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Abstract—To meet the growing quest for enhanced network capacity, mobile network operators (MNOs) are deploying dense
infrastructures of small cells. This, in turn, increases the power consumption of mobile networks, thus impacting the environment. As a
result, we have seen a recent trend of powering mobile networks with harvested ambient energy to achieve both environmental and
cost benefits. In this paper, we consider a network of virtualized small cells (vSCs) powered by energy harvesters and equipped with
rechargeable batteries, which can opportunistically offload baseband (BB) functions to a grid-connected edge server depending on
their energy availability. We formulate the corresponding grid energy and traffic drop rate minimization problem, and propose a
distributed deep reinforcement learning (DDRL) solution. Coordination among vSCs is enabled via the exchange of battery state
information. The evaluation of the network performance in terms of grid energy consumption and traffic drop rate confirms that enabling
coordination among the vSCs via knowledge exchange achieves a performance close to the optimal. Numerical results also confirm
that the proposed DDRL solution provides higher network performance, better adaptation to the changing environment, and higher cost
savings with respect to a tabular multi-agent reinforcement learning (MRL) solution used as a benchmark.

Index Terms—Deep reinforcement learning, Edge computing, Energy harvesting, Flexible functional splits, MEC, Multi-agent
reinforcement learning, Virtualized small cells
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TABLE 1: List of frequently used acronyms and symbols

BB baseband
BS base station
DDRL distributed deep reinforcement learning
DP dynamic programming
EH energy harvesting
FQL fuzzy Q-learning
MBS macro base stations
MDP Markov decision process
MEC multi-access edge computing
MRL multi-agent reinforcement learning
NFV network function virtualization
RAN radio access network
RL reinforcement learning
SBS small base station
SDN software defined networking
SGD stochastic gradient descent
vSC virtualized small cell
At Operative states (control actions) of the vSCs in slot t
Bt Energy stored in batteries at beginning of slot t
Ht Energy harvested by vSCs in slot t
ht Hour of the day in slot t
mt Month in slot t
Lt Traffic load generated inside coverage of vSCs in slot t
rt Scalar reward signal
Xt State of the vSCs in slot t
α Learning rate
ε Exploration parameter
γ Discount factor

1 INTRODUCTION

Due to an exponential growth in mobile traffic demand [1],
dense heterogeneous networks (HetNets) of multi-tier base
stations (BSs) are being deployed as a means of enhancing

capacity. In a HetNet, a large number of small BSs (SBSs)
are employed to ensure coverage of hot-spots (e.g., enter-
tainment areas, shopping malls, offices), while macro BSs
(MBSs) are deployed for ensuring mobility and coverage.
One of the issues that arise from the dense deployment of
SBSs is the rapidly increasing electrical power consumption,
which is playing a major part in the operational expen-
ditures of mobile network operators (MNOs) [2]. Hence,
energy sustainable design and operation of mobile networks
is identified as one of the key requirements of 5G and
beyond mobile networks in order to ensure cost effective-
ness and reduce the impact on the environment. To this
end, new architectural paradigms, such as multi-access edge
computing (MEC), are emerging, and renewable energy is
gaining popularity as a means to decrease dependency on
the power grid [3].

MEC enables BSs to leverage cloud computing capabili-
ties and offers computational resources on-demand basis [4].
Relying on MEC, a flexible functional split between SBSs and a
centralized baseband (BB) unit pool [5] has been proposed,
where part of the BB processes are executed at the SBSs,
while the remainder is offloaded to a central BB unit (BBU)
pool. This solution can be enabled via network function
virtualization (NFV), which permits network functions to
be executed on general purpose hardware as virtual func-
tions, and software defined networking (SDN) as a tool to
manage these functions [6]. As a result, network functions
of SBSs can be virtualized and placed at different sites of
the network. These SBSs, known as virtualized small cells
(vSCs), enable higher flexibility in resource allocation and
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management.
In parallel, energy harvesting (EH) technology is be-

coming widely applicable in mobile networks. EH allows
both cost and environmental impact reduction [7]; however,
it comes with its own unique challenges, mainly due to
unreliable intermittent energy sources. Hence, in EH BSs,
it is important to intelligently manage the harvested energy
in order to avoid service degradation or interruption. Con-
sequently, BSs with EH and MEC can open a new frontier in
energy-aware processing and sharing of resources according
to flexible functional splits. The EH powered vSCs can
opportunistically use the processing capabilities of the MEC
server, which can be co-located at the MBS site. In partic-
ular, we consider a two-tier scenario where EH powered
vSCs can offload part of their BB processing to the central
MBS site with a MEC server. This is particularly important
since the power consumption due to BB processing has a
huge share in the total power consumption breakdown of
SBSs [8]. In [9], we have proposed an offline solution for
performance bounds of dynamic selection of functional split
options for vSCs powered by EH. These results prove that
dynamically adapting functional split options can provide
significant grid energy savings as opposed to static config-
urations. However, the offline solution adopted relies on a-
priori knowledge and does not scale up with the number of
vSCs due to high computational complexity.

On the other hand, reinforcement learning (RL) allows
learning an optimal/near optimal strategy through interac-
tions with the environment while achieving a system wide
goal, e.g., efficient utilization of the harvested energy, with-
out requiring the model of the environment variables (e.g.,
user demands, EH). However, implementing RL algorithms
in the presence of multiple vSCs operating in parallel is chal-
lenging. Centralized solutions experience long convergence
and training phases due to prohibitively large state/action
sets. A distributed approach may allow to reduce the com-
plexity by dividing the problem among multiple agents.
A common reward signal is employed so that the agents
aim at optimizing the same system wide goal in a dis-
tributed manner. This approach, also known as multi-agent
RL (MRL) [10], scales better due to the distribution of the
learning and decision making processes among the vSCs.
However, in MRL, the impact of each individual agent’s
actions on the reward is difficult to distinguish as the reward
may depend on all the actions in a complex manner. Hence,
MRL solutions should ensure some coordination among the
agents (i.e., the vSCs) towards achieving system wide gains.

