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Abstract—Deployment of unmanned aerial vehicles (UAVs) as
aerial base stations can deliver a fast and flexible solution for
serving varying traffic demand. In order to adequately benefit
of UAVs deployment, their efficient placement is of utmost
importance, and requires to intelligently adapt to the environment
changes. In this paper, we propose a learning-based mecha-
nism for the three-dimensional deployment of UAVs assisting
terrestrial cellular networks in the downlink. The problem is
modeled as a noncooperative game among UAVs in satisfaction
form. To solve the game, we utilize a low complexity algorithm,
in which unsatisfied UAVs update their locations based on a
learning algorithm. Simulation results reveal that the proposed
UAV placement algorithm yields significant performance gains up
to about 52% and 74% in terms of throughput and the number of
dropped users, respectively, compared to an optimized baseline
algorithm.

Index Terms—Game theory, learning algorithm, satisfaction,
unmanned aerial vehicles.

I. INTRODUCTION

Due to the novel types of services and ongoing advances
in unmanned aerial vehicle (UAV) technologies, there is a
growing consensus on integrating UAVs into cellular networks.
It is expected that UAVs will play a prominent role for traffic
offloading, capacity enhancement and disaster recovery [1].
From an economic perspective, deploying small cell base sta-
tions (BSs) and/or advanced fifth generation (5G) components,
such as massive multiple-input and multiple-output (MIMO),
may not be cost-effective for temporary events. In this regard,
deployment of UAVs can be considered as an alternative or
complement solution. UAVs are able to establish line-of-sight
(LoS) communication links with high probability for ground
users resulting in increased coverage, enhanced reliability and
agility [2].

Mobility of UAVs and their flexibility in adjusting their
locations significantly impact the LoS probability and the
network performance. Most research efforts have addressed
this issue from a non-learning perspective [2]–[4]. However,
there has been a growing attention recently devoted to the use
of learning algorithms for the deployment problem of UAVs
[5]–[8]. In [5] and [6] learning based approaches to find the
two-dimensional (2D) trajectory of UAVs flying with fixed
altitudes were proposed. In [7], a learning based approach
for three-dimensional (3D) placement of a single UAV is
developed to maximize network throughput. However, these
works do not address the 3D deployment of multiple UAVs
integrated into already existing terrestrial networks. In [8],
the problem of 3D placement was dealt as a two separate
optimization problems in horizontal 2D plane and altitude
of UAVs, where a prior knowledge of the users locations is
required. However, providing this information for UAVs in real
time can be challenging. Moreover, the proposed algorithm
is not able to adapt to the environment changes. Finally,
to our best knowledge, the channel models in the previous
learning based reports do not capture the dependency of path

loss exponents to the height of UAVs which might have a
significant influence on the performance of UAVs [2], [9].

In this paper, we address the optimal 3D locations of
multiple UAVs aiming to assist the existing terrestrial cellular
networks. We formulate an optimization problem using a novel
framework. This framework is based on a noncooperative
game in satisfaction form which is implemented at the level of
UAVs. Furthermore, as opposed to the related works, we take
into account the network load effect, representing the BSs ca-
pabilities in serving users. Then, we leverage a learning based
approach to develop a low complexity and robust algorithm
allowing UAVs to autonomously adjust and optimize their
locations adapted to dynamic environments. Finally, in order to
examine our proposed algorithm, we employ a third generation
partnership project (3GPP)-based height dependent channel
model. Our findings from the simulation results show that the
proposed learning based approach significantly improves the
performance of the network, and reduces the required number
of UAVs for an arbitrary target gain.

The rest of this paper is organized as follows. In Section
II, we describe the system model. Section III presents the
proposed algorithm for the 3D deployment of UAVs in the
network. In Section IV, we evaluate the performance of the
proposed approach. Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this section, we describe the system model, including net-
work topology, channel model, and user association method.

Network Topology: we consider the downlink of a cellular
network consisting of a set of terrestrial BSs M, and a set
of UAVs U as aerial BSs to support the users in a particular
area R ∈ R2. The set of total users and the set of users
associated to BS b ∈ B are denoted by K and Kb, respectively,
where B =M∪U indicates the total BSs in the system. We
assume that all the BSs transmit over the same channel, i.e.
co-channel deployment. Let ab(t) = (xb(t), yb(t), hb(t)) be
the location of BS b at time t, where (xb(t), yb(t)) and hb(t)
are the location of BS b in the horizontal dimension and its
altitude at time t, respectively.

