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ABSTRACT Accurate diagnosis of breast cancer in histopathology images is challenging due to the
heterogeneity of cancer cell growth as well as a variety of benign breast tissue proliferative lesions. In this
paper, we propose a practical and self-interpretable invasive cancer diagnosis solution. With minimum
annotation information, the proposed method mines contrast patterns between normal and malignant images
in a weak-supervised manner and generate a probability map of abnormalities to verify its reasoning.
Particularly, a fully convolutional autoencoder is used to learn the dominant structural patterns among normal
image patches. Patches that do not share the characteristics of this normal population are detected and
analyzed by one-class support vector machine and one-layer neural network. We apply the proposed method
to a public breast cancer image set. Our results, in consultation with a senior pathologist, demonstrate that the
proposed method outperforms existing methods. The obtained probability map could benefit the pathology
practice by providing visualized verification data and potentially leads to a better understanding of data-
driven diagnosis solutions.

INDEX TERMS Breast cancer diagnosis, abnormality detection, convolutional autoencoder, discriminative
pattern learning, histopathology image analysis.

I. INTRODUCTION
Breast cancer is themost common cancer in women. Invasive,
malignant properties of breast cancer cell growth contribute
to poor patient prognosis [1], and dictate precise early diag-
nosis and treatment, with an aim to reduce breast cancer
morbidity rate. In this study, we particularly focus on the
qualification of risky, aggressive characteristics of breast
histomorphological patterns, as one of the basic features of
invasiveness of breast carcinoma.

With the advance of imaging device and machine learning
technology, digital histopathology image analysis becomes a
promising approach to consistent and cost-efficient cancer
diagnosis. Particularly for invasive breast cancer, based on
the common knowledge that cancerous cells break through
the basement membrane of ductulo-lobular structures and
infiltrate into surrounding tissues - the feature of invasive-
ness [2] (as shown in Fig. 1), many algorithms were proposed
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to classify breast histopathology images using nuclei’s mor-
phology and spatial-distribution features [3]. In literature,
the most common solution to breast cancer image diagno-
sis is to train a classifier in a supervised learning manner.
Then handcrafted features of a query image are passed to
the trained algorithm for a yes/no label [4]–[10]. With the
success of deep learning, data-driven methods, especially
the end-to-end training of convolutional neural network, are
adopted more often in recent breast cancer histopathology
image classification studies [11]–[13]. Though breast cancer
image diagnosis has achieved impressive progress, the issue
of self-interpretability in existing diagnosis approaches is less
addressed. Self-interpretability refers to the capability of an
approach to explain and verify its reasoning and results.With-
out self-interpretability, attempts to improve histopathology
image diagnosis is prone to be limited to trial-and-error.

To address the self-interpretability issue in breast can-
cer pathology image diagnosis, one solution is to generate
labels for image pixels or small image patches in order
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FIGURE 1. Examples of hemotoxylin and eosin stained images for
(a) normal breast tissue and (b) invasive carcinoma with a magnification
of 40× [14]. The left image corresponds to a normal tissue where normal
epithelial cells lie on the membrane of ductulo-lobular structures; while
in the right image malignant cells invade and spread into surrounding
tissue.

to infer locations of suspected abnormalities in a query
image. To this end, several studies made efforts to classify
small image patches or pixels via supervised/semi-supervised
learning [15]–[19]. It should be noted that these solutions
require a large amount of images manually-annotated at the
image pixel level. Due to the complexity and time-intensive
properties of pathological annotations and privacy concerns
in clinical practice, sufficient amount of well-labeled patches
are difficult to collect.

This study attempts to tackle the self-interpretability issue
in breast cancer diagnosis and presents a novel convolutional
autoencoder-based contrast pattern mining approach to detect
the invasive component of malignant breast epithelial growth
in routine hematoxylin and eosin (H&E) stained histopathol-
ogy images. As opposed to prior studies that require image
sets with pixel annotation, our method requires only image
labels as the minimal prior knowledge in training. By min-
ing dominant patterns in images of normal breast tissues,
the method generates a probability map to infer locations
of abnormalities in an image. As a pathology image may
contain both normal and cancerous tissues, the proposed
method divides an image into small patches to facilitate local
characteristics learning. It should be noted that due to the lack
of pixel annotation indicating the locations of abnormal cell
growth patterns in images, this problem is very challenging
in two folds.

1) The algorithm is expected to learn contrast patterns
between normal and malignant/invasive growth based
on the knowledge of image labels. Effective differenti-
ation between normal and abnormal histomorphology
via weak-supervised learning is the key issue for the
correct identification of cancerous growth.

2) As a histopathology image may contain both normal
and cancerous tissue, labels of local patches may be
inconsistent with the known image label. The method
needs to learn a mapping function between local
patches and image labels.