MRL based algorithms for dynamic selection of func-
tional split options in vSCs with EH capabilities are pro-
posed in our previous work [11]. In [11], distributed Q-
learning (QL) and fuzzy Q-learning (FQL) are applied with
coordination enabled via broadcasting the normalized traffic
load of the MBS. In this work, we propose to achieve
better coordination among the agents through the exchange
of specific local state information. Hence, we increase the
amount of shared knowledge in order to reduce conflicting
behaviors, and, in turn, converge to stationary policies with
higher system wide gains. The main challenge with this
approach is the exponential increase in the state space
dimension, which may slow down the learning process
and even jeopardize its convergence. Tabular MRL methods

(e.g., QL, FQL) work through mapping each state to a
value; hence, each state-action pair needs to be properly
explored. In problems with continuous state variables, as
ours, this mapping is performed through quantization or
fuzzy inference systems, and may result in large state
spaces. For instance, the solutions proposed in [11] rely on
broadcasting the MBS traffic load and have 4 state variables
corresponding to energy, battery, local and MBS traffic load.
Denoting the quantization level by z, the state space of each
agent in [11] has size z4. If vSCs exchange battery state
information for better coordination, the number of states
will be multiplied by a factor of zN , where N is the number
of vSCs in the system. This implies an increment in the size
of the state space from 625 in [11] to a range from 78125 to
1.9073486 × e13 for z = 5, in a scenario of 3 and 15 vSCs,
respectively. Tabular MRL methods cannot be applied on
such a large state space.

In deep RL (DRL), deep neural networks are used to
approximate the Q-values of state-action pairs [12]. DRL al-
lows working with large state and action spaces through Q-
value estimations without the need for large and impractical
look-up tables. Accordingly, we propose a distributed DRL
(DDRL) algorithm for the dynamic control of functional
split options in vSCs with EH capabilities, where each vSC
is modeled as a distinct DRL-based agent that takes deci-
sions in coordination with other vSC agents. As opposed
to tabular MRL, DDRL allows to coordinate the policies of
the learning agents via local state information exchanges
without facing practically infeasible state-action tables.

The main contributions of the paper are summarized as
follows:

• We formulate a network wide sequential decision
making problem in order to optimally leverage flexi-
ble functional split options at the vSCs with the goal
of minimizing both the grid energy consumption and
the amount of dropped traffic.

• We propose a MRL solution, i.e., DDRL, that can han-
dle the prohibitively large state space in an efficient
manner. We analyze its complexity and convergence
properties and describe its spatio-temporal behavior.

• We evaluate the performance (in terms of energy
consumption and traffic drop rate) of the proposed
DDRL solution and compare it against benchmark
multi-agent FQL [11] as well as an offline perfor-
mance bound [9]. In addition, energy and cost sav-
ings of MRL-based controllers are estimated as com-
pared to a system relying only on grid power.

The rest of the paper is organized as follows. Section 2
describes the related literature. Section 3 presents the ref-
erence architecture considered in this work. Section 4 de-
scribes the the problem statement as well as power con-
sumption, traffic and EH models. The proposed DDRL
solution is explained in Section 5. Section 6 is dedicated
to the simulation scenario, numerical results of simulations
including the comparison with an FQL solution and cost
analysis. Finally, we draw our conclusions in Section 7.

2 RELATED WORK

As a result of dense deployment of BSs combined with the
increasing importance of energy sustainability, intelligent
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energy management in EH BSs has been the focus of many
recent studies. Most of this literature analyzes hierarchical
multi-tier networks, the so called HetNets, with an intelli-
gent switching on/off scheduling of BSs. The authors in [13]
apply dynamic programming (DP) to determine the optimal
switch on/off policy in a two-tier HetNet with baseline
MBS and hot-spot deployed SBSs. The solution shows the
performance bound of an intelligent switch on/off policy
when all the system dynamics information are known a-
priori. Minimizing the grid energy consumption for hybrid
powered BSs is also studied in [14]. Here, the authors apply
two-stage DP designed to achieve energy saving gains while
maintaining the probability of blocking. The authors in [15]
study sleep mode coordination between BSs powered by EH
and grid energy using DP. However, the DP-based solution
is shown to entail high computational complexity.

The authors in [16] apply a ski-rental framework based
on-line algorithm for optimal switch on/off scheduling for
minimizing the operational costs of a network composed of
self-powered BSs. The application of QL for the optimiza-
tion of an EH system is studied in [17]. The authors in [18]
apply distributed QL in the context of HetNets to optimize
the harvested energy utilization. Multi-armed bandit based
distributed learning is applied in [19], [20] to allow each SBS
to learn its own energy-efficient policy. The authors in [21],
[22] apply layered learning for system wide harvested en-
ergy allocation through decomposition of the problem into
two layers. The first layer, based on RL, is in charge of local
control at each SC, while the second layer, based on neural
networks, ensures network wide coordination among the
SCs. The authors in [23] applied deep RL methods for the
minimization of energy consumption in HetNets through
optimal activation of a subset of the SCs, while maintaining
the desired level of QoS. In particular, they have applied
actor-critic RL methods where deep neural networks are
used as policy and value function approximators. The au-
thors in [24] proposed a RL-based energy controller for a
SC powered by EH, battery and smart grid by considering
battery ageing effects. This work is based on FQL and is
shown to provide significant extension to the life time of a
small cell battery. Renewable energy allocation in edge com-
puting devices with EH is studied in [25]. Here, the authors
propose RL-based online solutions for offloading and auto-
scaling in edge computing devices that are powered by EH.
RL based algorithms for dynamic placement of functional
split options is proposed in [26]. It is based on temporal
difference (TD) learning methods, namely QL and SARSA
for online learning of control policies of a vSC powered
by EH with flexible operative modes. On the other hand,
the authors in [27] propose an optimal flexible functional
split option selection scheme for a cloud RAN with radio
remote units supplied by renewable energy sources. They
show that the optimal functional split selection problem
can be formulated as convex optimization, and propose a
heuristic online algorithm without relying on future energy
arrival information. However, the study in [27] focuses only
on throughput maximization for a single remote radio unit.
Indeed, most of the literature on EH with MEC focus on
a single SC scenario, and the literature on multiple SCs
consider only on/off switching policies. Here, we study
more configuration options of SCs, in addition to switch

on/off and enable higher grid energy savings.
In [11], we propose a MRL solution for the dynamic

control of functional split options ensuring scalable so-
lutions. In particular, it is based on distributed tabular
RL algorithms, i.e., QL and FQL. This paper extends the
work in [11] by proposing a multi-agent DRL solution that
overcomes the limitations of tabular MRL approaches. We
propose coordinated control via communication of battery
level information among multiple learning agents and a
common system wide reward signal. Moreover, we tailor
distributed DRL algorithm to our network scenario and
evaluate its performance against a benchmark multi-agent
FQL controller studied in [11].

