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Abstract We present a generalization of the Yule model for macroevolution in which, for
the appearance of genera, we consider point processes with the order statistics property, while
for the growth of species we use nonlinear time-fractional pure birth processes or a critical
birth-death process. Further, in specific cases we derive the explicit form of the distribution
of the number of species of a genus chosen uniformly at random for each time. Besides, we
introduce a time-changed mixed Poisson process with the same marginal distribution as that of
the time-fractional Poisson process.

Keywords Yule model, mixed Poisson processes, time-fractional Poisson process, order
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1 Introduction

In 1925, Udny Yule published the paper [45] in which he described a possible model
for macroevolution. Genera (species grouped by similar characteristics) appear in the
system at random times according to a linear birth process. Each genus is initially
composed by a single species. As soon as the genus appears, an independent linear
birth process modelling the evolution of the species belonging to it, starts. The initial
species thus generates offsprings (representing related species) with constant individ-
ual intensities. The model is now classical and it is usually named after him. The Yule
model therefore admits the existance of two independent and superimposed mecha-
nisms of evolution, one for genera and one for species, both at possibly different
constant intensities.

One of the most interesting characteristics the model exhibits is its intrinsic “pref-
erential attachment” mechanism. And this is exactly implied by the presence of the
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two distinct and superimposed random growths for the appearance of genera and of
species.

The preferential attachment mechanism is a fundamental ingredient of many mod-
ern models of random graphs growth. The literature is vast and covers many fields.
We recall here only some relevant papers and books [1, 2, 5, 6, 8, 12, 13, 16, 18, 23–
25, 34, 37, 44] leaving the reader the possibility of widening the number of sources
by looking at the references cited therein.

The Barabási–Albert model of random graph growth is by far the most famous
example of a stochastic process based on preferential attachment [2, 7]. In [35] we
discuss the relationships between the Barabási–Albert graph, the Yule model and a
third model based on preferential attachment introduced by Herbert Simon in 1955
[26, 42, 43]. In [36] we have further analyzed and described the exact relation be-
tween the Barabási–Albert model and the Yule model. Briefly, the finite-dimensional
distributions of the degree of a vertex in the Barabási–Albert model converges to the
finite-dimensional distributions of the number of individuals in a Yule process with
initial population size equal to the number m of attached edges in each time step. This
further entails that the asymptotic degree distribution of a vertex chosen uniformly at
random in the Barabási–Albert model coincides with the asymptotic distribution of
the number of species belonging to a genus chosen uniformly at random from the
Yule model with an initial number m of species. This result suggests that asymptotic
models similar to the Yule model can be linked to different preferential attachment
random graph processes in discrete time.

Therefore, a direct analysis of the Yule model, a model in continuous time and
hence possessing a greater mathematical treatability, has the potential to uncover im-
portant aspects and characteristics of the discrete-time model to which it is related.

In [27] and [28] we have started a study of macroevolutionary models similar
to the classical Yule model where the process governing the appearance of genera
is left unchanged, while those describing the growth of species account for more
realistic features. Specifically, in [27] we have generalized the latter allowing the
possibility of extinction of species while in [28] we have studied the effect of a slowly-
decaying memory by considering a fractional nonlinear birth process. Notice that, by
suitably specializing the nonlinear rates, other peculiar behaviours such as saturation
or logistic growth may be observed.

In this paper we proceed with the analysis by looking at modifications of the
classical Yule model in which the appearance of genera follows a different dynamics.
We will show that a change in the dynamics of genera will lead to radical changes
in the model. This is a preliminary step before aiming at deriving models of random
graphs with different features than those graphs connected to the Yule model. In the
following we consider the class of mixed Poisson processes time-changed by means
of a deterministic function. The rationale which justifies this choice will be clear
in Section 3 where we state the main results. Section 2 contains the mathematical
background necessary to develop the results presented later. In particular we will
connect a member of the class of the suitably time-changed mixed Poisson processes
with the time-fractional Poisson process, a non-Markov renewal process governed
by a time-fractional difference-differential equations involving the Caputo–Džrbašjan
derivative.
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2 Preliminaries

We consider two different classes of point processes, namely the time-fractional Pois-
son processes (shortly tfPp) and an extension of the mixed Poisson processes, i.e. the
mixed Poisson processes up to a (deterministic) time transformation (mPp-utt in the
following). We will analyze briefly their properties and state a result linking the two
classes. Besides, we will introduce the definitions and mathematical tools needed to
understand Section 3.

