
OPEX-Limited 5G RAN Slicing: an Over-Dataset
Constrained Deep Learning Approach

Hatim Chergui, and Christos Verikoukis
CTTC, Barcelona, Spain

Contact Emails: {hatim.chergui, cveri}@cttc.es

Abstract—In this paper, we investigate the concept of OPEX-
limited resource provisioning as a key component in fifth generation
(5G) radio access networks (RAN) slicing. The different RAN slices’
tenants (i.e. logical operators) are dynamically allocated isolated
portions of physical resource blocks (PRBs), baseband processing
resources and backhaul capacity. To achieve this dynamic resource
allocation, we rely on key performance indicators (KPIs) datasets
stemming from a live cellular network endowed with traffic probes.
These datasets are used to train a new class of deep neural networks
(DNNs) models where OPEX requirements, formulated as non-
convex non-differentiable violation rate constraints, are also dataset-
dependent. The designed constrained DNNs are then optimized
via a non-zero sum two-player game strategy. In this respect, we
highlight the effect of the different hyperparameters on the respect
of the OPEX limitations, while ensuring a dynamic RAN resource
orchestration that follows the slices’ traffics trends.

Index Terms—5G, datasets, deep neural networks, dynamic slic-
ing, game theory, non-convex optimization, OPEX, violation rate.

I. INTRODUCTION

NETWORK slicing is a paramount feature in 5G cellular
systems. It creates a number of logically isolated networks,

or “slices”, out of the same physical infrastructure shared by
multiple over-the-top (OTT) tenants, offering thereby an increased
statistical multiplexing [1]. This can lead to the reduction of the
Capital Expenditures (CAPEX) significantly for these operators.
Operational Expenditures (OPEX) can also be reduced thanks
to the softwarization and virtualization technologies employed in
network slicing [2], and that enable the end-to-end programmabil-
ity of network functions, paving the way to a flexible and dynamic
resource allocation for the slices, which allows to exploit the
available physical resources in a more efficient way [3], [4]. In
this context, machine learning (ML) techniques and in particular
deep neural networks (DNNs) are expected to be the cornerstone
in the automation of end-to-end resource provisioning. This
includes standard DNNs that, based on the slices’ traffics, enable
the estimation of the required resources at each virtual network
function (VNF) such as physical resource blocks at a transmis-
sion/reception points (TRP) and radio resource connected (RRC)
users’ licenses at a virtual baseband processing unit (vBBU).

From a financial point of view, imposing constraints on the
OPEX of network resources is also required to let the slices’
tenants properly control their expenditures while requesting the
different resources from the physical operator. This implies that
network slicing OPEX optimization should be conducted jointly
with resource allocation, and requires the design of a new family
of DNN models that take into account constraints while learning
from datasets.

A. Related Work

In [5], the authors have studied elastic slice dimensioning with
resource pricing as a Stackelberg pricing game, in which the
network service provider (NSP) sells slices by pricing resources
and network slice customers (NSCs) adjust their slice’s resource
demand on VNF capacity and bandwidth, while both are trying
to maximize their profit.

In [6], the authors have deployed a cloud RAN environment
and conducted two experiments on slicing resource management
and cost optimization. In the first scenario, they have addressed
slices’ auto-scaling (Infrastructure Scale- Out/Scale-In) when free
resources are available in the pool. In the second scenario,
the authors have simulated slices’ breathing (orchestration of
resources) when the pool of resources is exhausted. Results show
that leveraging cloud elasticity by auto-scaling resources saves
costs by providing exactly "what-is-needed" "when-it-is- needed"
in term of cloud computing. On the other hand, slices’ breathing
maximizes the usability by employing our "inhale-and-exhale"
heuristic.

In [7], a novel methodology is proposed, in which a value chain
in sliced networks has been presented. Based on the proposed
value chain, the profits generated by different slices have been
analyzed, and the task of network resource management has been
modeled as a multi-objective optimization problem. Setting strong
assumptions, this optimization problem has been analyzed starting
from a simple ideal scenario. By removing the assumptions step-
by-step, realistic but complex use cases have been approached.
Through this progressive analysis, technical challenges in slice
implementation and network optimization have been investigated
under different scenarios.



vBBU Datacenter

vBBU
(CPU and RRC 

connected users)

TRP (PRBs)

Backhaul 
(Capacity)

Figure 1: Cloud RAN architecture.

