications, 46 and lethal¹²⁻¹⁴. In the United States, the use of chemical weapons exacerbates systemic inequities and limits 47 constitutionally protected expression of speech and assembly^{2,7,14}. In Portland, Oregon, law enforcement has 48 a well-documented history of only deploying chemical weapons to prevent free speech in support of Black 49 lives and racial justice; no such actions are taken against gatherings of recognized white supremacist hate 50 groups², even when occurring on the same day¹⁵.

51

52 During the second half of July, as interest in Portland's BLM protests was resurging and focused particularly on federal presence (Fig. 2; Dataset S1)⁴, agents of the US Department of Homeland Security's 53 (DHS) new Protecting American Cities Task Force (PACTF)^{16,17} deployed deadly gaseous Zinc Chloride 54 (ZnCl₂) via Hexachloroethane (HC) Smoke grenades (Figs. 3, S1-S24) during Operation Diligent Valor¹⁸. At 55 56 the time, ZnCl₂ was not a familiar weapon to demonstrators nor were HC cans among any munitions 57 recovered in the previous two months of protests (Fig. S25). And as such, concerning new heath symptoms 58 (severe headache, sudden vomiting, chemical skin rash, loss of hair and nails, etc.) that began appearing at the 59 same time could not be attributed to a causal agent. Indeed, it took an incredible effort (summarized herein) 60 by frontline journalists, scientists, community leaders, legal observers, medics, and protesters to document the 61 munitions so that mass severe health symptoms could be definitively tied to HC used by DHS, and produced

by Defense Technology (DT), a subsidiary of The Safariland Group (Fig. S26). Hampering this connection were [1] DHS's lack of admission to using HC during disclosure of their arsenal to the City of Portland, when answering journalists, and in response to Freedom of Information Act (FOIA) requests (E. Holmes, personal observation)^{19,20} and [2] DT's failure to mention ZnCl₂ or its human and environmental health impacts on its product specification page (Fig. S26) or Safety Data Sheet²¹.

68 Hexachloroethane is a munitions "smoke" developed in the early 1930s by the US Army Chemical 69 Warfare Service that was understood by the mid-1940s to be a poisonous chemical agent²²⁻²⁴ and which has 70 since been replaced throughout the US Armed Services²⁵. HC itself is listed as hazardous by the International 71 Agency for Research on Cancer, and the US Environmental Protection Agency, Department of 72 Transportation, Occupational Safety and Health Administration, American Conference of Governmental 73 Industrial Hygienists, National Institute for Occupational Safety and Health, and National Toxicology 74 Program²⁶ and has significant human and environmental health consequences²⁴. A more dire result of the use 75 of HC grenades, however, is that they produce a high volume (> 75% of all products w/w) of gaseous ZnCl₂, 76 a lethal vapor, during the focal reaction²⁷⁻²⁹:

77

 $C_2Cl_6 + 3ZnO \rightarrow 3ZnCl_2 + Al_2O_3 + C$ (Eq. 1).

79

Indeed, despite being called Hexachloroethane Smoke grenades, the goal in using them is to produce gaseous
ZnCl₂, which refracts light and thus creates a "smoke". Additionally, due to the high heat energy of the
reaction (1000 – 2000 C), many noxious gaseous byproducts are created, most notably carbon monoxide
(CO), phosgene (COCl₂), hexachlorobenzene (C₆Cl₆), tetrachloroethene (C₂Cl₄), carbon tetrachloride (CCl₄),
hydrogen chloride (HCl), and chlorine (Cl₂)²⁷⁻²⁹.

85

Hundreds of cases of toxicity from HC smoke have been documented across the intervening decades
 since its development, showing a range of significant symptoms including immediate dyspnea, coughing,

⁶⁷

88 lacrimation, chest pain, vomiting, nausea, and mucosal irritation; delayed and prolonged inflammation of skin 89 and internal organs as well as tachycardia; chronic genotoxicity of the bronchial epithelium; and an average 90 fatality rate of 14% among case clusters³⁰. HC smoke has further significant effects on the environment, 91 including defoliation and long-term reduction in tree growth^{31,32} and stunted development, scale deterioration, 92 skeletal weakness, and bioaccumulation in fish33-35. This is of particular note, as HC grenades were deployed 93 in the catchment of Portland's untreated stormwater system that outfalls directly into nesting and rearing 94 habitats of salmonids. Given the lethality of its products, the wanton use of HC by DHS in Portland is 95 alarming and warrants significant further investigation.

96

97 The goal of this study was therefore to quantify use of HC by DHS to provide a basis for estimating 98 human and environmental impacts. To accomplish this, I combined multiple data streams of observations 99 (visual/photographic confirmations, recovered canisters) on HC use into a single Bayesian hierarchical 100 model³⁶⁻³⁸ fit using a Gibbs sampler³⁹. I then sampled the protest environment (soil, plants, clothing, 101 canisters, ground, tent) for signatures of HC use (Zinc, Hexachloroethane, other chlorinated hydrocarbons) 102 using standard analytical chemistry methods. Such an exercise would not be necessary if DHS were to release 103 actual chemical weapons deployment data. Given the lack of transparency regarding chemical weapons use by 104 all law enforcement agencies in Portland, however, including retrieval of canisters to prevent identification 105 and shooting those who touch canisters^{40,41} estimation is a critical starting point on the road to understanding 106 the scope and scale of HC's impacts.

