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Abstract—Cross-border scenarios are of extreme importance
in current research work on 5G networks for connected vehi-
cles. Network services and applications for connected vehicles,
which are in specific cases expected to run on Mobile Edge
Computing (MEC) infrastructure, might experience problems
through country borders due to inter-domain. Given that cross-
border scenarios typically imply a change of network operator,
deployed MEC services need to work in such environments and,
where applicable, different entities need to synchronize their
input/output vehicular messages and work seamlessly in such a
multi-operator context. One of most significant MEC services
is vehicular message brokering. It consists on the controlled
publishing and notification mechanisms to create awareness to
all subscribed vehicles concerning their position as well as other
significant events that may arise, such as hazardous events.

This paper presents an architecture and method for vehicular
message exchange, based on current Intelligent Transport Sys-
tems (ITS) standards, and proposes a novel hierarchical message
brokering approach with the purpose of solving cross-domain
scenarios, which can be applied not only in the aforementioned
cross-border case but also in other scenarios where there is no
single domain (i.e., with multiple vendors). Message Queuing
Telemetry Transport (MQTT) servers are used in a hierarchical
approach (locating a parent MQTT broker in a public cloud)
in order to demonstrate the feasibility of using them for cross-
border scenarios. Latency results are obtained in order to
evaluate the performance penalty of the proposed solution.

Index Terms—Cross-Border V2X communication, Mobile Edge
Computing, Cooperative Collision Avoidance, MQTT, CAM,
DENM.

I. INTRODUCTION

Connected vehicles are expected to provide significant soci-
etal benefits, such as less pollution and improved safety [1]. 5G
networks are providing the necessary substrate infrastructure
to support connected vehicles. Key elements for connected
vehicles scenarios are the messages exchanged among vehicles
(known as Vehicle-to-Vehicle, V2V) and between vehicles and
the infrastructure (Vehicle-to-Infrastructure, V2I), which need
to be delivered in a timely and robust manner.

The work in [2] provides a clear overview on Cooperative-
Intelligent Transport Systems (C-ITS) standards in Europe.
Two main protocols and their messages have become the
basis for C-ITS services: Cooperative Awareness Message
(CAM) and Decentralized Environmental Notification Mes-
sage (DENM). On the one hand, CAM is a periodic message

that provides status information to interested actors, and it is
typically transmitted periodically when the engine is running.
On the other hand, DENM is triggered only to notify a safety-
related event.

C-ITS infrastructure is typically deployed following the
Mobile Edge Computing (MEC) architecture, which provides
the control and management of the desired C-ITS applications
[3]. The work in [4] provides a high-level description of the
Anticipated Cooperative Collision Avoidance (ACCA) system
architecture and functionalities. One of the most important
components of this architecture is a message broker, which is
responsible for the distribution of CAM and DENM messages.
A well known message broker architecture has been proven
using the Message Queuing Telemetry Transport (MQTT) pro-
tocol. MQTT [5] is a lightweight simple messaging protocol
based on a publish/subscribe model, designed for constrained
devices and low-bandwidth. It has been used extensively in
IoT applications. A central entity called MQTT Broker is
responsible for message delivery.

In this work, we consider a cross-border scenario that in-
volves multiple operators running different MEC applications
(such as an MQTT broker). A hierarchical approach is needed
to overcome multi-domain issues between borders. Several
authors have demonstrated the usage of MQTT hierarchy
in Internet of Things (IoT) scenarios [6]. In this paper, we
apply the hierarchical MQTT approach to vehicular message
brokering for the first time. With this objective, we describe
the necessary architecture, the implementation of a proof-of-
concept and evaluated results regarding latency overheads.

The remainder of this paper is organized as follows. In
Section II, we provide an state of the art on MQTT message
brokering for Vehicular-to-Everything (V2X) communications.
In Section III, we describe how vehicular DENM and CAM
messages are generated by a custom experimental On-Board
Unit (OBU) software application. In Section IV, we present
the architecture proposed for vehicular message exchange in
a cross-border scenario. Later, in Section V, we provide ex-
amples of generated messages and the experimental validation
of the proposed cross-border architecture. Finally, Section VI
concludes the paper.