Note that though we do not know whether patches
from images labeled as malignant really contain malignant
cells/structures, patches from normal images do not contain
cancerous cells certainly. So, we name a patch from a normal

image ‘‘true-normal’’ in this paper. Our original approach
learns patterns in true-normal patches first and then assigns a
normal/malignant label to a patch which resembles/deviates
from those true normal ones. Intuition behind this original-
ity is that in pathology, malignant cells and their growth
patterns are diagnosed and graded by how different these
cells are to normal cells. Specifically, to address the first
challenge, we exploit the data-specific property of autoen-
coder (AE) networks [20], [21] and innovate to train an under-
complete deep fully convolutional AE using small patches
from pathology images annotated as normal. Since the net-
work learns local patterns in true-normal patches only, its
performance degrades when the input instance is different
from training patches. Hence, autoencoder’s reconstruction
residue suggests the similarity between the query instance
and normal cases. It is noteworthy that different from standard
autoencoders targeting to minimize mean square error (MSE)
between input and output training instances, the proposed
method trains the deep net by optimizing the structural simi-
larity (SSIM) index [22], which enforces the network to learn
the contrast and structural patterns in true-normal patches.
In this study, the trained AE network is treated as a pattern
mining and representation method and then combined with
downstream classifiers to identify whether an image patch
contains malignant cells.

To tackle the second challenge which is to infer whether
a local patch contains morphological abnormalities derived
by malignant cell growth, we cast the problem into the
anomaly detection scenario, and introduce a novel malig-
nant patch detector to distinguish patches containing cancer-
ous cells from the normal ones. Particularly, the proposed
detector makes the use of one class support vector machine
(SVM) [23] to identify regions occupied by true-normal
patches in the feature space and assigns abnormal labels to
patches whose numerical features are located outside of the
detected normal regions. Taking into account the obtained
patch labels, the problem of breast cancer image classification
with localization of abnormality areas is simplified to a patch-
based supervised learning problem. Finally, a 1 layer neural
network (NN) is trained to infer the existence of malignant
tumor in a patch, followed by the generation of a probability
map of abnormality in the query image.

In summary, this study proposes a practical, generalizable,
and self-interpretable solution to pathology image based can-
cer diagnosis. With the minimal prior knowledge on whose-
slide-imaging (WSI) labels which can be easily acquired
in clinic practice, the proposed method learns discrimina-
tive patterns in weak-supervised manner from histopathology
images and explains its diagnosis results via inferring loca-
tions of abnormalities in an image. It is noteworthy that the
proposed method is very user-friendly to pathologists, as the
obtained abnormality map helps pathologists to understand
and verify how machines make decisions. To the best of our
knowledge, our work constitutes the first attempt in litera-
ture to tackle the self-interpretability issue in histopathology
image classification.
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TABLE 1. Table of notations.

The rest of this paper is organized as follows. Section II
provides brief introduction of machine learning techniques
exploited in the proposedmethod and the public breast cancer
biopsy image set used in this study. The problem’s formal
statement with notations and implementation details are pre-
sented in Section III and Section IV, respectively. Experi-
mental results and discussions are presented in Section V,
followed by conclusions in Section VI.

II. BACKGROUND

In this section, we will first introduce notations used in this
study in Table 1. Then brief description of fully convolu-
tional autoencoder and one-class support vector machine is
presented, followed by information on the public image set
used to evaluate the proposed method in this study.

A. FULLY CONVOLUTIONAL AE NETWORKS

Fully convolutional network is defined as the neural net-
work composed of convolutional layers without any fully-
connected layers [24]. It learns representations and makes
decisions based on local spatial knowledge only. Because of
its efficient learning, fully convolutional net has been pop-
ular in many image-to-image inference tasks, e.g. semantic
segmentation.

Fully convolutional autoencoder is one instance of fully
convolutional neural networks. The net takes input of arbi-
trary size and produces corresponding-sized output. Specif-
ically, it encodes an image data x of arbitrary size into
a low-dimensional representation x̂ such that the impor-
tant properties of the original data can be reconstructed
and maintained in the output x̃. Mathematically, a fully
convolutional autoencoder is composed of an encoder E()

and a decoder D(), each of which is a composition of a
sequence of C layers, i.e.

x̃ = D(x̂; v1, . . . , vC ) (1)

= D(E(x;w1, . . . ,wC ); v1, . . . , vC ),

where x̃ = D(x̂; v1, . . . , vC ) = DC (·; vC ) ◦ · · · ◦ D1(x̂; v1)
and x̂ = E(x;w1, . . . ,wC ) = EC (·;wC ) ◦ · · · ◦ E1(x;w1).
D() ◦ E(x) = D(E(x)) and wi and vi are the weights and
bias for the ith encoder layer Ei() and decoder layer Di(),
respectively. Conventionally, Ei() performs one of the fol-
lowing operations: a) convolution with a bank of filters, b)
downsample by spatial pooling, and c) non-linear activation;
and Di() takes actions including: d) convolution with a bank
of deconvolution filters, e) upsample by interpolations, and
f) non-linear activation. Given a set of T training sample
{x1, . . . , xT }, the parameter set of autoencoder {wk , vk , 0 <
k ≤ C} is optimized such that reconstruction x̃ resembles
input x:

arg min
wk ,vk ,0<k≤C

1
T

T∑
i=1

L(xi, x̃i), (2)

where L is a loss function measuring the similarity between
xi and x̃i, e.g. MSE.

