
1

Mobile Traffic Classification through Physical
Control Channel Fingerprinting: a Deep Learning

Approach
Hoang Duy Trinh∗, Angel Fernandez Gambin†, Lorenza Giupponi∗, Michele Rossi† and Paolo Dini∗

Abstract—The automatic classification of applications and
services is an invaluable feature for new generation mobile
networks. Here, we propose and validate algorithms to perform
this task, at runtime, from the raw physical control channel of
an operative mobile network, without having to decode and/or
decrypt the transmitted flows. Towards this, we decode Downlink
Control Information (DCI) messages carried within the LTE
Physical Downlink Control CHannel (PDCCH). DCI messages
are sent by the radio cell in clear text and, in this paper, are
utilized to classify the applications and services executed at the
connected mobile terminals. Two datasets are collected through
a large measurement campaign: one labeled, used to train the
classification algorithms, and one unlabeled, collected from four
radio cells in the metropolitan area of Barcelona, in Spain.
Among other approaches, our Convolutional Neural Network
(CNN) classifier provides the highest classification accuracy of
98%. The CNN classifier is then augmented with the capability
of rejecting sessions whose patterns do not conform to those
learned during the training phase, and is subsequently utilized
to attain a fine grained decomposition of the traffic for the four
monitored radio cells, in an online and unsupervised fashion.

Index Terms—Traffic Classification, Traffic Modeling, Mobile
Networks, LTE, 5G, Machine Learning, Neural Networks, Deep
Learning, Data Analytics.

I. INTRODUCTION

W IRELESS mobile technology is advancing at a fast
pace, through better monitor resolutions, larger mem-

ories, higher communication speeds, a higher number of
connected devices, etc., and, with that, more requirements in
terms of supported data rates [1], [2], new services, and a
higher network responsiveness across diverse physical con-
texts [3]. As mobile systems become more complex, network
operators attempt to transform their architecture through new
functionalities and procedures including security, reliability
and enhanced service management. Traffic classification is
necessary in this context to prioritize and/or protect certain
flows, to prevent the injection of malicious data, and to allocate
the needed network resources to serve the traffic generated by
the end users.

A large body of work exists in the area of mobile traffic
classification (see Section VI for an in depth discussion of
the related work). The key challenge of existing classification

∗CTTC/CERCA, Av. Carl Friedrich Gauss, 7, 08860, Castelldefels,
Barcelona, Spain {hoangduy.trinh, lorenza.giupponi, paolo.dini}@cttc.es,
†DEI, University of Padova, Via G. Gradenigo, 6/B, 35131 Padova, Italy.
{afgambin, rossi}@dei.unipd.it.

This work has received funding from the European Union Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 675891 (SCAVENGE), by the Spanish Government under
project TEC2017-88373-R (5G-REFINE) and has been supported, in part,
by MIUR (Italian Ministry of Education, University and Research) through
the initiative “Departments of Excellence” (Law 232/2016).

algorithms consists in the identification, and in the subsequent
computation, of a number of representative features. These
features are then used to train algorithms that classify the data
flows at runtime. Most of the surveyed approaches leverage
some domain knowledge, which is utilized to manually obtain
the feature set, i.e., crafted by a skilled human expert. How-
ever, the use of deep learning techniques has recently paved
the way to automatic feature discovery and extraction, often
leading to superior performance. For example, in [4] encrypted
traffic is categorized through deep learning architectures, prov-
ing their better performance with respect to shallow neural
network classifiers. The authors of [5] present a mobile traffic
super-resolution technique to infer narrowly localized traffic
consumption from coarse measurements: a deep-learning ar-
chitecture combining Zipper Network (ZipNet) and Generative
Adversarial neural Network (GAN) models is proposed to
accurately reconstruct spatio-temporal traffic dynamics from
measurements taken at low resolution. In [6], the identification
of mobile apps is carried out by automatically extracting
features from labeled packets through Convolutional Neural
Networks (CNNs), which are trained using raw Hypertext
Transfer Protocol (HTTP) requests, achieving a high classi-
fication accuracy. We stress that the work in these papers,
as the majority of the other techniques discussed in Sec-
tion VI, use statistical features obtained from application or
Internet Protocol (IP) level information for both service and
app identification, along with UDP/TCP port numbers.

The solution here presented sharply differs from previous
approaches. In fact, it accurately classify mobile traffic from
radio-link data by solely processing the information coming
from the control channel, without requiring any prior knowl-
edge and without having to decode and/or decrypt the transmit-
ted data flows. Specifically, we design and evaluate, via proof-
of-concept implementations, non-intrusive tools for the online
estimation of Long Term Evolution (LTE) cellular activity,
i.e., the type of traffic that users exchange with their serving
base station. As we quantify, our technology allows one to
infer with high accuracy the service (e.g., audio-streaming,
video-streaming, video-conferencing) and the application (e.g.,
Skype, Vimeo, You Tube, etc.) that are being used by the
connected mobile users. This is accomplished by decoding
LTE Physical Downlink Control CHannel (PDCCH) messages
(i.e., radio-link level data), which are transmitted in clear text
without having to break any security protocol (encryption).
To do this, we leverage OWL [7], a tool that allows decoding
the Downlink Control Information (DCI) messages carried in
the LTE PDCCH, where control information is exchanged
between the LTE Base Station (eNodeB) and the connected



2

User Equipments (UEs). From such messages, radio-link level
settings for the user communication, e.g., modulation and
coding scheme, transport block size, allocated resource blocks,
etc., are obtained.

From DCI data, two datasets are created:
1) a labeled dataset, used to train different service and app

classification algorithms, where labeling is made possible
by injecting traffic generated by a mobile terminal under
our control into the network;

2) an unlabeled dataset, used for traffic profiling purposes,
which is populated by monitoring, for a full month, mo-
bile traffic from four operative radio cell sites with differ-
ent demographic characteristics within the metropolitan
area of Barcelona, in Spain.

For the traffic analysis, the focus is put on a few selected ser-
vices and applications that dominate the radio resource usage,
but the approach can be readily extended to other scenarios.
Raw DCI data is used directly as input into deep learning
classifiers (automatic feature extraction), achieving accuracies
as high as 98% for both mobile service and app identification
tasks. Moreover, an original technique to use our best classifier
in unsupervised settings is presented, to profile the mobile
traffic from operative radio cell sites at runtime. The developed
classification algorithms, as well as our experimental results,
are highly novel within the traffic monitoring literature, which
only provides hourly and aggregated measures for typical
days [8] [9], and where traffic profiling is performed from
UDP/TCP, IP or above IP flows, e.g., [4]–[6].

We believe that the approach proposed in this work brings
a high value along several dimensions, as discussed next.
Collecting and processing control channel information may
reduce the storage capabilities of the network elements, since
the volume of DCI messages is much smaller than that from
the user plane. Moreover, consumer privacy is maintained
as no deep packet inspection mechanism on user content is
required. The proposed solution works directly at the network
edge, so any action to attain a better and secure management
of the network (e.g., network slicing optimization) can be
promptly taken. Classification time does not depend on the
number of transmitted user data packets, but on the internal
system clock (i.e., the frequency of DCI messages in our
case). Our tool permits a better understanding of spectrum
needs across time and space. Note that there are limited means
to non-intrusively monitor user density and traffic demand in
real-time. These measurements are key for the correct dimen-
sioning of future mobile systems, and the investigation of new
data communication and processing techniques for wireless
channel interfaces. We only found a limited number of datasets
available including mobile data traffic [10] [11], but they are
often incomplete, poorly documented and contain aggregated
data, often hourly averaged. The proposed technique allows
the extraction of data flows with a granularity of one second,
tagging the type of service and application exploited by each
mobile user within an LTE cell.

In addition to the above, we believe that the proposed
approach brings a considerable added value to the research
community in general. In fact, we propose a methodology
for cellular networks control data generation, which can be

reproduced by anyone interested in getting data. This kind
of raw data is hardly released by operators, especially with
the high level of granularity that we have been able to
retrieve. This approach allows any researcher without access
to industrial data, to carry out research, by relying on real
cellular data, in a key area like Artificial Intelligence (AI)-
enabled Beyond 5G networks, which is also aligned with the
Next Generation Self-Organized Networks Next Generation
Self Organized Networks (NG-SON) vision promoted by,
e.g., the 3GPP and the Next Generation Mobile Networks
(NGMN) alliance of mobile network operators. The data on
which we have worked is extracted from an LTE network, but
the methodology can be reproduced, adapting the underlying
software, also to New Radio (NR), as the PDCCH flows are
transmitted unencrypted also in 5G NR [12] [13].

