

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

The Nancy Grace Roman Space Telescope

Roeland van der Marel, STScl (Head Science Operations Center)

October 5, 2020

Large NASA Space Missions Recommended by "Decadal Surveys"

THE NANCY GRACE ROMAN SPACE TELESCOPE

- 2.4 meter telescope (donated)
 - Hubble's power and resolution, 100x the FOV
- Instrumentation
 - Wide Field Camera: imaging, slitless spectroscopy
 - Coronagraph Technology Demo: "proof of concept" for high-contrast light suppression

- Image: State of the state o
 - Industry: Harris, Ball, Teledyne,
 - International: ESA, CNES, DLR, JAXA

Nancy Grace Roman (1925-2018): "The Mother of Hubble"

- NASA Leader:
 - First Chief of Astronomy and Solar Physics at NASA
 - First woman to hold an executive position at NASA
 - Instrumental in establishing a new era of space-based astronomical instrumentation and research
- Scientist
 - First woman on astronomy faculty at the University of Chicago
 - Numerous scientific awards and recognitions
- Role Model and STEM Advocate
 - Champion of women in astronomy

"It was Nancy in the old days...who really helped to sell the Hubble Space Telescope, organize the astronomers, who eventually convinced Congress to fund it." - Ed Weiler

Hardware Status

- Primary Mirror Completed
- Flight Detectors being delivered and tested
- Other Hardware construction well underway

Detector Prototype

Filter Test Unit

Primary Mirror Assembly

Great Observatory Comparison

Complementarity: Roman enhances the Power of Other Missions

Instrument Capabilities

Roman Space Telescope Imaging Capabilities													
Telesco (2.4	pe Apertu meter)	Field of View (45'x23'; 0.28 sq de			P i (0.	i xel Sca l 11 arcse	e c)	Wavele (0.5	ength Range 5-2.0 μm)				
Filters		F062	F087	F106		F129) F	158	F184	W146			
Wavelength	(µm) 0	.48-0.76	0.76-0.98	0.93-1	.19	1.13-1.	45 1.3	8-1.77	1.68-2.00	0.93-2.00			
Sensitivity (5σ AB mag in 1 hr)		28.5	28.2	28.1	3.1 28.0		28.0		27.5	28.3			
Roman Space Telescope Spectroscopic Capabilities													
		Field (so	of View deg)	Wavel	engtl	h (<i>µ</i> m)	Resolution		Sensitivity (AB mag (10σ per pixel in 1hr				
Grism	0.28	sq deg	1.00-1.9		93	461		20.5 a	t 1.5 <i>µ</i> m				
Prism	l i	0.28	sq deg	0.7	75-1.8	80	80-18	30	23.5 a	20.5 at 1.5 μm 23.5 at 1.5 μm			
		Roman S	pace Teles	cope Co	orona	agraphic	c Capab	ilities					
	Waveleng (µm)	gth Inne	er Working / (arcsec)	Angle Out		er Worki (arcse	ng Angl ec)	e Do	etection Limit*	Spectral Resolution			
Imaging	aging 0.5-0.8		15 (exoplane	ets) 0.		66 (exop	lanets)	10-	⁹ contrast	47 75			
Spectroscopy 0.675-0.7		785	0.48 (disks))		1.46 (di	sks)	(al pro	cessing)	4/-/5			

https://roman.gsfc.nasa.gov/science/WFIRST_Reference_Information.html

STSCI SPACE TELESCOPE 8

Filters

STScI SPACE TELESCOPE 9

Survey Speed

The power of Roman is not *just* that it has a large FOV: it is also very efficient (Rapid slew & settle, no Earth occultations, no South Atlantic Anomaly)

Science Drivers for the Roman Space Telescope from the NRC 2010 Astrophysics Decadal Survey

Dark Energy, Exoplanets, General Astrophysics

Probe Cosmology using three independent methods

STScI SMACE TELESCOPE SCIENCE INSTITUTE

Study key questions in a wide range of astrophysical subject areas

- Community white papers on a wide range of topics available from arXiv
- Recent community questionnaire highlights interests well beyond cosmology and exoplanet science

High Quality Calibrations

0.05% PSF shape (impacts cosmic shear)

Observational Program

Wide-Field Infrared Surveys of the Universe Large core community surveys and smaller focused surveys All data to be public immediately

Core Community Surveys

- Each has a core set of goals, but potential scientific scope far broader
- Survey designs to be decided through a community process to maximize total science return

High-latitude imaging and spectroscopic surveys

Enables WL and BAO cosmology investigations

High-latitude time-domain survey Enables SNIa cosmology investigations Galactic Bulge time-domain survey Enables exoplanet microlensing investigations

Smaller Focused Surveys

- To be selected through a peer-reviewed GO process (~25% of mission)
- Any extended mission phase (beyond 5 years) could be fully GO