II. RELATED WORK

The work in [7] presents the use of the IoT message pro-
tocol MQTT for transmitting accumulated and live V2X data
from vehicles to a centralized big data platform. The usage
of MQTT introduces a small overhead regarding network
bandwidth and works on top of the standard TCP/IP protocol.
Messages are transferred via an MQTT broker. The MQTT
broker component is running next to the global database.
According to the publish/subscribe mechanism, the component
(i.e., vehicle) periodically publishes location and network per-
formance related topics, which are then received by registered
MQTT clients of 2D and 3D visualization applications.

Several research projects (e.g., 5G-DRIVE [8], 5G-Carmen
[9]) are introducing MQTT brokers in the cloud in order to
collect all traffic information in an efficient manner to deploy
geographical services with minimal overhead. In the cloud
broker, the data is organized according to geographical-related
topics, which allows messages exchange without the need to
share the client location. This approach provides privacy and
saves communication bandwidth.

The authors in [10] have proposed the usage of virtual-
ization technologies in the vehicular domain, which provides
flexibility and reliability in real deployments, where mobility
and processing needs may be an issue. The SURROGATES
solution proposes to virtualize vehicle OBUs and creates a
novel MEC layer with the aim of off-loading processing from
the vehicle and serving data-access requests. Thus, this work
opens a novel path regarding the virtualization of end-devices
in the Intelligent Transportation Systems (ITS) ecosystem.
This hierarchical approach of multiple hierarchical levels can
be also observed in MQTT.

For example, the work in [6] proposes an integrated ar-
chitecture based on the use of a public cloud infrastructure,
considering a hierarchical approach for MQTT messsage pub-
lication and subscription. It demonstrates the feasibility of
using a public cloud infrastructure to host a hierarchical parent
MQTT broker. The objective of this paper is to apply this
hierarchical approach to V2X cross-border scenarios.

III. VEHICULAR MESSAGE GENERATION

This section describes a custom experimental OBUs soft-
ware application, which has been built with the idea of imple-
menting in-vehicle OBU functionalities, including vehicular
message generation and reception.

The OBU application can be deployed on a general-purpose
computer with external connections to a Global Navigation
Satellite System (GNSS) receiver and to the Controller Area
Network (CAN) bus of the vehicle by means of an On-Board
Diagnostic (OBD) interface adapter (e.g., ELM327 OBD-II).
The OBU application can readily be configured onto a Linux
system and is based on OpenC2X [11], which is an open-
source software implementation of the Cooperative-Intelligent
Transport System protocol stack (i.e., ITS-G5) defined in the
ETSI ITS specification [12]. The interoperability of OpenC2X
with a commercial OBU from Cohda Wireless has been
demonstrated in [13] by sending and receiving CAM and

Figure 1: Software architecture of the OBU application.

DENM messages between OpenC2X and the Cohda Wireless
OBU.

The software architecture of the OBU is depicted in Fig-
ure 1. As it can be observed, it is composed of several inde-
pendent software modules that communicate with each other
using an asynchronous messaging library. In what follows, the
core functionalities of each module are described.

The Web Interface module is a graphical user interface
(GUI) that acts as the Human Machine Interface (HMI) of the
vehicle, facilitating the interaction between the driver and the
OBU application. Through the Web Interface, the driver is able
to: initiate the registration and authentication process with the
MEC-hosted back-end service; configure the subscription to
the back-end service in order to receive DENMs associated
to hazards located within a certain geographical area; and
emulate the detection of a roadside event by triggering the
transmission of a DENM to the back-end service. In addition,
the Web Interface shows the current position of the vehicle, the
location of road hazards and the position of other vehicles on a
Local Dynamic Map (LDM). Furthermore, the Web Interface
displays a notification message every time that a new DENM
is received.

The HTTP server module facilitates the communication
of the Web Interface with the rest of the modules of the
OBU. The HTTP server receives HTTP requests from the Web
Interface and sends commands to the corresponding software
modules, which execute the required operations. As it can
be observed in Figure 1, the HTTP server communicates
with: the Registration & Authentication module, to initiate
the registration and authentication process with the back-end
service; the Subscription module, to configure the subscription
parameters and initiate a new subscription to the back-end
service; the DENM/JSON module, to trigger the transmission
of a new DENM to the back-end service; and the LDM
module, to query the positions of the vehicle, road hazards
and other vehicles.