In summary, the original contributions of this work are:

• Mobile Data Labeling at the Edge of the Network: we
collect and label LTE PDCCH DCI data traces from six
mobile apps to create a unique correspondence between
the software programs (the apps) and the session iden-
tifiers that were assigned to them by the eNodeB. The
result is a labeled dataset of real DCI data from selected
applications, i.e., YouTube, Vimeo, Spotify, Google Mu-
sic, Skype and WhatsApp video calls.

• Classification and Benchmarks: we tailor deep artificial
Neural Networks (NNs), namely Multi-Layer Perceptron
(MLP), Recurrent Neural Networks (RNNs) and CNNs,
to perform classification tasks for mobile services and app
identification on the labeled dataset. Moreover, we com-
pare their performance against a number of benchmark
state-of-the-art classifiers.

• Mobile Data Collection at the radio-link level from an
Operative Mobile Network: we collect real LTE PD-
CCH DCI data traces, with a time granularity of 1 ms,
from four eNodeBs located in the metropolitan area of
Barcelona, in Spain. Each of these datasets has a duration
of 1 month.

• Mobile Service Profiling from Unlabeled Data: the CNN
classifier, which is found to be the best among all Neural
Network (NN) schemes, is augmented with the capability
of rejecting out of distribution sessions, i.e., sessions
whose statistical behavior departs from those learned
during the training phase. This makes it possible to use
it with unlabeled traffic, as an online and unsupervised
traffic monitoring tool. The augmented CNN classifier
rejects those sessions for which it is uncertain, providing
a robust classification outcome. Through its use, the four
selected eNodeBs are monitored, getting a fine grained
traffic decomposition.

The paper is organized as follows. Section II presents
the experimental framework and the proposed methodology
to obtain the two datasets. Section III introduces the two
classification problems, namely, service and app identification
and presents the classification algorithms. The performance
of the classification algorithms is assessed in Section IV. In
Section V, the CNN classifier is augmented with the capability
of rejecting out of distribution sessions. Thus, the mobile



3

traffic from four selected cell sites of an operative mobile
network in Spain is decomposed over a full day. The related
work on mobile traffic classification is reviewed in Section VI,
and some concluding remarks are provided in Section VII.

II. DATASET CREATION

Fig. 1 shows the different building blocks of the experi-
mental framework that has been developed to populate the
unlabeled and labeled datasets. Briefly, the data measurement
and collection block acquires data from the LTE PDCCH chan-
nel to extract the relevant DCI information. Data preparation,
instead, processes the gathered DCI data so that it can be used
for training and classification purposes.

A. Data Collection System
In LTE, the eNodeB communicates scheduling information

to the connected UEs through the DCI messages that are
carried within the PDCCH with a time granularity of 1 ms.
While the actual user content is sent over encrypted dedicated
channels, i.e., the Physical Uplink/Downlink Shared Channel
(PUSCH/PDSCH respectively), the PDCCH is transmitted
in clear text and can be decoded. To process DCI data,
we have adapted the OWL monitoring tool [7]. A Software-
Defined Radio (SDR) has been programmed, acquiring the
PDCCH via an open-source software sitting on top of the
srs-LTE library [14], which makes it possible to synchronize
and monitor the channel over a specified LTE bandwidth. The
SDR is connected to a PC that performs the actual decoding
of DCI data: in our experimental settings, we used a low cost
Nuand BladeRF x40 SDR and an Intel mini-NUC, equipped
with an i5 2.7 Ghz multi-core processor, 256 GB Solid State
Storage (SSD) storage and 18 GB of RAM.

Decoded DCI messages for a connected UE contain the
following scheduling information [15]:

• Radio Network Temporary Identifier (RNTI),

• Resource Block (RB) assignment,

• Modulation and Coding Scheme (MCS).

DCI messages use RNTIs to specify their destination.
RNTIs are 16-bit identifiers that are employed to address UEs
in an LTE cell. They are used for different purposes such as to
broadcast system information (SI-RNTI), to page a specific UE
(P-RNTI), to carry out a random access procedure (RA-RNTI),
and to identify a connected user, i.e., the cell RNTI (C-RNTI).
In this work, we are interested in the C-RNTI, that is tem-
porarily assigned when the UE is in RRC (Radio Resource
Control) CONNECTED state, to uniquely identify it inside
the cell. The C-RNTI can take any unreserved value in the
range [0x003D–FFF3]. Once the C-RNTI is assigned to a
connected UE, the DCI information directed to this terminal
is sent using this C-RNTI, which is transmitted in clear text
as part of the PDCCH channel. Hence, knowing the C-RNTI
allows tracking a specific connected user within the radio cell.
Assuming that the C-RNTI is known (see Section II-C), the
following information about the ongoing communication for
this UE can be extracted from its DCI data:

• Number of allotted resource blocks: in LTE, a RB repre-
sents the smallest resource unit that can be allocated to

any user. The number of resource blocks that are assigned
to a UE (NRB), is derived based on the DCI bitmap.

• Modulation order and code rate: the MCS is a 5-bit field
that determines the modulation order and the code rate
that are used, at the physical layer, for the transmission
of data to the UE.

• Transport Block Size (TBS): the TBS specifies the length
of the packet to be sent to the UE in the current
Transmission Time Interval (TTI). It is derived by from
a lookup table by using MCS and NRB, see [15].

The rationale behind this work is that the (unencrypted)
downlink and uplink TBS data of a given UE should pro-
vide sufficient information for learning algorithms to reliably
classify the app and the service that the user is running.

B. Unlabeled Dataset
Thanks to the just described DCI collection system, four cell

sites of a Spanish mobile network operator in the metropolitan
area of Barcelona have been monitored for a full month.
The selected eNodeBs are located in areas having different
demographic characteristics and land uses, so as to diversify
the captured traffic in terms of service and app behavior.
We have named the datasets according to the corresponding
neighborhood: PobleSec (mainly residential area), Born (mixed
residential, transport and leisure area), Castelldefels (mixed
suburban and campus area), Camp Nou (mixed residential and
stadium area). In total, we have collected more than 68 GB of
DCI data from the LTE PDCCH. Fig. 2 shows the locations of
the four monitored sites, along with that of the data collection
system. After the data collection, the signaling associated
with each active C-RNTI is extracted from the PDCCH DCI
data stream, and is prepared for the classifier. During this,
we discarded short-length traces, which are mainly due to
signaling, paging and background traffic. These accounted for
less than 3% of the total traffic in the monitored radio cells.

C. Labeled Dataset
A labeled dataset is obtained by running specific services

and apps at a mobile terminal under our control, detecting its
C-RNTI within the PDCCH channel and finally associating
the corresponding DCI trace with a label, which links it
to the service/app that is executed at the UE. The mobile
device used to generate the labeled dataset is a Huawei Y6
phone running an Android operating system. YouTube, Vimeo,
Spotify, Google Music, Skype and WhatsApp video calls have
been utilized to generate traffic. For video calls, a background
video was run to generate the video and the audio. Music and
videos were selected at random from automatically generated
thematic lists.

Generating data sessions is easy, and boils down to running
a specific app from a device that we control, and that is
connected to the monitored eNodeB. The difficult part is to
identify the generated data flow among those carried by the
PDCCH channel, which contains DCI information for all the
connected UEs within the radio cell. We made this labeling
possible by injecting a watermark into the traffic that we
generated by the controlled UE, so that it could be easily
identified among all other users.



4

Fig. 1: Experimental framework adopted for the creation of the unlabeled and labeled datasets.

(a) Castelldefels: suburban area with
a university campus.

(b) Camp Nou: mainly residential area
with Barcelona FC stadium.

(c) Born: mixed residential, transport
and leisure area.

(d) PobleSec: mainly residential area.

Fig. 2: Maps of Barcelona metropolitan areas where the measurement campaign took place for the creation of unlabeled and labeled datasets. In the maps,
the eNodeB location is denoted by A, whereas the data collection system and the mobile terminal are marked as B. In Castelldefels, the mobile terminal has
been placed in two different locations (B1 and B2).