- 107
- 108

109

110

111

RESULTS

- Over the course of July 2020, DHS deployed an estimated 26 (25 30, 95% posterior interval) grenades of hexachloroethane in the focal protest area in downtown Portland Oregon, specifically in the
- 112 immediate vicinity of the Wyatt Federal Building and Hatfield Federal Courthouse (Fig. 5, Table 1). Twenty
- 113 grenades were recovered, five more were observed being deployed by agents but not recovered (Figs. S1-S24,

Table S1), and 1 (0 – 5, 95% posterior interval) was estimated to not have been observed or recovered. The estimated rate of HC grenade deployment (λ) by DHS during July was 0.12 grenades per hour of federal agents on the street (0.03 – 0.39, 95% posterior interval; Fig. 5, Table 1). The rate of recovery (ϱ) was 0.73 (0.57 – 0.85, 95% posterior interval), notably higher than the visual observation rate (ν ; 0.50, 0.32 – 0.68, 95% posterior; Table 1).

119

The Gibbs sampler efficiently sampled and effectively searched the joint posterior distribution (Eqs.
2-4). Convergence was high among the parallel chains: the potential scale reduction factors (psrf, a.k.a.
Gelman-Rubin statistic)³⁶ being all ~1.0 (Table 1). All parameters exhibited very small MCMC

123 autocorrelations (~0.0) and had resultingly large effective sample sizes (Table 1).

124

125 Translation of the total estimated HC deployment to $ZnCl_2$ gas produced^{18,26} using published lethal 126 doses⁴² and weights⁴³ shows that hundreds of fatalities could have occurred (median: 235, 95% posterior 127 interval: 156 – 306), although there was large uncertainty due to imprecise LD50 measurements and weight 128 variation among individuals. While the canisters were deployed outside, which certainly prevented many 129 deaths, diffusion was limited by crowds of thousands of people (Fig. 2), closed tree canopies, cars, and tents 130 (Simonis, personal observation). Indeed, the off-gassing ZnCl₂ presented significant risks to individuals in the vicinity as evidenced by high levels of zinc in environmental samples (Dataset 2)⁴²; immediate^{45,46}, delayed^{47,48}, 131 132 and chronic^{49,50} health symptoms; and odors detectable miles away⁵¹.

133

Of particular note from the environmental chemistry samples was a hexachloroethane canister recovered after deployment by DHS (Figs. 3(b,c,d), 4, S16, Video S1), from which I sampled solid residue. Ion Chromatography and Gas Chromatography/Mass Spectrometry (GC-MS) identified that the residue was Z7% Zinc w/w and contained hexachloroethane, identifying that the munition was not fully spent (Dataset S3). The grenade also contained tetrachloroethene, benzene, toluene, phthalic anhydride, Chromium, and Lead (Dataset S2), all of which pose significant human and environmental health risks^{24,30}. The spread of

140	ZnCl2 through the protest area and beyond was shown through all environmental samples having significant
141	concentrations of Zinc (Dataset S2). Perhaps the most notable of which was the organic vapor filter worn by
142	a medic outside of the plume on the far side of the protest area (~300 yd or 275 m from the main release
143	points) which contained Zinc (made gaseous as ZnCl ₂), yet no Chromium or Lead (neither of which were
144	made gaseous), as well as phthalic anhydride, toluene, and xylene (Dataset S2).
145	
146	DISCUSSION
147	
148	Under ideal conditions in a wide-open field at night, the concentration of ZnCl ₂ produced by a
149	typical HC grenade is high enough that an unmasked individual 200 yd (three city blocks in Portland, 183 m)
150	from detonation has a maximum of 24 min of safety before significant acute health symptoms appear ²² . An
151	individual a 1,000 yd (0.9 km) away is still at risk and only has 2.5 h ²² It is unclear how ZnCl ₂ dissipates
152	through a densely-gassed, tree-lined urban landscape within a river valley like Portland52, but reported signs
153	and symptoms indicate that it spread widely, entered the stormwater system that flows to the Willamette
154	River, and passed through or around protective equipment worn by journalists, protesters, medics, legal
155	observers, and bystanders ⁴⁵⁻⁵¹ .
156	
157	The impact of ZnCl ₂ 's novelty cannot be overstated, as both veteran and newer demonstrators, press,
158	medics, and legal observers were unprepared for this weapon specifically. Virtually all existing chemical
159	weapons seen prior to HC's use produced liquid or solid particles, despite being called "tear gas", that could
160	be removed from air using particle filters such as respirators. As such, many individuals had insufficient
161	filtration to remove gaseous ZnCl ₂ . Only those with filters designed for gases were able to limit inhalation, as
162	evidenced by the Zinc found on the medic filter (Dataset S2) and first-hand accounts of individuals with gas
163	masks being less affects (Simonis, personal observation). Even when using a properly fitting gas mask,
164	however, ZnCl ₂ is absorbed into the body via dermal uptake ^{22-24,30} . Further, given its capacity to
165	bioaccumulate and cause delayed severe inflammation responses, ZnCl2 exposure is measured cumulatively
165	bioaccumulate and cause delayed severe inflammation responses, ZnCl ₂ exposure is measured cumulatively