Archival Investigations

Of varying scope to fund analysis of survey data

All opportunities for science, funding and involvement remain to be decided

Example Concept: High Latitude Imaging and Spectroscopic Survey

	FRAME		EXPOSURE				TILE / SECTO	R	•		PASS	OBSERVING PROGRAM		
	DURATION	ΟΠΑΝΤΙΤΛ	DURATION	FILTER TARGET	TARGET	TILE	GAP-FILLED	SECTOR SIZE	DURATION	SIZE	SECTOR	DURATION	PASS	DURATION
	(SECONDS)	QUANTIT	(SECONDS)		TANGLI	QUANTITY	EXPOSURES	(SQ-DEG)	(HOURS)	(SQ-DEG)	QUANTITY	(DAYS)	QUANTITY	(DAYS)
HLIS	2.9	50	144	F106	HIGH LATITUDE	32	3	10.2	5.0	1926	188	39.1	2	337.5
			144	F129			4		6.5			51.3	2	
		50	144	F158			3	10.5	5.0	1930		39.1	2	
			144	F184	REGION		3		5.0			39.1	2	
HLSS	3.6	84	299	Grism		32	2	10.3	6.1	1936	188	48.1	4	192.3

27-hr profile of High Latitude Survey

1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour
F106 F129						F158					F184				Grism											
HLS Multi-Filter Imagery													HLS Spectroscopy													

Scientific Potential of a Roman Deep Field

- Roman offers the opportunity to get HST/UDF-like depth over 100x the area
 - Increased survey volume overcomes many current number count limitations
 - Estimated yield of many hundreds of z ~ 9-10 candidates

- Foley et al. 2019, <u>arxiv:1903.04582</u>; Koekemoer et al. 2019, <u>arxiv:1903.06154</u>
- Coordination with the community and other projects required for optimum synergy

Survey Comparisons

be amongst the most information-rich datasets ever

STSCI SPACE TELESCOPE 20

Exploring Roman's Capabilities: Simulating Roman Data

- To support Roman development, Mission partners have produced a large range of simulated data, adding modules to existing packages (GalSim, aXeSIM) and creating new simulation packages
- Roman WFI simulators being developed for the Mission are publicly available from STScI

(https://www.stsci.edu/roman/science-planning-toolbox)

WebbPSF Wavelength Dependent PSF Simulator

Pandeia3-D (x,y,λ) ExposureTime Calculator andImage simulator

H150 Y106 Z087

<u>STIPS</u> Image Simulator

Multi-mission Field of View Overlay

 IPAC maintains an inventory of simulations and instrument models by Roman Mission Partners (<u>https://roman.ipac.caltech.edu</u>)

Simulated Roman Observation of M31

[NASA/STScl, B. Williams]

PHAT: 432 Hubble Pointings = 2 Roman Pointings

produced using STIPS , available on GitHub and PyPI: <u>https://github.com/spacetelescope/STScI-STIPS</u>

The Roman Data System

- Roman is the first NASA Astrophysics "Big Data" survey mission
 - Both catalogs and pixel-level data sets provide unique science opportunities
 - The capabilities required to download or process very large datasets will exceed what average users can do with standard resources
- Data products will be generated by multiple mission partners
 - Calibrated and mosaiced images, extracted spectra, catalogs, etc.
 - Staged in the cloud and co-located with significant computational resources
 - Open source and modular imaging pipeline (facilitating custom reprocessing)
- The STScI MAST Archive will be the key to Roman Science
 - Most NASA Great Observatory science is already (part) Archival
 - Accessibility & Diversity: 2-4x increase in institutions publishing
- WFI Data Management Environment
 - Cloud-based science platform for high-level data processing
 - Jupyter Lab environments and notebooks to ease access
 - Capability to bring software to Roman's Big Data, and enable sharing of software by science centers, science teams, and community
 - Users should plan to interact in new ways with such big data sets

jupyter

AW

23

STSCI SPACE TELESCOPE

Join the Roman Conversation

- Visit web sites of mission partners for observatory and instrument information, science plans and opportunities, operational planning, data simulation tools, documentation, news and events, etc.
- Look for opportunities to influence the core community surveys
- Look for proposal opportunities beginning in 2021 for a range of Roman preparatory science programs. The terms of the current Science Investigation Teams will end in 2021.

https://roman.gsfc.nasa.gov

https://roman.ipac.caltech.edu/

Concluding Remarks

- Roman development is well underway and making great progress
- Roman will provide a wealth of breakthrough science opportunities, both by itself and in combination with other missions/projects
- Get involved! this is an open mission and much of the observing program and analysis plans remain to be decided
- Enjoy the conference, and think about Roman can advance your own science

