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Anti-clustering in the national SARS-CoV-2 daily infection counts

Boudewijn F. Roukema1,2,ORCID

Abstract The noise in daily infection counts of an epidemic should be super-Poissonian due to intrinsic

epidemiological and administrative clustering. Here, we use this clustering to classify the official national SARS-
CoV-2 daily infection counts and check for infection counts that are unusual by being anti-clustered. We adopt a

one-parameter model of φ′i infections per cluster, dividing any daily count ni into ni/φ
′
i ‘clusters’, for ‘country’ i.

We assume that ni/φ
′
i on a given day j is drawn from a Poisson distribution whose mean is robustly estimated

from the 4 neighbouring days, and calculate the inferred Poisson probability P ′
ij of the observation. The P

′
ij values

should be uniformly distributed. We find the value φi that minimises the Kolmogorov–Smirnov distance from a

uniform distribution. We investigate the (φi, Ni) distribution, for total infection count Ni. We consider consecutive

count sequences above a threshold of 50 daily infections. We find that most of the daily infection count sequences

are inconsistent with a Poissonian model. All are consistent with the φi model. Clustering increases with total

infection count for the full sequences: φi ∼
√
Ni. The 28-, 14- and 7-day least noisy sequences for several countries

are best modelled as sub-Poissonian, suggesting a distinct epidemiological family. The 28-day sequences of DZ, BY,

TR, AE have strongly sub-Poissonian preferred models, with φ28i < 0.5; and FI, SA, RU, AL, IR have φ28i < 3.0.

Independent verification may be warranted for those countries with unusually low clustering.
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1. Introduction

The daily counts of new, laboratory-confirmed infec-

tions with severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) constitute one of the key statis-

tics followed by citizens and health agencies around

the world in the ongoing 2019–2020 coronavirus disease

2019 (COVID-19) pandemic [9, 20]. Can these counts

be classified in a way that makes as few epidemiological
assumptions as possible, as motivation for deeper anal-

ysis to either validate or invalidate the counts? While

full epidemiological modelling and prediction is a vital

component of COVID-19 research [e.g. 6, 16, 24, 13, 3],
these cannot be accurately used to study the pandemic

as a whole – a global phenomenon by definition – if the

data at the global level is itself inaccurate. Knowledge

of the global state of the current pandemic is weakened

if any of the national-level SARS-CoV-2 infection data
have been artificially interfered with by the health agen-

cies providing that data or by other actors involved in
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the chain of data lineage [35]. Since personal medical

data are private information, only a limited number of

individuals at health agencies are expected to be able

to check the validity of these counts based on origi-
nal records. Nevertheless, artificial interventions in the

counts could potentially reveal themselves in statistical

properties of the counts. Unusual statistical properties

in a wide variety of quantitative data sometimes ap-
pear, for example, as anomalies related to Benford’s

law [25, 26], as in the 2009 first round of the Iranian

presidential election [30, 31, 21].

Here, we check the compatibility of noise in the offi-

cial national SARS-CoV-2 daily infection counts, Ni(t),

for country1 i on date t, with expectations based on the

Poisson distribution [28]. It is unlikely that any real

count data will quite match the theoretical Poisson dis-
tribution, both due to the complexity of the logical tree

of time-dependent intrinsic epidemiological infection as

well as administrative effects in the SARS-CoV-2 test-

ing procedures, and the sub-national and national level
procedures for collecting and validating data to produce

a national health agency’s official report. In particular,

1 No position is taken in this paper regarding jurisdiction
over territories; the term ‘country’ is intended here as a neu-
tral term without supporting or opposing the formal notion
of state. Apart from minor changes for technical reasons, the
‘countries’ are defined by the data sources.
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clusters of infections on a scale of φ′i infections per clus-

ter, either intrinsic or in the testing and administrative

pipeline, would tend to cause relative noise to increase

from a fraction of 1/
√
Ni for pure Poisson noise up to√

φ′i/Ni, greater by a factor of
√
φ′i. This overdisper-

sion has been found, for example, for COVID-19 death

rate counts in the United States [16].

In contrast, it is difficult to see how anti-Poissonian

smoothing effects could occur, unless they were imposed
administratively. For example, an administrative office

might impose (or have imposed on it by political au-

thorities) a constraint to validate a fixed or slowly and

smoothly varying number of SARS-CoV-2 test result

files per day, independently of the number received or
queued; this would constitute an example of an artifi-

cial intervention in the counts that would weaken the

epidemiological usefulness of the data.

A one-parameter model to allow for the clustering is
proposed in this paper, and used to classify the counts.

We allow the parameter to take on an effective anti-

clustering value, in order to allow the data to freely

determine its optimal value. For more in-depth models

of clustering, called “burstiness” in stochastic models of
discrete event counts, power-law models have also been

proposed [5, 8].

The method is presented in §2. Section §2.1 de-

scribes the choice of data set and the definition, for any
given country, of a consecutive time sequence that has

high enough daily infection counts for Poisson distribu-

tion analysis to be reasonable. The method of analysis

is given in §2.2. Results are presented in §3. Qualita-

tive discussion of the results is given in §4 and conclu-
sions are summarised in §5. This work is intended to be

fully reproducible by independent researchers using the

Maneage framework: see commit 02548e9 of the git

repository https://codeberg.org/boud/subpoisson and
the archive zenodo.3990666.