B. ONE-CLASS SUPPORT VECTOR MACHINE
One-class SVM is an approach for semi-supervised anomaly
detection. It models the normal data as a single class that
occupies a dense subset of the feature space corresponding
to the kernel and aims to find the ‘‘normal’’ regions. A test
instance that resides in such a region is accepted by the
model whereas anomalies are not [23]. That is, it returns a
function for input z that takes the value+1 in the small region
capturing most of normal points, and -1 elsewhere. With the
training set {z1, . . . , zT }, the duel problem of the one-class
SVM solution can be formulated by

min
αi,0<i≤T

1
2

T∑
i,j=0

λiλjk(zi, zj) (3)

s.t. 0 < λi ≤
1
νT
,

T∑
i=0

λi = 1, (4)

where λi is a Lagrangian multiplier for sample zi, k(zi, zj) =
e−‖zi−zj‖

2/c is the Gaussian kernel with parameter c, and
ν ∈ (0, 1) is a hyper-parameter that controls training errors in
this optimization problem [23]. The samples {zi : λi > 0} are
support vectors which lay on the ‘‘normal’’ region boundary.
For a new point z, SVM computes the corresponding decision
function G(z) =

∑T
i=0 λik(zi, z)− ρ and the label of the new

point, y, is evaluated by the function’s sign, i.e.

y = sgn(G(z) = sgn(
T∑
j=0

λjk(zj, z)− ρ), (5)
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where ρ =

T∑
j=0

λjk(zj, zi),∀zi : λi > 0. (6)

It should be noted that performance of one-class SVM
strongly depends on the settings of their hyper-parameters
ν and c [25]. However, these two parameters are application-
dependent, and their settings in an efficient and weak-
supervised manner is still an open research problem [26].

C. BREAST CANCER BIOPSY IMAGE SET
The breast cancer benchmark biopsy dataset collected from
clinical samples was published by the Israel Institute of Tech-
nology [14]. The image set consists of 361 samples, of which
119 were classified by a pathologist as normal tissue, 102 as
carcinoma in situ, and 140 as invasive carcinoma. The sam-
ples were generated from patients’ breast tissue biopsy slides,
stained with H&E. They were photographed using a Nikon
Coolpix 995 attached to a Nikon Eclipse E600 at magnifica-
tion of 40× to produce images with resolution of about 5µm
per pixel. No calibration was made, and the camera was set
to automatic exposure. The images were cropped to a region
of interest of 760 × 570 pixels and compressed using the
lossy JPEG compression. The resulting images were again
inspected by a pathologist in the Institute to ensure that their
quality was sufficient for diagnosis.

III. METHODOLOGY
A. SYSTEM OVERVIEW
Given a dataset {(I1, †1), (I2, †2), . . . , (IK , †K )}withK sam-
ples, where Ii is an image and †i ∈ {−1, 1} is a class
label indicating whether the corresponding image contains
malignant tumor, the goal is to predict the label † for an
query image I and at the same time to generate a probability
map indicating suspected abnormal regions in image I. For
simplification, I−i and I+i denote that Ii is a normal or malig-
nant image in following sections, respectively. Without loss
of generality, assume that there are N normal images and M
invasive breast cancer images in the dataset, 0 < N ,M < K
and N +M = K , and the normal images are ordered before
the malignant ones. That is, the training set is organized as
{I−1 , I

−

2 , . . . , I
−

N , I
+

N+1, I
+

N+M−1, I
+

K }.
To generate the probability map of cancerous cells, we pro-

pose a patch-based learning solution, whose schematic dia-
gram is depicted in Fig. 2. Specifically, for each train-
ing image Ii, we extract li overlapping image patches,
denoted by {xi1, . . . , xi,li}. Patches from normal image I−i
are assigned label yi,j = −1. However, since patches from
malignant image I+i may contain normal tissues only, patch
labels yi,j are unknown with a positive constraint that at least
one patch contains cancerous cells, i.e. max yi,j = 1 for
0 < j ≤ li. If we collect all image patches into a patch set
{(x11, y11), . . . , (xi,j, yi,j), . . . , (xK ,lK , yK ,lK )}, then it is evi-
dent that in the total T = TN + TM patches, the first
TN =

∑N
i=1 li patches are true-normal ones from the normal

histopathology images while the remaining TM =
∑K

i=N+1 li
patches are from malignant images.

In the training phase, the target is to learn a mapping func-
tion F : x → {−1,+1} from the training set {(xi,j, yi,j), 0 <
j ≤ li, 0 < i ≤ K }. Since labels of the last TM patches
from malignant images I+i are unavailable, we make the
use of weak-supervised learning methods for discriminative
patterns mining to classify image patches. As shown in Fig. 2,
an under-complete deep convolutional autoencoder and a
one-class SVM, both trained with true-normal patches, are
used to implicitly mine dominant patterns in true-normal
patches. As a representation method, autoencoder learns the
common information in training patches and delivers contrast
patterns in its reconstruction residues. Briefly, a normal patch
has a low construction error while a malignant patch is with a
high residue. Then the trained one-class SVM assigns a label
{+1,−1} to patch xi,j from malignant image I+i based on
autoencoder’s residues. Since the one-class SVM is incapable
of generating a probability value, with the obtained decision
function and labels generated by the SVM, a 1-layer NN is
trained to obtain Platt’s score [27] as patch-based posterior
probabilities.

In the testing phase, l overlapping patches xj for 0 < j ≤ l
are extracted from the query image I. The learnt mapping
function F , achieved by the trained autoencoder and the
one-class SVM with the 1-layer NN, is operated on each
patch, generating a patch label and a value between [0, 1]
indicating the probability that the patch contains malignant
tumor. Finally, image classification and a probability map are
inferred from obtained patch labels.