Radio Propagation and Signal Quality: we assume that the
link between each user k ∈ K and each BS b ∈ B comprises
LoS and non-LoS propagation conditions. Let prLoSbk (t) denote
the probability of having a LoS link between user k and BS
b at time t which is determined as follows [9]:

prLoS
b,k (t) =

b
rb,k(t).
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where α, β and γ represent statistical environment-dependent
parameters. Here, hb and hk are the altitude of BS b and the
altitude of user k, respectively. The horizontal location of user
k, and its horizontal distance to BS b at time t are denoted
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by (xk, yk) and rb,k(t) =
√

(xb(t)− xk)2 + (yb(t)− yk)2,
respectively. Consequently, the non-LoS probability can be
determined as prNLoS

b,k (t) = 1− prLoSb,k (t).

Let db,k(t) =
√
r2b,k(t) + (hb(t)− hk)2 denote the 3D

distance between BS b and user k at time t. The path loss
between BS b and user k can be expressed as [9]:

Lzb,k(t) = Azb + 10δzb,k. log10(db,k(t)), (2)

where superscript z ∈ {LoS,NLoS} denotes LoS and non-LoS
components on the link. Here, Azb and δzb,k are the reference
path loss and the path loss exponent, respectively. Therefore,
the signal to interference plus noise ratio (SINR) experienced
by user k can be formulated as:

γb,k(t) =
pb(t)g

z
b,k(t)∑

b′∈B\b pb′(t)g
z′
b′,k(t) + σ2

, (3)

where pb(t) and gzb,k(t) = 10−
Lzb,k(t)

10 are the transmit power of
BS b and the channel gain between BS b and user k, respec-
tively. Parameter σ2 represents the additive white Gaussian
noise (AWGN) power.

The achievable data rate provided by BS b to user k using
Shannon’s capacity formula is given by:

Rb,k(t) = ω log2(1 + γb,k(t)), (4)

where ω is the total bandwidth.
User Association Policy: we utilize a user association policy

capturing both received signal power and load (which rep-
resents the BSs capabilities for serving new users). Let υk
denote the traffic influx rate of user k. The fraction of time
BS b requires to serve the traffic υk to the location of user k
is defined as υk

Rb,k(t)
. Therefore, the load of BS b at time t is

given by ρb(t) =
∑
k∈Kb

υk
Rb,k(t)

[10].
To associate the users to the BSs we assume that each BS b

broadcasts its estimated load, ρ̂b(t), at time t which is obtained
as follows [10]:

ρ̂b(t) = ηb(t)ρb(t− 1) +
(

1− ηb(t)
)
ρ̂b(t− 1), (5)

where ηb(t) is the learning rate of the load estimation for BS b.
Then, each user k selects its serving BS based on the received
signal power and the load of the BSs as follows [10]:

bk(t) = argmax
b∈B

{
pb(t)g

z
b,k(t)(1− ρ̂b(t))

}
. (6)

III. LEARNING BASED PLACEMENT ALGORITHM

In this section, we aim at optimizing the 3D locations of the
UAVs for maximizing the throughput, without global network
information. The problem of finding optimum 3D locations of
the UAVs is complex mainly due to the mobility of the UAVs
and temporal traffic statistics. Therefore, we leverage the tools
of machine learning to solve the problem. In this regard, for
each UAV u ∈ U , a utility function is defined as follows:

fu(t) = φu.

∑
k∈Ku Ru,k(t)

µu(t)
− ϕu.Γu(t), (7)

where φu and ϕu are the weight parameters that indicate, re-
spectively, the impact of throughput and the activation function

Γu(t) on the utility, and µu(t) is a normalization parameter.
Here, Γu(t) is an activation function for the safety of UAVs
in order to avoid collision, which is defined as follows [5]:

Γu(t) =

{
1, du,u′ < dmin, ∀u′ 6= u

0, otherwise,
(8)

where du,u′ and dmin represent the 3D distance between UAV
u and UAV u′, and a certain minimum distance, respectively.
According to (8), if the distance between UAV u and UAV u′ is
less than a minimum distance dmin, the function Γu(t) returns
value one which is considered as a cost in the utility function
defined in (7). Let A(t) = (a1(t), . . . ,a|U|(t)) denote the
locations of the UAVs at time t. Therefore, the optimization
problem is formulated as follows:

max
A(t)

∑
t∈T

∑
u∈U

fu(t) (9a)

s.t. (xu(t), yu(t)) ∈ R, ∀u ∈ U , (9b)
hu ∈ [hmin, hmax], ∀u ∈ U , (9c)
0 ≤ ρb ≤ 1, ∀b ∈ B, (9d)

where T is the total working time of the UAVs. The parameters
hmin and hmax denote the minimum and maximum altitude of
the UAVs, respectively. For the optimization problem (9), the
constraints in (9b)-(9c) define the feasible 3D space for the
locations of the UAVs. The constraint in (9d) corresponds to
the definition of load, in which it avoids outages and ensures
service for the users in the network.