The Registration and Authentication module communicates
with the back-end service via HTTP in order to register and
authenticate the vehicle in the service. The Registration and
Authentication module implements an HTTP client to send



REST commands that contain the credentials of the vehicle.
In response to the request, the back-end service sends an
authentication token that will be attached for any subsequent
requests to the back-end service and will be used to verify the
client by the back-end.

The Subscription to Region Of Interest (ROI) module
configures the geographical coordinates and dimensions of
the ROI, the types of events occurred in that region, and
the duration of the subscription to the back-end service. The
subscription to a ROI is performed using an HTTP POST
request. It is required to notify the back-end service every time
there is a change of ROI or when the previous subscription
has already expired.

The DENM Service module is in charge of encoding and
decoding DENM messages. In the current implementation,
this module generates a new DENM when it receives a
command from the Web Interface through the HTTP server.
The DENM Service module fills the fields of the DENM with
the geographical position (i.e., latitude and longitude) provided
by the GNSS module and other in-vehicle sensors information
provided by the OBD2 module. The DENM message is passed
to the V2X Message Manager to add the GeoNetworking
and BTP headers. In addition, the generation of DENMs
could be triggered by external modules such as smart sensors
for collision avoidance. Regarding the reception of DENM
messages sent by the back-end service, the DENM Service
module extracts the GeoNetworking header, decodes the fields
of the DENM and forwards the relevant data of the event (type,
position) to the LDM module.

The CAM Service module is in charge of encoding and
decoding CAM messages serving as location updates for ve-
hicle tracing at the back-end service. The CAM messages are
triggered periodically. The position of the vehicle is provided
by the GNSS module and the speed is provided by the OBD2
module. The CAM Service module fills the fields of the
CAM message at the facilities layer, as defined by ETSI-ITS
specification [14] and passes it to the V2X Message Manager
where GeoNetworking and BTP headers are added. The CAM
Service module also receives CAM messages sent by other
vehicles and forwards the relevant data to the LDM module.

In order to communicate with entities such as Central
Traffic Managers or additional back-end servers, an additional
communications interface and protocol has been included in
the OBU. It is based on the use of JavaScript Object Notation
(JSON) text format to serialize CAM and DENM messages,
and sent to other interested parties using the MQTT protocol.

The main concept is that clients connect and authenticate
to a MQTT broker, susbcribe to the topics of interest (topics
can be pre-defined based on geographic ROI, ITS protocol,
etc.) and publish messages to the corresponding topic. We use
a direct translation of CAM and DENM message mapping
ASN.1 objects to JSON fields. Consequently, the MQTT Client
module facilitates the communication via the MQTT protocol
among the CAM module and DENM module and servers
hosting back-end services. The MQTT module registers into
an MQTT broker allocated in the distributed edge cloud, and it

publishes on specific predefined topics the CAM and DENM
messages generated by the CAM and DENM modules. The
MQTT Client module subscribes to several topics in order to
receive CAM and DENM messages published by the back-end
service and forwards the incoming CAM and DENM messages
into their respective CAM and DENM module. The JSON
encoding follows closely the ASN.1 specification for DENM
messages. In the example detailed in Listing 1, we show a
simplified version of the DENM message in JSON format.

Listing 1: Simplified JSON DENM message
{
"message":{
"management_container":{
"detection_time":503253332000,
"event_position":{

"altitude":1340,
"confidence":{},
"latitude":486263556,
"longitude":22492123

},
"reference_time":503253330000

},
"message_id":1,
"protocol_version":1,
"situation_container":{
"event_type":{

"cause":1,
"subcause":6

},
"information_quality":4,
"linked_cause":{

"cause":94,
"subcause":2

}
}

},
"context":"etsi",
"message_base64":"AQEAAA...",
"origin":"on_board_application",
"source_uuid":"",
"timestamp":"1580723993599",
"type":"denm",
"version":"0.3.0"

}

The V2X Message Manager module facilitates the com-
munication via the UDP protocol among the CAM Service
and DENM Service modules and the back-end service. The
V2X Message Manager adds the GeoNetworking and BTP
headers, encapsulates the CAM and DENM messages into
UDP packets and sends them to a UDP server allocated in the
back-end. The V2X Message Manager receives UDP packets
from the back-end service, decapsulates the CAM and DENM
messages, extracts the GeoNetworking and BTP headers and
sends them into their respective CAM Service and DENM



Service modules.
The LDM stores in a SQL-based database the information

contained in incoming CAM and DENM messages. This data
is read from the Web Interface module for real-time monitoring
and can also be accessed for off-line analysis. In order to
improve the performance, the latest data is stored in a cache.