2. Method

2.1 SARS-CoV-2 infection data

Two obvious choices of a dataset for national daily

SARS-CoV-2 counts would be those provided by the

World Health Organization (WHO)2 or those curated

by the Wikipedia WikiProject COVID-19 Case Count

Task Force3 in medical cases chart templates (hereafter,

2 https://covid19.who.int/WHO-COVID-19-global-data.
csv; (archive)
3 https://en.wikipedia.org/w/index.php?

title=Wikipedia:WikiProject COVID-19/Case Count
Task Force&oldid=967874960
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Fig. 1 Number Njump of sudden jumps or drops in counts on
adjacent days in WHO and Wikipedia WikiProject COVID-

19 Case Count Task Force medical cases chart national daily
SARS-CoV-2 infection counts for countries present in both
data sets. A line illustrates equal quality of the two data
sets. The C19CCTF version of the data is clearly less af-
fected by sudden jumps than the WHO data. Plain text table:
zenodo.3990666/WHO vs WP jumps.dat.

C19CCTF). While WHO has published a wide vari-

ety of documents related to the COVID-19 pandemic,

it does not appear to have published details of how
national reports are communicated to it and collated.

Given that most government agencies and systems of

government procedures tend to lack transparency, de-

spite significant moves towards forms of open govern-

ment [e.g. 38] in many countries, data lineage trac-
ing from national governments to WHO is likely to

be difficult in many cases. In contrast, the curation of

official government SARS-CoV-2 daily counts by the

Wikipedia WikiProject COVID-19 Case Count Task

Force follows a well-established technology of tracking

data lineage. For quantitative analysis of the Wikipedia

community high-tempo collaborative editing that has

taken place in response to the COVID-19 pandemic,

see Keegan and Tan [15].

Unfortunately, it is clear that in the WHO data,
there are several cases where two days’ worth of de-

tected infections appear to be listed by WHO as a se-

quence of two days j and j + 1 on which all the in-

fections are allocated to the second of the two days,

with zero infections on the first of the pair. There are
also some sequences in the WHO data where the day

listed with zero infections is separated by several days

from a nearby day with double the usual amount of

infections. This is very likely an effect of difficulties in
correctly managing world time zones, or time zone and

sleep schedule effects, in any of several levels of the

chains of communication between health agencies and

https://codeberg.org/boud/subpoisson
https://zenodo.org/record/3990666
https://covid19.who.int/WHO-COVID-19-global-data.csv
https://covid19.who.int/WHO-COVID-19-global-data.csv
https://web.archive.org/web/20200715231206/https://covid19.who.int/WHO-COVID-19-global-data.csv
https://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_COVID-19/Case_Count_Task_Force&oldid=967874960
https://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_COVID-19/Case_Count_Task_Force&oldid=967874960
https://zenodo.org/record/3990666/files/WHO_vs_WP_jumps.dat
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WHO. In other words, there are several cases where a

temporary sharp jump or drop in the counts appears in

the data but is most likely a timing artefact. Whatever

the reason for the effect, this effect will tend to confuse

the epidemiological question of interest here: the aim is
to globally characterise the noise and to highlight coun-

tries where unusual smoothing may have taken place.

We quantify this jump/drop problem as follows. We

consider a pair of days j, j+1 for a given country to be
a jump if the absolute difference in counts, |ni(j+1)−
ni(j)|, is greater than the mean, (ni(j + 1) + ni(j))/2.

In the case of a pair in which one value is zero, the ratio

is two, and the condition is satisfied. We evaluate the

number of jumps Njump for both the WHO data and
the C19CCTF medical cases chart data, starting, for

any given country, from the first day with at least 50

infections. Figure 1 shows Njump for the 130 countries

in common to the two data sets; there are 216 countries
in the WHO data set and 132 in the C19CCTF data. It

is clear that most countries have fewer jumps or drops

in the Wikipedia data set than in the WHO data set.

Thus, at least for the purposes of understand-

ing intrinsic and administrative clustering, the
C19CCTF medical cases chart data appear to be

the better curated version of the national daily

SARS-CoV-2 infection counts as reported by offi-

cial agencies. The detailed download and extraction
script of national daily SARS-CoV-2 infection data

from these templates and the resulting data file

zenodo.3990666/WP C19CCTF SARSCoV2.dat are

available in the reproducibility package associated with

this paper (§Code availability). Dates without data are
omitted; this should have an insignificant effect on the

analysis if these are due to low infection counts.

Another global collection of daily SARS-CoV-2

counts that could be considered is the John Hopkins

University Center for Systems Science and Engineering
(JHU CSSE) git repository. Unfortunately, for several

countries, the JHU CSSE data are provided for sub-

national divisions rather than as official national statis-

tics, making the dataset inhomogeneous for the pur-
poses of this study. Artificial interference in the data

at the national level will not be shown in data that is

the sum of data obtained directly from sub-national ge-

ographical/political divisions. Moreover, detailed data

provenance analysis (which exact government URL did
a particular count come from? where is the archived

version of the data of the original URL?) appears to

be more difficult for the JHU CSSE data than for

the C19CCTF data. Nevertheless, for completeness, the
JHU CSSE data is analysed using the same method as

the main analysis, with results presented as tables in

Appendix A.

The full set of C19CCTF data includes many days,

especially for countries or territories (as defined by the

data source) of low populations, with low values, includ-

ing zero and one. The standard deviation of a Poisson

distribution of expectation value N is
√
N [28], giv-

ing a fractional error of 1/
√
N . Even taking into ac-

count clustering or anticlustering of data, inclusion of

these periods of close to zero infection counts would

contribute noise that would overwhelm the signal from
the periods of higher infection rates for the same or

other countries. In the time sequences of SARS-CoV-2

infection counts, chaos in the administrative reactions

to the initial stages of the pandemic will tend to create

extra noise, so it is reasonable to choose a moderately
high threshold at which the start and end of a consec-

utive sequence of days should be defined for analysis.