1) Data preparation and watermarking
The data preparation procedure is divided into two phases:

1) the identification of the C-RNTI corresponding to the
controlled UE, 2) the extraction and labeling of the cor-
responding DCI trace. In the LTE PDCCH channel, each
UE is identified by the C-RNTI, which uniquely identifies
the mobile terminal within the radio cell. This identifier is
temporary, i.e., it changes after short inactivity periods. This
is done to prevent the plain tracking of mobile users, since
the PDCCH is sent unencrypted. To allow traffic labeling (i.e.,
user identification), we introduce a watermark into the traffic
generated by our mobile terminal. This watermark amounts to
producing, for each application, a regular pattern: any instance
of a given application (e.g., YouTube) is run for a pre-defined
amount of time (80 seconds in our measurements), then, a
pause interval of fixed duration is inserted before running
another instance of the app for further 80 seconds. We loop
this over time, obtaining a duty cycled activity pattern that
is easily distinguishable from all the other activity traces
within the radio cell. Through this watermarking procedure,
we can successfully associate our UE with the corresponding
C-RNTI from the DCI. Also, we split the traces into different
sessions (the difference instance of the same app running
for 80 seconds) thanks to the duty cycled pattern, where
subsequent sessions are separated by the pause interval (of
fixed duration). The label, corresponding to the application
that is executed at the mobile terminal, is finally associated
with the extracted DCI data. We remark that this procedure
makes it possible to capture several instances of a given app
in a row, which are stored in our dataset with the associated
app/service label and does not modify the normal network
behavior to serve the running app. Also, we found instances
of 80 seconds (observation time) to be more than sufficient
to classify the service/app and longer instances would lead to
negligible improvements.

In our measurement campaign, we have recorded and la-

beled M = 11, 601 mobile sessions, gathering the scheduling
information contained in the DCI messages for selected apps.
We considered three data-intensive services: video streaming,
audio streaming and real-time video calling, which represent
classes producing a considerable amount of traffic and taking
most of the network resources [1]. For each service type, we
chose two popular applications: Spotify and Google Music for
audio, YouTube and Vimeo for video streaming, while for the
video calling we picked two instant-messaging applications,
namely, Skype and WhatsApp Messenger.

A large measurement campaign was conducted to expose
the mobile terminal running the selected apps to different
radio link conditions, thus obtaining a comprehensive dataset.
In particular, the UE was placed into two different locations
(termed B1 and B2 in Fig. 2a) within the Castelldefels radio
cell to experience different received signal qualities (−84 dBm
and −94 dBm for B1 and B2, respectively), and in the Camp
Nou eNodeB during football matches, to capture data in high
cell load conditions.

Fig. 3 shows a few radio resource usage patterns collected
for the selected apps. Some similarities can be recognized
within the same service class. For example, audio and video
streaming present similar behaviors. Also, significant differ-
ences can be observed between the radio resource usage of
real time video calls (Skype and WhatApp Video) and the other
apps. Video and audio streaming applications use up a high
amount of radio resources at the beginning of the sessions,
buffering most of the content into the terminal memory. Real
time video calling, instead, entails a continuous transmission
and a more constant usage of radio resources throughout the
sessions. Note that the amount of data exchanged in the uplink
direction is significant only for this service class, since a video
call requires a bidirectional communication.



5

0 10 20 30 40 50 60 70 80 90 100
Time [s]

0.00

0.25

0.50

0.75

1.00
No

rm
. R

at
e

vimeo
youtube
spotify
skype
whatsappvideo
googlemusic

0 20 40 60
Time [s]

0.0

0.5

1.0

youtube down
vimeo down

youtube up
vimeo up

video-streaming

0 20 40 60
Time [s]

0.0

0.5

1.0

spotify down
googlemusic down

spotify up
googlemusic up

audio-streaming

0 20 40 60 80
Time [s]

0.0

0.5

1.0

skype down
whatsappvideo down

skype up
whatsappvideo up

video-calls

Fig. 3: Traffic pattern snapshots showing the normalized data rate for different applications as a function of time.

0 20 40 60 80 100
Time [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. R
at

e

W

W

W

W

W

W

S

S

S

S

S

downlink
uplink
window
stride

Fig. 4: Sliding window of 20s length and 15s stride, applied to a sample
video-streaming session.

D. Synchronous and Asynchronous Sessions
Through the watermarking approach and the splitting pro-

cedure, we obtained a labeled dataset, where each session,
depending on the service, presents patterns similar to those
shown in Fig. 3. Assuming that the beginning and the end
of each session are known is rather optimistic, as in a real
measurement setup we have no means to accurately track these
instants. Put it another way, it is unlikely that the LTE PDCCH
measurements and the application run on the UE will be
temporally synchronized. Synchronizing the measurement with
the beginning of each session would facilitate the classification
task, since most of the generated traffic is buffered on the
terminal at the beginning, see Fig. 3, and this behavior is a
distinctive feature that is easy to discriminate.

To ensure the applicability of our classifiers to real world
(asynchronous) cases, we account for asynchronous sessions,
entailing that the classification algorithm has no knowledge
about the instants where the sessions start and finish. Specif-
ically, each session is split using a sliding window of length
W seconds, moved rightwards from the beginning of the
session with a stride of S seconds, see Fig. 4. The split sessions
(asynchronous sessions), of W seconds each, represent the in-
put data to our classification algorithms. Note that W and S are
hyper-parameters of the proposed classification frameworks.

E. Sessions Correlation over Time
As a sanity check, we verify the soundness of the wa-

termarking strategy: our aim is to understand whether the

0 2 5 8 10 12 15 18
n

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

la
tio

n

video-streaming
audio-streaming
video-calls

Fig. 5: Pearson correlation between the initial and the following sessions
running in the controlled UE.

transmission of user data in the form of duty-cycled patterns
may affect the way in which the eNodeB handles the com-
munication from our terminal, e.g., through some advanced
channel reservation mechanism. In that case, in fact, our
watermarking strategy would be of little use, as it would
introduce scheduling artifacts that do not occur in real life
conditions. To verify this, we evaluated the Pearson correlation
between the initial session (i.e., when the UE connects to
the LTE PDCCH for the first time and it is assigned a new
C-RNTI) and the following ones. Fig. 5 shows that, for each
of the three services, the correlation is high only when we
compare the first session with itself (n = 0). Instead, low
values are observed between the first session and the following
ones (n > 1), indicating that the behavior of the eNodeB
scheduler is not affected by the repetitive actions (i.e., the
duty-cycled activity) performed at the UE side.

III. CLASSIFICATION PROBLEM

A. Problem Definition

Let M = 11, 601 be the total number of sessions obtained
through the data preparation procedure of Section II-C, L =
80 seconds is the duration of each session, and D = 2 is the
number of communication directions (downlink and uplink).
We define X as the input dataset tensor with size M×L×D,
where the m-th row vector xm contains the trace associated
with W ∈ [0, L] TBS samples per session for both downlink



6

and uplink directions. The time-series described by xm is the
input sequence of our algorithms.

A classifier estimates a function c : X → Y , where the out-
put matrix Y has size M×K, with K representing the number
of classes. The row vector ym = c(xm) = [ym1, . . . , ymK ]
contains the probabilities that session m belongs to each
of the K classes, with

∑
k ymk = 1. The final output of

the classifier is class k?, where k? = argmaxk(ymk). The
following classification objectives are addressed:

O1) Service identification: to classify the collected sessions
into K = 3 classes, namely, audio streaming, video
streaming and video calls;

O2) App identification: to identify which app is run at the
UE. In this case, the number of output classes is K = 6,
namely, Spotify, Google Music, YouTube, Vimeo, Skype
and WhatsApp Messenger.

Next, we present the considered classification algorithms,
grouping them into two categories: those based on artificial
neural networks and those based on standard machine learning
techniques (referred to here as benchmark classifiers).

B. Deep Neural Networks
Next, we describe how we tailored three neural network

architectures to solve the above traffic classification problem,
namely, Multilayer Perceptron (MLP), Recurrent Neural Net-
works (RNNs) and Convolutional Neural Networks (CNNs).

1) Multilayer Perceptron
A multilayer perceptron is a feedforward and

fully-connected neural network architecture. The term
“feed-forward” refers to the fact that the information flows
in one direction, from the input to the output layer. An MLP
is composed of, at least, three layers of nodes: an input, a
hidden and an output layer. A directed graph connects the
input with the output layer and each neuron in the graph uses
a non-linear activation function to produce its output. Links
are weighted and the backpropagation algorithm is utilized
to train the network in a supervised fashion, i.e., to find the
set of network weights that minimize a certain error function,
given an input set of examples and the corresponding labels.
For further details, see [16].

The MLP that we use for mobile traffic classification has
three fully connected layers. The first layer MLP 1 con-
tains NMLP 1 = 128 neurons, the second layer MLP 2 has
NMLP 2 = 64 neurons and the third layer MLP3 is fully
connected, with K neurons and a softmax activation function
to produce the final output. The output of MLP 3 is the class
probability vector ym.