2.1 Time-fractional Poisson processes (tfPp)

The tfPp has been introduced in the literature in [41, 40] (see also Laskin’s paper
[29]). We show here the construction by means of random time-change with an in-
verse stable subordinator [31]. Alternatively, the tfPp can be defined as a specific
renewal process (see e.g. [3, 4, 30], and see [31] for the proof of the equivalence
between the two constructions).

Let us consider a homogeneous Poisson process (Ñt )t≥0 of parameter λ > 0 and
an independent inverse stable subordinator, that is a one-dimensional time-continuous
stochastic and non-Markov process defined as follows. Consider the subordinator
(Dt )t≥0 with Lévy measure ν(dx) = [α/Γ (1 − α)]x−1−α , α ∈ (0, 1), and define
its stochastic inverse (Et )t≥0 as the first time at which it exceeds a given threshold,
i.e.

Et = inf{s : Ds > t}, t ≥ 0. (1)

Now, consider the time-changed point process N = (Nt )t≥0 = (ÑEt )t≥0. The pro-
cess N is called tfPp of parameters λ and α.

Many properties are known for the tfPp. Let us review some of them. The mar-
ginal probability distribution of the process generalizes the Poisson distribution (for
α → 1) and can be written as [3, 4]

P(Nt = k) = (
λtα

)k
Ek+1

α,αk+1

(−λtα
)
, k ≥ 0, t ≥ 0, (2)

where

E
γ
ν,β(z) =

∞∑
r=0

(γ )rz
r

r!Γ (νr + β)
, (γ )r = Γ (γ + r)

Γ (γ )
, z ∈ C, (3)

is the Prabhakar function [38] for complex parameters ν, β, γ , with �(ν) > 0. It is
interesting to note that the mean value of the process grows in time less than linearly
for each allowed value of α,

E(Nt ) = λtα/Γ (α + 1), t ≥ 0, (4)

and that the variance can be written as

Var(Nt ) = E(Nt ) + (λtα)2

α

(
1

Γ (2α)
− 1

αΓ (α)2

)
, (5)
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thus highlighting the overdispersion of the process. Furthermore, the probability gen-
erating function reads

G(u, t) = Eα

(
λ(u − 1)tα

)
, |u| ≤ 1, (6)

where Eα(z) = E1
α,1(z) is the classical Mittag-Leffler function.

Considering the renewal nature of N , and calling Uj , j ≥ 1, the random inter-
arrival times between the (j −1)-th and the j -th event, it is possible to give an explicit
expression for the common probability density function. Indeed,

fUj
(t) = λtα−1Eα,α

(−λtα
)
IR+(t), (7)

where Eα,α(z) = E1
α,α(z) is the generalized Mittag-Leffler function. By analyzing the

density, its slowly decaying right tail (it is actually an ultimately monotone regularly
varying function of order −α − 1) and the asymptote in zero, the clusterization of
events in time appears evident.

Lastly, let us recall the direct relation linking the tfPp with fractional calculus: the
probability distribution of the tfPp solves a specific difference-differential equation in
which the time derivative appearing in the difference-differential equations related to
the homogeneous Poisson process is replaced by a fractional derivative of the Caputo–
Džrbašjan type. Regarding this, for n ∈ N, denote by ACm[a, b] the space of real-
valued functions with continuous derivatives up to order m−1 such that the (m−1)-th
derivative belongs to the space of absolutely continuous functions AC[a, b]. In other
words,

ACm[a, b] =
{
f : [a, b] �→ R : dm−1

dxm−1 f (x) ∈ AC[a, b]
}
. (8)

Then, for α > 0, m = 	α
, and f ∈ ACm[a, b], the Caputo–Džrbašjan derivative of
order α > 0 is defined as

CDα
a+f (t) = 1

Γ (m − α)

∫ t

a

(t − s)m−1−α dm

dsm
f (s)ds. (9)

Let us now denote the state probabilities P(Nt = k) of the tfPp by pk(t), k ≥ 0,
t ≥ 0. Then the probabilities pk(t) satisfy the equations

CDα
0+pk(t) = −λpk(t) + λpk−1(t), k ≥ 0, (10)

where we consider p−1(t) being equal to zero. In Example 2.2, the tfPp will be com-
pared with a member of the class of the mPp-utt.

