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ABSTRACT

The noise in daily infection counts of an epidemic should be super-Poissonian due to
intrinsic epidemiological and administrative clustering. Here, we use this clustering
to classify the official national SARS-CoV-2 daily infection counts and check for in-
fection counts that are unusually anti-clustered. We adopt a one-parameter model of
φ′

i infections per cluster, dividing any daily count ni into ni/φ
′

i ‘clusters’, for ‘coun-
try’ i. We assume that ni/φ

′

i on a given day j is drawn from a Poisson distribution
whose mean is robustly estimated from the 4 neighbouring days, and calculate the
inferred Poisson probability P ′

ij of the observation. The P ′

ij values should be uni-
formly distributed. We find the value φi that minimises the Kolmogorov–Smirnov
distance from a uniform distribution. We investigate the (φi, Ni) distribution, for
total infection count Ni. While all the daily infection count sequences are found
to be consistent with the φi model, the 28-, 14- and 7-day least noisy sequences
for several countries are best modelled as sub-Poissonian, suggesting a distinct epi-
demiological family. The 28-day sequences of Algeria, Belarus, Turkey, and the UAE
have strongly sub-Poissonian preferred models, with φ28

i < 0.5; these are difficult to
explain naturally.

1. Introduction

The daily counts of new, laboratory-confirmed infections with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) constitute one of the key statistics followed by
citizens and health agencies around the world in the ongoing 2019–2020 coronavirus
disease 2019 (COVID-19) pandemic[10, 22]. Can these counts be classified in a way that
makes as few epidemiological assumptions as possible, as motivation for deeper analysis
to either validate or invalidate the counts? While full epidemiological modelling and
prediction is a vital component of COVID-19 research[3, 7, 13, 16, 25], these cannot be
accurately used to study the pandemic as a whole – a global phenomenon by definition
– if the data at the global level is itself inaccurate. Knowledge of the global state of
the current pandemic is weakened if any of the national-level SARS-CoV-2 infection
data have been artificially interfered with by the health agencies providing that data
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or by other actors involved in the chain of data lineage [37]. Since personal medical
data are private information, only a limited number of individuals at health agencies
are expected to be able to check the validity of these counts based on original records.
Nevertheless, artificial interventions in the counts could potentially reveal themselves
in statistical properties of the counts. Unusual statistical properties in a wide variety
of quantitative data sometimes appear, for example, as anomalies related to Benford’s
law [26, 27], as in the 2009 first round of the Iranian presidential election [23, 31, 32].
Benford’s law analysis has been used to argue that countries with higher democracy
indices, high gross domestic product, and better health system indices tend to have a
lower probability of having manipulated their key COVID-19 related cumulative counts
(confirmed cases and deaths [5]) For other Benford’s law COVID-19 count analyses,
see [17, 20]. For the politics of organisational strategies regarding open government
data, see [33].

Here, we check the compatibility of noise in the official national SARS-CoV-2 daily
infection counts, Ni(t), for country

1 i on date t, with expectations based on the Poisson
distribution [28]. It is unlikely that any real count data will quite match the theoretical
Poisson distribution, both due to the complexity of the logical tree of time-dependent
intrinsic epidemiological infection as well as administrative effects in the SARS-CoV-2
testing procedures, and the sub-national and national level procedures for collecting
and validating data to produce a national health agency’s official report. In particular,
clusters of infections on a scale of φ′i infections per cluster, either intrinsic or in the
testing and administrative pipeline, would tend to cause relative noise to increase from
a fraction of 1/

√
Ni for pure Poisson noise up to

√
φ′i/Ni, greater by a factor of

√
φ′i.

This overdispersion has been found, for example, for COVID-19 death rate counts in
the United States [16].

In contrast, it is difficult to see how anti-Poissonian smoothing effects could occur,
unless they were imposed administratively. For example, an administrative office might
impose (or have imposed on it by political authorities) a constraint to validate a fixed
or slowly and smoothly varying number of SARS-CoV-2 test result files per day, inde-
pendently of the number received or queued; this would constitute an example of an
artificial intervention in the counts that would weaken the epidemiological usefulness
of the data.

A one-parameter model to allow for the clustering is proposed in this paper, and used
to classify the counts. We allow the parameter to take on an effective anti-clustering
value, in order to allow the data to freely determine its optimal value. For more in-
depth models of clustering, called “burstiness” in stochastic models of discrete event
counts, power-law models have also been proposed [6, 9].

The method is presented in §2. Section §2.1 describes the choice of data set and the
definition, for any given country, of a consecutive time sequence that has high enough
daily infection counts for Poisson distribution analysis to be reasonable. The method
of analysis is given in §2.2. Results are presented in §3. Qualitative discussion of the
results is given in §4 and conclusions are summarised in §5. This work is intended to
be fully reproducible by independent researchers using the Maneage framework; it
was produced using commit f7e7b46 of the git repository https://codeberg.org/

boud/subpoisson and the archive zenodo.4432080, on a computer with Little Endian
x86 64 architecture.

1No position is taken in this paper regarding jurisdiction over territories; the term ‘country’ is intended here
as a neutral term without supporting or opposing the formal notion of state. Apart from minor changes for
technical reasons, the ‘countries’ are defined by the data sources.
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Figure 1. Number Njump of sudden jumps or drops in counts on adjacent days in WHO and Wikipedia
WikiProject COVID-19 Case Count Task Force medical cases chart national daily SARS-CoV-2 infection
counts for countries present in both data sets. A line illustrates equal quality of the two data sets. The
C19CCTF version of the data is clearly less affected by sudden jumps than the WHO data. Plain text table:
zenodo.4432080/WHO vs WP jumps.dat.