B. CONTRAST PATTERN MINING VIA CONVOLUTIONAL
AUTOENCODER
Though cell’s spatial distribution is the one of the key features
for invasive breast cancer diagnosis, this feature is not trivial
to quantify. This is because specific structures and patterns
of malignant cell clusters differ very much among different
tumors and also locally within the same tumor. The incom-
pleteness of local patch labels in this studymakes the problem
more challenging. Hence in this study, a data-driven solution,
specifically, deep convolutional autoencoder, is used to learn
the contrast patterns in the training data.

It is noteworthy that an autoencoder is used as a gen-
erator of normal patches in this study. In pathology, nor-
mal breast tissues usually share certain common patterns,
whereas abnormal patterns are highly heterogeneous and
features learned from limited quantity of malignant samples
may not be descriptive for unseen samples. To overcome
this challenge, our method proposes detection of histological
abnormalities implicitly by identifying the common patterns
in normal breast images. To this end, wemake use of the data-
specific property of autoencoder and train an autoencoder to
learn histological knowledge in true-normal patches.

1) ARCHITECTURE
Since histopathology images are H&E stained and image
patches from normal and malignant biopsy images share
certain common features, efforts are made to enforce the
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FIGURE 2. Overview of the proposed contrast pattern mining method for invasive breast cancer diagnosis in histopathology images. The output
is a probability map of malignant cell clusters in the query image, bright pixel values representing high probability. The whole system is mainly
composed of three learning phases. First, a fully convolutional AE is applied to true-normal patches, so that the common patterns shared by true
normal patches are learned. Based on AE’s reconstruction residues, we propose to use one-class SVM to learn the regions taken by true-normal
patches in the feature space. Finally, the distance to the normal region boundary in the feature space is feed to a 1-layer NN for posterior
probability prediction.

autoencoder to learn discriminative structural patterns via
designing autoencoder’s architecture. Particularly in this
study, the experimental images from the Israel Institute of
Technology image set [14] have amagnification of 40xwhere
pixel size is approximately 5µm. Since the diameters of breast
epithelial cells’ nuclei stained by H&E are approximately
6µm [12], nuclei radii are between 1 and 3 pixels. Thus,
we design the proposed convolutional autoencoder whose
encoder E() and decoder D() both are with C = 6 and have
3 convolutional layers, such that the nuclei-scale features,
nuclei organization features, and the tissue structural-scale
features are explored. Table 2 provides detailed architecture
of the proposed autoencoder and associates histological fea-
tures with network layers. Note that the first 6 convolutional
layers are composed of the Rectified Linear (Relu) activa-
tion unit Relu(x) = max(0, x) [28]. We select the sigmoid

function sigmoid(x) = 1
1+e−x as the activation function in

the last convolutional layer to generate a grayscale image in
the range of [0, 1].

2) SSIM-BASED LOSS FUNCTION
The loss function L is the effect driver of the neural net-
work’s learning, and the loss function in an autoencoder
network generally defaults to MSE. However, MSE is prone
to lead to a smooth/blur reconstruction which may lose some
structural information in the original signal [29]. Structural
information refers to the knowledge about the structure of
objects, e.g. spatially proximate, in the visual scene [22].
Particularly in this study, structural information mainly refers
to the spatial organization of cells in H&E stained breast
cancer histopathology images. It should be noted that since
the multicellular structural information is a key for invasive
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TABLE 2. Architecture of the proposed convolutional autoencoder.

breast cancer diagnosis [12], it should be learned and main-
tained in autoencoder’s output. To this end, we make use
of the SSIM index to compose the loss function for AE’s
training, i.e.

L(xi,j, ˜xi,j) = 1− SSIM (xi,j, ˜xi,j), (7)

which facilitate the autoencoder to maintain structural infor-
mation in image patches. SSIM index is defined as

SSIM (x, x̃) = [l(x, x̃)]α × [c(x, x̃)]β × [s(x, x̃)]γ , (8)

where l(), c(), and s() are the luminance comparison func-
tion, contrast comparison function, and structural comparison
functions, respectively. α, β, and γ are used to adjust the
relative importance of the three components.

3) PATTERN LEARNING WITH TRUE-NORMAL PATCHES

It is noteworthy that in this study, instead of training the net-
work with all training patch {x11, . . . , xK ,lK }, the autoencoder
is trained with only true-normal patches {x11, . . . , xN ,lN }.
The motivation behind this innovation is the data-specific
property of autoencoder. That is, an autoencoder has low
reconstruction errors for samples following training data’s
generating distribution, while having a large reconstruction
error otherwise. Specifically, in our study, the autoencoder
learns the common properties and dominant patterns among
true-normal patches. Thus, the trained autoencoder is capable
of recovering the common content shared by query and true-
normal patches. The smaller the residue is, the similar the
query patch is to true-normal patches. However, since patches
containing invasive tumor have some distinct patterns so that
the autoencoder cannot represent well, large construction
residue is generated. In other words, the discriminative and
contrast patterns in this problem are embedded in autoen-
coder’s residues1x, which is quantified by the absolute value
of the difference between AE’s input and output.