In [8], the authors have proposed a convolutional neural
network (CNN) architecture to predict the traffic demand per slice
while taking into account SLA violation cost. In this regard, we
notice that this CNN strategy is of high complexity [9].

B. Contributions

In this paper, we investigate the following aspects:
• At each virtual function/interface of the cloud RAN, we

build and train a joint multi-slice DNN model to estimate
the resource provision based on the traffic per slice. In this
regard, we invoke live network key performance indicators
(KPIs) datasets involving end-to-end metrics such as traffic
volume per slice, downlink (DL) physical resource blocks
(PRBs), CPU load and RRC connected users’ licenses at
the virtual baseband units (vBBUs), and backhaul capacity.

• The designed models incorporate OPEX control through the
integration of constraints on OPEX violation rate. Unlike
existing online DNN optimization strategies, we introduce
a new dataset-based training approach. It consists on im-
posing dataset-dependent custom non-convex constraints to
the DNN output and using a two-player non-zero sum game
strategy to solve the resulting offline optimization task. In
this intent, the OPEX thresholds act as hyperparameters that
can be fine-tuned by the infrastructure operator according
to the SLAs with the slices’ tenants. Note that we have
adopted deep learning since it enables automatic discovery
of important features from raw datasets, as well as yields
generalized models, which is suitable for heterogeneous
resources allocation.

II. NETWORK CONFIGURATION AND DATASETS

A. Network Configuration

The collected KPIs correspond to an LTE-advanced (LTE-A)
dense urban area, covered by 440 LTE-A eNodeBs (eNBs) and
3200 cells, including 800 MHz, 1800 MHz and 2.6 GHz bands.
Table II summarizes the network configuration used throughout

this paper, in particular to aggregate the traffic at the vBBU
datacenter.

Table I: Network Configuration

Entity Quantity
TRP 3200
eNB 440

BBU datacenters 10 uniformly distributed, with ×100 CPU
resources compared to a single 4G eNodeB

B. Datasets

Based on the architecture depicted in Fig. 1, the measured
datasets are stemming from two network components. First,
thanks to their deep inspection capabilities, dedicated probes—
usually installed at the core network—are collecting and analyz-
ing the traffic per OTT at a granularity of 1 hour for each TRP.
The traffic is then aggregated at eNB and vBBU datacenter for
each OTT. Once the slices are defined, the traffic of the underlying
OTTs is summed to yield the traffic per slice. Second, the key
performance indicators are collected by the operational support
system (OSS) platform at TRP, eNB and vBBU levels. The KPIs
have a granularity of 1 hour and are formatted as detailed in Table
I. Note that we have used Huawei’s PRS tool to export the OSS
KPIs (e.g., PRB usage, CPU load...) and Netscout of Tektronix
to get the probes’ OTT KPIs.

III. END-TO-END RESOURCE PROVISIONING UNDER OPEX
CONSTRAINTS

In this section, we build deep learning models to estimate the
end-to-end required resources for each slice. Moreover, these
models have to respect some OPEX constraints that are the
subject of a contract between the infrastructure operator and the
slices’ tenants. In this regard, we consider for each slice n and
RAN virtual network function m ∈ {TRP, vBBU, Backhaul},
a set of resources rm,n,k (k = 1, . . . ,K). Examples of resources
are the DL PRBs at TRP and the CPU load at the vBBU
datacenter. For notation simplicity and without loss of generality,
we adopt neural networks of similar depth L wherefore the
input features, weights and biases are denoted by sn, Wn and
bn, respectively, while `(·) and NB stand for the squared error
loss function and the batch size, respectively. In the sequel, we
formulate the OPEX-constrained deep learning-based resource
provisioning problem, and show how one can proceed to solve
the underlying optimization problem.

Note that the resource provisioning DNN models are multi-
slice, i.e., jointly trained using the N slices’ traffics. During
the test, however, the resources allocated to a given slice n are
obtained by keeping only the features related to that slice, and
setting those corresponding to the remaining slices to zero.