All neurons in layers MLP1 and MLP2 use a leaky
version of the Rectified Linear Unit (ReLU) (leaky ReLU)
activation function. Leaky ReLUs help solve the vanishing
gradient problem, i.e., the fact that the error gradients that
are backpropagated during the training of the network weights
may become very small (zero in the worst case), preventing
the correct (gradient based) adaptation of the weights. To
prevent this from happening, leaky ReLUs have a small
negative slope for negative values of their argument [17]. To
train the presented MLP architecture, we use the RMSprop

Fig. 6: RNN architecture.

gradient descent algorithm [18], by minimizing the categorical
cross-entropy loss function L(w), defined as [16]

L(w) = −
∑

xm∈B

K∑
k=1

tk(xm) log(ymk(w,xm)). (1)

where t(x)m = [t1(xm), . . . , tk(xm)] contains the class
labels associated with the input trace xm, i.e., tk = 1
if xm belongs to class k and tk = 0 otherwise (1-of-K
coding scheme). Vector w contains the MLP weights and
ymk(w,xm) is the MLP output obtained for input xm. Eq. (1)
is iteratively minimized using the training examples in the
batch set B ⊂ X , where B is changed at every iteration so
as to span the entire input set X .

2) Recurrent Neural Networks
Recurrent Neural Networks (RNNs) have been conceived to

extract features from temporal (and correlated) data sequences.
Long Short-Term Memory (LSTM) networks are a particular
type of RNN, introduced in [19]. They are capable of track-
ing long-term dependencies into the input time series, while
solving the vanishing-gradient problem that affects standard
RNNs [20].

The capability of learning long-term dependencies is due
to the structure of the LSTM cells, which incorporates gates
that regulate the learning process. The neurons in the hidden
layers of an LSTM are Memory Cells (MCs). A MC has the
ability to retain or forget information about past input values
(whose effect is stored into the cell states) by using structures
called gates, which consist of a cascade of a neuron with
sigmoidal activation function and a pointwise multiplication
block. Thanks to this architecture, the output of each memory
cell possibly depends on the entire sequence of past states,
making LSTMs suitable for processing time series with long
time dependencies [19]. The input gate of a memory cell is
a neuron with sigmoidal activation function (σ). Its output
determines the fraction of the MC input that is fed to the cell
state block. Similarly, the forget gate processes the information
that is recurrently fed back into the cell state block. The output
gate, instead, determines the fraction of the cell state output
that is to be used as the output of the MC, at each time
step. Gate neurons usually have sigmoidal activation functions
(σ), while the hyperbolic tangent (tanh) activation function is
usually adopted to process the input and for the cell state. All
the internal connections of the MC have unitary weight [19].

The proposed RNN based traffic classification architecture is
shown in Fig. 6. In our design, we consider three stacked layers



7

Fig. 7: CNN architecture.

combining two LSTM layers and a final fully connected output
layer. The first and the second layer (respectively RNN1 and
RNN2) have NRNN1 = NRNN2 = 180 memory cells. The
fully connected layer RNN3 uses the softmax activation func-
tion and its output consists of the class probability estimates,
as described in Section III-B1.

3) Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are feed-forward
deep neural networks differing from fully connected MLP for
the presence of one or more convolutional layers. At each
convolutional layer, a number of kernels is used. Each kernel is
composed of a number of weights and is convolved across the
entire input signal. Note that the kernel acts as a filter whose
weights are re-used (shared weights) across the entire input
and this makes the network connectivity structure sparse, i.e.,
a small set of parameters (the kernel weights) suffices to map
the input into the output. This leads to a considerably reduced
computational complexity with respect to fully connected feed
forward neural networks, and to a smaller memory footprint.
For more details the reader is referred to [21].

CNNs have been proven to be excellent feature extractors
for images and inertial signals [22] and here we show their
effectiveness for the classification of mobile traffic data. The
CNN architecture that we designed to this purpose is shown
in Fig. 7. It is a 1-Dimensional CNN with two main parts:
the first four layers perform convolutions and max pooling
in cascade, the last two layers are fully connected. The first
convolutional layer CNN1 uses one dimensional kernels (1×5
samples) performing a first filtering of the input and processing
each input vector (rows of X) separately. The activation
functions are linear and the number of convolutional kernels
is NCNN1 = 32. The second convolutional layer, CNN2,
uses one dimensional kernels (1× 5 samples) with non-linear
hyperbolic tangents as activation functions, and the number
of convolutional kernels is NCNN2

= 64. Max pooling is
separately applied to the outputs of CNN1 and CNN2 to
reduce their dimensionality and increase the spatial invariance
of features [22]. In both cases, a one-dimensional pooling
with a kernel of size 1 × 3 is performed. A third fully
connected layer, CNN3, performs dimensionality reduction
and has NCNN3

= 32 neurons with Leaky ReLU activation
functions. This layer is used in place of a further convolutional
layer to reduce the computation time, with a negligible loss
in accuracy. The last (output) layer CNN4 is fully connected
with softmax activation functions, and returns the class prob-
ability estimates, see Sections III-B1.

TABLE I: Configuration parameters for the benchmark classifiers.

Algorithm Parameters Note - Reference

Linear
SVM

• penalty = L2
• loss = Hinge Loss
• c = 0.025

• c: penalty parameter for the
error term
• extended to multi-class with

one-vs-rest [23]

Logistic
Regressor

• penalty = L2
• c = 1

• c: inverse of the regulariza-
tion strength
• extended to multi-class with

one-vs-rest [23]

Nearest
Neighbours

• K = 3

• p = 2

• metric = Minkowski

• K: number of neighbors for
queries
• p: distance metric parameter
• p = 2 amounts to using the

Euclidean distance [24]

Random
Forest

• n. estimators = 10

• max depth = 5

• criterion = entropy

• n. estimators: number of
trees in the forest
• max depth: maximum depth

of a tree
• criterion: function to mea-

sure the quality of a split of
subsets [26]

Gaussian
Processes

• kernel = RBF
• σ = Logistic func.
• approx. = Laplacian

• Radial Basis Function (RBF)
used as kernel
• σ is the sigmoid function

used to “squash” the nuisance
function
• Laplacian method used to

approximate the non Gaussian
Posterior [27]

C. Benchmark classifiers
Other standard classification schemes have been tailored

to the considered tasks O1 and O2. The selected algorithms
are: Linear Logistic Regression, K-Nearest Neighbours and
Linear SVM, as examples of linear classifiers; Random Forest,
as an ensemble learning method, and Gaussian Processes as
an instance of Bayesian approaches. The implementations of
Linear Logistic Regression, K-Nearest Neighbours and Linear
SVM are based on [23], [24] and [25], respectively. The
Random Forest implementation is based on [26], whereas for
the classifier based on Gaussian Processes we refer to [27].
Configuration parameters and implementation details for the
benchmark classifiers are provided in Table I.

IV. SUPERVISED TRAINING AND COMPARISON OF
TRAFFIC CLASSIFICATION ALGORITHMS

The performance tests have been carried out using an Intel
core i7 machine, with 32 GB of RAM and an NVIDIA
GTX 980 GPU card. We divided the dataset, featuring 11601
labeled DCI sessions, into training and validation sets with a
split ratio of 70% - 30%. These sets are balanced, as they
contain the same percentage of traces for all classes. The
classification algorithms have been implemented in Python.
We have used keras library on top of Tensorflow backend
for the implementation of deep NNs. For the benchmark
classifiers, we used the popular sklearn library.

A. Performance Metrics
The classification performance is assessed through the fol-

lowing metrics:

1) Accuracy: defined as the ratio between the number
of correctly classified sessions to the total number of
sessions.

2) Precision P : defined, for each class, as the ratio between



8

Algorithm Precision Recall F-Score # Parameters Accuracy Sync% Accuracy Async % Difference %

Linear SVM 0.811 0.812 0.805 36726 81.23 68.41 -12.8
Logistic Regressor 0.806 0.816 0.809 486 81.61 65.72 -15.9
Nearest Neighbours 0.843 0.845 0.841 36720 84.51 79.65 -4.9

Random Forest 0.821 0.835 0.827 41310 83.52 70.21 -13.3
Gaussian Processes 0.874 0.871 0.871 146720 87.43 81.21 -6.2

Neural Networks

MLP 0.900 0.900 0.900 19014 90.04 84.61 -5.4
RNN 0.967 0.968 0.968 392046 96.57 92.93 -3.6
CNN 0.978 0.976 0.977 25062 97.77 93.20 -4.5

TABLE II: Classifiers comparison for the app identification task.