1x = |x − x̃| = |x −D(E(x))|. (9)

To facilitate downstream patch labeling, discriminative
patterns embedded in1x are summarized by several compact

numerical descriptors. Motivated by the radiomics anal-
ysis [30], we compute 16 patch-wise first-order statis-
tics to describe the distribution of intensities within AE’s
residue1x, which are energy, minimum, maximum, 10th per-
centile, 90th percentile, mean, median, interquartile range,
full range, mean absolute deviation, robust mean absolute
deviation, variation, skewness, kurtosis, entropy, and his-
togram uniformity. We denote the obtained numerical feature
set by {z11, . . . , zK ,LK }, where zi,j is the description vector of
the residue corresponding to patch xi,j and the first TN ele-
ments in the feature set come from the true-normal patches.

C. PATCH LABELING BY ONE-CLASS SVM
With the discriminative representation {zi,j} generated by a
deep convolutional autoencoder, we precede to investigate
the mapping function F : zi,j → {−1,+1} from numeri-
cal features of true-normal patches. Note that for malignant
imageswith †i = 1, patch labels are not necessarily consistent
with image labels; in addition, the number of patches hav-
ing malignant tumor may be much smaller compared to the
quantity of true-normal patches in the training set. As only
true-normal patches with their labels are reliable, we cast
the problem into the problem of semi-supervised anomaly
detection. Intuitively, if one can find regions in the feature
space where true-normal patches cluster, patches falling out
of the ‘‘normal’’ regions are highly likely to be abnormal.

Due to the good performance of one-class SVM in medi-
cal anomaly detection [31], [32], we select one-class SVM
to approximate the distribution of true-normal patches for
anomaly patch detection. It should be noted that in one-class
SVM, normal patches are labeled as +1, which is opposite
to the patch labels defined in this study. Hence, based on the
features of true-normal patches {zi,j : 0 < i < Tn}, a patch
label can be obtained using a mapping function

F(z) = −sgn(G(z) = −sgn(
Tn∑
i=0

λik(zi, z)− ρ), (10)

where ρ is defined in (6).
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D. MALIGNANT TUMOR PROBABILITY MAP GENERATION

Now we obtain a labeled training set {(zi,j, yi,j) : 0 < j ≤
li, 0 < i ≤ T }, where the last TM samples have labels gen-
erated by the one-class SVM. It should be noted that in pre-
cision medicine, patches having cancerous tissues definitely
(locating far from SVM’s hyperplane) and those suspected
containing abnormality (residing near SVM’s hyperplane)
should be distinguished. However, SVM does not provide a
posterior probability p(yi,j|zi,j) and the resulting labels cannot
differentiate these cases. Hence, for any data sample zi,j,
we make use of SVM’s decision function G(zi,j) to compute
Platt’s score for posterior probability approximation [27].
Platt’s score is defined as a sigmoid function on SVM’s
decision function. That is,

p(yi,j|zi,j) ≈ p(yi,j|G(zi,j)) =
1

1+ e(AG(zi,j)+B)
, (11)

where A and B are parameters trained using sample labels.

Examining the Platt’s score in (11), we notice that Platt’s
score can be implemented by a 1-layer neural network with
a sigmoid activation function for two reasons. First, from a
theoretical point of view, sigmoid function is a good candi-
date to generate a probability from a real value (i.e. SVM’s
decision function G(zi,j) in this study) because its output can
be interpreted as the posterior probability for the most general
categorical distribution: Bernoulli distribution. Second, from
the application point of view, though there is a ‘‘−’’ sign
difference between Platt’s score in (11) and the standard
sigmoid function in machine learning, the sign difference
can be easily compensated by the trainable parameters in
deep learning. Consequently, the recursive optimization of
platt’s score is realized by training a 1-layer NNwith sigmoid
activation function. For the 1-layer NN, input is one-class
SVM’s decision function. Parameters of the network, a 1× 1
transformation matrix A and a bias B, can be optimized using
training set {(G(zi), yi) : 0 < i ≤ T }.

To infer an image label from obtained patch labels, patch
majority voting, where the image label is selected as the
most common patch label, is the most common method
in literature of breast cancer histopathology image diagno-
sis [11], [12]. However, in clinical practice, any abnormal-
ities, suspect lesions in particular, should trigger an alarm.
Based on this belief, instead of using majority voting, we pro-
pose a much stricter rule to combine patch diagnosis results,
that is, an image is labeled as benignwhen all patches are clas-
sified as normal. Finally, we proceed to generate a probability
map of abnormality for an image.With the obtained probabil-
ity p(yi|zi), if an image pixel is only contained in one patch,
the probability is assigned to the pixel directly. Otherwise
(a pixel is in multiple overlapping patches), the probability
at the pixel is obtained by averaging probability values of the
overlapping patches.

IV. SYSTEM IMPLEMENTATION AND TRAINING DETAILS
A. SYSTEM IMPLEMENTATION AND
HYPER-PARAMETER SETTING

The proposed method is implemented using python 3.6.6.
Each histopathology image is normalized using the illumi-
nant normalization method [33]. Then the normalized image
is converted to the grayscale version and rescaled to [0, 1].
The two-step pre-processingmitigates the effect of color vari-
ations usually observed in histopathology images on down-
stream discriminative pattern mining. The autoencoder and
the computation of Platt’s score are realized using the Keras
library which uses tensorFlow as its backend. The One-class
SVM is called from the scikit-learn library.

To compute the SSIM index when training autoencoder,
we use the Gaussian filter with size 11× 11 to smooth image
patches and fuse the luminance comparison function, contrast
comparison function, and structural comparison functions
with α = β = γ = 1 following SSIM’s original paper [22].