Here, we set the threshold for a sequence to start at a

minimum of 50 infections in a single day. The sequence
is continued for at least 7 days (if available in the data),

and stops when the counts drop below the same thresh-

old for 2 consecutive days. The cutoff criterion of 2 con-

secutive days avoids letting the analysable sequence be

too sensitive to individual days of low fluctuations. If
the resulting sequence includes less than 7 days, the

sequence is rejected as having insufficient signal to be

analysed.

2.2 Analysis

2.2.1 Poissonian and φ′i models: full sequences

We first consider the full count sequence {ni(j), 1 ≤
j ≤ Ti} for each country i, with Ti valid days of anal-

ysis as defined in §2.1. Our one-parameter model as-

sumes that the counts are predominantly grouped in

clusters, each with φ′i infections per cluster. Thus, the
daily count ni(j) is assumed to consist of ni(j)/φ

′
i in-

fection events. We assume that ni(j)/φ
′
i on a given day

is drawn from a Poisson distribution of mean µ̂i(j)/φ
′
i.

We set µ̂i(j) to the median of the 4 neighbouring days,
excluding day j and centred on it. For the initial se-

quence of 2 days, µ̂i(j) is set to µ̂i(3), and µ̂i(j) for

the final 2 days is set to µ̂i(Ti − 2). By modelling µ̂i as

a median of a small number of neighbouring days, our

model is almost identical to the data itself and statisti-
cally robust, with only mild dependence on the choices

of parameters. This definition of a model is more likely

to bias the resulting analysis towards underestimating

the noise on scales of several days rather than overes-
timating it; this method will not detect oscillations on

the time scale of a few days to a fortnight that are re-

lated to the SARS-CoV-2 incubation time [10]. For any

https://zenodo.org/record/3990666/files/WP_C19CCTF_SARSCoV2.dat
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given value φ′i, we calculate the cumulative probability

P ′
ij that ni(j)/φ

′
i is drawn from a Poisson distribution

of mean µ̂i(j)/φ
′
i. For country i, the values P ′

ij should

be drawn from a uniform distribution if the model is

a fair approximation. In particular, for φ′i set to unity,
P ′
ij should be drawn from a uniform distribution if the

intrisic data distribution is Poissonian. Individual val-

ues of P ′
ij (close to zero or one) could, in principle, be

used to identify individual days that are unusual, but
here we do not consider these further.

We allow a wide logarithmic range in values of φ′i,

allowing the unrealistic domain of φ′i < 1, and find the

value φi that minimises the Kolmogorov–Smirnov (KS)

distance [17, 33] from a uniform distribution, i.e. that
maximises the KS probability that the data are consis-

tent with a uniform distribution, when varying φ′i. The

one-sample KS test is a non-parametric test that com-

pares a data sample with a chosen theoretical probabil-
ity distribution, yielding the probability that the sam-

ple is drawn randomly from the theoretical distribution.

We label the corresponding KS probability as PKS
i . We

write PPoiss
i := PKS

i (φ′i = 1) to check if any country’s

daily infection rate sequence is consistent with Poisso-
nian, although this is likely to be rare, as stated above:

super-Poissonian behaviour seems reasonable. Of par-

ticular interest are countries with low values of φi. Al-

lowing for a possibly fractal or other power-law nature
of the clustering of SARS-CoV-2 infection counts, we

consider the possibility that the optimal values φi may

be dependent on the total infection count Ni. We inves-

tigate the (φi, Ni) distribution and see whether a scal-

ing type relation exists, allowing for a corrected statistic
ψi to be defined in order to highlight the noise structure

of the counts independent of the overall scale Ni of the

counts.

Standard errors in φi for a given country i are es-

timated once φi has been obtained by assuming that
µ̂i(j) and φi are correct and generating 30 Poisson ran-

dom simulations of the full sequence for that country.

Since the scales of interest vary logarithmically, the

standard deviation of the best estimates of log10 φi for
these numerical simulations is used as an estimate of

σ(log10 φi), the logarithmic standard error in φi.

2.2.2 Subsequences Since artificial interference in

daily SARS-CoV-2 infection counts for a given coun-
try might be restricted to shorter periods than the full

data sequence, we also analyse 28-, 14- and 7-day subse-

quences. These analyses are performed using the same

methods as above (§2.2.1), except that the 28-, 14- or 7-
day subsequence that minimises φi is found. The search

over all possible subsequences would require calculation

of a Šidàk-Bonferonni correction factor [1] to judge how
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Fig. 2 Probability of the noise in the country-level daily
SARS-CoV-2 counts being consistent with a Poisson point
process, PPoiss

i
, shown as red circles; and probability PKS

i
(φi)

for the φi clustering model proposed here (§2.2.1), shown as
green X symbols, versus Ni, the total number of officially
recorded infections for that country. The horizontal axis is
logarithmic. As discussed in the text (§3.2.1), the Poisson
point process is unrealistic for most of these data, while the
φi clustering model is consistent with the data for all coun-
tries. Plain text table: zenodo.3990666/phi N full.dat.

anomalous they are. The KS probabilities that we cal-

culate need to be interpreted keeping this in mind. Since

the subsequences for a given country overlap, they are
clearly not independent from one another. Instead, the

a posteriori interpretation of the results of the subse-

quence searches found here should at best be considered

indicative of periods that should be considered interest-

ing for further verification.