166	over 10 d ^{22,30} , a significant departure from other presently used chemical weapons ¹²⁻¹⁴ . Despite these life-
167	threatening differences with HC, the public was never informed of DHS's use of the weapon by any agency
168	(federal or otherwise). Indeed, DHS has continued to deny using HC (E. Holmes, personal observation),
169	despite overwhelming evidence to the contrary (Figs. S1-24, Video S1, Dataset S2) ^{19,20} and even a more recent
170	(29 October 2020) deployment of HC by DHS in front of a property rented by Immigrations and Customs
171	Enforcement (ICE) in South Portland ^{53,54} , which again caused severe health symptoms in the exposed
172	population ⁵² .
173	
174	As a highly mobile and poisonous gas that lacks an odor itself, ZnCl ₂ poses a significant risk to
175	humans as well as the environment ^{22,30,31,35} . Building upon a legacy of resistance to excessive police force ^{2,3} , a
176	community of protesters, activists, journalists, legal observers, and scientists standing up for Black lives
177	documented its use and are just beginning to understand its impacts on the residents and environment of
178	Portland. Human health and environmental impact studies are urgently needed to grasp the full impact of
179	DHS's literal salting of the earth using Hexachloroethane smoke grenades in Portland, OR.
180	
181	METHODS
182	
183	Incidents of Police Brutality at 2020 BLM Protests
184	
185	I collected all incidents from the Police Brutality 2020 database6, which collates publicly reported
186	events of police violence associated with the 2020 Black Lives Matter (BLM) protests. I used their RESTful
187	API (https://api.846policebrutality.com/api/incidents) via R v3.6.355 with the httr v1.4.156 and jsonlite
188	v1.6.157 packages. I collected all incidents during the 25 May to 31 December 2020 interval, and specifically
189	filtered Portland, Oregon incidents. I also filtered the total and Portland incidents by chemical weapons tags
190	using entries marked "gas", "marking-round", "pepper-ball", "pepper-spray", "spray", "tear-gas", or "tear-
191	gas-canister", and then simply divided to determine ratios.

193 Portland Protest Data

195 I used timestamps from videos and augmented them with time-stamped or time-noting tweets as 196 needed, to calculate the amount of time each night during July 2020 that the federal agents were outside of their buildings^{58,59}. Individual jaunts by federal agents are detailed in Dataset S3 and collated daily-level data 197 198 are in Dataset S1. I used crowd size estimates provided by the news and social media aggregating site The 199 Recompiler, which has a project (RE: Portland) that has collected documents of the Portland BLM protests 200 since the end of June 2020, prior to the arrival of the DHS agents⁵⁹. On nights where a range of crowd sizes 201 was given, the midpoint was used. See Dataset S1 for data used in analyses. 202 203 Munition Identification 204 205 Protesters, concerned civilians, medics, legal observers, trash cleaners, scientists, and neighbors have been collecting munitions (e.g., Figs S1-25) since the beginning days of the protest. I leveraged this 206 207 specifically to address the uncertainty around Hexachloroethane (HC) usage by connecting with the network 208 of individuals already collecting and documenting munitions and notifying them of the particular can types of interest. In addition, I put out specific calls publicly for submissions of photos via Twitter and the Chemical 209 210 Weapons Research Consortium website (https://chemicalweaponsresearch.com) via secure email and secure form, which have yielded dozens of submissions, but no additional HC cans beyond those included (Simonis, 211 212 personal observation). The avenues remain open to submissions and I will update the Dataset used here with 213 any further HC cans. I also watched dozens of hours of footage58,59 and read through aggregated news and tweets⁵⁹ to investigate potential other deployments. Because HC cans are so distinctive when deploying and 214 afterwards (Figs. 3, S1-S25, but note Fig. S9; Video S 1), it was possible to retroactively evaluate 215 documentation and collections of munitions to enumerate the HC cans. If a can spewed sparks, off-gassed 216 217 white/grey/black "smoke", and glowed and burned hot and long (~2 minutes), it was considered an HC can,

- 218 due to the distinctive nature of its incendiary aspects (Fig. S27). Further, if any recovered can was so corroded 219 to be illegible and was of the distinctive size of the HC cans (Figs. S1-24), it was considered as such. In the 220 instance of the grenade in Fig. S9, it was identified as HC due to its clear labeling.
- 221

222 **Bayesian** Model

223

224 Having evaluated a large volume of photographic, video, and print media, I identified deployments of 225 hexachloroethane (HC) grenades and recovery of munitions during July 2020 (Figs. S1-S24). I also estimated 226 the time federal agents were out of their buildings and crowd size for each day from the media compilation 227 (Fig. 2, Datasets S1,S3). I combined the visual confirmation of HC deployment and recovery of HC canisters 228 with the time federal agents were out of their buildings using a hierarchical Bayesian model to infer the 229 underlying unknown number of canisters deployed by the Department of Homeland Security (DHS) on a given day (d_i) and over all days $(D = \sum d_i)^{36-38}$, where the *i* subscript represents day. 230

231

232 The hourly rate of deployment for that day (λ_i) is a log-linear (to handle Poisson response) function 233 of the raw intercept (λ^*) and stochastic error term (ε_i), and is weighted by the time DHS agents were on the street/out of their buildings each night $(FT_i)^{37}$. The number of canisters deployed each day is then a Poisson 234 distribution with rate $\lambda_i FT_i$ truncated at the minimum by the known cans deployed on that day (c_i): 235

236

237
$$\varepsilon_i \sim \text{Normal}(0, \sigma^2)$$

238 $\lambda_i = e^{\lambda^* + \varepsilon_i}$ (Eq. 2).
239 $d_i \sim \text{Poisson}(\lambda_i \text{FT}_i)_{c_i}$

240

239

Deployed grenades were then subjected to each detection process via Binomial distributions: observation 241 242 (regardless of recovery) is governed by rate ν to give daily observed cans o_i and by recovery (regardless of observation) by rate ρ to generate daily recovered cans r_i . The processes are joined using a third, constrained 243