3 REFERENCE ARCHITECTURE

This work considers a two-tier network architecture illus-
trated in Figure 1. The first tier consists of a MBS and a
co-located BBU pool, acting as the MEC server. MBS is
responsible for providing baseline coverage, mobility sup-
port, and BB processing resources. The MBS site is fully
powered by the grid, thus assuring reliable communications
and computing. The second tier is composed of vSCs, which
do not overlap in coverage [28]. They are powered solely by
solar panels and are equipped with finite-capacity batteries.

The vSCs opportunistically employ central BBU pool for
full or partial BB processing according to flexible functional
splits. 3GPP has defined different functional splits between
the distributed and centralized units [29], which correspond
to vSCs and the MBS, respectively. In our model, vSCs can
opportunistically operate in one of the following functional
split configurations specified in [29]:

• PHY-RF split: all the protocols, physical (PHY) and
higher layers, are implemented at the MEC server.
Hence, the vSC behaves as a radio frequency (RF)
transceiver, used only for signal transmission and
reception;

• MAC-PHY split: PHY layer processing takes place
at the vSC, in addition to RF functions. Medium
access control (MAC) and higher layer functions are
executed at the MEC server.

These two functional split options have been selected
based on their impact on the energy consumption of vSCs.

Figure 1. Reference two-tier network architecture.
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Figure 2. Different implementations of the functional split
configurations including PHY-RF and MAC-PHY split. The
conventional eNodeB (eNB) configuration is also shown for
comparison.

PHY-RF and MAC-PHY split options impose significantly
different energy requirements on the vSCs, which allows to
implement a dynamic control on local energy consumption.
Other functional split options have negligible impact on
the energy utilization, as demonstrated in [9]. These func-
tional split options are depicted in Figure 2 along with the
conventional eNodeB architecture. Each option corresponds
to a different computational load for the vSCs and MBSs,
which in turn, corresponds to different energy consumption
models, as will be described in Section 4.2.

4 SYSTEM MODEL

4.1 Problem statement
We consider a two-tier mobile network composed of one
MBS with a co-located BBU pool and N vSCs. The net-
work is modeled as a discrete time dynamic system, which
evolves in time slots based on the variations in the traffic
demand and energy arrivals. The traffic loads at time slot t
generated by the users in the coverage area of the vSCs are
denoted by Lt , [Lt

1, L
t
2, . . . , L

t
N ], where Lt

n is the traffic
load at the nth vSC. The energy harvested by the vSCs in
slot t are denoted by Ht , [Ht

1, H
t
2, . . . ,H

t
N ], while the

battery states are denoted by Bt , [Bt
1, B

t
2, . . . , B

t
N ], where

Ht
n and Bt

n are the harvested energy and the battery state of
the nth vSC in time slot t, respectively. In addition, in order
to capture the evolution of the traffic requests and energy
arrivals, the hour of the day and the month are defined as
ht and mt, respectively, for time slot t. Battery states evolve
according to the following relation:

Bt+1 = min
(
Bt +Ht − P t∆t, Bcap

)
(1)

where P t , [P t
1 , P

t
2 , . . . , P

t
N ] and P t

n is the power con-
sumed by the nth vSCs in slot t (will be described in detail
in Section 4.2), Bcap is the battery capacity, and ∆t is the
duration of one time slot. At each time slot, each vSC can be
in one of the three modes of operation. Denoting the mode
of vSCs by At, the mode of nth vSC in time slot t, At

n, is
given by:

At
n =


0 if the n-th vSC is OFF
1 if the n-th vSC is in PHY-RF mode
2 if the n-th vSC is in MAC-PHY mode

(2)

The network wide sequential decision making problem
is defined by a Markov decision process (MDP) as Xt+1 =

f(Xt,At,Lt,Ht), where Xt , [Xt
1, X

t
2, . . . , X

t
N ] denotes

the states of the vSCs in slot t, At , [At
1, A

t
2, . . . , A

t
N ] are

the control actions/modes of the vSCs, and (Lt,Ht) are
the environmental random variables (i.e., traffic and EH
stochastic processes). In particular, we define each state Xt

i ,
i = 1, ..., N , as Xt

i = (ht,mt, Lt
i,B

t). Hence, the state of
the ith vSC in slot t is represented by the battery levels of
each vSC Bt, its traffic load Lt

i, the month of operation mt

and the hour of the day ht.
We have two objectives, i.e., to minimize the grid energy

consumption at the MBS, and to minimize the traffic de-
mands that cannot be satisfied due to vSCs being in the OFF
mode. Hence, the optimization goal at every decision slot t
will be to minimize the total weighted cost over a finite time
horizon T , given by:

P1: min
{At}t=i,...,T+i

T+i∑
t=i

ω · E(At) + (1− ω) ·D(At),
(3)

where t = i refers to the ith decision slot, Em(At) and
D(At) denote, respectively, the normalized grid energy
consumption and the traffic drop rates, which are defined
next. The grid energy consumption is equivalent to the
energy consumption at the MBS site as the vSCs depend
solely on harvested energy. The grid energy consumption is
normalized with respect to the maximum possible energy
consumed by the MBS, i.e., when it is at full load and per-
forming the BB processes of vSCs in PHY-RF mode. Hence,
the normalized grid energy consumption is computed as:

E(At) =
P(At)

PMAX
, (4)

where P(At) is the power consumption of the MBS given
the operative modes of the vSCs at slot t, and PMAX is the
power consumption of the MBS at full load. The details of
the power consumption model are described in Section 4.2.
The traffic drop rate, D(At), is the ratio of the total traffic
demand that cannot be served in slot t. Additionally, we
impose the state of charge (SOC) of the batteries to be main-
tained above a threshold Bth to avoid a rapid reduction in
lifetime [30]. The weight ω determines the balance between
the two objectives. In this work, we consider ω = 0.5 to
impose equal importance on the two objectives, but the
results can easily be generalized to arbitrary weights.