3. Results

3.1 Data

The 132 countries and territories in the C19CCTF
counts data have 19 negative values out of the total

of 16367 values. These can reasonably be interpreted

as corrections for earlier overcounts, and we reset these

values to zero with a negligible reduction in the amount
of data. Consecutive day sequences satisfying the crite-

ria listed in §2.1 were found for 68 countries.

3.2 Clustering of SARS-CoV-2 counts

3.2.1 Full infection count sequences Figure 2

shows, unsurprisingly, that only a small handful of the

https://zenodo.org/record/3990666/files/phi_N_full.dat
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Fig. 3 Noisiness in daily SARS-CoV-2 counts, showing the
clustering parameter φi (§2.2.1) that best models the noise,
versus the total number of counts for that country Ni. The
error bars show standard errors derived from numerical (boot-
strap) simulations based on the model. The axes are logarith-
mic, as indicated. Values of the clustering parameter φi be-
low unity indicate sub-Poissonian behaviour – the counts in
these cases are less noisy than expected for Poisson statistics.
A robust (Theil–Sen [34, 32]) linear fit of log10 φi against
log10Ni is shown as a thick green line (§3.2.1). Plain text
table: zenodo.3990666/phi N full.dat.
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Fig. 4 Normalised noisiness ψi (Eq. (1)) for daily SARS-
CoV-2 counts versus total counts Ni. The error bars are as
in Fig. 3, assuming no additional error source contributed by
Ni. The axes are logarithmic. A few low ψi values appear to
be outliers of the ψi distribution.

countries’ daily SARS-CoV-2 counts sequences have

noise whose statistical distribution is consistent with

the Poisson distribution, in the sense modelled here:

PPoiss
i (red circles) is close to zero in most cases. On

the contrary, the introduction of the φ′i parameter, op-

timised to φi for country i, provides a sufficient fit in

all cases; none of the probabilities (PKS
i (φi), green X

Table 1 Clustering parameters for the countries with the
10 lowest φi and 10 lowest ψi values (least noise); extended
version of table: zenodo.3990666/phi N full.dat.

Country Ni PPoiss
i

PKS
i

φi ψi

DZ 23691 0.30 0.65 0.89 0.005
FI 7347 0.35 0.98 1.72 0.020
BY 66348 0.09 0.89 2.11 0.008
AL 3906 0.23 0.83 2.57 0.041
HR 4422 0.27 0.93 3.24 0.048
AE 57193 0.00 0.70 3.35 0.014
NZ 1557 0.45 0.94 4.32 0.109
AU 12450 0.11 0.93 5.07 0.045
TH 3255 0.29 0.99 5.37 0.094
DK 13466 0.00 0.98 5.56 0.047

DZ 23691 0.30 0.65 0.89 0.005
BY 66348 0.09 0.89 2.11 0.008
RU 783328 0.00 0.92 10.35 0.011
AE 57193 0.00 0.70 3.35 0.014
SA 255825 0.00 0.85 9.02 0.017
FI 7347 0.35 0.98 1.72 0.020
IR 276202 0.00 0.77 12.73 0.024
TR 220572 0.00 0.44 12.30 0.026
IN 1155191 0.00 0.80 33.88 0.031
AL 3906 0.23 0.83 2.57 0.041

symbols) in Fig. 2 is low enough to be considered a

significant rejection.

The consistency of the φi model with the data justi-
fies continuing to Figure 3, which clearly shows a scaling

relation: countries with greater overall numbers Ni of

infections also tend to have greater noise in the daily

counts ni(j). A Theil–Sen linear fit [34, 32] to the re-
lation between log10 φi and log10Ni has a zeropoint of

−0.71± 0.32 and a slope of 0.44± 0.08, where the stan-

dard errors (68% confidence intervals if the distribution

is Gaussian) are conservatively generated for both slope

and zeropoint by 100 bootstraps. By using a robust es-
timator, the low φi cases, which appear to be outliers,

have little influence on the fit. The fit is shown as a

thick green line in Fig. 3.

This φi–Ni relation is consistent with φi ∝
√
Ni. To

adjust the φi clustering value to take into account the

dependence on Ni, and given that the slope is consis-

tent with this simple relation, we propose the empirical

definition of a normalised clustering parameter

ψi := φi/
√
Ni , (1)

so that ψi should, by construction, be approximately

constant. While the estimated slope of the relation

could be used rather than this half-integer power re-

lation, the fixed relation in Eq. (1) offers the benefit of

simplicity.

This relation should not be confused with the usual

Poisson error. By the divisibility of the Poisson distri-

bution, the relation φi ∝
√
Ni found here can be used

https://zenodo.org/record/3990666/files/phi_N_full.dat
https://zenodo.org/record/3990666/files/phi_N_full.dat
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Fig. 5 Clustering parameter φi for 28-day sequence with
lowest φi, as in Fig. 3. The vertical axis range is expanded
from that in Fig. 3, to accommodate lower values A robust
(Theil–Sen [34, 32]) linear fit of log10 φ

28
i

against log10Ni

is shown as a thick green line (§3.2.1). Plain text table:
zenodo.3990666/phi N 28days.dat.