244	Binomial describing the number of grenades that were both observed and recovered (or_i) by applying the
245	recovery process to observed grenades and capping the number at the total grenades recovered ^{37,38} . Both rates
246	are fit on the logit scale:
247	
248	$o_i \sim \text{Binomial}(\nu, d_i)$
249	$r_i \sim \text{Binomial}(\rho, d_i)$
250	$or_i \sim \text{Binomial}(\rho, o_i)^{r_i}$ (Eq. 3).
251	$\nu = \text{logit}^{-1}(\nu^*)$
252	$\rho = \operatorname{logit}^{-1}(\rho^*)$
253	
254	This model therefore assumes no false positives, a fair baseline assumption, given the distinctive burn pattern
255	and resulting canister (Figs. 2, S1-24)37. I used generally uninformative priors on the raw scales:
256	
257	$\lambda^* \sim \text{Normal}(0,1)$
258	$v^* \sim Normal(0,1)$ (Eq. 4).
259	$\rho^* \sim \text{Normal}(0,1)$
260	$\sigma \sim \text{Uniform}(0,100)$
261	
262	I fit the model using JAGS (Just Another Gibbs Sampler, v4.2.0) ³⁹ via the runjags v2.0.4-6 package ⁶⁰
263	in R ⁵⁵ . I used four MCMC chains with varying starting values for parameters and ran each for 10,000
264	adaptation, 100,000 burn-in, and 1,000,000 final samples thinned to 10,000 per chain to total 40,000 samples
265	across chains. I evaluated chain convergence using the autocorrelation, sample size adjusted for
266	autocorrelation, and Gelman-Rubin statistic ³⁶ for each parameter. All code is included within Datasets S5,S6.
267	
268	I then converted the estimated number of cans deployed each day to the potential number of human
269	fatalities from ZnCl ₂ . A standard Military Style can contains 19 oz of HC mix Type C ²⁴ , there are 28.4 g in an

270	oz, and assuming no loss of mass, 1 g of Type C mix generates 1 g products. ZnCl ₂ constitutes 0.764 w/w of
271	all products ²⁹ , which translates to 412.3 g ZnCl ₂ per grenade. It is difficult to gauge specifically the lethal dose
272	or concentration of ZnCl ₂ , given the limited data on humans and multiple modes of uptake (inhalation, orally,
273	dermally) ^{24,27} . Thus, for a simple approximation, I used a log-normal distribution based on the eight studies
274	included in PubChem that report LD ₅₀ values for mammal models (24, 58, 91, 200, 330, 350, 1100, 1260
275	mg/kg) ⁴² , which has a log-scale mean of 5.36 and standard deviation of 1.39, generating a back-transformed
276	mean of 555 mg/kg. For human sizes, I used the most recent (2017-2018) US National Health and Nutrition
277	Examination Survey with available data and combined the data across genders to construct a log-normal
278	distribution with a back-transformed mean of 83 kg (log-scale mean: 4.42, sd: 0.22). Thus, an average LD_{50} is
279	46 g/person and an average grenade contains enough $ZnCl_2$ to kill 9.0 people. To incorporate the LD_{50} and
280	weight uncertainty in estimating the number of potential fatalities, I treated the total ZnCl ₂ from each MCMC
281	iteration as a resource pool and individuals consumed the ZnCl2 represented by their personal LD50 values,
282	which were drawn separately for each iteration.
283	
284	All code used is included within Datasets S5 and S6, including full R session information and package
285	
	versions.
286	versions.
286 287	versions. Chemical Analyses
287	
287 288	Chemical Analyses
287 288 289	Chemical Analyses I collected 11 environmental samples from a variety of sources around the areas of hexachloroethane
287 288 289 290	Chemical Analyses I collected 11 environmental samples from a variety of sources around the areas of hexachloroethane
287 288 289 290 291	<i>Chemical Analyses</i> I collected 11 environmental samples from a variety of sources around the areas of hexachloroethane deployment (Fig. 4, Dataset S2):
287 288 289 290 291 292	Chemical Analyses I collected 11 environmental samples from a variety of sources around the areas of hexachloroethane deployment (Fig. 4, Dataset S2): [1] Medic Filter: filter medium from a NIOSH Organic Vapors DMA 6001 filter set worn by a medic

- [2] HC Can: dust/particle residue from inside Defense Technology Hexachloroethane (HC) Smoke can
 deployed and recovered post "completion" on 2020-07-28 night into 2020-07-29 (Figs. 3, S16; Video
 S1).
- [3] A's Backpack: Cut out from a black Jansport backpack that was worn by a protester the night of
 2020-07-23 and prepped for sampling thereafter.
- 301 [4] 3rd Avenue and Salmon Street Plants: shrub within the fence at the Federal Courthouse and Tree
 302 at the corner of Lownsdale, samples taken 2020-07-27 night after a bleach smell was noticed and
 303 2020-07-28 during the following daytime.
- 304 [5] Lownsdale Surface Soil at 3rd Avenue and Salmon Street: Scoop of topsoil from the NE corner
 305 of the park taken 2020-07-28 midday.
- 306 [6] **SW 3rd Avenue**: samples of paper and other refuse on the street in front of the Federal courthouse
- 307 on 3rd near Salmon from immediately after a bleach smell was noticed 2020-07-27 into 2020-07-28.
- [7] E's Shirt: water taken from a soak of a shirt worn by a protester on 2020-07-26 into 2020-07-27, with
 noticeable bleach-like smell and visible loss of coloration.
- 310 [8] **Green Smoke Can**: dust/particle residue from inside Defense Technology Green Smoke canister

311 deployed and recovered post "completion" on 2020-07-28 into 2020-07-29.