The GPS Service module connects via Universal Serial
Bus (USB) to an external GNSS receiver to collect periodic
position updates (i.e., latitude, longitude, altitude) and for-
wards these data to the CAM Service, DENM Service and
JSON/MQTT Client modules. In order to perform reproducible
experiments, previously recorded GPS data can also be fed
into the application in form of a trace. Instead of acquiring
real positions from the GNSS receiver, the OBU application
can read the position of the vehicle from a trajectory file
that contains a sequence of geographical coordinates with
associated time-stamps.

The OBD2 Service module communicates with the vehicle’s
on-board network (i.e., CAN bus) by means of an OBD
interface adapter connected to an USB port of the OBU. The
OBD2 module reads speed and acceleration from the OBD
interface adapter and forwards these data to the CAM Service
and DENM Service modules.

IV. CROSS-BORDER VEHICULAR MESSAGE EXCHANGE

In this section, we describe the proposed architecture for
inter-vehicular message exchange shown in Figure 2. As stated
in the previous section, JSON can be used for encoding
CAM and DENM messages, becoming the payload of MQTT
messages that can be sent (published) to a configured MQTT
broker. For this, once these JSON messages have been gen-
erated, the MQTT client is responsible for publishing such
messages to the MEC-based MQTT broker. In turn, this
MQTT broker acts as child-broker (cMQTTi) running in a
specific domain (1 or 2 in Figure 2) to enable a hierarchy of
brokers, these MEC MQTT brokers are also able to export
(publish) and receive (subscribe) the MQTT topics and JSON
messages from a designated parent MQTT broker (pMQTT).

A public cloud is used to run an instance of this parent
MQTT broker, responsible for forwarding (publishing) mes-
sages in the different topics to other involved child MQTT
brokers and as well as for subscribing to the relevant topics
in order to be notified by such brokers. In summary, this
architecture allows overcoming the difficulties in multi-domain
interconnection of MEC services and JSON messages are
disseminated across multiple domains through multiple topic
subscriptions. In the example of Figure 2, the MEC contained
in Domain 1 receives vehicular messages from Domain 2, and
vice-versa, and is able to propagate these messages to vehicles
connected to its own domain.

Figure 3 presents the proposed sequence diagram for ex-
change of messages between vehicles in different domains. It
consists of two different phases: initialization and run-time.
The initialization phase consists on public cloud discovery,
connection, authentication and subscription from the different
child brokers located in MEC servers, which are related to

Figure 2: Proposed hierarchical MQTT architecture.

domain. In Figure 3 we depict subscription mechanism in
initialization phase. Once it is completed, the run-time phase
starts. Whenever a safety-related event is detected, a DENM
JSON message is generated and transmitted from the OBU
to its associated MEC, e.g., from Car1 to cMEC1. Then,
cMEC1 propagates the message towards the pMQTT. The
pMQTT disseminates the received message towards the rest
of connected child MQTT brokers, and finally, once the child
MQTT brokers receive the message, it is propagated to the
subscribed OBUs.

Figure 3: Initialization and Run-time Workflow of the pro-
posed hierarchical architecture.



The proposed architecture can be applied to more complex
scenarios, including multiple levels of hierarchy, where a
parent message broker of hierarhical level H, acts also as child
message broker of hierarchical level H+1. Also, hierarchy
fault-tolerant strategies could also be considered, such as fat-
tree [15].

Currently, each child message broker and public cloud
broker are deployed by its own domain service orchestrator
(NFV/MEC). This separates administratively each domain,
while it provides the necessary cross-border interoperability.
It is left for further research the design of a multi-domain
orchestration mechanism that is able to deploy services in
multiple administrative domains as well in the public cloud.