2. Method

2.1. SARS-CoV-2 infection data

Two obvious choices of a dataset for national daily SARS-CoV-2 counts would be
those provided by the World Health Organization (WHO)2 or those curated by the
Wikipedia WikiProject COVID-19 Case Count Task Force3 in medical cases chart
templates (hereafter, C19CCTF). While WHO has published a wide variety of docu-
ments related to the COVID-19 pandemic, it does not appear to have published details
of how national reports are communicated to it and collated. Given that most govern-
ment agencies and systems of government procedures tend to lack transparency, de-
spite significant moves towards forms of open government[39] in many countries, data
lineage tracing from national governments to WHO is likely to be difficult in many
cases. In contrast, the curation of official government SARS-CoV-2 daily counts by the
Wikipedia WikiProject COVID-19 Case Count Task Force follows a well-established
technology of tracking data lineage. The Wikipedia community high-tempo collabo-
rative editing that has taken place in response to the COVID-19 pandemic is well
quantified[15]. The John Hopkins University Center for Systems Science and Engi-
neering curated set of official COVID-19 data is discussed below.

Unfortunately, it is clear that in the WHO data, there are several cases where two
days’ worth of detected infections appear to be listed by WHO as a sequence of two
days j and j + 1 on which all the infections are allocated to the second of the two
days, with zero infections on the first of the pair. There are also some sequences in the
WHO data where the day listed with zero infections is separated by several days from
a nearby day with double the usual amount of infections. This is very likely an effect
of difficulties in correctly managing world time zones, or time zone and sleep schedule
effects, in any of several levels of the chains of communication between health agencies
and WHO. In other words, there are several cases where a temporary sharp jump or
drop in the counts appears in the data but is most likely a timing artefact. Whatever

2https://covid19.who.int/WHO-COVID-19-global-data.csv; (archive)
3https://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_COVID-19/

Case_Count_Task_Force&oldid=967874960
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the reason for the effect, this effect will tend to confuse the epidemiological question
of interest here: the aim is to globally characterise the noise and to highlight countries
where unusual smoothing may have taken place.

We quantify this jump/drop problem as follows. We consider a pair of days j, j +1
for a given country to be a jump if the absolute difference in counts, |ni(j+1)−ni(j)|,
is greater than the mean, (ni(j+1)+ni(j))/2. In the case of a pair in which one value is
zero, the ratio is two, and the condition is satisfied. We evaluate the number of jumps
Njump for both the WHO data and the C19CCTF medical cases chart data, starting,
for any given country, from the first day with at least 50 infections. Figure 1 shows
Njump for the 130 countries in common to the two data sets; there are 216 countries
in the WHO data set and 132 in the C19CCTF data. It is clear that most countries
have fewer jumps or drops in the Wikipedia data set than in the WHO data set.

Thus, at least for the purposes of understanding intrinsic and administrative
clustering, the C19CCTF medical cases chart data appear to be the better cu-
rated version of the national daily SARS-CoV-2 infection counts as reported by
official agencies. The detailed download and extraction script of national daily
SARS-CoV-2 infection data from these templates and the resulting data file
zenodo.4432080/WP C19CCTF SARSCoV2.dat are available in the reproducibility
package associated with this paper (§Code availability). Dates without data are omit-
ted; this should have an insignificant effect on the analysis if these are due to low
infection counts.

Another global collection of daily SARS-CoV-2 counts that could be considered is
the John Hopkins University Center for Systems Science and Engineering (JHU CSSE)
git repository. Unfortunately, for several countries, the JHU CSSE data are provided
for sub-national divisions rather than as official national statistics, making the dataset
inhomogeneous for the purposes of this study. Artificial interference in the data at
the national level will not be shown in data that is the sum of data obtained directly
from sub-national geographical/political divisions. Moreover, detailed data provenance
analysis (which exact government URL did a particular count come from? where is
the archived version of the data of the original URL?) appears to be more difficult for
the JHU CSSE data than for the C19CCTF data. Nevertheless, for completeness, the
JHU CSSE data is analysed using the same method as the main analysis, with results
presented as tables in Appendix A.

The full set of C19CCTF data includes many days, especially for countries or ter-
ritories (as defined by the data source) of low populations, with low values, including
zero and one. The standard deviation of a Poisson distribution[28] of expectation value
N is

√
N , giving a fractional error of 1/

√
N . Even taking into account clustering or

anticlustering of data, inclusion of these periods of close to zero infection counts would
contribute noise that would overwhelm the signal from the periods of higher infection
rates for the same or other countries. In the time sequences of SARS-CoV-2 infection
counts, chaos in the administrative reactions to the initial stages of the pandemic will
tend to create extra noise, so it is reasonable to choose a moderately high threshold at
which the start and end of a consecutive sequence of days should be defined for anal-
ysis. Here, we set the threshold for a sequence to start at a minimum of 50 infections
in a single day. The sequence is continued for at least 7 days (if available in the data),
and stops when the counts drop below the same threshold for 2 consecutive days. The
cutoff criterion of 2 consecutive days avoids letting the analysable sequence be too
sensitive to individual days of low fluctuations. If the resulting sequence includes less
than 7 days, the sequence is rejected as having insufficient signal to be analysed.
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2.2. Analysis

2.2.1. Poissonian and φ′i models: full sequences

We first consider the full count sequence {ni(j), 1 ≤ j ≤ Ti} for each country i, with
Ti valid days of analysis as defined in §2.1. Our one-parameter model assumes that the
counts are predominantly grouped in clusters, each with φ′i infections per cluster. Thus,
the daily count ni(j) is assumed to consist of ni(j)/φ

′
i infection events. We assume

that ni(j)/φ
′
i on a given day is drawn from a Poisson distribution of mean µ̂i(j)/φ

′
i.