- 312 [9] S's Leggings: water taken from a soak of leggings worn by protester recovering spent canisters 2020 313 07-28 into 2020-07-29.
- 314 [10] Witches' Tent: passive sample taken from existing cotton rounds, paper towels, etc that were
- present in a medical tent in Lownsdale (run by medics known as The Witches) the night when the
 tent reeked of bleach 2020-07-26⁶¹.
- 317 [11] Spicy Bucket Scrape: residue scraped from inside of a Home Depot 5-gallon bucket used to cover
 318 smoke and gas canisters during 2020-07-27 and 2020-07-28 nights.

Samples were stored frozen in 1-L glass jars until submitted to Specialty Analytical in Clackamas, Oregon.
Each sample was tested using standard EPA methods for volatile organic compounds (SW8260D, E8260D);
semi-volatile organic compounds (E8270E); and Zinc, Chromium, and Lead (SW 6020B) (Dataset S2).
DATA AVAILABILITY
All data used herein are included in Datasets S1 to S6.
ACKNOWLEDGEMENTS
This work would not have been possible without a large community standing up despite the wanton
use of chemical weapons to say that Black Lives Matter. Front-line journalists including Alissa Azar, Garrison
Davis, Robert Evans, Mariah Harris, Laura Jedeed, Jacob Hanning, Melissa Lewis, Sergio Olmos, Mac Smith,
Tuck Woodstock and many individuals who have chosen to remain anonymous due to continuing tensions
with law enforcement provided invaluable documentation. Additional contributions to the dossier are cited in
the Supplementary Information. Substantial thank you to the Don't Shoot Portland team for documenting,
researching, and organizing around use of chemical weapons in Portland; Sarah Riddle for life-cycle
documentation; The Recompiler Magazine for aggregated protest news; and Eric Greatwood for particularly
useful standardized video footage. Mason Fidino gave helpful feedback on the model and Nelson Hairston Jr.
and Sandy Simonis provided editing support.
REFERENCES
1. F. Lieber & A. Lincoln. The Lieber Code. General Order No. 100. Article 70. Available at
https://avalon.law.yale.edu/19th_century/lieber.asp (1863). Accessed 1 October 2020.
2. A. Morman, Z. Williams, D. Smith., & A. C. Randolph. Riot control agents: systemic

346	3.	reassessment of adverse effects on health, mental stability, and social inequities. Don't Shoot PDX,
347		Portland, OR. Available at https://www.dontshootpdx.org/wp-
348		content/uploads/2020/06/DSPFinal-RCAreport4SocialChange-AM.ARZWDSpdf (2020).
349		Accessed 1 October 2020.
350	4.	@ProudBulba. Tweet. https://twitter.com/ProudBulba/status/1265896197866176512. Accessed 1
351		October 2020.
352	5.	E. Campuzano, B. Hebert, B. Nakamura, D. Killen, & M. Graves. 100 Days of Protests in Portland.
353		The Oregonian, 8 September 2020. https://www.oregonlive.com/portland/2020/09/100-days-of-
354		protests-in-portland.html. Accessed 1 October 2020.
355	6.	A. Zielinski. Good Morning, News: Smokey Skies, Police Overtime Costs, and 100 Days of Portland
356		Protests. Portland Mercury, 8 September 2020.
357		https://www.portlandmercury.com/blogtown/2020/09/08/28807957/good-morning-news-
358		smokey-skies-police-overtime-costs-and-100-days-of-portland-protests. Accessed 1 October 2020.
359	7.	PB2020 Team. Police Brutality During the 2020 George Floyd Protests. Available at
360		https://github.com/2020PB/police-brutality. Accessed 8 January 2021.
361	8.	E. Weizman, R. Trafford, I. J. Brown, E. Farooqui, L. Karmode, Z. Ioannidis, L. Brown, L. Starr, N.
362		Elçi, S. Nankivell, C. Varvia, O. Ferwati, C. Godart, N. Waters, A. Mossou, G. Fiorella, E. Alder, R.
363		Barron, N. Boyle, R. Cavanaugh, A. Dhillon, M. Ficarelli, K. Mager, M. Nieto, I. Piper, S. Reeves-
364		Dyer, & A. Weizman. Police Brutality at the Black Lives Matter Protests. Forensic Architecture.
365		https://forensic-architecture.org/investigation/police-brutality-at-the-black-lives-matter-protests.
366		Accessed 8 January 2021.
367	9.	United States Census Bureau. Population Estimates V2019 (July 1, 2019).
368		https://www.census.gov/quickfacts/fact/table/US/PST045219. Accessed 8 January 2021
369	10.	Hague Peace Conference. Declaration on the Use of Projectiles the Object of Which is the Diffusion
370		of Asphyxiating or Deleterious Gases. Available at https://avalon.law.yale.edu/19th_century/dec99-
371		<u>02.asp</u> (1899).