A centralized offline solution is proposed in [9] using DP
and with a priori knowledge of the system, i.e., assuming
that all future energy and traffic arrivals are known. Those
results can be considered as performance bounds and used
as a benchmark for the policies proposed in this paper. In
this work, we instead propose an on-line solution based on
DDRL, without assuming the explicit knowledge of the sys-
tem statistics governing the underlying random processes.
In particular, we propose DDRL agents in which neural
networks are used as value approximation functions [12]
to determine the optimal actions At. Our proposal is based
on distributed and coordinated decision making, i.e., each
vSC takes its own action based on its state, which makes
it scalable with the number of vSCs. In order to coordinate
the decision making process, we rely on partial local state
information exchange among vSCs; in particular, we assume
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that each vSC knows the battery levels of all the other
vSCs. Section 5 describes the proposed DDRL solution to
the sequential decision making process described here.

4.2 Power model
The power consumption of each split option is esti-
mated based on the model introduced in [31], which is
a general flexible power model of BSs and provides the
power consumption in giga operations per second (GOPS).
Technology-dependent GOPS to Watt conversion factor is
applied to determine the power consumption in Watts. In
this paper, we have mapped the various BB processing tasks
of the functional split options to their power requirement
estimations.

The total BS power consumption is given by:

PBS = PBB + PRF + PPA + Poverhead, (5)

where PBB is the power consumption due to BB processing,
PRF is the power consumption of RF circuitry, PPA is the
power consumption by the power amplifier, and Poverhead is
the overhead power consumption (e.g., cooling system). BB
power consumption, PBB , consists of the idle mode power
consumption and the power consumption OFDM process-
ing, filtering, frequency domain processing, and forward er-
ror correction. In accordance with [31], all these components
scale with the number of antennas and bandwidth and the
power consumption of frequency domain processing and
forward error correction also depend on the traffic load.
When the vSCs are in PHY-RF split mode, their power
consumption model does not include the corresponding
PBB which is added to the power consumption of the MBS,
since the BB processing takes place at the MBS site. On
the other hand, in MAC-PHY split mode, the vSC power
consumption includes the PBB term, and is given by (5).
Considering the aforementioned model description, the grid
power consumed by the MBS is computed as:

Pm = PMBS
BS +

∑
i∈G

P i
BB, (6)

where PMBS
BS is the power consumption of the MBS com-

puted as in (5), P i
BB is the BB power consumption of the

i-th vSC, and G is the set containing the indexes of the vSCs
in PHY-RF split mode.

4.3 EH and Demand Profiles
EH and traffic demand are typically modeled as time-
correlated random processes. Many works have focused on
obtaining accurate models of these random processes. In-
stead, in this work, we directly use hourly energy generation
traces from a solar source for the city of Los Angeles (CA,
USA). The solar raw irradiance data has been collected from
the national renewable energy laboratory and converted
into harvested energy traces using the SolarStat tool [32]. EH
traces are generally bell-shaped with a peak around midday,
whereas the energy harvested during night is negligible.
Moreover, as discussed in [32], high variability of the har-
vested energy may occur during the day, even in summer
months. As a result, although the energy inflow pattern
can be known to a certain extent, intelligent and adaptive

algorithms that make their decisions based on current and
past inflow patterns, as well as predictions of future energy
arrivals, have to be designed.

For the demand profile, the UEs have been classified
as heavy and ordinary users according to their amount of
requested traffic [8]. The traffic demand of each UE with in
a time slot are estimated to resemble realistic traffic profiles
presented in [33], which are derived from time, location and
frequency information of thousands of cellular towers. The
analysis in [33] demonstrates that the urban mobile traffic
usage can be described by mainly five basic time domain
patterns that correspond to different functional regions,
i.e., residential, office, transportation, entertainment, and
comprehensive. In this article, we are considering residential
and office profiles, which are the most common use cases
for urban deployment scenarios. In addition, based on the
average traffic generated by the users, traffic variability is
added following a normal distribution using standard devi-
ation from measurements of real mobile traffic traces [34].
Based on the energy traces [32] and traffic profiles [8], [33],
an example of a normalized EH trace, residential traffic
profile and office traffic profile for both week and weekend
days is shown in Figure 3. The figure shows that EH and
residential traffic profiles peak at different hours of the day,
i.e., energy harvesting peak occurs around noon whereas
traffic demand peak occurs during the evening. This calls for
intelligent energy management to maximize the utilization
of harvested energy.

5 DISTRIBUTED DEEP REINFORCEMENT LEARN-
ING (DDRL)
In this section, we introduce the proposed DDRL algorithm
where each vSC is modeled as a DRL agent taking decisions
in coordination with other vSC agents. The section starts
with background information on RL, followed by the details
of the DDRL controllers including the states, actions and the
reward function.

5.1 Background

RL control relies on learning by interacting with the en-
vironment without an exemplary supervision [35]. It is a
well known framework for solving problems described as
MDPs. Formally, the RL framework is defined in terms of
states, actions and rewards. Through the RL process, the
agent executes a certain action according to its current state,
and as a result of its action, it receives an immediate reward,
and transitions to a new state. It is important to note that
in RL, the rewards can be delayed. Hence, it is a sequential
decision making process with the goal of maximizing cumu-
lative reward. In our problem, the objective of the RL-based
controller is to learn the energy management policy through
interactions with the environment based on the traffic load,
energy arrival, and battery state information. For a network
with one vSC, let Xt denote the state at time t. The agent
chooses an action At from setAt, which is equivalent to the
operative mode of the vSC. As a result of this action, the
environment returns a reward rt, which is used to update
the corresponding Q-value,Q(Xt, At), which represents the
estimate of the long term average discounted reward when
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Figure 3. Typical weekly normalized EH, office traffic and residential traffic profiles.

taking a specific action at a given state. One of the most
widely used RL algorithms is QL, which is an off-policy
method that can learn the optimal Q-values for each state-
action pair [35]. In QL, the Q-values of each state-action pair
are updated as:

Q(Xt, At) = Q(Xt, At)+

α(rt + γmax
A

Q(Xt+1, A)−Q(Xt, At)),
(7)

where α is the learning rate, γ is the discount factor, At is
the current action, rt is the immediate reward,Xt andXt+1

are the current and the next state, respectively. The process
of learning needs to balance between exploration, i.e., taking
random actions to discover new knowledge, and exploitation,
i.e., taking an action that has been already discovered as
good (an action with the highest Q-value). For the single-
agent RL problem, as long as all the state-action pairs are
visited and updated infinitely often, QL is guaranteed to
converge to an optimal policy regardless of the specific
policy being followed throughout the learning phase. On
the other hand, in MRL, the learning and decision making
processes are distributed among the agents. MRL is a more
scalable approach suitable for complex systems, as it divides
the problem among multiple agents. However, MRL has no
formal proof of convergence to the optimal solution due to
the non-stationarity arising from the simultaneous learning
of the agents.