V. EXPERIMENTAL EVALUATION

The evaluation is carried out in the CTTC 5G end-to-end
experimental platform [16], which integrates heterogeneous
wireless/optical networks, distributed cloud and IoT devices.
In this work, we use two MEC servers and cloud resources for
the deployment of the proposed architecture. Measurements
have been obtained by using a dedicated 1 GB Ethernet
connection between MEC servers and cloud resources. This
provides a baseline scenario to benchmark the introduced
latency of our implementation.

Firstly, we focus on the validation of the OBU, and finally,
we validate the proposed message exchange architecture and
evaluate its performance in terms of latency of message
distribution.

A. OBU Validation
In order to validate the functionalities of the OBU appli-

cation described in Section III, we have used the Wireshark
protocol analyzer in order to capture and analyze CAM and
DENM messages transmitted by the OBU over UDP as
unicast packets to the back-end service deployed on the MEC
infrastructure. Figure 4 shows an example of a sequence of
CAM messages sent over UDP. Typically, CAM messages
are being generated periodically upon the change of vehicles’
dynamics such as the speed, change of direction, and so forth.
For the sake of demonstration, as shown in Figure 4, we have
set 3.0s as the periodicity to generate CAM messages.

Similarly, we have used Wireshark to capture and analyze
the validity of CAM and DENM messages transmitted by the
OBU over MQTT. Figure 5 shows an example of capture of
a DENM message sent over MQTT in JSON format.

As shown in Listing 1, the JSON object contains top-level
fields such as the source Universally Unique Identifier (uuid)
of the entity generating the message, the type of message that
is being encoded (e.g., ”cam” or ”denm”), the timestamp of
the object (in milliseconds) when the message was generated
since the common Unix Epoc (1970/01/01). It then includes
multiple information objects. In every DENM message there
is a management container that conveys, notably, the GPS po-
sition of the event (with optional confidence) and an situation
container, that encodes the cause (and sub-cause) of the event.
Standard causes may include accidents, road works, adverse
weather conditions, emergency vehicles, etc.

Figure 4: Wireshark capture of CAM messages sent over UDP.

B. Cross-border message exchange validation and evaluation

We have captured traces of messages transmitted between
the pMQTT and two child MQTT brokers (cMQTT1 and
cMQTT2) in order to validate the operation of the hierarchical
MQTT architecture. Figure 5 shows the initialization and run-
time phases with different time references for the exchange of
messages between vehicles in domains 1 and 2. As it can be
observed in Figure 5, the duration of the initialization between
the parent and a child MQTT broker is of 1 millisecond.
Then, it can be observed that the overhead latency in message
exchange is of 0.2 milliseconds approximately. We describe
as overhead latency, as the delay introduced from receiving a
message at cMQTT1 and processing it in cMQTT2. This delay
refers to the overhead introduced by this proposed hierarchical
approach.

Figure 6 shows a Cumulative Density Function (CDF) of
the message exchange latency overhead between cMQTT and
pMQTT brokers. For this figure, we sampled 100 measure-
ments and compute the cumulative histogram.

It can be observed that the introduction of hierarchical

Figure 5: Wireshark capture of MQTT messages exchange in
a cross-border scenario.



Figure 6: CDF of cross-border message exchange delay.

message exchange for cross-border scenarios comes with a
penalty of around 0.2 milliseconds in latency overhead in the
described testbed.

VI. CONCLUSION AND FUTURE WORK

We have evaluated the feasibility of the proposed hierarchi-
cal vehicular message exchange solution and we can conclude
that the message propagation delay does not affect the system,
and might be of interest to consider to use it for cross-
border deployments. This work is the basis for the future
improvement of cross-border vehicular message exchange. The
proposed solution shall be measured against complexity issues,
such as cost and deployment of the public cloud (related to
some traffic authority).

Several key features will be incorporated in future upgrades.
The first update will include MQTT topic publication and
subscription based on location-awareness and ROI selection.
Second update will include dynamic deployment of MEC
and Public Cloud applications using Service Orchestrator. The
third update will be the introduction of multiple physical layer
interfaces, such as 5G-NR and 802.11p. the proposed solution.
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