- Hague Peace Conference. Laws and Customs of War on Land (Hague IV). Article 23. Available at
 https://avalon.law.vale.edu/20th_century/hague04.asp (1907).
- 12. Geneva Protocol. Protocol for the Prohibition of the Use in War of Asphyxiating Gas, and of
- 375 Bacteriological Methods of Warfare. Available at
- 376 <u>https://avalon.law.yale.edu/20th_century/geneva01.asp</u> (1928).
- 13. H. Hu, J. Fine, P. Epstein, K. Kelsey, P. Reynolds, & B. Walker. 1989. Tear gas harassing agent or
 toxic chemical weapon? *The Journal of the American Medical Association* 262:660-663 (1989).
- 14. R. A. Greenfield, L. N. Slater, M. S. Bronze, B. R. Brown, R. Jackson, J. J. Iandolo, & J. B. Hutchins.
- Microbiological, biological, and chemical weapons of warfare and terrorism. *The American Journal of the Medical Sciences* 323:326-340 (2002).
- 382 15. D. Kaszeta. Restrict use of riot-control chemicals. *Nature* **573**:27-29 (2019).
- 383 16. R. Devereaux. Proud Boys Rally Fizzled But Portland's Cops Went on the Attack. The Intercept, 28
 384 September 2020. <u>https://theintercept.com/2020/09/28/portland-proud-boys-rally-journalists/</u>.
- 385 Accessed 1 October 2020.
- 386 17. D. J. Trump. Executive Order on Protecting American Monuments, Memorials, and Statues and
- 387 Combating Recent Criminal Violence. 26 June 2020. Available at
- 388 <u>https://www.whitehouse.gov/presidential-actions/executive-order-protecting-american-</u>
- 389 <u>monuments-memorials-statues-combating-recent-criminal-violence/</u>. Accessed 1 October 2020.
- 390 18. Department of Homeland Security. DHS Announces New Task Force to Protect American
- 391 Monuments, Memorials, and Statues. 1 July 2020. Available at
- 392 https://www.dhs.gov/news/2020/07/01/dhs-announces-new-task-force-protect-american-
- 393 <u>monuments-memorials-and-statues</u>. Accessed 1 October 2020.
- 394 19. K. Flanigan. Docs: Homeland Security's Portland protest mission called "Operation Diligent Valor".
- 395 KOIN. 23 July 2020. https://www.koin.com/news/protests/docs-homeland-securitys-portland-
- 396 protests-mission-called-operation-diligent-valor/. Accessed 1 October 2020.

- 20. C. Vaughn. "Highly Toxic" Smoke Grenades Deployed at Portland Protests. Portland Tribune, 20
 October 2020. <u>https://pamplinmedia.com/pt/484862-390719-sinister-smoke-pwoff</u>. Accessed 8
 January 2021.
- 400 21. S. Lerner. Federal Agents Used Toxic Chemical Smoke Grenades in Portland. The Intercept, 10
- 401 October 2020. <u>https://theintercept.com/2020/10/10/portland-tear-gas-chemical-grenades-</u>
- 402 protests/. Accessed 8 January 2021
- 403 22. Defense Technology. Safety Data Sheet. 1083: Military-Style Maximum Smoke HC Grenade. 2015.
- 404 <u>http://sds.chemtel.net/webclients/safariland/finished_goods/Defense%20Technology%201083%2</u>
- 405 <u>0-%20Military-Style%20Maximum%20Smoke%20HC%20Grenade.pdf</u>. Accessed 8 January 2021
- 406 23. H. Cullumbine. The toxicity of screening smokes. *BMJ Military Health* **103**:119-22 (1957).
- 407 24. E. W. Novak, L. G. Lave, J. J. Stukel, & S. Miller. A revised health risk assessment of the use of
 408 hexachloroethane smoke on an army training area. US Army Construction Engineering Research
 409 Laboratory. Technical Report N-164 (1987).
- 410 25. J. C., Eaton, R. J. Lopinto, & W. G. Palmer. Health effects of hexachloroethane (HC) smoke. US
 411 Army Biomedical Research and Development Laboratory. Technical Report 9402 (1994).
- 412 26. R. Blau & N. Seidner. Hexachloroethane obscurant replacement. ATK Propulsion Systems. Strategic
 413 Environmental Research and Development Program. Report TR031214 (2012).
- 414 27. C. Smith-Simon, J. M. Donohue, & C. Eisenmann. Toxicological profile for hexachloroethane. US
- 415 Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and
 416 Disease Registry (1997).
- 417 28. F. S. Dainton & K. J. Ivin. The pyrolysis of hexachloroethane. *Transactions of the Faraday Society* 43:295418 299 (1947).
- 419 29. W. L. Archer. Hexachloroethane. In M. Grayson & C. Eckroth, eds. *Kirk-Othmer Encyclopedia of*420 *Chemical Technology*, 3rd ed., Vol. 5. pp. 738-740. John Wiley & Sons, New York, NY (1979).
- 30. A. P. Shaw, J. S. Brusnahan, J. C. Poret, & L. A. Morris. Thermodynamic modeling of pyrotechnic
 smoke compositions. *ACS Sustainable Chemistry and Engineering* 4:2309–2315 (2016).

423	31. A. El Idrissi, L. van Berkel, N. E. Bonekamp, D. J. Z. Dalemans, & M. A. G. van der Heyden. The
424	toxicology of zinc chloride smoke producing bombs and screens. Clinical Toxicology 55:167-174
425	(2017).