5.2 DDRL-based control

We follow a distributed design, where each vSC imple-
ments a DRL-based agent and acts independently but in
coordination with the other vSC agents. The distributed
design ensures scalability while maintaining the complexity
of the controllers to a reasonable level by avoiding the expo-
nentially growing number of actions that requires Q-value
estimations. For instance, if there are 3 possible operative
modes/actions per vSC, there are 3N possible combinations
of operative modes, where N is the number of vSCs, re-
sulting in potentially different network performance, i.e.,
gird energy consumption and traffic drop rate. Hence, a
centralized approach would require the exploration of all

3N possible actions. This means that the number of Q-values
that must be estimated reach 14, 348, 907 for 15 vSCs. In
our DDRL implementation instead, each vSC takes its own
actions and coordination among the agents is enabled by the
exchange of battery state information as well as via a global
reward signal, where each vSC receives the same system
level feedback.

5.2.1 States
According to the system model defined in Section 4.1, the
state of the ith vSC at time slot t is defined as, Xt

i =
(ht,mt, Lt

i,B
t), where ht denotes the hour of the day, mt

denotes the month, Lt
i denotes the traffic load experienced

by the vSC andBt denotes the vector of battery states of all
vSCs. The values of input traffic load and the battery state
variables, namely Lt

i andBt are all normalized with respect
to their maximum. On the other hand, for cyclic inputs ht

and mt, sinusoidal transformation is applied [36]. Hence,
the hour values ranging from [0, 23] and months from [0, 11]
are transformed into sinusoidal values between [−1, 1] and
their cyclic properties are maintained. These state variables,
after normalization, are the input of the neural network that
is used to estimate the Q values of all the actions at that
state. Since the battery levels of all the vSCs are part of the
states, the size of the input to the neural network of each
vSC agent is dependent on the number of vSCs and is given
as 3 +N , where N is the number of vSC agents.

5.2.2 Actions
The set of possible actions are the possible operative modes
of the vSCs, At. The action set for the ith vSC are switching
off, PHY-RF split mode, or MAC-PHY split mode. Hence,
the action set for the whole DDRL solution is a combination
of the three operative modes of each vSC.

5.2.3 Reward
The reward function determines the immediate reward each
DRL-agent acquires as a result of taking a specific action.
The optimization goal is to minimize the power drained
from the grid while reducing the system drop rate, as given
by (3). Hence, the reward function can be formulated as:

rt = 1− (ω · Em(At) + (1− ω) ·D(At)) (8)
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where Em(At) were defined in Section 4.1. In our DDRL
implementation, each agent receives the same reward signal
in (8) to enable coordinated learning.

In order to improve the convergence behavior of the DRL
algorithm, we will use an experience buffer of capacity M ,
denoted byD, in which we store previous experiences of the
agents consisting of the state, action, reward and next state
tuples. We then randomly sample mini-batches from this
experience buffer for training the neural networks of DRL
agents. This technique is known as experience replay. Neural
networks used for estimating the Q-values are initialized
with random weights, and an ε-greedy policy maps the
input states to actions; where random actions are chosen
with probability of ε, i.e., exploration, otherwise an action
with the highest Q-value is taken, i.e., exploitation. Each vSC
agent applies a procedure shown in Algorithm 1.

Algorithm 1 DDRL based control

Initialize replay memory Di of capacity M
Initialize action-value function, Qi, with random weights
θi
for each episode do:

Initialize Xt
i = (ht,mt, Lt

i,B
t) - observation from the

scenario
for each step, t, of episode do:

With probability ε select a random action At

Otherwise At = maxAQi(X
t
i , A;θi)

Take actionAt, get reward rt and observe next state
Xt+1

i

Store transition ( Xt
i , At

i, rt, X
t+1
i ) in Di

Sample a random mini-batch of K transitions
(Xj , Aj , rj , Xj+1) from Di

Set target value, yj = rj + γmaxÂQi(X
j+1, Â;θi)

Perform a gradient descent step on
(yj −Qi(X

j , Aj ;θi))
2 with respect to θi

end for
end for

6 NUMERICAL RESULTS

6.1 Simulation Scenario

According to the traffic model defined in Section 4.3, user
activities are categorized as heavy users with an activity of
900 MB/hr and ordinary users with an activity of 112.5
MB/hr [37]. Solar energy traces are generated using the
SolarStat tool [32] for the city of Los Angeles. We have
considered the commercial Panasonic N235B as the PV
module. These panels have single cell efficiencies as high
as 21.1%, which ranks them among the most efficient solar
modules at the time of writing, delivering about 186 W/m2.
The solar panel size and battery capacity are dimensioned
based on the criteria that the vSC can be fully recharged on
a typical winter day [38]. The simulation parameters and
reference power consumption values are given in Table 2.

We first analyze the behavior of the system when the
training is performed off-line. In particular, we considered
one year as an episode with time granularity of one hour,
since it allows to achieve a correct dimension of the solar
power system for cellular BSs, as shown in [39]. Hence,
every hour the agents choose actions corresponding to one

TABLE 2: Simulation parameters.

Parameter Value
Transmission power of macro cell (dBm) 43
Transmission power of vSC (dBm) 38
Bandwidth (MHz) 20
MIMO Transmission Mode 2x2
UEs per vSC 90
Heavy users ratio 0.5
Solar panel size (m2) 4.48
Battery capacity (kWh) 2
Bth 20%
PRFvSC

2.6 W
PPAvSC

71.4 W
PRFMBS

9.18 W
PPAMBS

1100 W
GOPS to W conversion factor 8
PBBstaticvSC

440 GOPS
PBBload−dependentvSC

60 GOPS
PBBstaticMBS

630 GOPS
PBBload−dependentMBS

215 GOPS
PoverheadvSC

0.0%
PoverheadMBS

10.0%

of the three possible operative modes, with the goal of
minimizing the weighted sum of grid energy consumption
and traffic drop rate.