Algorithm Precision Recall F-Score # Parameters Accuracy Sync% Accuracy Async % Difference %

Linear SVM 0.908 0.908 0.907 19843 90.80 79.61 -11.2
Logistic Regressor 0.904 0.904 0.904 243 90.42 81.11 -9.3
Nearest Neighbours 0.925 0.925 0.925 19840 92.76 83.45 -9.3

Random Forest 0.915 0.915 0.915 22320 91.57 84.25 -7.3
Gaussian Processes 0.932 0.928 0.929 73360 93.21 82.51 -10.7

Neural Networks

MLP 0.943 0.939 0.942 18819 94.31 93.38 -0.9
RNN 0.981 0.982 0.981 391503 98.21 95.38 -2.8
CNN 0.986 0.988 0.988 24963 98.87 95.40 -3.5

TABLE III: Classifiers comparison for the service identification task.

true positives Tp and the sum between true positives and
false positives Fp,

P =
Tp

Tp + Fp
, (2)

3) Recall R: defined, for each class, as the ratio between
the true positives Tp and the sum of true positives and
false negatives Fn,

R =
Tp

Tp + Fn
. (3)

4) F-Score F is defined as the harmonic mean of precision
P and recall R,

F =

( 1
P + 1

R

2

)−1
= 2

RP

R+ P
. (4)

Note that the definition of precision and recall only applies to
classification tasks with one class. However, tasks O1 and O2
both have a number of classes K > 2, namely, K = {3, 6}
for app and service identification, respectively. Thus, precision
and recall are separately calculated for all the K classes, and
their average is shown in the following numerical results.

B. Comparison of Classification Algorithms

1) Accuracy and Algorithm Training

Tables II and III summarize the obtained performance
metrics for the deep NNs and the benchmark classifiers for
app and service identification, respectively. Results refer to
an observation window W = 80. In both synchronous and
asynchronous cases, higher accuracy is achieved by deep NNs
than the benchmarks (up to +13.8% on app identification,
+8.7% on service classification). The algorithm based on
Gaussian Processes performs the best among the benchmark
classifiers. In general, the higher the complexity (i.e., the
number of parameters, and also the number of hidden layers
for NNs), the higher the performance. The only exception to
this is provided by CNNs, which present the highest accuracy

but use a small number of parameters. This fact confirms
the high efficiency of convolution operations in processing
high amount of data with complex temporal structure, and
the effectiveness of CNN parameter sharing. CNNs requires
only 6% of the variables used up by RNNs, achieving a better
accuracy. This also translates into a faster training: in Fig. 8,
we show the accuracy as a function of the number of epochs
for training and validation for RNNs and CNNs, using an
observation window of W = 80 TBS samples. The number of
epochs required by the CNNs to reach an accuracy higher than
90% is fewer than 20 (Fig. 8b), whereas for RNNs convergence
is achieved only after 30 epochs (Fig. 8a).

From Tables II and III, we observe a significant perfor-
mance gap between the service and app classification tasks:
the difference in the accuracy is higher than 8% for the
benchmark classifiers and ranges from 2 to 6% for deep NNs.
This is mainly due to the higher number of classes for the
app identification task, which increases the mis-classification
probability, as discussed shortly below in the analysis of the
Confusion Matrix of Fig. 9.

Results to assess the effect of asynchronous readings are
shown in Tables II, III and Fig. 10. As shown in the last
two columns of Tables II and III, training the algorithms with
asynchronous sessions decreases their classification accuracy.
We observe a general decrease for all the algorithms (−6.0%
for service identification, −7.7% for app identification, on
average). This occurs as the beginning of the sessions holds
key information on the session type, thus simplifying the
classification task (as shown in Fig. 3). However, for both
classification problems, neural network-based approaches are
more robust to asynchronous readings, showing a performance
degradation of −4.3%, while the degradation for the bench-
mark algorithms is −8.4%, see also Fig. 10.

2) Confusion Matrix
A deeper look at the performance of CNNs is provided by

the confusion matrices of Fig. 9, whose rows and columns



9

0 20 40 60 80 100
num. of epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

training set
validation set

(a) RNN.

0 20 40 60 80 100
num. of epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

training set
validation set

(b) CNN.
Fig. 8: Accuracy vs number of epochs for training and validation sets for the app identification task in the asynchronous case.

respectively represent true and predicted labels, and all values
are normalized between 0 and 1. For the service classification
task (Fig. 9a), CNNs only misclassify the video streaming
sessions: 2% of those are labeled as video calls. For the app
identification task (Fig. 9b), errors (4%) mainly occur for
Skype and WhatsApp videocalls. These errors are understand-
able, as these are both interactive real-time video applications
and, as such, their traffic patterns bear similarities. The lowest
performance is found for Vimeo traces, for which 88% of
the sessions are correctly classified. Here our CNN-based
classifier confuses them with the other video applications for
both streaming service (Youtube - 3%) and real-time calling
(WhatsApp and Skype - 6% and 3%, repectively).

3) Impact of Different Window Sizes
Fig. 11 shows the classification accuracy as a function of

the window size, W . Results here are shown for 40 epochs
training. For the app identification task, 40 seconds suffice
for CNNs and RNNs to reach accuracies higher than 90%,
with negligible additional improvements for longer observation
periods. Periods shorter than 40 seconds provide less accurate
results. Similar trends are observed for the service classifica-
tion task. However, in this case after 20 seconds the accuracy
of CNNs and RNNs is already higher than 90%, due to the
smaller number of classes. In summary, the ability of CNNs
and RNNs to extract representative statistical features from a
session grows with the input data length. In our tasks, deep
NN algorithms become very effective as monitoring intervals
get longer than 20 seconds.

Contrarily to W , we have experimentally verified that
parameter S does not appreciably affect the performance of
the algorithm.

V. UNSUPERVISED TRAFFIC PROFILING

Next, we analyze the mobile traffic exchanged within the
four selected cell sites (see Section II-B). The traffic load is
modeled in terms of aggregated traffic dynamics and type of
service requests over the 24 hours of a day. The identifica-
tion of mobile traffic, for each of the considered services,
is performed using the trained classifiers from Section III
with the unlabeled dataset. Formally, for each eNodeB, the
corresponding unlabeled dataset is stored into the tensor X ′,
with size M ′×N ×D, where M ′ corresponds to the number
of monitored RNTIs (sessions, N to the number of collected
samples per session and D = 2 is the number of communica-

tions directions (downlink and uplink). Given X ′, as input, the
classifier c computes the output Y ′, whose analysis provides
a detailed characterization of the mobile user requests for
the eNodeB within the monitored time span. Vectors x′m and
y′m = c(x′m) respectively indicate the m-th sample of X ′ and
Y ′. In this paper, we restrict our attention to the unsupervised
classification of services, and use the CNN classifier, as it
yields the highest accuracy.

A. Aggregated Traffic Analysis

Fig. 12 shows the aggregated traffic demand for the four
selected eNodeBs over the 24 hours of a typical day, where
each curve has been normalized with respect to the maximum
traffic peak occurred during the day for the corresponding
eNodeB. The four traffic profiles have a different trend, which
depends on the characteristics of the served area (demo-
graphics, predominant land use, etc.), as confirmed by [28].
PobleSec is a residential neighborhood and, as such, presents
traffic peaks during the evening, at 5 and 11 pm. Born is
instead a downtown district with a mixed residential, transport
and leisure land use. Two peaks are detected: the highest is at
lunchtime around 2 pm, whereas the second one is at dinner
time, from 9 pm. This traffic behavior is likely due to the
many restaurants and bars in the area. CampNou is mainly
residential and presents a similar profile to PobleSec. However,
Barcelona FC stadium is located in this area, and three football
matches took place during the monitored period (events started
at 8:45 pm and ended at 10:45 pm). As expected, a higher
traffic intensity is observed during the football match hours.
In particular, we registered a high amount of traffic exchanged
between 7 pm to 1 am, i.e., before, during and after the events.
This behavior is probably due to the movement of people
attending the matches. Castelldefels is a suburban and low
populated area with a university campus. The traffic variation
suggests a typical office profile with traffic peaks at 10 am
and 5 pm. However, in this radio cell the amount of traffic
exchanged is the lowest observed across all eNodeB sites, i.e.,
6.8 Gb/hour in the peak hours. The highest traffic intensity was
measured in Camp Nou, reaching a peak of 106.1 Gb/hour
(29.5 Mb/s on average). Intermediate peak values are detected
in Poble Sec and Born, amounting to 49.7 Mb/s and 46.1 Mb/s,
respectively. The only common pattern among the four areas
is the low traffic intensity at night, between 2 am and 7 am.



10

vid
eo

_st
rea

ming

vid
eo

_ca
ll

au
dio

Predicted label

video_streaming

video_call

audio

Tr
ue

 la
be

l

0.98 0.02 0.00

0.00 1.00 0.00

0.00 0.00 1.00

Confusion matrix

(a) Confusion matrix for service identification.

go
og

lem
usi

c
sky

pe
spo

tify
vim

eo

wha
tsa

pp
vid

eo

yo
utu

be

Predicted label

googlemusic

skype

spotify

vimeo

whatsappvideo

youtube

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.96 0.00 0.00 0.04 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.03 0.00 0.88 0.06 0.03

0.00 0.04 0.00 0.00 0.96 0.00

0.00 0.00 0.00 0.00 0.00 1.00

Confusion matrix

(b) Confusion matrix for app identification.
Fig. 9: Confusion matrices for the CNN algorithm.