Table 2 Least noisy 28-day sequences – clustering parame-
ters for the countries with the 10 lowest φ28

i
values; extended

table: zenodo.3990666/phi N 28days.dat.

country Ni 〈n28
i

〉 PPoiss
i

PKS
i

φ28
i

starting
date

DZ 23691 154.1 0.10 0.80 0.17 2020-05-13
BY 66348 921.9 0.14 0.92 0.21 2020-05-08
TR 220572 1131.2 0.08 0.86 0.21 2020-06-23
AE 57193 512.8 0.08 0.23 0.23 2020-04-14
FI 7347 83.4 0.99 0.99 0.92 2020-04-15
SA 255825 1182.2 0.47 0.55 1.11 2020-04-12
RU 783328 6946.0 0.82 0.95 1.36 2020-06-17
AL 3906 74.6 0.23 0.83 2.57 2020-06-21
IR 276202 1863.3 0.20 0.98 2.85 2020-03-30
HR 4422 60.2 0.27 0.93 3.24 2020-03-28

to show that

σ[µ̂i(j)/φi] ∼
√
µ̂i(j)/φi

⇒ σ[µ̂i(j)] ∼ φi
√
µ̂i(j)/φi ∝ N

1/4
i µ̂i(j)

1/2 , (2)

where σ[x] is the standard deviation of random variable

x. If we accept µ̂i(j) as a fair model for ni(j) and that
ni(j) is proportional to Ni, then we obtain

σ[ni(j)] ∝ n
3/4
i . (3)

Figure 4 shows visually that ψi appears to be scale-

independent, in the sense that the dependence on Ni

has been cancelled, by construction. The countries with

the 10 lowest values of ψi are those with ISO 3166-1
alpha-2 codes DZ, BY, RU, AE, SA, FI, IR, TR, IN,

AL. Detailed SARS-CoV-2 daily count noise character-

istics for the countries with lowest φi and ψi are listed
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14 i

14-day seq.

Fig. 6 Clustering parameter φi for 14-day se-
quence with lowest φi, as in Fig. 5. Plain text table:
zenodo.3990666/phi N 14days.dat.

Table 3 Least noisy 14-day sequences – clustering parame-
ters for the countries with the 10 lowest φ14

i
values; extended

version of table: zenodo.3990666/phi N 14days.dat.

country Ni 〈n14
i

〉 PPoiss
i

PKS
i

φ14
i

starting
date

AE 57193 521.2 0.11 0.58 0.09 2020-04-19
DZ 23691 144.1 0.11 0.49 0.09 2020-05-23
BY 66348 945.6 0.22 1.00 0.13 2020-05-12
TR 220572 991.6 0.12 0.97 0.13 2020-07-06
SA 255825 1227.5 0.38 0.98 0.30 2020-04-19
KE 12750 126.2 0.22 0.66 0.47 2020-06-03
FI 7347 95.1 0.64 0.98 0.65 2020-04-16
RU 783328 6522.9 0.37 0.42 0.72 2020-07-04
IN 1155191 9409.7 0.62 0.68 0.82 2020-05-30
AL 3906 70.8 0.59 0.92 0.87 2020-06-24

in Table 1, including Kolmogorov–Smirnov probability

that the data are drawn from a Poisson distribution,
PPoiss
i , the probability of the optimal φi model, PKS

i ,

and φi and ψi.

The approximate proportionality of φi to
√
Ni for

the full sequences is strong and helps separate low-
noise SARS-CoV-2 count countries from those following

the main trend. However, the results for subsequences

shown below in §3.2.2 suggest that this Ni dependence

may be an effect of the typically longer durations of the

pandemic in countries where the overall count is higher.

3.2.2 Subsequences of infection counts Figures 5–
7 show the equivalent of Fig. 3 for sequences of lengths

28, 14 and 7 days, respectively. The Theil–Sen robust

fits to the logarithmic (φ28i , Ni); (φ
14
i , Ni); and (φ7i , Ni)

relations are zeropoints and slopes of 0.27 ± 0.33 and
0.15± 0.07; 0.20± 0.59 and 0.10± 0.13; and 0.29± 0.60

and −0.03± 0.13, respectively. There is clearly no sig-

nificant dependence of φdi on Ni for any of these fixed

https://zenodo.org/record/3990666/files/phi_N_28days.dat
https://zenodo.org/record/3990666/files/phi_N_28days.dat
https://zenodo.org/record/3990666/files/phi_N_14days.dat
https://zenodo.org/record/3990666/files/phi_N_14days.dat
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Fig. 7 Clustering parameter φi for 7-day sequence with low-
est φ7

i
, as in Fig. 5. There is clearly a wider overall scatter

and bigger error bars compared to Figs 5 and 6; a low φ7
i

is a weaker indicator than φ2
i
8 and φ1

i
4. Plain text table:

zenodo.3990666/phi N 07days.dat.

Table 4 Least noisy 7-day sequences – clustering parameters
for the countries with the 10 lowest φ values; extended table:
zenodo.3990666/phi N 07days.dat.

country Ni 〈n7
i
〉 PPoiss

i
PKS
i

φ7
i

starting
date

AE 57193 544.9 0.24 1.00 0.05 2020-04-27
BY 66348 947.9 0.61 0.97 0.05 2020-05-13
IN 1155191 10109.3 0.34 0.62 0.05 2020-06-06
DZ 23691 188.6 0.20 1.00 0.06 2020-05-20
FI 7347 94.9 0.43 0.56 0.08 2020-04-20
TR 220572 1022.4 0.43 0.97 0.10 2020-07-07
PL 40782 297.7 0.32 0.98 0.16 2020-06-20
PA 54426 171.1 0.89 0.98 0.17 2020-05-09
HN 33835 160.7 0.94 1.00 0.18 2020-06-01
DK 13466 71.1 0.48 0.97 0.28 2020-05-11

length subsequences, in contrast to the case of the φi de-
pendence on Ni for the full count sequences. Thus, the

empirical motivation for using ψ (Eq. (1)) to discrim-

inate between the countries’ full sequences of SARS-

CoV-2 data is not justified for the subsequences. Ta-

bles 2–4 show the countries with the least noisy se-
quences as determined by φ28i , φ

14
i and φ7i , respectively.