6.2 Training Analysis
As mentioned in Section 5.2, the size of the state set for each
of the DRL agents is N + 3, where N denotes the number
of vSCs. Important steps prior to feeding these inputs to
the neural network of each vSC agent are normalization
and transformation, as described in Section 5.2. Through
simulation trials and evaluation, we have selected a 3-
layer dense neural network architecture with 256, 128 and
64 neurons, respectively. ReLU activation function is used
for hidden layers while linear activation is applied at the
output layer. In addition, stochastic gradient descent (SGD)
optimizer with momentum and learning rate decay is used
for the training.

For each DRL agent, we have employed an experience
replay buffer of size ofM = 2000 and a mini-batch size of 32
are chosen for the training. The training procedure for each
DRL agent with experience replay is shown in Algorithm
1. Given that an episode lasts 1 year and actions are taken
every hour, there are 8640 time steps within one episode
of training. During training, mini-batches of experiences
are randomly sampled from the replay buffer to perform
forward and back propagation steps in every hour prior to
taking actions. After the mini-batch pass, ε-greedy policy is
applied. Each agent selects a random action (exploration)
with probability ε, and the action with the maximum Q-
value (exploitation) with probability 1 − ε, during training.
In typical RL applications, it is recommended to start with a
higher level of exploration and to slowly reduce the explo-
ration rates as the training progresses. The parameters used
for training in our DDRL implementation are summarized
in Table 3. These hyper-parameters are selected through
simulation trials, and they correspond to the best values
resulting in the convergence of the DRL agents with the
presented neural network architecture.

Cumulative rewards during the training procedure of
vSC agents are shown in Figure 4 for residential and office
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TABLE 3: Training parameters.

Parameter Value
learning rate (α) 0.01
discount factor (γ) 0.9
initial exploration (ε) 0.9
learning rate decay 0.01
exploration decay 0.9
optimizer SGD
mini-batch size 32
number of layers 3

area traffic profiles. The training of each DRL agent is
performed during 45 episodes. As it is shown in Figure 4,
the scenarios with higher number of vSCs require relatively
longer training phase to reach stability and higher rewards.
Moreover, the maximum cumulative reward reached at
convergence decreases as the number of vSCs increases.
This arise mainly due to the non-stationarity of the envi-
ronment reflecting the conflicts among vSC policies. Finally,
we notice that office profile results in a faster training phase
and more stable behavior at convergence. In office scenario,
traffic and EH phenomena are synchronous and facilitate an
easier learning process compared to the residential scenario,
in which the higher values of traffic demands appear during
evening hours.

6.3 Policy Characteristics
In this section, we investigate the characteristics of the
DDRL policies adopted by the vSCs. In DDRL, each agent
chooses its policy in coordination with other agents with a
common goal of minimizing the grid energy consumption
and the dropped traffic rate simultaneously. As a result,
even though the agents’ policies can be different, the reward
signal each agent acquires is the same, as provided in (8).
This helps agents to jointly learn their own policies towards
the direction of achieving a system wide goal. In addition,
FQL policies are also shown here for comparison. The FQL
controller design and training procedures are described in
[11]. It is important to note that the FQL controller state
space consists of the vSC’s battery level, energy arrival and
vSC’s and MBS’s traffic load levels. Therefore, agents in FQL
are coordinated only via the MBS’s traffic load and they are
not aware of others vSCs’ battery conditions. For the case of
3 vSCs, both DDRL and FQL solutions are compared against
an offline solution based on DP and described in Section
4.1. Due to the offline model computational complexity, we
could not show this comparison for higher number of vSCs.

The average hourly winter and summer day policies
for a scenario of 3 vSCs in residential area by the offline,
FQL and DDRL controllers are shown in Figures 5 and 6,
respectively. We have selected December for winter, i.e.,
worst EH, and August for summer, i.e., best EH and the
policies observed in each month are averaged hourly to
represent average winter and summer daily behavior. It
can be observed that DDRL better approximates the offline
policy, i.e., the bound, in terms of the selection rates of the
three operation modes. For instance, average winter MAC-
PHY selection rates were 56%, 61% and 67% for the FQL,
DDRL and offline policies whereas, in summer, these rates
increase to 65%, 78% and 87% respectively. It is interesting
to observe from Figure 6 that the offline policy shows no
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Figure 4. Cumulative reward vs number of vSCs: (a) Resi-
dential, and (b) Office traffic profiles.

PHY-RF selection during August, thanks to higher energy
generation, and indicating the benefit of processing most
of the BB functions locally at vSCs. On the other hand,
DDRL and FQL result in 8% and 17% PHY-RF selection,
respectively, in summer.

Average winter and summer policies in residential area
obtained by DDRL with higher number of vSCs is shown
in Table 4. From Table 4, an increase in MAC-PHY selection
rate and a relative decrease in PHY-RF selection rate is ob-
served in summer with respect to winter policies, whereas,
switch-off rate tends to be higher during winter. This shows
the adaptation of DDRL policies to higher energy genera-
tion, i.e., by selecting MAC-PHY strategy, so that the vSCs
execute most of the BB processes locally, in turn saving
more grid energy. On average, summer policies have 20.37%
higher MAC-PHY and 18.82% lower switch-off rate than
winter day policies.

An example of daily policies, i.e., without averaging, ob-
tained by DDRL and FQL for a network setup of 12 vSCs in
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TABLE 4: Average policy characteristics in residential area.

number of vSCs Winter Summer
Switch-off(%) PHY-RF(%) MAC-PHY(%) Switch-off(%) PHY-RF(%) MAC-PHY(%)

3 20.8 18.1 61.1 13.9 8.3 77.8
5 32.7 23.0 44.3 15.7 17.5 66.8
7 33.9 26.9 39.2 15.2 28.0 56.8
10 33.6 24.7 41.7 16.4 21.5 62.1
12 38.4 20.3 41.3 18.1 23.9 58.0
15 36.7 26.2 37.1 17.6 25.1 57.3
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Figure 5. Average winter day policies of 3 vSCs: (a) Offline
(b) FQL (c) DDRL.

a residential area are shown in Figures 7 and 8, respectively.
The figures show that, with both DDRL and FQL, different
policies are learned by each vSC characterized by different
selection rates of the three operative modes, i.e., PHY-RF,
MAC-PHY and switch-off. Moreover, we can see that the
policies learned by DDRL and FQL differ. For instance, for a
scenario of 12 vSCs, the winter policies’ MAC-PHY selection
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Figure 6. Average summer day policies of 3 vSCs: (a) Offline
(b) FQL (c) DDRL.