We set µ̂i(j) to the median of the 4 neighbouring days, excluding day j and centred on
it. For the initial sequence of 2 days, µ̂i(j) is set to µ̂i(3), and µ̂i(j) for the final 2 days
is set to µ̂i(Ti − 2). By modelling µ̂i as a median of a small number of neighbouring
days, our model is almost identical to the data itself and statistically robust, with only
mild dependence on the choices of parameters. This definition of a model is more likely
to bias the resulting analysis towards underestimating the noise on scales of several
days rather than overestimating it; this method will not detect oscillations on the time
scale of a few days to a fortnight that are related to the SARS-CoV-2 incubation time
[11]. For any given value φ′i, we calculate the cumulative probability P ′

ij that ni(j)/φ
′

i

is drawn from a Poisson distribution of mean µ̂i(j)/φ
′
i. For country i, the values P ′

ij
should be drawn from a uniform distribution if the model is a fair approximation. In
particular, for φ′i set to unity, P ′

ij should be drawn from a uniform distribution if the

intrisic data distribution is Poissonian. Individual values of P ′

ij (close to zero or one)
could, in principle, be used to identify individual days that are unusual, but here we
do not consider these further.

We allow a wide logarithmic range in values of φ′i, allowing the unrealistic domain of
φ′i < 1, and find the value φi that minimises the Kolmogorov–Smirnov (KS) distance
[18, 35] from a uniform distribution, i.e. that maximises the KS probability that the
data are consistent with a uniform distribution, when varying φ′i. The one-sample KS
test is a non-parametric test that compares a data sample with a chosen theoretical
probability distribution, yielding the probability that the sample is drawn randomly
from the theoretical distribution. We label the corresponding KS probability as PKS

i .
We write PPoiss

i := PKS
i (φ′i = 1) to check if any country’s daily infection rate sequence

is consistent with Poissonian, although this is likely to be rare, as stated above: super-
Poissonian behaviour seems reasonable. Of particular interest are countries with low
values of φi. Allowing for a possibly fractal or other power-law nature of the clustering
of SARS-CoV-2 infection counts, we consider the possibility that the optimal values φi
may be dependent on the total infection count Ni. We investigate the (φi, Ni) distri-
bution and see whether a scaling type relation exists, allowing for a corrected statistic
ψi to be defined in order to highlight the noise structure of the counts independent of
the overall scale Ni of the counts.

Standard errors in φi for a given country i are estimated once φi has been ob-
tained by assuming that µ̂i(j) and φi are correct and generating 30 Poisson random
simulations of the full sequence for that country. Since the scales of interest vary loga-
rithmically, the standard deviation of the best estimates of log10 φi for these numerical
simulations is used as an estimate of σ(log10 φi), the logarithmic standard error in φi.

2.2.2. Subsequences

Since artificial interference in daily SARS-CoV-2 infection counts for a given country
might be restricted to shorter periods than the full data sequence, we also analyse 28-,
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Figure 2. Probability of the noise in the country-level daily SARS-CoV-2 counts being consistent with a
Poisson point process, PPoiss

i , shown as red circles; and probability PKS
i (φi) for the φi clustering model proposed

here (§2.2.1), shown as green X symbols, versus Ni, the total number of officially recorded infections for that
country. The horizontal axis is logarithmic. As discussed in the text (§3.2.1), the Poisson point process is
unrealistic for most of these data, while the φi clustering model is consistent with the data for all countries.
Plain text table: zenodo.4432080/phi N full.dat.

14- and 7-day subsequences. These analyses are performed using the same methods
as above (§2.2.1), except that the 28-, 14- or 7-day subsequence that minimises φi is
found. The search over all possible subsequences would require calculation of a Šidàk-
Bonferonni correction factor [1] to judge how anomalous they are. The KS probabilities
that we calculate need to be interpreted keeping this in mind. Since the subsequences
for a given country overlap, they are clearly not independent from one another. Instead,
the a posteriori interpretation of the results of the subsequence searches found here
should at best be considered indicative of periods that should be considered interesting
for further verification.

3. Results

3.1. Data

The 132 countries and territories in the C19CCTF counts data have 19 negative values
out of the total of 16367 values. These can reasonably be interpreted as corrections for
earlier overcounts, and we reset these values to zero with a negligible reduction in the
amount of data. Consecutive day sequences satisfying the criteria listed in §2.1 were
found for 68 countries.

3.2. Clustering of SARS-CoV-2 counts

3.2.1. Full infection count sequences

Figure 2 shows, unsurprisingly, that only a small handful of the countries’ daily SARS-
CoV-2 counts sequences have noise whose statistical distribution is consistent with the
Poisson distribution, in the sense modelled here: PPoiss

i (red circles) is close to zero
in most cases. On the contrary, the introduction of the φ′i parameter, optimised to φi
for country i, provides a sufficient fit in all cases; none of the probabilities (PKS

i (φi),
green X symbols) in Fig. 2 is low enough to be considered a significant rejection.
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Figure 3. Noisiness in daily SARS-CoV-2 counts, showing the clustering parameter φi (§2.2.1) that best
models the noise, versus the total number of counts for that country Ni. The error bars show standard errors
derived from numerical (bootstrap) simulations based on the model. The axes are logarithmic, as indicated.
Values of the clustering parameter φi below unity indicate sub-Poissonian behaviour – the counts in these cases
are less noisy than expected for Poisson statistics. A robust (Theil–Sen [34, 36]) linear fit of log10 φi against
log10Ni is shown as a thick green line (§3.2.1). Plain text table: zenodo.4432080/phi N full.dat.
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Figure 4. Normalised noisiness ψi (Eq. (1)) for daily SARS-CoV-2 counts versus total counts Ni. The error
bars are as in Fig. 3, assuming no additional error source contributed by Ni. The axes are logarithmic. A few
low ψi values appear to be outliers of the ψi distribution.
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Table 1. Clustering parameters for the countries with the 10 lowest φi and 10 lowest ψi values (least noise);
extended version of table: zenodo.4432080/phi N full.dat.