2.2 Mixed Poisson processes up to a time transformation (mPp-utt)

We start describing mixed Poisson processes (mPp), first introduced by J. Dubourdieu
in 1938 [15]. For full details the reader can refer to the monograph by J. Grandell [20].

Consider a unit-rate homogeneous Poisson process N = (Nt )t≥0. A point process
(M̃t )t≥0 is an mPp if and only if M̃t = NWt in distribution, where W is an almost
surely non-negative random variable independent of N . Common choices for the mix-
ing random variable W are the Gamma distribution, leading to the Pólya process, or
the uniform distribution on [0, c), c ∈ R+.



Studies on generalized Yule models 45

Clearly, if W is degenerate on w, then an mPp coincides with a homogeneous
Poisson process of rate w.

An mPp is characterized by the so-called property P which means that, condi-
tional on M̃t − M̃0 = k, the random jump times {t1, t2 . . . , tk} are distributed as the
order statistics of k iid uniform random variables on [0, t] [17].

This result, first appeared in [32], can be further extended considering a determin-
istic time-change, leading to the class of point processes with the OS property (order
statistics property) [10, 17]: a point process (Kt )t≥0 with unit steps is said to have
the OS property if and only if, conditional on Kt − K0 = k, the random jump times
{t1, t2 . . . , tk} are distributed as the order statistics of k iid random variables supported
on [0, t] with distribution function Ft(x) = q(x)/q(t), where q(t) = E(Kt )−E(K0)

is continuous and non-decreasing. In this respect, property P is also called uniform
OS property.

Notably, K.S. Crump proved that point processes with the OS property are Marko-
vian (see [10], Theorem 2).

Taking into account the results presented in [10, 17], and [39], we recall the fol-
lowing theorem due to P.D. Feigin [17]:

Theorem 2.1. Let M be a point process with the OS property relative to the distribu-
tion function Ft(x) = q(x)/q(t), where q(t) = E(Mt) − E(M0) is a continuous and
non-decreasing function. Then there exists a unit-rate homogeneous Poisson process
N and an independent non-negative random variable W defined on the same proba-
bility space, such that Mt = NWq(t) almost surely.

Notice also that Theorem 2.1 implies E(W) = 1. Furthermore, the above theo-
rem does not exclude the case of bounded q, that is when limt→∞ q(t) = γ < ∞.
Processes in that subclass are usually called mixed sample processes. To gain more
insight on them, the reader can consult [39], Section 2, in which an interesting exam-
ple is described (see also [11]).

It seems clear that the class of point processes with the OS property contains that
of Mixed Poisson processes up to the time transformation q(·) (mPp-utt). We will
consider in the following only the subclass of mPp-utt.

Let us first present a didactic example of a member of the class of mPp-utt, the
Yule process. Being an mPp-utt, the Yule process exhibits the OS property. The reader
may refer to [10] for more details.

Example 2.1. Let M be a Yule process starting with a single individual, shifted down-
wards by one and with individual splitting rate λ. Let N be a unit-rate homogeneous
Poisson process and let W be independent of N and exponentially distributed with
mean one. Set q(t) = eλt − 1. Then, we construct the mPp-utt representation of
M , i.e. Mt = NWq(t), t ≥ 0. Note that the state space of NWq(t) is {0, 1, . . . }. The
distribution of M can be derived easily by conditioning:

P(Mt = k) =
∫ ∞

0

[w(eλt − 1)]k
k! e−w(eλt−1)e−wdw

= (eλt − 1)k

k!
∫ ∞

0
wke−weλt

dw

= e−λt
(
1 − e−λt

)k
, k ≥ 0. (11)
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The Yule process has the OS property with Ft = eλx−1
eλt−1

, x ∈ [0, t]. The OS property
of the Yule process has been implicitly used in many papers, starting from the seminal
paper by Yule [45] (see also [9, 27, 28])

In the following example we define a specific mPp-utt which is connected with
the tfPp by means of its marginal distribution.