Tables 2 and 3 show that the lists of countries with

the strongest anti-clustering are similar. Thus, Fig. 8

shows the SARS-CoV-2 counts curves for countries with
the lowest φ28i , and Fig. 9 the curves for those with

the lowest φ7i . Both figures exclude countries with total

counts Ni ≤ 10000, in which low total counts tend to

give low clustering. It is clear in these figures that sev-
eral countries have subsequences that are strongly sub-

Poissonian – with some form of anti-clustering, whether

natural or artificial.

Countries in the median of the φ28i and φ7i distribu-

tions have their curves shown in Fig. 10 for comparison.

It is visually clear in the figure that the counts are dis-

persed widely beyond the Poissonian band, and that the

φ28i and φ7i models are reasonable as a model for rep-
resenting about 68% of the counts within one standard

deviation of the model values.

4. Discussion

Figures 3 and 4 clearly show that some groups of coun-

tries are unusual in terms of the characteristics of their
location in the (Ni, ψi) plane.

4.1 High total infection count

Brazil (BR) and the United States (US) are separated

from the majority of other countries by their high to-

tal infection count. They have correspondingly higher
clustering values φi, although their normalised cluster-

ing values ψi are in the range of about 0.4 < ψi < 10

covered by the majority of countries in Fig. 4.

It does not seem realistic that these two countries’

φi values greater than 300 are purely an effect of intrin-
sic infection events – ‘superspreader’ events in crowded

places or nursing homes. While individual big clusters

may occur given the high overall scale of infections, it

seems more likely that this is administrative clustering.
Both countries are federations, and have numerous geo-

graphic administrative subdivisions with a diversity of

political and administrative methods. A plausible ex-

planation for the dominant effect yielding φi > 300 in

these two countries is that on any individual day, the ar-
rival and full processing of reports depends on a number

of sub-national administrative regions, each reporting a

few hundred new infections.

For example, if there are 10 reporting regions, each
typically reporting 300 infections, then typically (on

about 68% of days) there will be about 7 to 13 re-

ports per day. This would give a range varying from

about 2100 to 3900 cases per day, rather than 2945 to

3055, which would be the case for unclustered, Pois-
sonian counts (since

√
3000 ≈ 55). Lacking a system

that obliges sub-national divisions – and laboratories –

to report their test results in time-continuous fashion

and that validates and collates those reports on a time
scale much shorter than 24 hours, this type of clustering

seems natural in the sociological sense.

https://zenodo.org/record/3990666/files/phi_N_07days.dat
https://zenodo.org/record/3990666/files/phi_N_07days.dat
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Fig. 8 Least noisy 28-day official SARS-CoV-2 national daily counts for countries with total counts Ni > 10000 (see Fig. 5
and Table 2), shown as dots in comparison to the µ̂i(j) model (median of the 4 neighbouring days) and 68% error band for
the Poisson point process. The ranges in daily counts (vertical axis) are chosen automatically and in most cases do not start
at zero. About nine (32%) of the points should be outside of the shaded band unless the counts have an anti-clustering effect
that weakens Poisson noise. A faint shaded band shows the φ28

i
model for the one country here with φi (slightly) greater than

one (RU), but is almost indistinguishable from the Poissonian band. The dates indicate the start date of each sequence.
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Fig. 9 Least noisy 7-day daily counts for countries with total counts Ni > 10000, as in Fig. 8. Concentration of points close
to the model indicates an anti-clustering effect; about 68% (two) of the points should scatter up and down throughout the
shaded band if the counts are Poissonian. In several cases, the data points appear to be mostly stuck to the model, with almost
no scatter.
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Fig. 10 Typical (median) 28-day (above) and 7-day (below) daily counts, as in Figs 8 and 9. The dark shaded band again
shows a Poissonian noise model, which underestimates the noise. A faint shaded band shows the φi models for these countries’
SARS-CoV-2 daily counts, and should contain about 68% of the infection count points.

4.2 Low normalised clustering ψi

In Fig. 4, there appears to be a group of eight countries

that are also separated from the main group of coun-

tries, but by having low normalised noise ψi rather than
just having a high total count Ni.

4.2.1 Low ψi, low Ni, high PPoiss
i Classifying the

countries by ψi alone (Table 1) would add Finland (FI)

to this group, but in Fig. 4, Finland appears better

grouped with the main body of countries in the (ψi, Ni)

plane. This could be interpreted as Eq. (1) providing
insufficient correction for the φi–Ni relation. Alterna-

tively, looking at Finland’s entry in Table 2 for 28-day

sequences, we see that Finland is among the three with

the lowest total (or mean) daily infection counts in the
table, and has the highest consistency with a Poisson

distribution (PPoiss
i ). Having a low total infection count,

it seems credible that Finland lacks the intrinsic, testing

and administrative clustering of countries with higher

infection counts.

4.2.2 Low ψi, high Ni India (IN) and Russia (RU)

have total infection counts nearly as high (logarithmi-

cally) as Brazil and the US, but have managed to keep
their daily infection rates much less noisy – by about

a factor of 10 to 100 – than would be expected from

the general pattern displayed in the diagram. Despite

having of the order of a million total official SARS-
CoV-2 infections each, these two countries have, as of

the download date of the data, 21 July 2020, avoided

having the clustering effects present in Brazil and the

US.