Country Ni PPoiss
i PKS

i φi ψi

DZ 23691 0.30 0.63 0.89 0.005
FI 7347 0.35 0.98 1.72 0.020
BY 66348 0.09 0.87 2.11 0.008
AL 3906 0.23 0.79 2.57 0.041
HR 4422 0.27 0.89 3.24 0.048
AE 57193 0.00 0.67 3.35 0.014
NZ 1557 0.44 0.90 4.32 0.109
AU 12450 0.11 0.90 5.07 0.045
TH 3255 0.29 0.99 5.37 0.094
DK 13466 0.00 0.97 5.56 0.047

DZ 23691 0.30 0.63 0.89 0.005
BY 66348 0.09 0.87 2.11 0.008
RU 783328 0.00 0.91 10.35 0.011
AE 57193 0.00 0.67 3.35 0.014
SA 255825 0.00 0.83 9.02 0.017
FI 7347 0.35 0.98 1.72 0.020
IR 276202 0.00 0.73 12.73 0.024
TR 220572 0.00 0.43 12.30 0.026
IN 1155191 0.00 0.78 33.88 0.031
AL 3906 0.23 0.79 2.57 0.041

The consistency of the φi model with the data justifies continuing to Figure 3,
which clearly shows a scaling relation: countries with greater overall numbers Ni of
infections also tend to have greater noise in the daily counts ni(j). A Theil–Sen linear
fit [34, 36] to the relation between log10 φi and log10Ni has a zeropoint of −0.71±0.27
and a slope of 0.44 ± 0.07, where the standard errors (68% confidence intervals if the
distribution is Gaussian) are conservatively generated for both slope and zeropoint by
100 bootstraps. By using a robust estimator, the low φi cases, which appear to be
outliers, have little influence on the fit. The fit is shown as a thick green line in Fig. 3.

This φi–Ni relation is consistent with φi ∝
√
Ni. To adjust the φi clustering value

to take into account the dependence on Ni, and given that the slope is consistent with
this simple relation, we propose the empirical definition of a normalised clustering
parameter

ψi := φi/
√
Ni , (1)

so that ψi should, by construction, be approximately constant. While the estimated
slope of the relation could be used rather than this half-integer power relation, the
fixed relation in Eq. (1) offers the benefit of simplicity.

This relation should not be confused with the usual Poisson error. By the divisibility
of the Poisson distribution, the relation φi ∝

√
Ni found here can be used to show
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Figure 5. Clustering parameter φi for 28-day sequence with lowest φi, as in Fig. 3. The vertical axis range is
expanded from that in Fig. 3, to accommodate lower values A robust (Theil–Sen [34, 36]) linear fit of log10 φ

28
i

against log10Ni is shown as a thick green line (§3.2.1). Plain text table: zenodo.4432080/phi N 28days.dat.

that

σ[µ̂i(j)/φi] ∼
√
µ̂i(j)/φi

⇒ σ[µ̂i(j)] ∼ φi
√
µ̂i(j)/φi ∝ N

1/4
i µ̂i(j)

1/2 , (2)

where σ[x] is the standard deviation of random variable x. If we accept µ̂i(j) as a fair
model for ni(j) and that ni(j) is proportional to Ni, then we obtain

σ[ni(j)] ∝ n
3/4
i . (3)

Figure 4 shows visually that ψi appears to be scale-independent, in the sense that
the dependence on Ni has been cancelled, by construction. The countries with the 10
lowest values of ψi are those with ISO 3166-1 alpha-2 codes DZ, BY, RU, AE, SA,
FI, IR, TR, IN, AL. Detailed SARS-CoV-2 daily count noise characteristics for the
countries with lowest φi and ψi are listed in Table 1, including Kolmogorov–Smirnov
probability that the data are drawn from a Poisson distribution, PPoiss

i , the probability
of the optimal φi model, PKS

i , and φi and ψi.
The approximate proportionality of φi to

√
Ni for the full sequences is strong and

helps separate low-noise SARS-CoV-2 count countries from those following the main
trend. However, the results for subsequences shown below in §3.2.2 suggest that this
Ni dependence may be an effect of the typically longer durations of the pandemic in
countries where the overall count is higher.

3.2.2. Subsequences of infection counts

Figures 5–7 show the equivalent of Fig. 3 for sequences of lengths 28, 14 and 7 days,
respectively. The Theil–Sen robust fits to the logarithmic (φ28i , Ni); (φ14i , Ni); and
(φ7i , Ni) relations are zeropoints and slopes of 0.27± 0.33 and 0.15± 0.07; 0.20± 0.64

9

https://zenodo.org/record/4432080/files/phi_N_28days.dat


Table 2. Least noisy 28-day sequences – clustering parameters for the countries with the 10 lowest φ28
i

values;
extended table: zenodo.4432080/phi N 28days.dat.

country Ni

〈
n28i

〉
PPoiss
i PKS

i φ28i starting
date

DZ 23691 154.1 0.10 0.75 0.17 2020-05-13
BY 66348 921.9 0.14 0.89 0.21 2020-05-08
TR 220572 1131.2 0.08 0.82 0.21 2020-06-23
AE 57193 512.8 0.08 0.23 0.23 2020-04-14
FI 7347 83.4 0.97 0.99 0.92 2020-04-15
SA 255825 1182.2 0.47 0.54 1.11 2020-04-12
RU 783328 6946.0 0.78 0.92 1.36 2020-06-17
AL 3906 74.6 0.23 0.79 2.57 2020-06-21
IR 276202 1863.3 0.20 0.97 2.85 2020-03-30
HR 4422 60.2 0.27 0.89 3.24 2020-03-28

103 104 105 106 107
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10−1

100

101

102

103

ϕ
14 i

14-day seq.