Example 2.2. Let M = (Mt)t≥0 be such that Mt = NWq(t) where q(t) = λtν/Γ (1+
ν), λ > 0, ν ∈ (0, 1), and W is a unit-mean non-negative random variable with
probability density function

fW(w) = φ

(
−ν, 1 − ν; −w

Γ (1 + ν)

)/
Γ (1 + ν), w ∈ R+. (12)

The above density is written in terms of the Wright function (see [22] for details)

φ(α, β; z) =
∞∑

r=0

zr

r!Γ (αr + β)
, α, β, z ∈ C, �(α) > −1. (13)

Plainly, E(Mt) = λtν/Γ (1 + ν). Now, let us derive the marginal distribution of
the mPp-utt M:

P(Mt = k) =
∫ ∞

0
P(Nwq(t) = k)fW (w)dw

=
∫ ∞

0

(w λtν

Γ (1+ν)
)k

k! e
−w λtν

Γ (1+ν) φ

(
−ν, 1 − ν; −w

Γ (1 + ν)

)
dw

Γ (1 + ν)
.

(14)

By letting ξ = wtν/Γ (1 + ν) we have

P(Mt = k) =
∫ ∞

0

(λξ)k

k! e−λξ t−νφ
(−ν, 1 − ν; −ξ t−ν

)
dξ

= P(ÑEt = k) = P(Nt = k). (15)

This last step is justified by the time-change construction of the tfPp and by the fact
that the marginal density function of the inverse stable subordinator (Et )t≥0 is exactly
fEt (ξ) = t−νφ(−ν, 1 − ν; −ξ t−ν), ξ ∈ R+ (see e.g. [14], Section 2).

It is worthy of note that the tfPp N and the mPp-utt M share the same marginal
distribution. This entails that the probabilities P(Mt = k), k ≥ 0, solve the equa-
tions (10).

3 Generalized Yule model

We proceed now to the analysis of a generalization of the Yule model in the sense we
have anticipated in the introductory section. The focus here is to construct a model
in which the arrival in time of genera is driven by an mPp-utt and the process de-
scribing the evolution of species for each different genus is a tfPp or a nonlinear
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time-fractional pure birth process (see [28, 33]). Hence what we drop here is the de-
terministic constant intensity assumption for genera evolution. The genera arrival is
instead described by random intensities. For the sake of clarity, before describing the
generalization of the Yule model, let us recall the definition of the nonlinear time-
fractional pure birth process. Analogously as for the tfPp, the construction of the
nonlinear time-fractional pure birth process is by time-change with the inverse stable
subordinator (Et )t≥0. Thus, consider the nonlinear pure birth process (Yt )t≥0, starting
with a single progenitor, with nonlinear rates λk > 0, k ≥ 1, and being independent
of (Et )t≥0. The time-changed process Y = (Yt )t≥0 = (YEt )t≥0 is called a nonlinear
time-fractional pure birth process. Interestingly enough, when λk = λ for each k ≥ 1,
the nonlinear time-fractional pure birth process reduces to the tfPp of parameters λ

and ν, shifted upwards by one.
Let us now consider the following model.

Definition 3.1 (Generalized Yule model). The generalized Yule model represents the
growth of a population which evolves according to:

1. Genera (each initially with a single species) appear following an mPp-utt
(Mt)t≥0.

2. When a new genus appears a copy of Y starts. The copies are independent
one of another and of the mPp-utt. Each copy models the evolution of species
belonging to the same genus.