The most divergent case in the high-Ni part of this

group (see Fig. 4 and Table 1) is Russia, which has only
a very modest value of φi = 10.4 × 10±0.073 for its to-

tal infection count of over a million. This would require

that both intrinsic clustering of infection events and
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administrative procedures work much more smoothly in

Russia than in the United States, Brazil and, to a lesser

degree, India. Tables 2 and 3 and Fig. 8 show that the

Russian official SARS-CoV-2 counts indeed show very

little noise compared to more typical cases (Fig. 10).
At the intrinsic epidemiological level, this means that

if the Russian counts are to be considered accurate,

then very few clusters – in nursing homes, religious

gatherings, bars, restaurants, schools, shops – can have
occurred. Moreover, laboratory testing and transmis-

sion of data through the administrative chain from lo-

cal levels to the national (federal) health agency must

have occurred without the clustering effects present in

the United States and Brazil and in countries with
more typical clustering values φi, characterising their

daily infection counts. International media interest in

Russian COVID-19 data has mostly focussed on con-

troversy related to COVID-19 death counts [7], with
apparently no attention given so far to the modestly

super-Poissonian nature of the daily counts, in contrast

to the strongly super-Poissonian counts of other coun-

tries with high total infection counts.

India’s overall position in the (ψi, Ni) plane (Fig. 4
and Table 1) is less extreme than that of Russia, with an

unnormalised clustering parameter φi = 34× 10±0.083.

However, Table 3 shows that despite its large overall in-

fection count, India achieved a 14-day sequence with a
preferred φi value close to unity. Moreover, it has a very

low-ranked φ7i value, as given in Table 4 and illustrated

in Fig. 9. Five values appear almost exactly on the

model curve rather than scattering above and below.

Moreover, the value is just below 10,000. Epidemiolog-
ically, it is not credible to believe that 10,000 officially

reported cases per day should be an attractor resulting

from the pattern of infections and system of reporting.

Given that the value of 10,000 is a round number in the
decimal-based system, a reasonable speculation would

be that the daily counts for India were artificially held

at just below 10,000 for several days. The crossing of

the 10,000 psychological threshold of daily infections

was noted in the media [29], but the lack of noise in the
counts during the week preceding the crossing of the

threshold appears to have gone unnoticed. After cross-

ing the 10,000 threshold, the daily infections in India

continued increasing, as can be seen in the full counts
(zenodo.3990666/WP C19CCTF SARSCoV2.dat).

4.2.3 Low ψi, low φi, medium Ni Among the group

of eight low ψi countries, Table 1 shows that only one

country has its full data set (as defined here) best mod-
elled by the ordinary Poisson point process. Algeria

(DZ) appears to have completely avoided clustering ef-

fects, with φi close to unity. Figure 8 shows the least

noisy 28-day sequence for Algeria. Only one day of

SARS-CoV-2 recorded infections appears to have di-

verged beyond the Poissonian 68% band, rather than

about nine, the expected number for a Poissonian dis-

tribution. Most of the points appear to stick very closely
to the model. It is difficult to imagine a natural pro-

cess for obtaining this sub-Poissonian noise (as pre-

ferred by the φi model), especially in the context where

most countries have super-Poissonian daily counts. In a
frequentist interpretation, the least noisy Algerian 28-

day count sequence would be considered only mildly,

not significantly, unusual, since it is consistent with a

Poisson distribution, with only a weak rejection (Ta-

bles 2–4). However, as a member of the general class
of countries’ SARS-CoV-2 daily infection count curves,

use of the φi model would appear to be justified. It is

in this sense that the sequence can be considered sub-

Poissonian. Moreover, a full Bayesian analysis would
need to consider independent credibility criteria.

In line with the counts for India that appeared to be

smooth just below a round-number boundary of 10,000

infections per day, the least noisy 7-day sequence for

Algeria, shown in Fig. 9, might appear to have been
affected by a similar psychological boundary of 200 in-

fections per day. Medical specialists interviewed by the

media interpreted the 200 daily infections period as rep-

resenting stability and resulting from partial lockdown
measures, without providing an explanation for why

Poisson noise was nearly absent [14]. While lockdown

measures should reduce intrinsic epidemiological clus-

tering down towards the Poissonian level, it is difficult

to see how they could reduce testing and administrative
pipeline clustering. A coincidence that occurred during

this least-noisy 7-day period, on 24 May 2020, was that

a full COVID-19 lockdown was implemented in Algeria

[22].

The Belarus (BY) case is present in all four tables

(Tables 1–4). The least noisy Belarusian counts curve

appears in Fig. 8. As with the other panels in the daily

counts figures, the vertical axis is set by the data instead

of starting at zero, in order to best display the informa-
tion on the noise in the counts. With the vertical axis

starting at zero, the Belarus daily counts would look

nearly flat in this figure. They appear to be bounded

above by the round number of 1000 SARS-CoV-2 infec-
tions per day, which, again, appears to be a psychologi-

cally preferred barrier. Media have expressed scepticism

of Belarusian COVID-19 related data [18, 2].