rates are 41% and 32% by DDRL and FQL, respectively.
Whereas, during summer, the MAC-PHY rates increase to
58% and 49%, respectively, for DDRL and FQL. The higher
MAC-PHY selection rate of DDRL is accompanied by the
relatively lower PHY-RF selection. This shows the better
flexibility of the DDRL policies according to the seasonal
energy inputs. FQL results in less aggressive energy policies
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Figure 7. Typical winter day policies with 12 vSCs: (a) DDRL
(b) FQL.

for the vSCs via selecting more PHY-RF modes, thereby
relying more on the MBS for BB processing, which leads to
higher grid energy consumption (as shown in Section 6.4).
This is due to the fact that FQL controllers rely only on the
normalized MBS traffic load information for coordination
rather than the battery states, and hence, it is encouraged
to remain switched on in order to reduce the load on MBS
and select PHY-RF mode, which is the operative mode with
lower energy consumption.

Moreover, from the policy characteristics shown in Fig-
ures 7 and 8, DDRL policies tend to have more stable behav-
ior, i.e., vSCs prefer to stay in a single operative mode for a
longer duration than the FQL agents. To better illustrate this
behavior, we have shown the average day policies of FQL
and DDRL during winter and summer months in Figures
9 and 10, respectively, for a scenario of 12 vSCs. These
behaviors are computed by averaging the vSC policies
observed in each day during December and August. As
shown in Figures 9 and 10, the DDRL results in policies that
exhibit similar behavior within certain time-slots, whereas
FQL policies are characterized by relatively higher variation
within a day. The relative stability of DDRL policies is
advantageous in limiting the overhead in the SDN/NFV
framework for moving the virtual network functions as well
as to reduce the frequency of operative mode changes in a
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Figure 8. Typical summer day policies with 12 vSCs:
(a) DDRL (b) FQL.

deployed infrastructure.

6.4 Network Performance

In this section, we evaluate the performance of the DDRL
controller in terms of annual network grid energy con-
sumption and average traffic drop rate. As a comparison
benchmark, we also present the performance of FQL poli-
cies. The FQL solutions rely on broadcasting the normalized
MBS traffic load for coordination. As shown in [11], this
broadcasting results in 3.81− 9.77% grid energy savings as
well as 0.3−2.21% reduction in annual traffic drop rate with
respect to FQL solutions without the normalized MBS load
information. This highlights the importance of knowledge
exchange for coordinated learning in multi-agent scenarios.
Here, we compare the performance of DDRL, where the
coordination is achieved through the exchange of battery
states, with the FQL solution coordinated via the MBS’s
traffic load. In addition, for the case of 3 vSCs, the network
performance of both DDRL and FQL are evaluated against
the offline bound studied in [9].

Table 5 shows the performance of DDRL and FQL polices
compared with the offline bound of 3 vSCs. Both DDRL
and FQL polices perform close to the offline bound in both
residential and office scenarios with only 1.4 − 2.1% and
4.8 − 5.3% increase in annual grid energy consumption,
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Figure 9. Average winter day policies of 12 vSCs: (a) DDRL
(b) FQL.

respectively. DDRL performs closer to the offline bound and
this can be confirmed by the cumulative reward plot shown
in Figure 11, where it can be seen that DDRL accumulates up
to 97% of the rewards obtained by the offline policy whereas
FQL accumulates up to 94%.

TABLE 5: Comparison with the offline bound for 3 vSCs.

Algorithm Grid energy
consumption (KWh)

Average drop
rate (%)

Residential Office Residential Office
Offline 6775 6712 0.0 0.0
DDRL 6874 (+1.4%) 6857 (+2.1%) 0.0 0.0
FQL 7136 (+5.3%) 7037 (+4.8%) 0.0 0.0

The network grid energy consumption in one year of
operation and the traffic drop rate comparison between
DDRL and FQL controllers in residential and office areas
for higher number of vSCs are shown in Figures 12 and 13,
respectively. The results show the better performance ob-
tained by DDRL as compared to FQL controllers. More than
13% and 5% reduction in annual grid energy consumption
is achieved with DDRL compared to FQL, in residential and
office scenarios, respectively. Moreover, the DDRL control
results in up to 2.6% and 1.3% less traffic drop rate than FQL
in office and residential scenarios, respectively. The better
performance by DDRL compared to FQL is also evident
from the cumulative reward achieved by the correspondent
controllers in the same simulation scenarios. The maximum
cumulative rewards obtained by DDRL and FQL in resi-
dential and office area traffic profiles are shown in Figure
14. It shows the relatively higher cumulative reward gained
by DDRL, which translates to better network performance,
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Figure 10. Average summer day policies of 12 vSCs:
(a) DDRL (b) FQL.

Figure 11. Cumulative reward comparison among the po-
lices obtained by offline optimization, DDRL and FQL.

i.e., lower grid energy consumption and system drop rate,
as justified by Figures 12 and 13. Moreover, the gap in
cumulative reward is increasing with the number of vSCs,
which implies that DDRL is able to reach better coordination
among the agents

6.5 Policy Validation
Here, we evaluate the behavior of the system in real de-
ployment scenario after an offline training. In detail, we
will validate the proposed DDRL based controllers using
a new environment. Compared to the environment used for
training, the new validation environment is characterized
by different instantiation of both energy arrival and traffic
demand. The traffic profile used for validation remains the
same as the one used for training, i.e., trained in residen-
tial and validated in residential, but the particular energy
harvesting and traffic generation processes used in the val-
idation phase are different from those used in training. In
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TABLE 6: Policy validation results.
(R-T: Residential Training, O-T: Office Training, R-V: Residential Validation, O-V: Office Validation)

No. of vSCs Grid energy consumption
(KWh)

Average drop rate (%)

R - T O - T R - V O - V R - T O - T R - V O - V
3 6874 6857 6909 6891 0.00 0.00 0.00 0.00
5 7331 7191 7412 7287 0.00 0.00 0.00 0.00
7 8058 7617 8161 7677 0.03 0.00 0.10 0.10
10 8736 8591 8850 8422 1.04 0.10 1.61 0.90
12 9404 8775 9508 8694 2.42 0.23 2.38 0.93
15 10760 9116 10938 9162 2.63 0.61 2.71 1.03

(a)

(b)

Figure 12. Network performance comparison between
DDRL and FQL in residential profile: (a) Grid energy con-
sumption (KWh) (b) Average drop rate (%).

particular, we use the pre-trained model with an exploration
rate of 5%.