Lin
ea

r S
VM

Lo
gis

tic
 R

eg

Ne
ar

es
t N

eig
hb

or
s

Ra
nd

om
 Fo

re
st

Ga
us

sia
n 

Pr
oc

es
s

ML
P

RN
N

CN
N

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 %

Asynchronous Sessions
Synchronous Sessions

(a) App identification.

Lin
ea

r S
VM

Lo
gis

tic
 R

eg

Ne
ar

es
t N

eig
hb

or
s

Ra
nd

om
 Fo

re
st

Ga
us

sia
n 

Pr
oc

es
s

ML
P

LS
TM

 N
N

co
nv

NN

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 %

Asynchronous Sessions
Synchronous Sessions

(b) Service identification.
Fig. 10: Impact of synchronizing the DCI readings with the start of the user’s sessions.

B. Traffic Decomposition at Service Level

The set of applications that we have labeled is restricted
to those apps and services that dominate the radio resource
usage. However, additional apps may also be present in the
monitored traffic, such as Facebook, Instagram, Snapchat, etc.
These apps generate mixed content, including audio-streaming,
video-streaming and video-calling. Additional service types
may also be generated by, e.g., web-browsing and file down-
loading. While in the present work the classifiers were not
trained to specifically track these apps, for a robust clas-
sification outcome, it is desirable that the audio and video
streams that they generate will either be captured and classified
into the correct service class, or at least flagged as unknown.
To locate those traffic patterns for which our classifier may
produce inaccurate results, in our analysis we additionally
account for the detection of out-of-distribution (OOD) ses-
sions, i.e., of DCI traces that show different traffic dynamics
from those learned at training time. Other services, that are
classified as OOD fall within the categories of Web browsing,
file downloading, interactive applications such as texting and
messaging. These are common but dot not take a large portion
of the radio resources. Having an OOD class has the advantage

of automatically detecting all of these, as an aggregate (marked
as OOD), allowing the framework to attain higher accuracies
for the remaining classes, which generate patterns that are
similar to those that were observed during the learning phase.

To identify these “statistical outliers”, the DCI data from
each new session, x′m, is fed to the CNN and the corre-
sponding softmax output vector y′m = [y′m1, . . . , y

′
mK ]T is

used to discriminate whether x′m is OOD or not, following
the rationale in [29] [30]. In detail, the k-th softmax output
corresponds to the probability estimate that a given input ses-
sion x′m belongs to class k, i.e., y′mk = Prob(x′m ∈ class k),
with k = 1, . . . ,K. The classifier chooses the class k? that
maximizes this probability, i.e.,

k? = argmax
k

y′mk. (5)

If a new app, not considered in the training phase, generates
sessions having similar characteristics to those in the training
set, namely, audio-streaming, video-streaming or real time
video-calls, we expect the CNN to generalize well and return
similar vectors at the output of the softmax layer. That is,
the softmax vector that is outputted at runtime for the new
app should be sufficiently “close” to the output learned by



11

[s]

(a) Accuracy for app identification.

[s]

(b) Accuracy vs Window Size W for service identification.
Fig. 11: Accuracy vs window lengths for app and service classification tasks in the asynchronous measurement case.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00

Time [h]

0.2

0.4

0.6

0.8

1.0

No
rm

. A
gg

re
ga

te
d 

Tr
af

fic

eNB Camp Nou
eNB Castelldefels
eNB Poble Sec
eNB Born

Fig. 12: Daily Aggregated Traffic for the four eNodeBs.

the classifier from the labeled dataset, as the new signal bears
statistical similarities with those learned in the training phase.
In this case, it makes sense to accept the session and classify
it as belonging to class k?. Otherwise, the session would be
classified as OOD.

The problem at hand, boils down to assessing whether
the softmax output y′m belongs to the statistical distribution
learned by the CNN or it is an outlier. This amounts to
performing outlier detection in a multivariate setting, with
y′m ∈ [0, 1]K ,

∑
k y
′
mk = 1. Among the many algorithms

that can be used to this purpose, we adopt the method based
on Kernelized Spatial Depth (KSD) functions of [31] as it is
lightweight and does not require the direct estimation of the
probability density function (pdf) of the softmax output layer,
which is a critical point, as good estimates require training
over many points. Briefly, for a vector y ∈ RK , we define the
spatial sign function as S(y) = y/‖y‖ if y 6= 0 and S(y) = 0
if y = 0, where ‖y‖ = (yTy)1/2 is the norm-2. If Yk is a
training set containing ` softmax output vectors for a certain
class k, Yk = {y(k)

1 ,y
(k)
2 , . . . ,y

(k)
` }, the sample spatial depth

associated with a new softmax output vector y′m is:

D(y′m,Yk) = 1− 1

|Yk ∪ y′m| − 1

∥∥∥∥∥∥
∑
y∈Yk

S(y − y′m)

∥∥∥∥∥∥ . (6)

Note that D(y′m,Yk) ∈ [0, 1] provides a measure of centrality
of the new point y′m with respect to the points in the training
set Yk. In particular, if D(y′m,Yk) = 1, it follows that
‖
∑

y∈Yk
S(y − y′m)‖ = 0 and the new point is said to be

the spatial median of set Yk, i.e., it can be thought of as the
“center of mass” of this set. Hence, the spatial depth attains

the highest value of 1 at the spatial median and decreases to
zero as y′m moves away from it. The spatial depth can thus
be used as a measure of “extremeness” of a new data point
with respect to a set. In [31], the spatial depth of Eq. (6) is
kernelized, which means that distances are evaluated using a
positive definite kernel map. A common choice, that we also
use in this paper, is the generalized Gaussian kernel κ(x,y),

κ(x,y) = exp(−(x− y)TΣ−1(x− y)), (7)

which provides a measure of similarity between x and y.
Noting that the square norm can be expressed as

‖x− y‖2 = xTx+ xTx− 2xTy, (8)

kernelizing the sample spatial depth amounts to expanding
(6) and replacing the inner products with the kernel function
κ. This returns the sample KSD function (Eq. (4) in [31]).

Session classification procedure in an unsupervised setting:
the CNN classifier is augmented through the detection of OOD
sessions, as follows:
• Initialization: for each class k = 1, . . . ,K in the ser-

vice/app identification task a number of softmax output
vectors is computed by the trained CNN using the
sessions in the training set. These softmax vectors are
stored in the set Yk. Note that, being the results of a
supervised training of the CNN, we know that the vectors
in Yk are all generated by a distribution that is correctly
learned during the supervised training phase.

• Feature extraction through the pre-trained CNN: at run-
time, as a new DCI vector x′m is measured, it is inputted
into the pre-trained CNN, obtaining the corresponding
softmax output y′m.

• Classification and OOD detection: vector y′m is used with
Eq. (5) to assess the most probable class k?. At this point,
Algorithm 1 of [31] is utilized to assess whether y′m is
an outlier. In case the vector is classified as an outlier, it
is assigned to the OOD class, otherwise it is assigned to
class k?.

Some final remarks are in order. The outlier detection
algorithm uses a threshold t ∈ [0, 1], which allows exploring
the tradeoff between false alarm rate and detection rate.
Instead, the covariance matrix Σ controls the decision
boundary for rejecting vectors, driving the tradeoff between



12

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0
F-

sc
or

e

t *

CNN
CNN + OOD

Fig. 13: Finding threshold t? using the CNN with (solid line) and without
(dashed line) the OOD detection mechanism.

the local and global behavior of KSD. If properly chosen, the
contours of KSD should closely follow those of the (actual)
underlying statistical distribution. Σ is learned, for each class
k, from the training vectors in Yk, and for the following
results we picked Σ = Σ2 in [31].