One remaining case of a coincidence is that the low-

est noise 7-day sequence listed for Poland (PL, Table 4)
is for the 7-day period starting 20 June 2020, with

φ7i = 0.16× 10±0.46. This is a factor of about 100 (or at

least 10 at about 95% confidence) below Poland’s clus-

https://zenodo.org/record/3990666/files/WP_C19CCTF_SARSCoV2.dat
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tering value for the full sequence of its SARS-CoV-2

daily infection counts, φi = 13× 10±0.065, which Fig. 3

shows is typical for a country with an intermediate to-

tal infection count. On 28 June 2020, there was a de

facto (of disputed constitutional validity [37, 19]) first-
round presidential election in Poland. Figure 9 shows

that the counts for Poland during the final pre-first-

round-election week did not scatter widely throughout

the Poissonian band. A decimal-system round number
also appears in this figure: the daily infection rate is

slightly above about 300 infections per day and drops

to slightly below that. For an unknown reason that

does not previously appear to have been studied, the

intrinsic clustering of SARS-CoV-2 infections in Poland
together with testing and administrative clustering of

the confirmed cases appears to have temporarily disap-

peared just prior to the election date, yielding what is

best modelled as sub-Poissonian counts.

4.2.4 JHU CSSE data The JHU CSSE data give
mostly similar results to the C19CCTF data. These are

presented and briefly discussed in Appendix A.

5. Conclusion

Given the overdispersed, one-parameter Poissonian φi
model proposed, the noise characteristics of the daily
SARS-CoV-2 infection data suggest that most of the

countries’ data form a single family in the (φi, Ni) plane.

The clustering – whether epidemiological in origin, or

caused by testing or administrative pipelines – tends

to be greater for greater numbers of total infections.
Several countries appear, however, to show unusually

anti-clustered (low-noise) daily infection counts.

Since these daily infection counts data constitute
data of high epidemiological interest, the statistical char-

acteristics presented here and the general method could

be used as the basis for further investigation into the

data of countries showing exceptional characteristics.
The relations between the most anti-clustered counts

and the psychologically significant decimal system round

numbers (IN: 10,000 daily, DZ: 200 daily, BY: 1000

daily, PL: 300 daily), and in relation to a de facto na-

tional presidential election, raise the question of whether
or not these are just coincidences.

It should be straightforward for any reader to ex-

tend the analysis in this paper by first checking its re-
producibility with the free-licensed source package pro-

vided using the Maneage framework [4], and then ex-

tending, updating or modifying it in other appropriate

ways; see §Code availability below. Reuse of the data

should be straightforward using the files archived at

zenodo.3990666.
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Table 6 As in Table 2, for the JHU CSSE data: least
noisy 28-day sequences – clustering parameters for the
countries with the 10 lowest φ28

i
values; extended table:

zenodo.3990666/phi N 28days jhu.dat.

country Ni 〈n28
i

〉 PPoiss
i

PKS
i

φ28
i

starting
date

TR 246861 1014.5 0.03 1.00 0.14 2020-06-30
DZ 37664 154.1 0.10 0.80 0.17 2020-05-13
BY 69308 921.9 0.14 0.92 0.21 2020-05-08
AE 63819 512.8 0.08 0.23 0.23 2020-04-14
RU 910778 5456.3 0.57 0.65 0.28 2020-07-18
SA 295902 1182.2 0.47 0.55 1.11 2020-04-12
AL 7117 77.7 0.20 0.47 1.33 2020-06-23
IR 338825 1863.3 0.20 0.98 2.85 2020-03-30
HR 6258 60.2 0.27 0.93 3.24 2020-03-28
NE 64292 128.8 0.10 0.99 3.39 2020-06-04

Table 7 As in Table 3, for the JHU CSSE data: least noisy
14-day sequences – clustering parameters for the countries
with the 10 lowest φ14

i
values; extended version of table:

zenodo.3990666/phi N 14days jhu.dat.

country Ni 〈n14
i

〉 PPoiss
i

PKS
i

φ14
i

starting
date

AE 63819 521.2 0.11 0.58 0.09 2020-04-19
DZ 37664 144.1 0.11 0.49 0.09 2020-05-23
TR 246861 971.6 0.12 0.91 0.11 2020-07-08
BY 69308 945.6 0.22 1.00 0.13 2020-05-12
RU 910778 5165.5 0.48 0.52 0.28 2020-08-01
SA 295902 1227.5 0.38 0.98 0.30 2020-04-19
AL 7117 131.5 0.84 1.00 0.53 2020-08-01
PL 55319 299.9 0.56 0.70 0.53 2020-06-17
KE 29334 126.2 0.55 0.94 0.57 2020-06-03
CA 123605 1181.5 0.53 0.74 1.22 2020-05-08

Table 8 As for Table 4, for the JHU CSSE data: least
noisy 7-day sequences – clustering parameters for the
countries with the 10 lowest φ values; extended table:
zenodo.3990666/phi N 07days jhu.dat.

country Ni 〈n7
i
〉 PPoiss

i
PKS
i

φ7
i

starting
date

AE 63819 544.9 0.24 1.00 0.05 2020-04-27
BY 69308 947.9 0.61 0.97 0.05 2020-05-13
TR 246861 929.6 0.22 0.96 0.05 2020-07-15
DZ 37664 188.6 0.20 1.00 0.06 2020-05-20
PL 55319 297.0 0.51 1.00 0.10 2020-06-20
PA 79402 171.1 0.89 0.98 0.17 2020-05-09
HN 49487 160.7 0.94 1.00 0.18 2020-06-01
RU 910778 5873.9 0.70 0.92 0.21 2020-07-19
DK 15758 71.1 0.48 0.97 0.28 2020-05-11
AL 7117 78.9 0.40 0.86 0.32 2020-07-05

https://zenodo.org/record/3990666/files/phi_N_28days_jhu.dat
https://zenodo.org/record/3990666/files/phi_N_14days_jhu.dat
https://zenodo.org/record/3990666/files/phi_N_07days_jhu.dat
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