Table II: Datasets Features

TRP Feature Description

OTT
Traffics
per TRP

Includes the hourly traffic for the top OTTs: Apple,
Facebook, Facebook Messages, Facebook Video,
Instagram, NetFlix, HTTPS, QUIC, Whatsapp, and
Youtube

CQI
Channel quality indicator reflecting the average
quality of the radio link of the TRP

MIMO
Full-Rank

Usage of MIMO full-rank spatial multiplexing in %

DLPRB
Number of occupied downlink physical resource
blocks

vBBU Feature Description
OTT

Traffics
per eNB

Aggregated OTT traffics per eNB

CPU Load CPU resource consumption in %

RRC
Connected

Users

Number of RRC users licenses consumed per eNB

Backhaul Feature Description
OTT

Traffics
per BBU

datacenter

Aggregated OTT traffics per BBU datacenter

Backhaul
capacity

Effective aggregated throughput per BBU datacenter

A. Resource Pricing Model

Inspired by cloud resource pricing strategies presented in [10]
and without loss of generality, we model the RAN resource
pricing function as

π
(
r
(i)
m,n,k

)
= γm,n,kr

(i)
m,n,k, (1)

where γk is the unitary price per resource k. This corresponds
to a pay-per-use strategy, where the tenant pays only for the
used resources. A practical example of such a payment scheme
is Amazon Web Services/Elastic Compute Cloud (EC2), which
charges the customer on the hourly usage of RAM and CPU
[10].

B. DNNs with Dataset-dependent Constraints

Deep neural networks with dataset-dependent constraints are
a novel concept. It considers problems that minimize DNN loss
function subject to data-dependent constraints, expressed in terms
of expectations over a data distribution D:

min
W

Ex∼D `0 (x,W) , (2a)

s.t.Ex∼D `i (x,W) ≤ 0, i = 1, . . . ,m, (2b)

where W are the weights of the DNN, x are the features, while
`0 and `i stand for the DNN loss function and the m constraints,
respectively.

C. Offline Violation Rate-Based OPEX Enforcement

In this section, we adopt a novel offline approach to train
dataset-based DNN models. It consists on directly enforcing
an upper bound on the OPEX violation rate. In this case, the
deep learning training amounts to solving the datatset-based
constrained optimization task expressed as,

min
1

NB

NB∑
i=1

`
(
r
(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
, (3a)

s.t.Wl,n ∈ RNl−1×Nl , l = 1, . . . , L+ 1, (3b)

bl,n ∈ RNl×1, l = 1, . . . , L+ 1, (3c)

1

NB

NB∑
i=1

1
(
π
(
r̂
(i)
m,n,k

)
< αm,n,k

)
≤ ρm,n,k, (3d)

1

NB

NB∑
i=1

1
(
π
(
r̂
(i)
m,n,k

)
> βm,n,k

)
≤ ρm,n,k, (3e)

where 1(·) stands for the indicator function, and the constraint
(3d) is imposing an upper bound ρm,n,k on the OPEX violation
rate, i.e., the probability that the price of allocated resource r̂m,n,k
is outside the interval [αm,n,k, βm,n,k].

The loss function `(·) is not a well-behaved function of Wn

because of the deep neural network structure, resulting in non-
convex objective and constraint functions. Worse, the violation
rate constraint is a linear combination of indicators, hence is not
even subdifferentiable w.r.t. Wn. Fixing this issue by replacing
the constraints with differentiable surrogates introduces a new
difficulty: solutions to the resulting problem will satisfy the
surrogate constraints, rather than the actual ones. To sidestep this
blocking point, let us consider the functions Φ1 and Φ2 defined
as,

Φ1(Wn) =
1

NB

NB∑
i=1

1
(
π
(
r̂
(i)
m,n,k

)
< αm,n,k

)
− ρm,n,k, (4)

Φ2(Wn) =
1

NB

NB∑
i=1

1
(
π
(
r̂
(i)
m,n,k

)
> βm,n,k

)
− ρm,n,k, (5)

and let Ψ1 and Ψ2 be sufficiently-smooth approximations of Φ
[11] verifying

Ψ1 (Wn) =
1

NB

NB∑
i=1

σ
(
α
(i)
m,n,k − π (r̂m,n,k)

)
− ρm,n,k ≤ 0,

(6)



Ψ2 (Wn) =
1

NB

NB∑
i=1

σ (π (r̂m,n,k)− βm,n,k)− ρm,n,k ≤ 0, (7)

where σ stands for the sigmoid function. The problem (3) can
then be solved by invoking the so-called proxy Lagrangian
framework [12]. This starts by forming two Lagrangians as
follows:

LWn
=

1

NB

NB∑
i=1

`
(
r
(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
+ λ1Ψ1(Wn) + λ2Ψ2(Wn),

(8a)