Figure 6. Clustering parameter φi for 14-day sequence with lowest φi, as in Fig. 5. Plain text table:
zenodo.4432080/phi N 14days.dat.
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Table 3. Least noisy 14-day sequences – clustering parameters for the countries with the 10 lowest φ14
i

values;
extended version of table: zenodo.4432080/phi N 14days.dat.

country Ni

〈
n14i

〉
PPoiss
i PKS

i φ14i starting
date

AE 57193 521.2 0.11 0.56 0.09 2020-04-19
DZ 23691 144.1 0.11 0.48 0.09 2020-05-23
BY 66348 945.6 0.22 1.00 0.13 2020-05-12
TR 220572 991.6 0.12 0.95 0.13 2020-07-06
SA 255825 1227.5 0.38 0.96 0.30 2020-04-19
KE 12750 126.2 0.22 0.64 0.47 2020-06-03
FI 7347 95.1 0.62 0.96 0.65 2020-04-16
RU 783328 6522.9 0.37 0.42 0.72 2020-07-04
IN 1155191 9409.7 0.61 0.65 0.82 2020-05-30
AL 3906 70.8 0.57 0.88 0.87 2020-06-24

103 104 105 106 107
Ni
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10−1

100

101

102

103

ϕ
7 i

 7-day seq.

Figure 7. Clustering parameter φi for 7-day sequence with lowest φ7i , as in Fig. 5. There is clearly a wider
overall scatter and bigger error bars compared to Figs 5 and 6; a low φ7i is a weaker indicator than φ28i and
φ14i . Plain text table: zenodo.4432080/phi N 07days.dat.
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Table 4. Least noisy 7-day sequences – clustering parameters for the countries with the 10 lowest φ values;
extended table: zenodo.4432080/phi N 07days.dat.

country Ni

〈
n7i

〉
PPoiss
i PKS

i φ7i starting
date

AE 57193 544.9 0.24 0.99 0.05 2020-04-27
BY 66348 947.9 0.60 0.94 0.05 2020-05-13
IN 1155191 10109.3 0.34 0.60 0.05 2020-06-06
DZ 23691 188.6 0.20 0.99 0.06 2020-05-20
FI 7347 94.9 0.42 0.55 0.08 2020-04-20
TR 220572 1022.4 0.43 0.94 0.10 2020-07-07
PL 40782 297.7 0.31 0.96 0.16 2020-06-20
PA 54426 171.1 0.82 0.96 0.17 2020-05-09
HN 33835 160.7 0.89 0.99 0.18 2020-06-01
DK 13466 71.1 0.48 0.94 0.28 2020-05-11

and 0.10 ± 0.13; and 0.29 ± 0.68 and −0.03 ± 0.15, respectively. There is clearly no
significant dependence of φdi on Ni for any of these fixed length subsequences, in
contrast to the case of the φi dependence on Ni for the full count sequences. Thus,
the empirical motivation for using ψ (Eq. (1)) to discriminate between the countries’
full sequences of SARS-CoV-2 data is not justified for the subsequences. Tables 2–4
show the countries with the least noisy sequences as determined by φ28i , φ

14
i and φ7i ,

respectively.
Tables 2 and 3 show that the lists of countries with the strongest anti-clustering

are similar. Thus, Fig. 8 shows the SARS-CoV-2 counts curves for countries with the
lowest φ28i , and Fig. 9 the curves for those with the lowest φ7i . Both figures exclude
countries with total counts Ni ≤ 10000, in which low total counts tend to give low
clustering. It is clear in these figures that several countries have subsequences that
are strongly sub-Poissonian – with some form of anti-clustering, whether natural or
artificial.

Countries in the median of the φ28i and φ7i distributions have their curves shown in
Fig. 10 for comparison. It is visually clear in the figure that the counts are dispersed
widely beyond the Poissonian band, and that the φ28i and φ7i models are reasonable
as a model for representing about 68% of the counts within one standard deviation of
the model values.

4. Discussion

Figures 3 and 4 clearly show that some groups of countries are unusual in terms of
the characteristics of their location in the (Ni, ψi) plane.

4.1. High total infection count

Brazil (BR) and the United States (US) are separated from the majority of other coun-
tries by their high total infection count. They have correspondingly higher clustering
values φi, although their normalised clustering values ψi are in the range of about
0.4 < ψi < 10 covered by the majority of countries in Fig. 4.