- 426 32. M. C. Sadusky, J. M. Skelly, M. Simini, R. T. Checkai, & R. S. Wentsel. Hexachloroethane obscurant:
 427 assessing tree foliage injury. *Environmental Toxicology and Chemistry* 12:685-694 (1993).
- 428 33. C. Hartl, S. St. George, O. Konter, L. Harr, D. Scholz, A. Kirchhefer, & J. Esper. Warfare
- dendrochronology: trees witness the deployment of the German battleship Tirpitz in Norway. *Anthropocene* 27:100212 (2019).
- 431 34. K. A. Davidson, P. S. Hovatter, & R. H. Ross. Water quality criteria for hexachloroethane. Oak
 432 Ridge National Laboratory. Report ORNL-6469 (1988).
- 433 35. J. W. Nichols, J. M. McKim, G. J. Lien, A. D. Hoffman, & S. L. Bertelstein Physiologically based
 434 toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss).
 435 *Toxicology and Applied Pharmacology* 110:374-389 (1991).
- 436 36. A. Salvaggio, F. Marino, M. Albano, B. M. Lombardo, S. Saccone, V. Mazzei, & M. V. Brundo. Toxic
 437 effects of Zinc Chloride on the bone development in Danio rerio (Hamilton,1822). *Frontiers in*438 *Physiology* 7:153 (2016).
- 439 37. A. Gelman & D. B. Rubin. Inference from iterative simulation using multiple sequences. *Statistical*440 *Science* 7:457-511 (1992).
- 38. J. K. Kruschke. *Doing Bayesian Data Analysis: A Tutorial with* R, *JAGS, and Stan.* Academic Press, San
 Diego, CA, USA (2015).
- 39. N. T. Hobbs & M. B. Hooten. *Bayesian Models: A Statistical Primer for Ecologists*. Princeton University
 Press, Princeton, NJ, USA (2015).
- 445 40. M. Plummer. JAGS: Just Another Gibbs Sampler. v4.2.0. Available at
- 446 <u>https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/</u>. (2016).
- 447 41. Johnnthelefty. Tweet. <u>https://twitter.com/Johnnthelefty/status/1286590669482389504</u>. Accessed 1
 448 October 2020.

449 42	2. J	. Levinson.	Donavan	La Bell	i, man	shot b	by US	Marsh	hals in	Portla	nd, to	be re	eleased	from	hospi	tal
--------	------	-------------	---------	---------	--------	--------	-------	-------	---------	--------	--------	-------	---------	------	-------	-----

- 450 Oregon Public Broadcasting, 25 July 2020. <u>https://www.opb.org/news/article/donavan-labella-portland-</u>
 451 condition-shot-head-federal-officer/. Accessed 1 October 2020.
- 452 43. National Center for Biotechnology Information. PubChem Compound Summary for CID 5727,
- 453 Zinc chloride. Available at <u>https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-chloride</u>. Accessed 1
- 454 October 2020.
- 455 44. Centers for Disease Control. National Health and Nutrition Examination Survey 2017-2018
- 456 Questionnaire Data. Available at
- 457 <u>https://wwwn.cdc.gov/nchs/nhanes/Search/DataPage.aspx?Component=Questionnaire&CycleBeg</u>
- 458 <u>inYear=2017</u>. Accessed 1 October 2020.
- 459 45. City of Portland, Oregon. Environmental Services Releases Results of CS Gas Residue Sampling in
- 460 City Stormwater Pipes; \$20,000 Penalty to Feds. 10 September 2020.
- 461 <u>https://www.portland.gov/bes/news/2020/9/10/environmental-services-releases-results-cs-gas-</u>
 462 residue-sampling-city-stormwater. Accessed 1 October 2020.
- 46. T. Woodstock. Tweet. <u>https://twitter.com/tuckwoodstock/status/1284013510700097537</u>. Accessed
- 464 1 October 2020.
- 465 47. O. K. Smith. Tweet. <u>https://twitter.com/livkittykat/status/1287274511629336576</u>. Accessed 1
- 466 October 2020.
- 467 48. A. Azar. Tweet. <u>https://twitter.com/R3volutionDaddy/status/1287688005130391552</u>. Accessed 1
 468 October 2020.
- 469 49. G. McKelvey. Tweet. <u>https://twitter.com/GregoryMcKelvey/status/1287495472983052288</u>.
- 470 Accessed 1 October 2020.
- 471 50. J. Noelle. Tweet. <u>https://twitter.com/JesykaNoellex3/status/1308535486609321985</u>. Accessed 1
 472 October 2020.
- 473 51. C. Smith. Tweet. <u>https://twitter.com/alsoconnor/status/1285054272841773057</u>. Accessed 1
- 474 October 2020.

475	52.	A. Gupta. Tweet. https://twitter.com/arunindy/status/1288012683543900160. Accessed 1 October
476		2020.
477	53.	R. Evans. Tweet. https://twitter.com/IwriteOK/status/1286585525365768193. Accessed 8 January
478		2021.
479	54.	G. Davis. Tweet. https://twitter.com/hungrybowtie/status/1321719869662916610. Accessed 8
480		January 2021.
481	55.	J. Simonis. Tweet. https://twitter.com/JuniperLSimonis/status/1321896995607334912. Accessed 8
482		January 2021.
483	56.	R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
484		Computing, Vienna, Austria. Available at <u>https://www.R-project.org/</u> (2020).
485	57.	H. Wickham. httr: Tools for Working with URLs and HTTP. R package version 1.4.1.
486		https://CRAN.R-project.org/package=httr (2019).
487	58.	J. Ooms. The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R
488		Objects. arXiv:1403.2805 [stat.CO] <u>https://arxiv.org/abs/1403.2805</u> (2014).
489	59.	E. Greatwood. Veteran for Peace. https://www.facebook.com/EricGreatwood/videos. Accessed 1
490		October 2020.
491	60.	The Recompiler. Re: Portland. https://pdx.recompilermag.com/about. Accessed 1 October 2020.
492	61.	M. J. Denwood. runjags: An R Package Providing Interface Utilities, Model Templates, Parallel
493		Computing Methods and Additional Distributions for MCMC Models in JAGS. Journal of Statistical
494		Software 71:1-25 (2016).
495	62.	J. Hanning. Tweet. https://twitter.com/Cascadianphotog/status/1287714834893565952. Accessed 1
496		October 2020.
497	63.	Google Search Term Trends. <u>https://trends.google.com/trends/explore?geo=US-OR-</u>
498		820&q=protests,black%20lives%20matter,federal. Accessed 1 October 2020.
499	64.	W. S. Cleveland, E. Grosse & W. M. Shyu. "Local regression models" Chapter 8 in Statistical Models in
500		S, J. M. Chambers & T. J. Hastie, Eds. (Wadsworth & Brooks/Cole, 1992).