Lλ = λ1Φ1 (Wn) + λ2Φ2 (Wn) , (8b)

where their optimization can be viewed as a non-zero-sum two-
player game in which the Wn-player wishes to minimize LWn

,
while the λ-player wishes to maximize Lλ. Intuitively, the λ-
player chooses how much to weigh the proxy constraint function,
but does so in such a way as to satisfy the original constraint,
and reach a nearly-optimal nearly-feasible solution to the original
constrained problem. Note that λ ≤ R, where R represents
the maximum radius of Lagrange multipliers; introduced as a
hyperparameter controlling the dependency to the constraints. In
practice, we implement the deep learning objective function, the
constraints (3d)-(3e) and the proxy constraints (6) and (7) on top
of Google’s constrained optimization package [13]
that uses two different approaches to optimize the Lagrangians:
a Bayesian optimization oracle for LWn

and projected gradient
ascent for Lλ. A definition of the oracle is given as follows:

Definition 1 (Approximate Bayesian Optimization Oracle). A δ-
approximate Bayesian optimization oracle is a routine Oδ that
given a loss function/Lagrangian L, returns the quasi-optimal
weights Wn such that

L (Oδ (L)) ≤ inf
W?

n

L (W?
n) + δ. (9)

IV. NUMERICAL RESULTS

A. Slices Scenario

For the sake of simplicity and without loss of generality, we
consider three slices defined as follows:

• eMBB: involves NetFlix, Youtube and Facebook Video,
• Social Media: includes Facebook, Facebook Messages,

Whatsapp and Instagram,
• Browsing: encompasses Apple, HTTP and QUIC.

Note that the traffic of a slice is the aggregation of the unitary
traffics of the corresponding OTTs.

0.05 0.10 0.15 0.20 0.25 0.30
R

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011

OP
EX

 V
io

la
tio

n 
Ra

te

eMBB
Social Media
Browsing

Figure 2: DL PRB OPEX violation rate vs. R with α = [0, 0, 0]
and β = [200, 250, 250] $, γ = [4, 2, 1], for target ρ = 0.005.

B. Neural Network Settings

Throughout this paper, we consider deep neural networks of
L = 2 hidden layers with N1 = 16 and N2 = 8 neurons,
respectively. We set the training epochs to 300 and the optimizer
to Adam with learning rate 0.1. These parameters are set follow-
ing extensive experiments and turn out to yield the best results.
The training dataset size varies from one network function to
another. Hence, at TRPs and vBBUs levels, NTR = 21417 and
NTR = 9681 samples, respectively, with batch size NB = 100.
On the other hand, the test dataset at each network function
consists of the hourly traffics of OTTs for a period of 5 days.
The slices’ traffics are obtained by aggregating the corresponding
OTTs’ traffics. In this work, we consider three slices, namely,
enhanced mobile broadband (eMBB), Social Media and Brows-
ing. In both training and test datasets, features normalization is
activated. For the sake of simplicity, we drop the indexes m,n, k,
and use vectors α, β and γ and scalar ρ instead. These vectors
encompass the resource bounds corresponding to the different
slices at a given network function, and can be easily understood
from the context.

C. Effect of Lagrange Multiplier Radius on the Violation Rate

Lagrange multiplier radius 0 < R < 1 controls the dependency
to the constraints (3d) and (3e) and proxy constraints (6) and
(7). With very low R, the deep learning becomes unconstrained,
while with high R, the constraints are prioritized during the deep
learning offline optimization over the dataset. As depicted in
Fig. 2, we study the variation of the effective DL PRBs OPEX
violation rate versus parameter R. The tolerated hourly OPEX of
DL PRBs resources in $ for eMBB, Social Media and Browsing
slices are given by the upper-bound vector β = [200, 250, 250]
with unitary prices γ = [4, 2, 1]. As expected, the achieved
violation rate is a decreasing function of R, and with values



0 50 100 150 200 250
OPEX

1000
2000
3000
4000
5000

Co
un
t

eMBB
Social Media
Browsing

23:0
0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0

Time

50
100
150
200

Nu
m
be
r o

f D
L 
PR

Bs

(a) R = 0.01

0 50 100 150 200 250
OPEX

1000
2000
3000
4000
5000

Co
un
t

eMBB
Social Media
Browsing

23:0
0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0

Time

50
100
150
200

Nu
m
be
r o

f D
L 
PR

Bs

(b) R = 0.2

Figure 3: DL PRBs evolution and OPEX distribution per slice,
with α = [0, 0, 0] and β = [200, 250, 250] $, γ = [4, 2, 1], ρ =
0.005.