It does not seem realistic that these two countries’ φi values greater than 300 are
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Figure 8. Least noisy 28-day official SARS-CoV-2 national daily counts for countries with total counts
Ni > 10000 (see Fig. 5 and Table 2), shown as dots in comparison to the µ̂i(j) model (median of the 4
neighbouring days) and 68% error band for the Poisson point process. The ranges in daily counts (vertical
axis) are chosen automatically and in most cases do not start at zero. About nine (32%) of the points should
be outside of the shaded band unless the counts have an anti-clustering effect that weakens Poisson noise. A
faint shaded band shows the φ28i model for the one country here with φi (slightly) greater than one (RU), but
is almost indistinguishable from the Poissonian band. The dates indicate the start date of each sequence.
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Figure 9. Least noisy 7-day daily counts for countries with total counts Ni > 10000, as in Fig. 8. Concen-
tration of points close to the model indicates an anti-clustering effect; about 68% (two) of the points should
scatter up and down throughout the shaded band if the counts are Poissonian. In several cases, the data points
appear to be mostly stuck to the model, with almost no scatter.

14



0 5 10 15 20 25
j-th day

100

200

300

n i
(j)

BE 2020-06-02
BE model
ϕi

Poisson

0 5 10 15 20 25
j-th day

200

400

600

800

1000

1200

n i
(j)

BD 2020-04-16
BD model
ϕi

Poisson

0 2 4 6
j-th day

3400

3600

3800

4000

4200

n i
(j)

PE 2020-07-12
PE model
ϕi

Poisson

0 2 4 6
j-th day

60

80

100

120

140

160

180

n i
(j)

AU 2020-04-05
AU model
ϕi

Poisson

Figure 10. Typical (median) 28-day (above) and 7-day (below) daily counts, as in Figs 8 and 9. The dark
shaded band again shows a Poissonian noise model, which underestimates the noise. A faint shaded band shows
the φi models for these countries’ SARS-CoV-2 daily counts, and should contain about 68% of the infection
count points.
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purely an effect of intrinsic infection events – ‘superspreader’ events in crowded places
or nursing homes. While individual big clusters may occur given the high overall
scale of infections, it seems more likely that this is administrative clustering. Both
countries are federations, and have numerous geographic administrative subdivisions
with a diversity of political and administrative methods. A plausible explanation for
the dominant effect yielding φi > 300 in these two countries is that on any individual
day, the arrival and full processing of reports depends on a number of sub-national
administrative regions, each reporting a few hundred new infections.

For example, if there are 10 reporting regions, each typically reporting 300 infections,
then typically (on about 68% of days) there will be about 7 to 13 reports per day. This
would give a range varying from about 2100 to 3900 cases per day, rather than 2945 to
3055, which would be the case for unclustered, Poissonian counts (since

√
3000 ≈ 55).

Lacking a system that obliges sub-national divisions – and laboratories – to report their
test results in time-continuous fashion and that validates and collates those reports
on a time scale much shorter than 24 hours, this type of clustering seems natural in
the sociological sense.

4.2. Low normalised clustering ψi

In Fig. 4, there appears to be a group of eight countries that are also separated from
the main group of countries, but by having low normalised noise ψi rather than just
having a high total count Ni.

4.2.1. Low ψi, low Ni, high PPoiss
i

Classifying the countries by ψi alone (Table 1) would add Finland (FI) to this group,
but in Fig. 4, Finland appears better grouped with the main body of countries in the
(ψi, Ni) plane. This could be interpreted as Eq. (1) providing insufficient correction
for the φi–Ni relation. Alternatively, looking at Finland’s entry in Table 2 for 28-day
sequences, we see that Finland is among the three with the lowest total (or mean)
daily infection counts in the table, and has the highest consistency with a Poisson
distribution (PPoiss

i ). Having a low total infection count, it seems credible that Fin-
land lacks the intrinsic, testing and administrative clustering of countries with higher
infection counts.

4.2.2. Low ψi, high Ni

India (IN) and Russia (RU) have total infection counts nearly as high (logarithmically)
as Brazil and the US, but have managed to keep their daily infection rates much less
noisy – by about a factor of 10 to 100 – than would be expected from the general
pattern displayed in the diagram. Despite having of the order of a million total official
SARS-CoV-2 infections each, these two countries have, as of the download date of the
data, 21 July 2020, avoided having the clustering effects present in Brazil and the US.

The most divergent case in the high-Ni part of this group (see Fig. 4 and Table 1)
is Russia, which has only a very modest value of φi = 10.4 × 10±0.098 for its total
infection count of over a million. This would require that both intrinsic clustering of
infection events and administrative procedures work much more smoothly in Russia
than in the United States, Brazil and, to a lesser degree, India. Tables 2 and 3 and
Fig. 8 show that the Russian official SARS-CoV-2 counts indeed show very little
noise compared to more typical cases (Fig. 10). At the intrinsic epidemiological level,

16



this means that if the Russian counts are to be considered accurate, then very few
clusters – in nursing homes, religious gatherings, bars, restaurants, schools, shops –
can have occurred. Moreover, laboratory testing and transmission of data through the
administrative chain from local levels to the national (federal) health agency must have
occurred without the clustering effects present in the United States and Brazil and
in countries with more typical clustering values φi, characterising their daily infection
counts. International media interest in Russian COVID-19 data has mostly focussed
on controversy related to COVID-19 death counts [8], with apparently no attention
given so far to the modestly super-Poissonian nature of the daily counts, in contrast
to the strongly super-Poissonian counts of other countries with high total infection
counts.