The problem of 3D deployment of the UAVs can be
formulated as a noncooperative game in satisfaction form.
In a satisfaction-form game, each UAV is interested in the
satisfaction of its constraints. A game in satisfaction form can
be described by the G = 〈U , {Su}u∈U , {cu}u∈U 〉 , where the
set of the UAVs, U , is considered as the set of players in the
game. The set Su denotes the set of strategies for UAV u ∈ U .
We define the set Su as the movement in different directions:
Su = {up,down, left, right, forward,backward,no change}.
Let s−u be the strategies of all UAVs except UAV u. Here,
the correspondence cu(s−u) ⊆ Su denotes the set of strategies
that can satisfy the constraints of UAV u given the strategies
played by all other UAVs. Therefore, the correspondence
cu(s−u) can be defined as follows [10]:

cu(s−u) = {su ∈ Su : fu(t) ≥ γu}, (10)

where γu is the satisfaction threshold for UAV u. According
to the observed utility, each UAV u ∈ U updates a satisfaction
indicator ϑu(t) at time t as follows:

ϑu(t) =

{
1, if su(t) ∈ cu(s−u)

0, otherwise,
(11)

where su(t) is the strategy of UAV u at time t. For a game in
satisfaction form, an important outcome is called satisfaction
equilibrium where all players are satisfied, and cu(s−u) is not
empty for each player u. The notion of satisfaction equilibrium
can be formulated as a fixed point as follows [10]:

Definition 1 (Satisfaction Equilibrium): A strategy profile
s∗ = (s∗u, s

∗
−u) is a satisfaction equilibrium if ∀u ∈ U , s∗u ∈

cu(s∗−u).
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Algorithm 1 : Proposed algorithm for the 3D deployment of UAVs

1: Input: t = 0, πu,i(t), ϑu(t− 1), γu, ∀u ∈ U and ∀su,i ∈ Su.
2: Output: πu,i(t+ 1), ϑu(t), ∀u ∈ U and ∀su,i ∈ Su.
3: while t < T do
4: t← t+ 1
5: for each u ∈ U do
6: if ϑu(t− 1) = 1 then
7: su(t) = su(t− 1),
8: else
9: Select a strategy su(t) based on πu(t),

10: end if
11: Update the location au(t) based on su(t),
12: Calculate utility fu(t) according to (7),
13: Calculate ϑu(t) according to (11),
14: Update πu(t) according to (12),
15: end for
16: end while

However, for a given satisfaction threshold, some UAVs may
be faced with the situations where they can not be satisfied.
Therefore, a satisfaction equilibrium may not always exist.
In this context, we can reduce the satisfaction threshold γu
for unsatisfied UAVs after a certain time interval. Therefore,
we use an adaptive threshold approach described in [10]. To
solve the game in a distributed manner, we use a learning
algorithm, and assume that each UAV u can observe its
obtained utility. If the UAV is satisfied with its current utility
(i.e. ϑu(t) = 1), the UAV has no incentive to change its
location. Otherwise, it may change its location according to the
probability distribution πu(t) = (πu,1(t), . . . , πu,7(t)), where
πu,i(t) is the probability assigned to strategy su,i ∈ Su with
i ∈ {1, . . . , 7}. Therefore, each UAV u updates the probability
assigned to each strategy su,i ∈ Su as follows [10]:

πu,i(t+ 1) =

{
πu,i(t), if ϑu(t) = 1

Lu(πu,i(t)) otherwise.
(12)

Here,

Lu

(
πu,i(t)

)
= πu,i(t) + µu(t)qu(t)

(
1{su(t)=su,i} − πu,i(t)

)
,

(13)
where µu(t) is the learning rate of UAV u. The parameter
qu(t) is computed as qu(t) = fmax+fu(t)−γu

2fmax
, where fmax is

the maximum utility that UAV u can achieve. The function
1φ denotes the indicator function which equals 1 if event φ is
true and 0, otherwise.

The pseudocode for the proposed approach is presented in
Algorithm 1. The algorithm converges to an equilibrium of the
game G in finite time which is proved in [10, Theorem 2].

Note that the proposed approach offers several distinct
advantages. First, since only unsatisfied UAVs need to up-
date their locations, it reduces the complexity, especially for
deploying a multitude of UAVs. Second, due to the fact
that our proposed algorithm can be executed in a distributed
manner, the signaling overhead and exchanged information are
expected to be negligible. Furthermore, it can gain the in-
trinsic advantage of distributed approaches such as improving
network’s robustness against failures and attacks.