Then, for each time t ∈ R+ we define the random variable tN measuring the
number of species belonging to a genus chosen uniformly at random. With respect
to the classical Yule model this random variable is linked to the degree distribution
of a vertex chosen uniformly at random in the Barabási–Albert model [36]. Our aim
is to investigate the distribution of tN for the generalized Yule model. To do so, it is
enough to condition on the random creation time T of the selected genus, obtaining

P(tN = k) = ET P(Yt = k|YT = 1), k ≥ 1. (16)

Notice that, due to the OS property satisfied by the considered mPp-utt, the distribu-
tion function of T is Ft(·) (see Section 2.2).

We specialize now the model by choosing the process of Example 2.2 for the
random arrival of genera.

In this case the distribution function of T reads

Ft(x) =
(

x

t

)ν

, x ∈ [0, t], (17)

with density

ft (x) = νxν−1

tν
, x ∈ [0, t]. (18)

Figure 1 shows the shapes of the distribution function (17) and the density function
(18) for different values of the characterizing parameter ν. Notice the rather different
behaviour for values of ν strictly less than 1.
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Fig. 1. Distribution function (17) (top) and density function (18) in linear plot (mid-
dle) and loglog plot (bottom). The parameter ν is set to ν = (1/4, 1/2, 3/4, 1) =
(blue, orange, green, red) and t = 1. Note how, for ν ∈ (0, 1) (in contrast with the classi-
cal case ν = 1), the concentration of probability mass near zero makes the appearance of
genera more likely to occur in the very early evolution of the process

Regarding the evolution of the number of species for each genus, the fractional
exponent of the process Y will be denoted by β ∈ (0, 1). We suppose now that the
nonlinear rates of Y are all different and recall that in this case

P(Yt = k) =
k−1∏
j=1

λj

k∑
m=1

Eβ(−λmtβ)∏k
l=1,l �=m(λl − λm)

, k ≥ 1, (19)
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with the convention that empty products equal unity. We obtain

P(tN = k) =
∫ t

0
P(Yt−x = k)

νxν−1

tν
dx

= ν

tν

k−1∏
j=1

λj

k∑
m=1

1∏k
l=1,l �=m(λl − λm)

∫ t

0
Eβ

[−λm(t − x)
]
xν−1dx.

(20)

Now we make use of Corollary 2.3 of [21] and arrive at

P(tN = k) = Γ (ν + 1)

k−1∏
j=1

λj

k∑
m=1

Eβ,ν+1(−λmtβ)∏k
l=1,l �=m(λl − λm)

, k ≥ 1. (21)

A special case of interest is when the rates are linear, λk = λk, k ≥ 1. In this case,
from (21) we obtain easily the following probabilities:

P(tN = k) = Γ (ν + 1)

k∑
j=1

(
k − 1

j − 1

)
(−1)j−1Eβ,ν+1

(−λjtβ
)
, k ≥ 1. (22)

Figure 2 shows how the above probability mass function changes with respect to
parameter ν, taking a constant β = 1, that is, considering a classical behaviour for
species.

Recalling that in the linear rates case EYt = Eβ(λtβ) and EY2
t = 2Eβ(2λtβ) −

Eβ(λtβ), we derive the first two moments for the random variable tN and its variance:

E tN = ν

tν

∫ t

0
Eβ

[
λ(t − x)β

]
xν−1dx = Γ (ν + 1)Eβ,ν+1

(
λtβ

)
, (23)

E tN
2 = ν

tν

∫ t

0
EY2

t−xx
ν−1dx

= 2Γ (ν + 1)Eβ,ν+1
(
2λtβ

) − Γ (ν + 1)Eβ,ν+1
(
λtβ

)
, (24)

Var tN = 2Γ (ν + 1)Eβ,ν+1
(
2λtβ

)
− Γ (ν + 1)Eβ,ν+1

(
λtβ

)(
1 + Γ (ν + 1)Eβ,ν+1

(
λtβ

))
. (25)

When the nonlinear rates are actually constant and all equal (i.e. λk = λ, ∀k ≥ 1)
we cannot make use of a specialized form of formula (19). In this case however,
the nonlinear time-fractional pure birth process reduces to the tfPp suitably shifted
upwards by one. Hence, recalling formula (2), the distribution of tN can be written
by conditioning as

P(tN = k) = ET P(Nt + 1 = k|NT + 1 = 1)