India’s overall position in the (ψi, Ni) plane (Fig. 4 and Table 1) is less extreme
than that of Russia, with an unnormalised clustering parameter φi = 34 × 10±0.096.
However, Table 3 shows that despite its large overall infection count, India achieved
a 14-day sequence with a preferred φi value close to unity. Moreover, it has a very
low-ranked φ7i value, as given in Table 4 and illustrated in Fig. 9. Five values appear
almost exactly on the model curve rather than scattering above and below. Moreover,
the value is just below 10,000. Epidemiologically, it is not credible to believe that
10,000 officially reported cases per day should be an attractor resulting from the
pattern of infections and system of reporting. Given that the value of 10,000 is a
round number in the decimal-based system, a reasonable speculation would be that
the daily counts for India were artificially held at just below 10,000 for several days.
The crossing of the 10,000 psychological threshold of daily infections was noted in the
media [29], but the lack of noise in the counts during the week preceding the crossing
of the threshold appears to have gone unnoticed. After crossing the 10,000 threshold,
the daily infections in India continued increasing, as can be seen in the full counts
(zenodo.4432080/WP C19CCTF SARSCoV2.dat).

4.2.3. Low ψi, low φi, medium Ni

Among the group of eight low ψi countries, Table 1 shows that only one country has
its full data set (as defined here) best modelled by the ordinary Poisson point process.
Algeria (DZ) appears to have completely avoided clustering effects, with φi close to
unity. Figure 8 shows the least noisy 28-day sequence for Algeria. Only one day of
SARS-CoV-2 recorded infections appears to have diverged beyond the Poissonian 68%
band, rather than about nine, the expected number for a Poissonian distribution.
Most of the points appear to stick very closely to the model. It is difficult to imagine a
natural process for obtaining this sub-Poissonian noise (as preferred by the φi model),
especially in the context where most countries have super-Poissonian daily counts. In
a frequentist interpretation, the least noisy Algerian 28-day count sequence would be
considered only mildly, not significantly, unusual, since it is consistent with a Poisson
distribution, with only a weak rejection (Tables 2–4). However, as a member of the
general class of countries’ SARS-CoV-2 daily infection count curves, use of the φi model
would appear to be justified. It is in this sense that the sequence can be considered
sub-Poissonian. Moreover, a full Bayesian analysis would need to consider independent
credibility criteria[5]. Compartmental epidemic modelling of the Algerian data, which
has been published for the period ending 24 May 2020[30], could also be included in
an extended analysis.

In line with the counts for India that appeared to be smooth just below a round-
number boundary of 10,000 infections per day, the least noisy 7-day sequence for
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Algeria, shown in Fig. 9, might appear to have been affected by a similar psycholog-
ical boundary of 200 infections per day. Medical specialists interviewed by the media
interpreted the 200 daily infections period as representing stability and resulting from
partial lockdown measures, without providing an explanation for why Poisson noise
was nearly absent [14]. While lockdown measures should reduce intrinsic epidemiolog-
ical clustering down towards the Poissonian level, it is difficult to see how they could
reduce testing and administrative pipeline clustering. A coincidence that occurred dur-
ing this least-noisy 7-day period, on 24 May 2020, was that a full COVID-19 lockdown
was implemented in Algeria [24].

The Belarus (BY) case is present in all four tables (Tables 1–4). The least noisy
Belarusian counts curve appears in Fig. 8. As with the other panels in the daily counts
figures, the vertical axis is set by the data instead of starting at zero, in order to best
display the information on the noise in the counts. With the vertical axis starting
at zero, the Belarus daily counts would look nearly flat in this figure. They appear
to be bounded above by the round number of 1000 SARS-CoV-2 infections per day,
which, again, appears to be a psychologically preferred barrier. Media have expressed
scepticism of Belarusian COVID-19 related data [2, 19].

One remaining case of a coincidence is that the lowest noise 7-day sequence listed for
Poland (PL, Table 4) is for the 7-day period starting 20 June 2020, with φ7i = 0.16 ×
10±0.49. This is a factor of about 100 (or at least 10 at about 95% confidence) below
Poland’s clustering value for the full sequence of its SARS-CoV-2 daily infection counts,
φi = 13 × 10±0.082, which Fig. 3 shows is typical for a country with an intermediate
total infection count. On 28 June 2020, there was a de facto (of disputed constitutional
validity [21, 38]) first-round presidential election in Poland. Figure 9 shows that the
counts for Poland during the final pre-first-round-election week did not scatter widely
throughout the Poissonian band. A decimal-system round number also appears in
this figure: the daily infection rate is slightly above about 300 infections per day and
drops to slightly below that. For an unknown reason that does not previously appear
to have been studied, the intrinsic clustering of SARS-CoV-2 infections in Poland
together with testing and administrative clustering of the confirmed cases appears to
have temporarily disappeared just prior to the election date, yielding what is best
modelled as sub-Poissonian counts.

4.2.4. JHU CSSE data

The JHU CSSE data give mostly similar results to the C19CCTF data. These are
presented and briefly discussed in Appendix A.

5. Conclusion

Given the overdispersed, one-parameter Poissonian φi model proposed, the noise char-
acteristics of the daily SARS-CoV-2 infection data suggest that most of the countries’
data form a single family in the (φi, Ni) plane. The clustering – whether epidemiolog-
ical in origin, or caused by testing or administrative pipelines – tends to be greater
for greater numbers of total infections. Several countries appear, however, to show
unusually anti-clustered (low-noise) daily infection counts.

Since these daily infection counts data constitute data of high epidemiological inter-
est, the statistical characteristics presented here and the general method could be used
as the basis for further investigation into the data of countries showing exceptional
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characteristics. The relations between the most anti-clustered counts and the psycho-
logically significant decimal system round numbers (IN: 10,000 daily, DZ: 200 daily,
BY: 1000 daily, PL: 300 daily), and in relation to a de facto national presidential elec-
tion, raise the question of whether or not these are just coincidences. The suspicious
periods of data found here are mostly complementary to those studied by Balashov
et al., since those authors’ Benford’s law analysis mainly focuses on the first-digit
Benford’s law[5].