One-class SVM has application-dependent hyper-
parameters, ν and c. In this study, we propose the use of
the whole training set to select the optimal hyper-parameters.
Given a pair of ν and c, after training over true-normal
patches, one-class SVM generates a label for each training
patch. Though we cannot directly assess patch classification
accuracy due to the lack of patch annotation, we can corre-
spond image labels to evaluate the SVM model indirectly.
Specifically, all patches from normal images are normal
and an image is labeled as malignant when at least one
of its patches contains cell’s malignant growth pattern, i.e.
max yi,j = †i,∀j ∈ [1, li]. Hence, the one-class SVM’s
classification accuracy in image level, denoted by ACCimg,
can be measured by

ACCimg =
1
T

T∑
i=1

δ(†i −max
j
yi,j), (12)

where δ()̇ is the Dirac delta function, i.e. δ(x) = 1 for x = 0
and δ(x) = 0 otherwise. By comparing all obtained ACCimg,
the one-class SVMwith highest image classification accuracy
is selected, i.e.

νopt , copt = argmax
ν,c

ACCimg. (13)

B. TRAINING DATA AUGMENTATION
For histopathology images in the training set, each pre-
processed image is divided into 35 patches, each having
256 × 256 pixels with 30% overlap at most. Different from
conventional data augmentation methods that generates a
fixed augmented training set, data augmentation in this study
is performed in an online manner with the support of Keras.
Specifically, to learn a rotation-invariant AE network, data
augmentation operations in this study include patch rotation
with an angle randomly drawn from [0, 180) degrees, vertical
reflection, and horizontal flip. At each learning epoch, trans-
formations with randomly selected parameters among the
augmentation operations are generated and applied to original
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training patches. Then the augmented patches are feed to the
network. When the next learning epoch is started, the original
training data is once again augmented by applying specified
transformations. That is, the number of times each training
data is augmented is equal to the number of learning epochs.
In this way, the AE network almost never sees two exactly
identical training patches, because at each epoch training
patches are randomly transformed. For example, with the
breast cancer image data set used in this study, we got a
basic set of 3750 true-normal patches for AE’s training. After
100 epoch learning, the network had seen 375,000 augmented
patches in total. We believe the online augmented method
helps to fight against network’s over-fitting in this study.

C. NETWORK INITIALIZATION AND TRAINING
For both the deep convolutional autoencoder and 1-layer
neural network for Platt’s score, we initialized all weights
with zero-mean Xavier uniform random numbers [34]. All
biases were set to zero. The networks were trained using
Adam stochastic optimization with learning rate 0.001, and
the exponential decay rates for the first and second moment
estimations are set to 0.9 and 0.999. To enforce the autoen-
coder to learn the dominant patterns in true-normal patches,
the training ran 100 epochs. The 1-layer neural network for
Platt’s score was trained with 25 epochs. We used 10% of the
training data for validation. The optimal networks for autoen-
coder and Platt’s score were selected based on the proposed
SSIM-based loss function and the binary-classification cross-
entropy on the validation sets, respectively.

V. EXPERIMENTATION
In this study, the proposed method is evaluated using the
119 images of the morphologically normal breast tissue
and the 140 images of invasive breast cancer in the breast
cancer benchmark data set published by the Israel Insti-
tute of Technology1. We will first compare image patches
reconstructed by autoencoder with loss functions of SSIM
and MSE. Then we qualitatively assess the effectiveness of
contrast pattern mining by visualizing obtained features and
their distribution in a manifold space. Finally image classifi-
cation and the obtained abnormality maps are examined and
compared to prior arts.

A. PATCH RECONSTRUCTION USING SSIM AND MSE
The proposed method exploits an autoencoder as a generator
of normal patches. A loss function should be selected such
that the autoencoder can reconstruct a normal patch as much
as possible. In this experiment, we compare reconstructed
patches generated by different loss functions, SSIM and
MSE, and quantify their effects on normal patch generation.
After 100-epoch training over 4165 patches generated from
the 119 normal breast tissue images, energies of reconstruc-
tion residues over all true-normal patches are calculated and
averaged. Specifically for SSIM and MSE based loss func-
tions, the average energies per patch are 194.756 and 219.785,
respectively. That is, the SSIM-based function drives the

FIGURE 3. Comparison of patch reconstruction using different loss
functions, SSIM and MSE. The SSIM-driven reconstructions are sharper
than the MSE-driven images.

autoencoder to learn more from its inputs. Fig. 3 presents
examples of patch reconstructions associated with loss func-
tions of SSIM and MSE, where reconstructed patches associ-
ated with MSE is more blurred.

B. VISUALIZATION OF CONTRAST PATTERN MINING
A fully convolutional autoencoder net is used to mine the
common patterns in normal histopathology image patches.
Fig. 4 presents several examples of autoencoder’s input (in the
left column) and their corresponding reconstruction residues
(in the right column), where AE’s residues are represented as
heatmaps for visualization. As shown in the figure, residue
images (e)-(f) that correspond to themalignant patches (a)-(b)
have brighter values; on contrast, the true-normal patches
(c)-(d) have relatively small reconstruction errors (g)-(h).
Thanks to the data-specific property of the autoencoder,
the dominant patterns in normal image patches are well sum-
marized, while the abnormal patterns amongmalignant breast
cancer images are maintained in AE’s residues.