The validation of the policies along with the training
environment policy evaluation for 3, 5, 7, 10, 12 and 15 vSCs
for a year of operation are shown in Table 6. The results
show that DDRL agents are able to adapt their behaviors in
the new environment. This is confirmed by both grid energy
and average drop rate performances that are very close to
the corresponding policy evaluation results. On average,
only 0.5% to 1.3% variation is observed in the annual grid
energy consumption results of policy evaluation and valida-
tion, in both residential and office profiles with no relevant
changes in the traffic drop rate of the new environment.

(a)

(b)

Figure 13. Network performance comparison between
DDRL and FQL in office profile: (a) Grid energy consump-
tion (KWh) (b) Average drop rate (%).

These results indicate that using an offline trained model
with continuous exploration in the new environment is a
viable approach for deployment. We set the exploration rate
in the new environment to a small but non-zero value to
allow the agents to adapt their policies in states that they
have not encountered during training. We note that, since
the agents are already trained, the exploration during the
validation phase can be significantly smaller compared to
that in the training phase, whose initial value is set to 90%

6.6 Energy Savings and Cost Analysis
In Table 7, we compare the RL based controllers, i.e., FQL
and DDRL, with a scenario in which all vSCs and MBS
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(a)

(b)

Figure 14. Maximum cumulative reward: (a) Residential,
(b) Office profiles.

are supplied by grid power, referred as Grid-Connected (G-
C). Both CAPital EXpenditures (CAPEX) and OPerational
EXpenditures (OPEX) and the costs of operation for 5 and 10
years duration are estimated. We consider a cost of 1.17$/W
for solar panels including installation, and 131$/KWh for
energy storage costs [40]. The energy purchasing price from
the grid is set to 0.21$/KWh [41].

As it is shown in Table 7, both FQL and DDRL controllers
provide significant energy savings, reaching up to 54% and
61% for FQL and DDRL, respectively, compared to the G-
C solution. In terms of cost savings, FQL provides 11%
and 32% cost reduction during 5 and 10 years of oper-
ation, respectively. For DDRL controller, the cost savings
rise to 17% and 39% during 5 and 10 years of operation,
respectively. Moreover, DDRL provides more energy and
cost reduction than FQL controllers. These results are en-
couraging as they show that powering mobile networks
with renewable energy sources with an intelligent control
are not only environmental friendly, but also cost effective
solutions.

7 CONCLUSIONS

We have proposed adaptive functional split of BB processes
at vSCs powered by EH and equipped with recharge-
able batteries, which can be opportunistically executed at
a grid-connected edge server, co-located with the MBS.
We have formulated the corresponding joint grid energy
and dropped traffic minimization problem, and proposed

a multi-agent DRL solution. Coordinated learning among
multiple agents is enabled via the exchange of the agents’
battery state information. We have evaluated the network
performance, in terms of the grid energy consumption and
traffic drop rate for the proposed DDRL controller, and com-
pared the results with an offline optimization bound and a
tabular MRL based controller. The results have confirmed
that limited coordination among the agents via the ex-
change of battery states achieve cumulative rewards closer
to the offline bounds, while requiring limited computational
complexity. Extensive numerical results using traffic and
EH data have confirmed that the proposed DDRL strategy
ensures higher network performance, better adaptation to a
changing environment, and higher cost savings with respect
to the benchmark scheme.

The work presented here can be extended in many ways.
First of all, the energy saving results obtained are a good
starting point to extend the solution to a scenario of very
dense vSCs. However, the DDRL solution proposed here
can face convergence problems in such scenarios due to
non-stationarity. Moreover, the optimization can be multi-
objective, e.g., minimizing energy and latency while serving
the traffic demand. Hence, it may be beneficial to combine
DRL with other approaches, e.g., hierarchical RL, policy
based RL, or multi-objective RL, to ensure a more robust and
stable controller with less sensitivity to hyperparameters. As
compared to centralized approach, the DDRL solution scales
better with less computational complexity (by avoiding an
exponential growth in action and state spaces). However,
the DDRL solution has its own limitations as the state
spaces, and hence, the solutions, depend on the number of
vSCs/agents. As part of our future work, we will investigate
alternative solutions that are independent of the number of
active agents which allows adding or removing agents in
the environment without the need to re-train all the other
agents.
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TABLE 7: Energy savings and costs.

No. of vSCs Algorithm Energy (kW) Costs ($)
consumption [1yr] CAPEX OPEX [1yr] Cost [5yrs] Cost [10yrs]

3
G-C 11334 0 2380 11900 23801
FQL 7136 2541 1498 10033 17526
DDRL 6814 2541 1430 9695 16850

5
G-C 14051 0 2950 14753 29507
FQL 8199 4235 1721 12843 21452
DDRL 7331 4235 1539 11932 19630

7
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Deniz Gündüz [S03-M08-SM13] received the
M.S. and Ph.D. degrees in electrical engineering
from the NYU Polytechnic School of Engineering
in 2004 and 2007, respectively. He served as a
Post-Doctoral Research Associate at Princeton
University, as a Consulting Assistant Professor
at Stanford University, and as a Research Asso-
ciate at the Centre Tecnologic de Telecommuni-
caciones de Catalunya (CTTC). He is currently
a Professor in the Electrical and Electronic En-
gineering Department, Imperial College London,

U.K., where he leads the Information Processing and Communications
Laboratory. His research interests lie in the areas of communications
and information theory, machine learning, and security and privacy in
cyber-physical systems. He is a Distinguished Speaker of the IEEE
Information Theory Society. He is a recipient of the IEEE Commu-
nications Society Communication Theory Technical Committee Early
Achievement Award in 2017 and a Starting Grant of the European
Research Council in 2016. He has co-authored papers that received the
Best Paper Award at the 2016 IEEE WCNC and 2019 IEEE GlobalSIP,
and best student paper awards at 2007 IEEE ISIT and 2018 IEEE
WCNC. He is an Editor of the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS and an Area Editor for the IEEE TRANSACTIONS
ON COMMUNICATIONS.

Paolo Dini received MSc and PhD from Univer-
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(RCOST) - Università del Sannio, and contracted
Professor at Università di Roma La Sapienza
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