TABLES

501

5	0	2
~	~	_

	Lower 95	Median	Upper 95	Mean	SD	Mode	MC err	MC % of SD	SS eff	AC 1000	psrf
D	25	26	30	25.953	1.34	25					
λ^r	-3.425	-2.113	-0.859	-2.149	0.66		0.003	0.5	38820	-0.003	1.00
٧r	-0.752	0.006	0.744	0.008	0.38		0.002	0.5	39526	0.001	1.00
Qr	0.247	0.978	1.701	0.985	0.37		0.002	0.5	40000	0.002	1.00
σ	0.000	1.335	8.021	2.427	3.81		0.034	0.9	12730	0.013	1.00

504

^r indicates untransformed (raw) scale

MCMC diagnostics are not included for D, a state variable, just the parameters. MC err: MCMC standard 505

506 error; MC % of SD: MCMC standard error as a percentage of the Standard Deviation of the posterior

distribution; SS eff: Effective Sample Size; AC 1000: Autocorrelation at 1000 MCMC steps (AC 10 for the 507

508 thinning interval of 100 used); and psrf: potential scale reduction factor (Gelaman-Rubin statistic; 27).

FIGURES

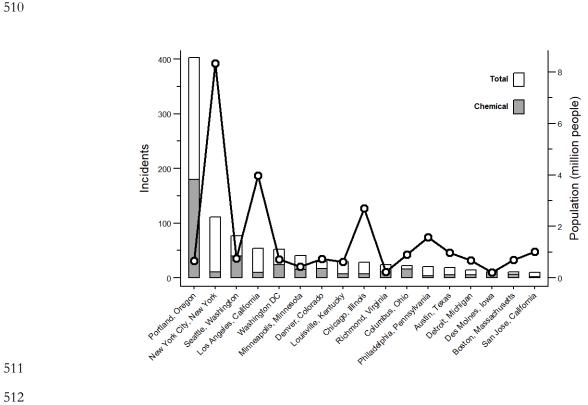
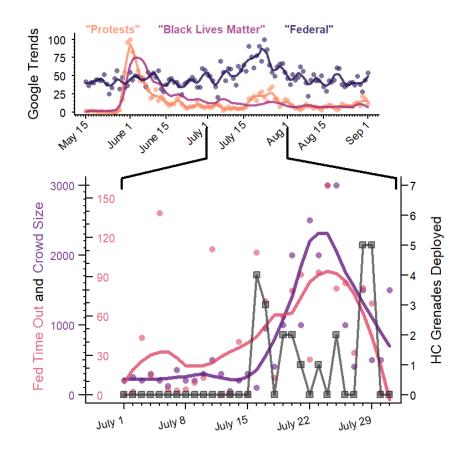
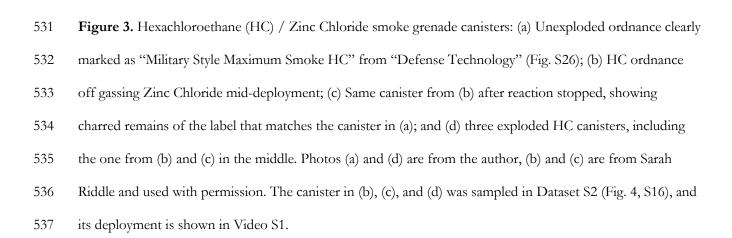


Figure 1. Total and chemical-weapons-based incidents of police brutality during the George Floyd Black

Lives Matter 2020 protests through the end of the year for all US cities with at least 10 incidents⁶. City

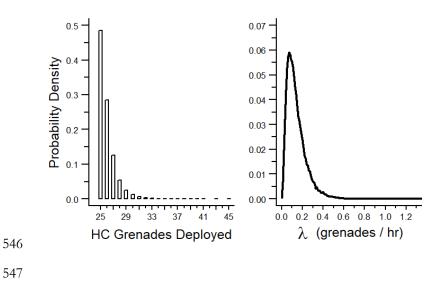
population sizes⁹ are depicted via the points and the secondary y-axis (see also Dataset S4).

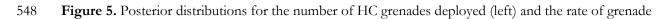



Figure 2. Top: time series of general interest (normalized Google Search Term Trends⁶³) for the Portland Metro Area in "protests" (orange), "Black Lives Matter" (red), and "federal" (purple) during the 2020 George Floyd Black Lives Matter protest period to 1 September. Bottom: July-focused time series of crowd size (purple) and the number of minutes federal agents were out (red) each night. Lines in both portions were fit using local polynomial regression (loess)⁶⁴. Grey box points connected by grey line show the number of hexachloroethane (HC) grenades used each night, based on observations and collections combined.

524

- 526
- 527
- 528


540 Figure 4. Sample locations and pictures for the 11 environmental chemistry samples taken around the


541 downtown area of Portland, OR. [1] Medic Filter, [2] HC Can (Video S1), [3] A's backpack, [4] 3rd Ave and

Salmon St Plants, [5] Lownsdale Surface Soil, [6] SW 3rd Avenue, [7] E's Shirt, [8] Green Smoke Can, [9] S's 542

543 Leggings, [10] Witches' Tent, [11] Spicy Bucket Scrape. Blue lines on the street map show the streets drained

544 by the stormwater system that empties unfiltered into the Willamette river.

549 deployment (grenades per hour) (right).