To visualize the distribution of learnt contrast patterns,
we project the obtained high dimensional feature set into
2-D domain via T-SNE [35] and illustrated in Fig. 5(a).
A green sample is associated with a true-normal patch and
a red sample represents a patch from a malignant image.
From the figure, more than half red samples share differ-
ent characteristics from green samples. Fig 5(b) visualizes
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FIGURE 4. Examples of the deep autoencoder’s inputs (256 × 256
grayscale patches from images with a magnification of 40x) (a)-(d) and
their reconstruction residues (e)-(h), where brighter values in the residue
heatmaps represent large reconstruction errors. The upper two patches
from malignant images (a)-(b) contain abnormal cell growth patterns, and
the lower two (c)-(d) are extracted from normal breast tissue
histopathology images.

the performance of one-class SVM, where green sample
corresponds to a true-normal patch, while yellow and red
samples are associated with patches from malignant images
in the 2-D T-SNE domain. The difference is that yellow sam-
ples are classified as normal by the one-class SVM, while
red data represent patches that are labeled as containing
malignant cell clusters.

C. BREAST CANCER IMAGE CLASSIFICATION
1) EVALUATION PROTOCOL
To evaluate the proposed method, stratified 10-fold cross-
validation is performed. Specifically, the image set is

FIGURE 5. Feature set visualization via T-SNE. (a) Some patches from
malignant images overlap with true-normal patches in the
low-dimensional T-SNE domain. (b) The yellow samples represent
patches that are extracted from malignant images and classified as
normal by the one-class SVM.

randomly partitioned into 10 equal-size folds, where each
fold contains roughly the same proportions of normal and
malignant labels. The cross-validation is repeated 10 times
where each fold is used as the test set once and images in
remaining 9 folds are used as training data. Then the obtained
10 diagnosis results are averaged to estimate classification
performance. In each round of cross-validation, images in
the training set are processed as described in the section of
data augmentation. In the testing phase, image patches are
extracted every 16 pixels, i.e. the centers of two patches may
be only 16 pixels apart in an image. The distance of 16 pixels
is a trade-off between generating a fine probability map and
maintaining computation efficiency.

In this experiment, we first perform a quantitative evalu-
ation on image classification. Particularly, to measure image
classification performance, we use the most commonmedical
diagnosis assessments, which include classification accuracy
ACC ∈ [0, 1], F-measure score F1 ∈ [0, 1], positive/negative
likelihood ratios LR+ ∈ [1,∞) and LR− ∈ [0, 1],
and diagnostic odds ratio DOR ∈ [1,∞). ACC is one of
the most common classification performance measurements.
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FIGURE 6. Examples of breast tissue images and their corresponding abnormality probability maps, where probability value greater
than 0.5 indicates abnormalities in this study. In images in the second row, abnormality regions derived by malignant cell growth were
delineated red. (a) Malignant histology. (b) Malignant histology. (c) Normal histology. (d) Abnormality region. (e) Abnormality region.
(f) No abnormality region. (g) Abnormality probability map by Spanhol’s method. (h) Abnormality probability map by Spanhol’s
method. (i) Abnormality probability map by Spanhol’s method. (j) Abnormality probability map by Araújo’s method. (k) Abnormality
probability map by Araújo’s method. (l) Abnormality probability map by Araújo’s method. (m) Abnormality probability map by
proposed method. (n) Abnormality probability map by proposed method. (o) Abnormality probability map by proposed method.
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TABLE 3. Image-level classification evaluation. The sign ? indicates that
the performance difference between the prior method and the proposed
method is of statistical significance at the 5% significance level.

It represents the proportion of accurate diagnoses, but it is
impacted by disease prevalence. F1 is the harmonic average
of the precision and sensitivity and F1 = 1 corresponds to
a perfect binary classification. Likelihood ratios use the sen-
sitivity and specificity of the test to determine its diagnostic
performance. They are believed as good institutions of AUC
when ROC analysis is infeasible. DOR combines sensitivity
and specificity and equals to the ratio of positive and negative
likelihood ratio. Among the five measurements, F1 score,
likelihood ratio, and DOR are independent of test preva-
lence, with higher values indicating a better discriminative
performance. Since the breast cancer image set does not
delineate the specific locations of malignant cell clusters,
we perform a qualitative assessment of the obtained proba-
bility maps by comparing it to abnormality regions derived
by malignant cell growth.

2) OTHER APPROACHES
To the best of our understanding, the proposed method
constitutes the first attempt in literature of breast cancer
diagnosis to infer locations of abnormalities from image
labels. Since there is no such breast cancer diagnosis study
in literature, we compare the performance of the proposed
method to the latest patch-based deep-learning breast can-
cer histopathology image classification methods proposed
by Spanhol et al. [11] and Araujo et al. [12]. Spanhol’s
method divides an image into 64×64 image patches and uses
an 8-layer convolutional neural network to classify image
patches. Then three fusion rules, majority voting, malig-
nant patch detection (i.e. maximum probability), and sum of
probability, are used to obtain the final image classification.
Araujo’s method divides images into 512× 512 patches and
enforces training-patch labels consistent with image labels.
Based on training patches and their newly-assigned labels,
a 13-layer convolutional neural net is trained and used to
classify unseen image patches. The final image classifica-
tion is also achieved by combining all inferred patch labels
using one of the three rules used in Spanhol’s method. Noted
that in both studies, malignant patch detection is reported to
achieve worse performance than the other two fusing rules
for image diagnosis. However, based on the belief that in a
medical alert system, any suspected alterations should trigger
an alarm, we select the fusing rule of malignant patch detec-
tion for both image classification methods in this comparison
experiment.