IV. SIMULATION RESULTS

To evaluate the performance of our proposed approach, we
consider a hexagonal layout with radius 250 m. The set of

Table I: System-Level Simulation Parameters [9], [10]

System Parameters

Parameter Value
Carrier frequency (fc)/ Channel bandwidth 2 GHz/ 10 MHz
Noise power spectral density −174 dBm/Hz
υk 1800 Kbps
Learning rate exponent for ηb(t) 0.9

dmin 10 m
hmin, hmax 22.5 m, 300 m
Altitude of users 1.5 m
Altitude of terrestrial BS 25 m

BS Parameters
Parameter Terrestrial BS UAV
Transmit
power

46 dBm 24 dBm

Reference
path loss
(fc in GHz)

LoS: 28 + 20 log10(fc)
NLoS: 13.54 + 20 log10(fc)

LoS: 30.9 + 20 log10(fc)
NLoS: 32.4 + 20 log10(fc)

Path loss ex-
ponent

LoS: 2.2
NLoS: 3.9

LoS: 2.225−0.05 log10(hu)
NLoS: 4.32−0.76 log10(hu)

users are uniformly distributed in the area, and one terrestrial
BS located in the center of the area. The simulation parameters
are summarized in Table I. Furthermore, we demonstrate the
performance gain of our proposed learning based scheme over
the following benchmark references: 1) Strategic horizontal
method proposed in [11] with fixed altitude 100 m given
79 predefined potential horizontal locations, referred to here-
inafter as “strategic” approach. This approach is a heuristic
approach, in which the horizontal location of a new UAV is
determined from the predefined horizontal locations to achieve
the furthest distances from the BSs in the system. 2) Random
horizontal placement with fixed altitude 100 m, referred to
hereinafter as “random-fixed altitude” placement algorithm.
3) Random horizontal and altitude placement given 79 and
28 predefined potential horizontal and altitude locations, re-
spectively, referred to hereinafter as “random” approach.

Fig. 1 shows the average throughput per BS versus the
number of users for a network with 8 UAVs. The figure shows
that the learning based UAV placement approach significantly
improves the average throughput compared to the benchmark
algorithms. For instance, for a network with 210 users, the
proposed approach improves the average throughput 51.82%,
84.35%, and 92.96% compared to the strategic, random-
fixed altitude, and random approaches, respectively. The main
reason is that the UAVs adjust their locations in order to
maximize the utility function defined in (7) which comprises
their throughput.

Fig. 2 illustrates the average rate per user. We can observe
that as the number of users increases, average rate per user
decreases due to increasing load and the availability of limited
resource in the network. Since the learning based approach
optimizes the locations of UAVs in terms of maximizing
throughput, it improves the average rate of users compared
to the benchmark algorithms

In Fig. 3, we show the average number of dropped users
per BS. The figure shows that the average number of dropped
users increases with an increase in the number of users. This
is mainly due to the fact that, a limited resource is available in
the network. Therefore, with increasing the number of users,
some of them may experience reductions in their rates due to
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Figure 1: Average throughput per BS versus the number of
users, given 8 UAVs.
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Figure 2: Average rate per user versus the number of users,
given 8 UAVs.

the overloaded BSs. Since the proposed approach improves the
average rate compared to the other approaches, it yields better
performance in terms of average number of dropped users. The
performance gain of the learning based approach compared to
the strategic, random-fixed altitude, and random approaches is
up to 74.14%, 86.76%, and 89.23%, respectively. Accordingly,
the learning approach is more resistant to the higher traffic
demand.

Fig. 4 depicts the average number of dropped users as the
number of UAVs varies. From the figure, as the number of
UAVs increases the average number of dropped users per BS
decreases. The main reason is that the users associated to
the highly loaded BSs can be offloaded to the lightly loaded
BSs. Moreover, Fig. 4 reveals that by using the learning based
approach, the number of UAVs required to reduce the number
of outage users below a certain threshold is significantly lower.
For instance, using learning based method only 6 UAVs are
required for less than 2 users in outage, which is notably lower
than 22 UAVs needed in the other methods.

V. CONCLUSION

In this paper, we have proposed a low-complexity robust
algorithm for the 3D placement of UAVs integrated into ter-
restrial cellular networks. The proposed approach leverages the
tools from game theory and machine learning to learn optimal
locations of UAVs in a distributed manner. Our results have
shown that the proposed approach significantly outperforms
the benchmark algorithms in terms of both throughput and
dropped users. We have also shown that the number of UAVs
for serving ground users using the learning based approach is
significantly lower than the benchmark algorithms resulting in
a more cost-effective networking with UAVs.
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Figure 3: Average number of dropped users per BS versus the
number of users, given 8 UAVs.
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Figure 4: Average number of dropped users per BS versus the
number of UAVs, given 100 users.
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