of R as low as 0.3, we are able to reach a violation rate
around 0.002, which is a good performance indicator to enable
an efficient OPEX control between the slices tenants and the
operator. To achieve the target violation rate ρ = 0.005 for the
three considered slices, one should set R = 0.2. The violation
rate presents the same behavior with respect to R for other RAN
resources, i.e., vBBU CPU usage, vBBU RRC connected users
and backhaul capacity. We therefore settle for Fig. 3 results for
the sake of brevity. We set R = 0.2 in all the subsequent scenarios
to achieve a violation rate as low as 0.005 for all slices.

D. Resource Evolution and OPEX Distribution

The DNN models, fed by the traffics of the three slices, yield
an estimation of the required resources at each RAN entity. By
imposing upper and lower bounds on the OPEX, and constraining
their violations, the DNN model learns from the dataset while
ensuring the respect of the OPEX constraints. This translates into

a control of the allocated resources per slice, since the DNN
model automatically increases or the decreases the amount of
resources according to both the input traffic trend and the OPEX
constraints. Note that the considered vBBUs can scale up to
accommodate more traffic.

DL PRBs: In Fig. 3, we show the hourly evolution of the
allocated DL PRBs over a period of 5 days, and the corresponding
OPEX distribution. With R = 0.2, we remark for instance that
the eMBB OPEX hourly upper-bound of 200$ is respected as
depicted in the histogram. This translates into a reduction of
allocated PRBs compared to the case of R = 0.01 where the
constraints are not fully respected and the OPEX violation rate is
higher. On the other hand, we notice that the DL PRBs variation
over time is induced by the trend of hourly traffics per slice that
are fed to the DNN model. We also remark that most of PRB
resources are dedicated to Social Media and Browsing slices,
since they are viewed as massive access services.

vBBU CPU Usage: In Fig. 4, the vBBU CPU usage evolution
and OPEX distribution are depicted. With R = 0.2, the OPEX
bounds are respected as shown in the histogram. While the three
slices are presenting quite similar CPU resource usage, they
differ in the incurred hourly OPEX due to the difference in
the unitary price γ. On the other hand, we notice that while
eMBB slice generally presents the lowest traffic, it consumes
similar CPU resources as the other slices. This is justified by
the large processing requirements of eMBB service compared to
Social Media or Browsing services. We also remark that during
the quiet time (generally overnight, at e.g., 5 : 00 h), the CPU
usage does not decrease significantly for the three slices. This is
due to the enforced OPEX lower bounds α = [30, 0, 0]. Indeed,
imposing a lower bound might be seen as ensuring an isolation
between the different slices, where even during low traffic periods
a slice is allocated a minimum number of resources. Note that
the presented CPU consumption is with respect to a single vBBU
instance that is processing the data of one eNB.

vBBU RRC Connected Users: As depicted in Fig. 5, the
OPEX distribution of RRC connected users licenses correspond-
ing to a single vBBU instance respect the imposed hourly upper-
bounds β = [400, 200, 100] $ for the three slices. Due to the
high unitary price of eMBB slice, the DNN model reduces its
allocated licenses in order to keep the incurred OPEX violation
rate below the target value ρ = 0.005. On the other hand, since
Social Media slice is a massive access service, we notice that
it presents the highest number of assigned RRC connected users
licenses.

Backhaul Capacity: Fig. 6 shows the backhaul capacity
evolution and OPEX distribution. With R = 0.2, the DNN model
constraints are active, and the enforced OPEX upper-bounds
β = [2000, 1000, 500] $ are respected for the different slices. We
remark that while eMBB service is presenting the lowest number
of users, it requires a backhaul capacity comparable to the other



10 20 30 40
OPEX

500
1000
1500
2000
2500
3000

Co
un

t

eMBB
Social Media
Browsing

23:0
0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0

Time

10
20
30
40

vB
BU

 C
PU

 U
sa

ge
 (%

)

Figure 4: vBBU CPU usage and OPEX distribution per slice, with
α = [30, 0, 0] and β = [50, 50, 50] $, γ = [4, 2, 1], ρ = 0.005
and R = 0.2.