Tuning the OOD threshold t: we define Sk as the set contain-
ing the training examples belonging to class k. We recall that
Sk is used to compute the covariance matrix associated with
the adopted Gaussian kernel, which models the contours of
the pdf of the output softmax vectors. The threshold t ∈ [0, 1]
is instead used by the outlier detection algorithm to gauge
the (kernelized) distance between the center of mass of set
Sk and a new softmax vector, acquired at runtime. If t = 1,
the kernelized spatial depth of the new point will always be
smaller than or equal to t and all points will be rejected
(marked as outliers). This is of course of no use. However,
as we decrease t towards 0, we see that more and more points
will be accepted, until, for t = 0, no rejections will occur. So,
t determines the selectivity of the outlier detection mechanism,
the higher t, the more selective the algorithm is. For our
numerical evaluation, once the sets Sk are obtained for all
classes k, we set this threshold by picking the highest value
of it, t?, for which all the softmax vectors belonging to the
test set are accepted, i.e., none of them is marked as an outlier
(OOD). In other words, this is equivalent to making sure that
the F -Score obtained over the test set from our trained CNN
without the OOD mechanism enabled equals that of the CNN
classifier augmented with the OOD detection capability. As t?

is the highest value of t for which all the data in the test set are
correctly classified as valid, our approach amounts to tuning
the threshold in such a way that the outlier detection algorithm
will be as selective as possible, while correctly treating all the
data in the test set. In Fig. 13, we show the F -Score as a
function of t for the CNN algorithm with and without OOD
detection. Threshold t? = 0.48 corresponds to the highest
value of t for which the F -Score remains at its maximum,
i.e., at the end of the flat region.

Experimental analysis of eNodeB traffic: in Fig. 14, the

traffic decomposition into the considered service classes is
shown for the four selected eNodeBs using t? = 0.48. The
percentage of sessions identified as OOD, for which the
classifier is uncertain, is also reported at the top of each bar.
Common characteristics are observed in all the considered
deployments:

• the most used service is video-streaming, with typical
shares ranging from 50% to 80%. This confirms the
measurements in [1] and [2].

• The least used service is video-call, whose share is
typically between 5% and 10%, whereas audio-streaming
takes 21% of the total traffic load.

• OOD sessions are consistently well below 8%. Note that
this share accounts for all those apps that are not tracked
by our classifier, such as texting, web browsing, and file
transfers.

Through the proposed service identification approach, we
can accurately characterize, at runtime, the used services.
Moreover, the traffic decomposition at service level allows
one to make some interesting considerations on the land
use. For example, in a typical residential area (PobleSec) the
audio-streaming service is the one used the least across the
four monitored sites, with an average of 16.4%. Instead, in
a typical office and university neighborhood (Castelldefels),
audio-streaming has the highest traffic share across all sites
(22% on average). Born and CampNou, which are two leisure
districts, present a similar traffic distribution across the day.
We finally remark that, while the traffic profiling results are
shown using a time granularity of one hour, our classifica-
tion tool allows for traffic decomposition at much shorter
timescales, i.e., on a per-session basis.

VI. RELATED WORK

The most common classification methods in the literature
leverage the transport layer protocol, including UDP/TCP port
analysis and/or packet inspection, since most Internet appli-
cations use UDP/TCP port numbers. For instance, the authors
of [32] define a mobile traffic classifier as a collection of rules,
including destination IP addresses and port numbers. Based
on these rules, application-level mobile traffic identification
is performed deploying a dedicated classification architecture
within the network, and measurement agents at the mobile
devices. However, port-based schemes hardly work in the
presence of applications using dynamic port numbers [33].

A scheme based on deep packet inspection is presented
in [34]. The authors of this article devise a technique for Code
Division Multiple Access (CDMA) traffic classification, using
correlation-based feature selection along with a decision tree
classifier trained on a labeled dataset (which is labeled via deep
packet inspection). The algorithm in [35] extracts application
layer payload patterns, and performs maximum entropy-based
IP-traffic classification exploiting different Machine Learn-
ing (ML) algorithms such as Naive Bayes, Support Vector
Machines (SVMs) and partial decision trees. Remarkably,
payload-based methods are limited by a significant complexity
and computation load [33]. Furthermore, many mobile appli-
cations adopt encrypted data transmission due to security and



13

0 5 10 15 20
Time [h]

0

50

100

150

200

250

300

350

400

450

Se
ss

io
n 

Co
un

t

74%

14%
6%
6%

65%

23%

6%

69%

23%

5%

51%

40%

8%

61%

26%

5%

74%

18%

4%

72%

17%

7%

4%

75%

18%

4%

76%

17%

4%

76%

11%

7%
5%

78%

12%

5%
5%

77%

11%

6%
6%

Camp Nou
video-streaming
audio-streaming

video-calls
OOD

0 5 10 15 20
Time [h]

0

25

50

75

100

125

150

175

200

Se
ss

io
n 

Co
un

t

67%

5%

56%

25%

6%

43%

44%

7%

52%

25%

17%

5%

60%

24%

6%

66%

19%

6%

67%

18%

8%

71%

16%

8%

58%

28%

7%

62%

26%

8%

58%

4%

48%

5%

Castelldefels
video-streaming
audio-streaming

video-calls
OOD

0 5 10 15 20
Time [h]

0

50

100

150

200

250

300

350

400

Se
ss

io
n 

Co
un

t

20%

16%

57%

6%

66%

19%

10%
5%

68%

17%

9%
5%

68%

18%

8%
6%

75%

16%

5%

72%

19%

5%

60%

19%

17%

4%

78%

14%

4%

45%

19%

31%

5%

78%

12%

6%
4%

62%

14%

19%

4%

78%

14%

4%

PobleSec
video-streaming
audio-streaming

video-calls
OOD

0 5 10 15 20
Time [h]

0

50

100

150

200

250

300

350

400

Se
ss

io
n 

Co
un

t

79%

9%
7%
5%

70%

15%
10%

4%

53%

34%

7%

55%

31%

7%

65%

24%

6%

70%

11%
12%

6%

77%

10%
7%
6%

77%

10%
8%
5%

78%

11%
5%
5%

77%

10%
6%
6%

78%

10%
6%
5%

77%

10%
7%
6%

Born
video-streaming
audio-streaming

video-calls
OOD

Fig. 14: Traffic decomposition at service level for the four monitored eNodeBs during the 24 hours of a day.

privacy concerns, which renders packet inspection approaches
ineffective.

Recent works consider NNs [6], [5], [36]. The authors
of [36] exploit the ability of deep NNs to perform classification
of Android applications using system API-call sequences and
investigate the effectiveness of NNs to learn complex features
that can help in the malware detection task. In [6], mobile
apps are identified by automatically extracting features from
labeled packets through CNNs, which are trained using raw
HTTP requests. In [4], encrypted traffic is classified using
deep learning architectures (feed forward, convolutional and
recurrent neural networks) for Android and iOS mobile apps,
with and without exploiting TCP/UDP ports. The authors
of [5] combine Zipper Networks (ZipNet) and Generative-
Adversarial Networks (GAN) to infer narrowly localized and
fine grained traffic generation from coarse measurements.

A systematic framework is devised in [37] for the com-
parison among different deep learning classifiers. Their per-
formance is thoroughly investigated based on three mobile
datasets of real human users activity, highlighting their draw-
backs, discussing design guidelines and challenges. In [38], the
same authors propose a multi-classification approach, where
they combine the outputs of different classifiers in a modular
way to improve the overall performance.

Several survey papers dealing with deep learning techniques
applied to traffic classification can be found in [39], [40]
and [41]. The authors of [39] provide general guidelines for

classification tasks, present some deep learning techniques,
show how they can be used for traffic classification and
discuss open problems. The survey in [40] presents a deep
learning-based framework for mobile encrypted traffic classifi-
cation, reviewing existing work according to dataset selection,
model input design, and model architecture, and highlighting
open issues and challenges. Finally, a comprehensive review
of the interplay between deep learning and mobile networking
research is provided in [41], where the authors discuss how
to tailor deep learning to mobile environments. Current chal-
lenges and open future research directions are also discussed.

We stress that most of the works in the literature, with the
exception of [4]–[6] and [37], classify mobile traffic based on
manual feature extraction and all the papers that we surveyed
process network or application level data. Our work departs
from previous research, as we classify mobile data gathered
from the physical control channel at the network edge, at
runtime, and without access to application data and TCP/UDP
port numbers.

Although seemingly orthogonal to the traffic classification
problem, which is the main focus of the present work, we be-
lieve it is appropriate to comment on the security implications
of the developed technology. The central point here is that
by just reading unencrypted control traffic, it is possible to
perform network inference, achieving good results. One could
for example understand the type of service and app that is
being run by a certain user equipment, as we do in this paper,



14

which may be by itself a privacy breach. The authors of [42]
go further and, using DCI information, show that it is possible
to even identify and track smartphones, although we do not
know the identity of the owner, a sort of signature of the way
in which their smartphone interacts with the network over the
wireless air interface can be computed, and such signature is
enough to allow for its identification, with good accuracy. This
is a privacy violation. The interested reader is invited to check
the discussion in [42] and the references therein.