=
∫ t

0
P(Nt−x = k − 1)

νxν−1

tν
dx, k ≥ 1. (26)
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Fig. 2. The probability mass function of tN in the linear rate case (formula (22)). Top: linear
plot, bottom: loglog plot, with t = 10, β = 1 (which corresponds to classical linear birth
processes for species evolution), λ = 1, and ν = (0.4, 0.6, 0.8, 1) from bottom to top

Then we have

P(tN = k) =
∫ t

0

[
λ(t − x)β

]k−1
Ek

β,β(k−1)+1

[−λ(t − x)β
] νxν−1

tν
dx

= νλk−1

tν

∫ t

0
(t − x)βk−βEk

β,βk−β+1

[−λ(t − x)β
]
xν−1dx. (27)

The above integral is known and can be calculated by using Corollary 2.3 of [21]. We
finally obtain

P(tN = k) = Γ (ν + 1)λk−1tβk−βEk
β,βk−β+ν+1

(−λtβ
)
, k ≥ 1. (28)

In the classical Yule model, limt→∞ tN = N, where N is a non-degenerate lim-
iting random variable. The distribution of N is known and is called Yule–Simon dis-
tribution. Its main feature is the characteristic right tail which slowly decays as a
power-law. In our cases, however, the random variable tN has a different behaviour
at ∞. This can be observed by considering the asymptotic expansion of the Prabhakar
function [19]. We have from formula (28), for t → ∞,

P(tN = k) ∼ Γ (ν + 1)

λ

t−β

Γ (−βk)
−→ 0, (29)

for each finite value of k ≥ 1.
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Fig. 3. A possible realization of the superimposed processes counting the number of species
belonging to each existent genus (shown in different colours). Birth of genera, governed by the
mPp-utt of Example 2.2, is represented in the figure by circles while their extinction time is
marked by squares

3.1 A critical macroevolutionary model with species deletion

We introduce here a model of macroevolution in which the possibility of extinction of
genera is taken into consideration. To achieve this, the species dynamics is described
by independent critical birth-death processes (of parameter λ > 0), each starting with
a single species, while the genera appearance follows the mPp-utt of Example 2.2.
Figure 3 shows a possible realization of the superimposed processes counting the
number of species belonging to each existent genus. Extinction of genera is repre-
sented by squares while their births by circles.

Recurring to the integral representation of the Gauss hypergeometric function,

2F1(a, b; c; z) = Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
yb−1(1 − y)c−b−1(1 − yz)−ady, (30)

for c > b > 0, we derive the exact form of the transient distribution of tN:

P(tN = 0) = ν

tν

∫ t

0
xν−1 λ(t − x)

1 + λ(t − x)
dx

= λt

ν + 1
2F1(1, 2; ν + 2; −λt), (31)

and

P(tN = k) = ν

tν

∫ t

0
xν−1 λk−1(t − x)k−1

(1 + λ(t − x))k+1 dx

= (λt)k−1 Γ (k)Γ (ν + 1)

Γ (ν + k)
2F1(k + 1, k; ν + k; −λt), k ≥ 1. (32)

In Figure 4 the above probabilities (for k = 20) are pictured with respect to
time. The probability mass function concentrates on zero for t → ∞ as it should
be. Notably, it exhibits an exponential tail (see in Figure 5), differently from the case
without deletion (for example compare it with (22), see Figure 2). The derivation of
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Fig. 4. The probabilities (31) (top) and (32) (bottom, k = 20) drawn with respect to time, with
λ = 1 and ν = (0.2, 0.5, 0.8) = (blue, orange, green). Note how the probability of selecting
uniformly at random an extinct genus increases in time

Fig. 5. The probability mass function (32) depicted for ν = (0.1, 0.5, 1) = (blue, orange,
green) with λ = 1

the moments of the random variable tN is simpler in this model. Recalling that each
species process has mean 1 and EY2

t = 2λt + 1 we obtain that the expectation of tN

is also 1 and that

E tN
2 = ν

tν

∫ t

0

(
2λ(t − x) + 1

)
xν−1dx = 2λt

ν + 1
+ 1, (33)
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Var tN = 2λt

ν + 1
. (34)
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