0 50 100 150 200 250 300 350 400
OPEX

500
1000
1500
2000
2500
3000

Co
un

t eMBB
Social Media
Browsing

23:0
0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0

Time

50
100
150
200

vB
BU

 R
RC

 C
on

ne
ct

ed
 U

se
rs

Figure 5: vBBU RRC connected users licenses and OPEX dis-
tribution per slice, with α = [0, 0, 0] and β = [400, 200, 100] $,
γ = [4, 2, 1], ρ = 0.005 and R = 0.2.

slices. This is due to the nature of the eMBB service that involves
high throughput-demanding applications.

V. CONCLUSION

In this paper, we have presented new RAN slicing resource
allocation schemes under OPEX limitations. By invoking key
performance indicators datasets stemming from a live cellular
network, the problem has been modeled using a new class of
deep neural networks, where OPEX requirements have been
formulated as dataset-dependent non-convex non-differentiable
violation rate constraints. The designed constrained DNNs have
then been optimized via a non-zero sum two-player game strategy.
In this respect, we have highlighted the effect of the different
hyperparameters on the respect of the OPEX limitations, while
guaranteeing a dynamic RAN resource orchestration that follows
the slices’ traffics trends.

0 500 100
0

150
0

200
0

250
0

OPEX

500
1000
1500
2000
2500
3000

Co
un
t eMBB

Social Media
Browsing

23:0
0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0
15:0

0
23:0

0
07:0

0

Time

100
300
500
700

Ba
ck
ha
ul
 C
ap
ac
ity
 (M

bp
s)

Figure 6: Backhaul capacity and OPEX distribution per slice,
with α = [0, 0, 0] and β = [2000, 1000, 500] $, γ = [5, 2, 1],
ρ = 0.005 and R = 0.2.

VI. ACKNOWLEDGMENT

This work has been supported in part by the research projects
CONNECT (737434), 5G-SOLUTIONS (856691), AGAUR
(2017-SGR-891) and SPOT5G (TEC2017-87456-P).

REFERENCES

[1] NGMN Alliance, “Description of network slicing concept,” [Online]. Avail-
able: https://www.ngmn.org, accessed Mar. 2019.

[2] K. Samdanis, X. Costa-Perez and V. Sciancalepore, “From network sharing
to multi-tenancy: The 5G network slice broker,” in IEEE Communications
Magazine, vol. 54, no. 7, pp. 32-39, Jul. 2016.

[3] Y. Zaki et al.,“LTE wireless virtualization and spectrum management,” in
Wireless and Mobile Networking Conference (WMNC), 2010, Third Joint
IFIP, pp. 1â6, Oct 2010.

[4] M. Jiang et al., “Network slicing management and prioritization in 5G
mobile systems,” in European Wireless EW 2016, Oulu, Finland, 2016.

[5] G. Wang et al., “Optimizing Network Slice Dimensioning via Resource
Pricing,” in IEEE Access, vol. 7, pp. 30331-30343, 2019.

[6] N. Salhab et al., “Optimization of the implementation of network slicing
in 5G RAN,” in IEEE Middle East and North Africa Communications
Conference (MENACOMM), Jounieh, 2018, pp. 1-6.

[7] B. Han, S. Tayade and H. D. Schotten, “Modeling profit of sliced 5G
networks for advanced network resource management and slice implemen-
tation,” in IEEE Symposium on Computers and Communications (ISCC),
Heraklion, 2017, pp. 576-581.

[8] D. Bega et al., “DeepCog: Cognitive network management in sliced 5G
networks with deep learning,” in IEEE INFOCOM’2019, Paris, France, May
2019.

[9] K. He and J. Sun, “Convolutional neural networks at constrained time cost,”
[Online]. Available: https://arxiv.org/pdf/1412.1710.pdf

[10] A. Mazrekaj, I. Shabani and B. Sejdiu, “Pricing schemes in cloud com-
puting: An overview,” in International Journal of Advanced Computer
Research, vol. 7, no. 2, Feb. 2016.

[11] J.A.K. Suykens et al., Advances in Learning Theory: Methods, Models and
Applications, IOS Press, May 2003.

[12] A. Cotter et al., “Training well-generalizing classifiers for fair-
ness metrics and other data-dependent constraints” [Online]. Available:
arxiv.org/abs/1807.00028.

[13] A. Cotter et al., Constrained Optimization (TFCO).
[Online]. Available: https://codeload.github.com/google-
research/tensorflow_constrained_optimization/zip/master