3) RESULTS AND DISCUSSIONS
Table 3 lists the image classification performance. The sign
? indicates that the performance difference between the prior
method and the proposed method is of statistical significance
at the 5% significance level. The better performance of the
proposed method is mainly contributed by its practicality and
generalizability in contrast pattern mining. First, the mini-
mum prior knowledge to train the proposed method is WSI
label which can be easily acquired in clinic practice. But this
information is not enough to train Spanhol’s method [11] and
Araujo’s method [12]; instead, patch-label or even pixel-wise
annotation is required. It should be noted that these prior deep
models havemore than ten thousands of trainable parameters.
Acquisition of sufficient amount of well-labeled data for
these models is fairly prohibitive, if not impossible, in prac-
tice due to the expensive and time-consuming properties of
pathological annotations. To address the shortage of well-
labeled training patches for supervised learning, Araujo’s
method makes an assumption that patch-labels are identical
to their image labels [12]. However, this assumption hardly
holds in practice because a tumor usually takes 0.01%-70%
(median 2%) areas of a WSI image [36]. The less practical
requirement/assumption on training data in prior arts limits
their diagnosis performance in practice. Second, in pathol-
ogy, normal breast tissues usually share common histological
patterns, whereas structures and patterns of malignant cell
clusters are heterogeneous. Consequently, quantification of
the normal patterns is relatively feasible, but representation
learning among histological irregularities is more challeng-
ing. In prior studies, cell’s abnormal patterns are usually
learnt directly from training samples. However, due to the
limited amount of training data, variations in histological
abnormalities may not be fully represented. As a result,
the generalizability of these deep diagnosis models to unseen
malignant cancer images is still in question. To overcome
the challenge of abnormality representation in digital pathol-
ogy, the proposed method learns the common patterns in
normal breast images first and diagnoses malignant cells by
similarity of these cells and their growth patterns to normal
ones. In this way, detection of histological abnormalities is
simplified to identification of common patterns in normal
breast images. Consequently, the proposed method is less
dependent on specific malignant image samples and can
generalize well.

Examples of the obtained probability maps with their cor-
responding H&E images are demonstrated in Fig. 6. Abnor-
mality regions derived by malignant cell growth in the query
images were delineated by our senior pathologist and high-
lighted in images at the second row. A probability map is pre-
sented in the form of a heat-map where bright pixels represent
high probabilities of abnormalities. It provides an insight and
verification of the image diagnosis result by inferring loca-
tions of abnormalities in an image. In this sense, it even con-
veys more information compared to the classification result
itself. Since Spanhol’s’s approach and Araujo’s method are
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TABLE 4. Comparison summary of examined methods.

also based on patch processing, as a comparison, the obtained
patch-level probabilities are used to form the corresponding
probabilitymaps following themethod proposed in this study.
As shown in the figure, the two prior methods are prone
to yield large probabilities in background areas of invasive
breast cancer histopathology images.

In summary, the advantages of the proposed method are
contributed by its practicality, generalizability, and self-
interpretability. First, theminimal prior knowledge onwhose-
slide-imaging (WSI) labels for system training is easily
acquired in clinic practice. Second, the proposed method
detects discriminative patterns in images in weak-supervised
manner. Because the method is less dependent on specific
malignant image samples, it generalizes well on unseen
images. Third, the obtained probability map infers locations
of abnormalities in an image. The insightful information
explains the final diagnosis result and helps pathologists to
verify the diagnosis reasoning. Table 4 summarizes a com-
prehensive comparison of examined methods. The major lim-
itation of this study is the size of the experimental image set
and the absence of the external validation group. However,
the carefully designed experimentation and the involvement
of pathologist’s expertise in this study support the reliability
of the obtained results. In addition, the public-accessibility
of the experimental image set facilitates other scholars to
reproduce our study.

VI. CONCLUSION
In this study, we presented a discriminative pattern min-
ing approach for invasive carcinoma diagnosis in routine
H&E stained breast tissue histopathology images. By learn-
ing contrast patterns between normal and malignant breast
cancer images, the proposed method was capable to identify
suspected regions of malignant cell clusters in an image.
The evaluation was conducted on a public histopathol-
ogy image set and experimentation demonstrated that
the proposed method outperformed prior arts. Particularly,
the superiority of the proposed method was its practicality,
generalizability, and self-interpretability. The obtained prob-
ability map would facilitate a better understanding of the
proposed pattern mining and diagnosis solution.

In this study, heterogeneity of histological abnormalities
posed a big challenge in pattern mining. we noted that there
was still a large room to improve the diagnosis perfor-
mance by investigating more efficient pattern mining meth-
ods. On the other hand, though we tried to tackle the problem
of self-interpretability in machine learning and proposed a

diagnosis system which was capable to generate visualized
information to support and verify its decision, the black-
box property of deep learning in terms of data representation
was still less-touched. Following the work of CAM [37] and
Grad-CAM [38], we would investigate how to interpret the
internal reasoning of a deep diagnosis system in future.
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