VII. CONCLUSIONS

In this paper, we have presented a framework that allows
highly accurate classification of application and services from
radio-link level data, at runtime, and without having to decrypt
dedicated physical layer channels. To this end, we decoded the
LTE Physical Downlink Control Channel (PDCCH), where
Downlink Control Information (DCI) messages are sent in
clear text. Through DCI data, it is possible to track the data
flows exchanged between the serving cell and its active users,
extracting features that allow the reliable identification of the
apps/services that are being executed at the mobile terminals.
For the classification of such traffic, we have tailored deep
artificial Neural Networks NNs, namely, Multi-Layer Percep-
tron (MLP), Recurrent NNs and Convolutional NNs, compar-
ing their performance against that of benchmark classifiers
based on state-of-the-art supervised learning algorithms. Our
numerical results show that NN architectures overcome the
other approaches in terms of classification accuracy, with the
best accuracy (as high as 98%) being achieved by CNNs.
As a major contribution of this work, labeled and unlabeled
datasets of DCI data from real radio cell deployments have
been collected. The labeled dataset has been used to train and
compare the classifiers. For the unlabeled dataset, we have
augmented the CNN with the capability of detecting input DCI
data that do not conform to that learned during the training
phase: the corresponding patterns are detected and associated
with an unknown class. This increases the robustness of the
CNN classifier, allowing its use, at runtime, to perform fine
grained traffic analysis from radio cell sites from an operative
mobile network. To summarize, the main outcomes of our
work are: 1) a methodology to extract DCI data from the
PDCCH channel, and for the use of such data to train traffic
classifiers, 2) the fine tuning and a thorough performance
comparison of classification algorithms, 3) the design of a
novel technique for the fine grained and online traffic analysis
of communication sessions from real radio cell sites, and 4)
the discussion of the traffic distribution resulting from such
analysis from four selected sites of a Spanish mobile operator,
in the city of Barcelona. As a future research direction, we
foresee the adoption of semi-supervised learning methods, to
reduce the number of labeled sessions that are needed for
traffic classification and, at the same time, to automatically
detect and capture emerging behaviors that were originally
not present in the labeled training set.

REFERENCES

[1] Ericsson. (2018) Ericsson mobility report june 2018. [Online]. Available:
https://www.ericsson.com/en/mobility-report/reports/june-2018

[2] Cisco. (2017) Cisco visual networking index: Global mobile

data traffic forecast update, 2016–2021 white paper. [Online].
Available: www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.html

[3] S. Chen and J. Zhao, “The requirements, challenges, and technologies
for 5g of terrestrial mobile telecommunication,” IEEE communications
magazine, vol. 52, no. 5, pp. 36–43, 2014.

[4] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in Network Traffic Measure-
ment and Analysis Conference (TMA). Vienna, Austria: IEEE, June
2018.

[5] C. Zhang, X. Ouyang, and P. Patras, “Zipnet-gan: Inferring fine-grained
mobile traffic patterns via a generative adversarial neural network,”
in International Conference on emerging Networking EXperiments and
Technologies (CoNEXT). Seoul-Incheon, South Korea: ACM, 2017.

[6] Z. Chen, B. Yu, Y. Zhang, J. Zhang, and J. Xu, “Automatic mobile
application traffic identification by convolutional neural networks,” in
IEEE Trustcom/BigDataSE/ISPA. Tianjin, China: IEEE, August 2016.

[7] N. Bui and J. Widmer, “Owl: A reliable online watcher for lte control
channel measurements,” in Workshop on All Things Cellular: Oper-
ations, Applications and Challenges. New York, NY, USA: ACM,
October 2016.

[8] EU EARTH: Energy Aware Radio and neTwork tecHnologies, “D2.3:
Energy efficiency analysis of the reference systems, areas of improve-
ments and target breakdown,” Deliverable D2.3, www.ict-earth.eu, 2010.

[9] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding Mobile
Traffic Patterns of Large Scale Cellular Towers in Urban Environment,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, 2017.

[10] J. K. Laurila, D. Gatica-Perez, J. B. I. Aad, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “The mobile data challenge:
Big data for mobile computing research,” in Mobile Data Challenge
Workshop (MDC), in conjunction with “Pervasive 2012”, Newcastle,
UK, 2012.

[11] G. Barlacchi, M. D. Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific Data, vol. 2, no. 150055, pp. 1–15, 2015.

[12] TSG RAN; NR; Overall description; Stage 2, 3GPP TS 38.300, Release
15, v16.0.0, Jan. 2020.

[13] TSG RAN; NR; Physical channels and modulation, 3GPP TS 38.211,
Release 16, v16.0.0, Dec. 2019.

[14] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: an open-source platform for LTE
evolution and experimentation,” in ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation, and Characteri-
zation (WiNTECH). New York, NY, USA: ACM, October 2016.

[15] “E-UTRA; physical layer procedures,” 3GPP TS, vol. 36.213, 2016.
[16] C. M. Bishop, Pattern recognition and machine learning. Springer,

2006.
[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities

improve neural network acoustic models,” in International Conference
on Machine Learning (ICML), Atlanta, USA, June 2013.

[18] T. Tieleman and G. Hinton, “Divide the gradient by a running average
of its recent magnitude,” Neural networks for machine learning, vol. 4,
no. 2, pp. 26–31, 2012.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Con-
tinual prediction with LSTM,” in International Conference on Artificial
Neural Networks (ICANN). Edinburgh, UK: IEEE, 1999.

[21] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
The MIT Press, 2016.

[22] M. Gadaleta and M. Rossi, “IDNet: Smartphone-based gait recognition
with convolutional neural networks,” Pattern Recognition, vol. 74, pp.
25–37, 2018.

[23] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of machine
learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[24] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[25] Y. Wu and Y. Liu, “Robust truncated hinge loss support vector ma-
chines,” Journal of the American Statistical Association, vol. 102, no.
479, pp. 974–983, 2007.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[27] C. E. Rasmussen, “Gaussian processes for machine learning,” in Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.



15

[28] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, “A tale
of ten cities: Characterizing signatures of mobile traffic in urban areas,”
IEEE Transactions on Mobile Computing, vol. 16, no. 10, pp. 2682–
2696, 2017.

[29] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly de-
tection with outlier exposure,” in International Conference on Learning
Representations (ICLR), Vancouver, BC, Canada, April 2018.

[30] S. Sigurdsson, J. Larsen, L. K. Hansen, P. A. Philipsen, and H.-
C. Wulf, “Outlier estimation and detection application to skin lesion
classification,” in IEEE International Conference on Acoustics Speech
and Signal Processing (ICASSP). Orlando, FL, USA: IEEE, May 2002.

[31] Y. Chen, X. Dang, H. Peng, and H. L. Bart Jr., “Outlier Detection with
the Kernelized Spatial Depth Function,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 288–305, 2009.

[32] Y. Choi, J. Y. Chung, B. Park, and J. W.-K. Hong, “Automated classifier
generation for application-level mobile traffic identification,” in IEEE
Network Operations and Management Symposium (NOMS). Hawaii,
USA: IEEE, April 2012.

[33] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage
classification with encrypted internet traffic in mobile messaging apps,”
IEEE Transactions on Mobile Computing, vol. 15, no. 11, pp. 2851–
2864, 2016.

[34] J. Yang, Z. Ma, C. Dong, and G. Cheng, “An empirical investigation
into CDMA network traffic classification based on feature selection,” in
International Symposium on Wireless Personal Multimedia Communica-
tions (WPMC). Taipei, Taiwan: IEEE, December 2012.

[35] X. Han, Y. Zhou, L. Huang, L. Han, J. Hu, and J. Shi, “Maximum en-
tropy based IP-traffic classification in mobile communication networks,”
in IEEE Wireless Communications and Networking Conference (WCNC).
Shanghai, China: IEEE, April 2012.

[36] R. Nix and J. Zhang, “Classification of android apps and malware using
deep neural networks,” in 2017 International joint conference on neural
networks (IJCNN). IEEE, 2017, pp. 1871–1878.

[37] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445–458, 2019.

[38] ——, “Multi-classification approaches for classifying mobile app traf-
fic,” Journal of Network and Computer Applications, vol. 103, pp. 131–
145, 2018.

[39] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76–
81, 2019.

[40] P. Wang, X. Chen, F. Ye, and Z. Sun, “A survey of techniques for
mobile service encrypted traffic classification using deep learning,” IEEE
Access, vol. 7, pp. 54 024–54 033, 2019.

[41] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[42] F. Meneghello, M. Rossi, and N. Bui, “Smartphone Identification via
Passive Traffic Fingerprinting: a Sequence-to-Sequence Learning Ap-
proach,” IEEE Network, vol. 34, no. 2, pp. 112–120, 2020.