It should be straightforward for any reader to extend the analysis in this paper
by first checking its reproducibility with the free-licensed source package provided
using the Maneage framework [4], and then extending, updating or modifying it
in other appropriate ways; see §Code availability below. Reuse of the data should be
straightforward using the files archived at zenodo.4432080.
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Appendix A. JHU CSSE data

The John Hopkins University Center for Systems Science and En-
gineering global time series data was downloaded on 2020-08-
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Table A1. As in Table 1, for the JHU CSSE data: clustering parameters for the countries with the 10 lowest
φi and 10 lowest ψi values (least noise); extended version of table: zenodo.4432080/phi N full jhu.dat.

Country Ni PPoiss
i PKS

i φi ψi

DZ 37664 0.40 0.67 0.88 0.004
BY 69308 0.02 0.72 2.29 0.008
AL 7117 0.13 0.56 2.57 0.030
HR 6258 0.27 0.89 3.24 0.040
NZ 1611 0.10 0.88 3.85 0.095
AE 63819 0.00 0.61 4.42 0.017
TH 3376 0.29 0.99 5.37 0.092
DK 15758 0.00 0.97 5.56 0.044
IS 1983 0.33 1.00 5.96 0.133
GR 6632 0.03 0.98 6.53 0.080

DZ 37664 0.40 0.67 0.88 0.004
RU 910778 0.00 0.58 7.50 0.007
BY 69308 0.02 0.72 2.29 0.008
SA 295902 0.00 0.91 8.32 0.015
TR 246861 0.00 0.16 7.67 0.015
AE 63819 0.00 0.61 4.42 0.017
IR 338825 0.00 0.71 10.35 0.017
AL 7117 0.13 0.56 2.57 0.030
HR 6258 0.27 0.89 3.24 0.040
AZ 34018 0.10 0.90 7.67 0.041

15 from https://raw.githubusercontent.com/CSSEGISandData/

COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/

time_series_covid19_confirmed_global.csv, from git commit 78ae929, and
analysed using the same software and parameters as for the C19CCTF data. Ta-
bles A1–A4 show the equivalent of Tables 1–4. The rankings and φi estimates appear
mostly similar between the two datasets. One difference is that the low φ7i value
for India shown in Table 4 is absent in Table A4. In other words, while the media
stated that the daily confirmed count in India first went above the 10,000-per-day
psychological threshold on 12 June 2020 [29], the JHU CSSE data crossed this
threshold earlier, and contains noise that was unknown at that time to the media and
is absent from the C19CCTF data.
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Table A2. As in Table 2, for the JHU CSSE data: least noisy 28-day sequences – clustering parameters for
the countries with the 10 lowest φ28

i
values; extended table: zenodo.4432080/phi N 28days jhu.dat.

country Ni

〈
n28i

〉
PPoiss
i PKS

i φ28i starting
date

TR 246861 1014.5 0.03 1.00 0.14 2020-06-30
DZ 37664 154.1 0.10 0.75 0.17 2020-05-13
BY 69308 921.9 0.14 0.89 0.21 2020-05-08
AE 63819 512.8 0.08 0.23 0.23 2020-04-14
RU 910778 5456.3 0.56 0.62 0.28 2020-07-18
SA 295902 1182.2 0.47 0.54 1.11 2020-04-12
AL 7117 77.7 0.20 0.46 1.33 2020-06-23
IR 338825 1863.3 0.20 0.97 2.85 2020-03-30
HR 6258 60.2 0.27 0.89 3.24 2020-03-28
NE 64292 128.8 0.10 0.99 3.39 2020-06-04

Table A3. As in Table 3, for the JHU CSSE data: least noisy 14-day sequences – clustering parameters for
the countries with the 10 lowest φ14i values; extended version of table: zenodo.4432080/phi N 14days jhu.dat.

country Ni

〈
n14i

〉
PPoiss
i PKS

i φ14i starting
date

AE 63819 521.2 0.11 0.56 0.09 2020-04-19
DZ 37664 144.1 0.11 0.48 0.09 2020-05-23
TR 246861 971.6 0.12 0.86 0.11 2020-07-08
BY 69308 945.6 0.22 1.00 0.13 2020-05-12
RU 910778 5165.5 0.47 0.51 0.28 2020-08-01
SA 295902 1227.5 0.38 0.96 0.30 2020-04-19
AL 7117 131.5 0.78 1.00 0.53 2020-08-01
PL 55319 299.9 0.55 0.68 0.53 2020-06-17
KE 29334 126.2 0.54 0.91 0.57 2020-06-03
CA 123605 1181.5 0.52 0.71 1.22 2020-05-08

Table A4. As for Table 4, for the JHU CSSE data: least noisy 7-day sequences – clustering parameters for
the countries with the 10 lowest φ values; extended table: zenodo.4432080/phi N 07days jhu.dat.

country Ni

〈
n7i

〉
PPoiss
i PKS

i φ7i starting
date

AE 63819 544.9 0.24 0.99 0.05 2020-04-27
BY 69308 947.9 0.60 0.94 0.05 2020-05-13
TR 246861 929.6 0.22 0.93 0.05 2020-07-15
DZ 37664 188.6 0.20 0.99 0.06 2020-05-20
PL 55319 297.0 0.51 0.99 0.10 2020-06-20
PA 79402 171.1 0.82 0.96 0.17 2020-05-09
HN 49487 160.7 0.89 0.99 0.18 2020-06-01
RU 910778 5873.9 0.68 0.87 0.21 2020-07-19
DK 15758 71.1 0.48 0.94 0.28 2020-05-11
AL 7117 78.9 0.40 0.79 0.32 2020-07-05
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