Addendum to "The Pan-SL-CoV/GD sequences may be from contamination.

 11Daoyu Zhang

The Pan-SL-CoV/GD sequences are likely originated from a synthetic construct

Recently, a dataset containing sanger sequencing amplicons of the Pan-SL-CoV/GD sequence was uploaded under the accession number SRX9503273. These sequences are entirely viral in origin and contains 240 Amplicon sequences from the GD_1 sequence made by the authors of PRJNA607174.

Distribution of the top $\mathbf{2 4 3}$ Blast Hits on $\mathbf{2 4 0}$ subject sequences

Fig. A1: All 240 sequences are mapped onto the MP789/MT121216.1 sequence.
147 of these sequences contains the tag "M13", which corresponding to sequencing primers found on popular phagemid cloning vectors.

These sequences appear to cover much of the genome, and contained the backbone of the virus including ORF1a, ORF1b, S1, S2 and the 3 '-end pf the genome that includes the E, M and N.

Distribution of the top 147 Blast Hits on 147 subject sequences

Fig. A2: Mapping of the 147 sequences containing " M 13 " onto the MT 121216.1 genome.
We successfully isolated a Multiple Cloning Site sequence, matching a known pEASY-T1 vector, from these 147 sequences that contained the tag "M13".

Fig. A3: The isolated Multiple Cloning Site sequence.
We then hypothesized that the trace amount of viral reads found in SRX7756766, SRX7756765 and SRX7756762 May have also been the result from contamination by these clone sequences. In order to confirm this hypothesis, the Multiple Cloning Site sequence was BLASTed against in SRX7756766, SRX7756765 and SRX7756762, and as expected, sequences resembling the Multiple Cloning Site was obtained from the BLAST result.

Query 1)

SRX7756762
Sequence ID: SRA:SRR11119766.121997761.2 Length: 151 Number of Matches: 1 A
Range 1: 34 to 82 Graphics

- Nex Match \triangle Previous Watch

Score	Expect	Identities	Gaps	Strand
89.7 bits(98)	$5 \mathrm{e}-15$	$49 / 49(100 \%)$	$0 / 49(0 \%)$	Plus/Pus

SRX7756765
Sequence ID: SRA:SRR11119763.176426249.1 Length: $\mathbf{1 5 1}$ Number of Matches: 1 A

Score	Expect	Identities	Gaps
50%	Strand		

Query 1 TGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATT 49
Sbjct 55 TGGTACGGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGEAATT 7

Fig.A4: Multiple Cloning Site sequences obtained from in SRX7756766, SRX7756765 and SRX7756762.
We next performed a BLAST analysis of these 2 multiple cloning site sequences, which, revealed that these reads were in fact a part of a modified pcDNA3.1 expression vector, which is specifically used for the expression of foreign DNA/RNA within mammalian cells. The vector appears to differ from other available sequences on GenBank specifically by the insertion of an 1xFLAG epitope on the Cterminus of the polylinker sequence.

As synthetic viral sequences, known as infectious clones, are often cloned into pcDNA 3.1 vectors, the presence of these sequences within PRJNA607174, within the datasets of which Coronavirus-like reads have been found in the absence of Homo Sapiens and the presence of Cercopithecinae spp. Is a likely indicator that these sparse Coronavirus-like reads may have originated from in-lab contamination by such infectious clones.
$>$ gnl|SRA|SRR11119762.256551142.1 256551142 (Biological) ACAGTGGGAGTGGCACCTTCCAGGGTCAAGGAAGGCACGGGGGAGGGGCAAACAACAGAT rTGTCATCGTCGTCCTTGTAGTCCTCGAGCG

PGn|SRA|SRR11119762.256551142.2 256551142 (Biological) TCGAGGACMAGACCTTCACCGAGACCGAATTCTGCAGATATCCAGCACAGTGGCGGCCG GCCTCGACTGTGCCTTCTAGTTGCCAGCCAT IKEETFTETEFCRYPAQWRPLEDYKDDDDKSRGPV-TR-SASTVPSSCQP MCP-p65TA-HSF1TA, partial [Expression vector pKK44]
 Sequence ID: $\mathbf{Q H X} \underline{4762.1}$ Length: $\mathbf{4 8 1}$ Number of Matches: $\mathbf{2}$ Range 1: $\mathbf{4 5 6}$ to $\mathbf{4 8 1} \underline{\text { GenPept }} \underline{\text { Graphics }}$
 | Score | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 43.1 bits(100) | $\begin{array}{lll}\text { Expect } & \text { Method } \\ 0.004 \\ \text { Composition-based stats. }\end{array}$ | $\begin{array}{l}\text { Identities } \\ 21 / 34(62 \%)\end{array}$ | $\begin{array}{l}\text { Positives } \\ 23 / 34(67 \%)\end{array}$ | $\begin{array}{c}\text { Gaps } \\ 8 / 34(23 \%)\end{array}$ |
 Query 2 REETFTETEFCRYPAQWRPLEDYKDDDDRSRGPV 35

>gnl|SRA|SRR111119763.138114743.1 138114743 (Biological)
tGCTCCCTATCACCGAGACCTCCAGCGCTAAGGAGGAGACCAGCCCTATTAAGGAAGAGA CCTTCACCGAGACCGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGGACTACA
AGGACGACGATGACAAGTCTAGAGGGCCCGT
>gn||SRA|SRR111119763.138114743.2 138114743 (Biological)
TGGCAACTAGAAGGCACAGTCGAGGCTGATCAGCGGGTTTAAACGGGCCCTCTAGACHTC ICAACGICEICACTGGCCTCGAGCGGCCGCCACTGTGCTGGATATCTGCAGAATTC
PIKEETFTETEFCRYPAQWRPLEDYKDDDDKSRGPV-TR-SASTVPSSC MCP-p65TA-HSF1TA, partial [Expression vector pKK44] Sequence ID: OHX94762.1 Length: $\mathbf{4 8 1}$ Number of Matches: 1
Range 1: $\mathbf{4 5 6}$ to $\mathbf{4 8 1}$ GenPept Graphics

$\begin{array}{lll}\text { Score }\end{array}$	$\begin{array}{l}\text { Expect }\end{array}$	$\begin{array}{l}\text { Method }\end{array}$	$\begin{array}{l}\text { Identities }\end{array}$	$\begin{array}{l}\text { Positives }\end{array}$
41.6 bits(96)	0.013			
Composition-based stats.				
$21 / 34(62 \%)$	$23 / 34(67 \%)$	$8 / 34(23 \%)$		

>gnl|SRA|SRR11119766.149640833.1 149640833 (Biological)

AACTAGAAGGCACAGTCGAGGCTGATCAGCGGGTTTAAACGGGCCCTCTAGACTTGTCAT AACTAGAAGGCACAGTCGAGGCTGATCAGCGGGTTTAAACGGGCCCTCTAGACTTGTCA CGGTGAAGGTCTCTTCCTTAATAGGGCTGGT
>gnl|SRA|SRR11119766.149640833.2 149640833 (Biological)
GAGGAGACCAGCCCTATTAAGGAAGAGACCTTCACCGAGACCGAATTCTGCAGATATCC GCACAGTGGCGGCCGCTCGAGGACTACAAGGACGACGATGACAAETCTAGAGGGCCCGTT EETSPIKEETETETEFCRYPAQWRPLEDYKDDDDKSRGPV-TR-SASTVP

MCP-p65TA-HSF1TA, partial [Expression vector pKK44]
Sequence ID: QHX94762.1 Length: $\mathbf{4 8 1}$ Number of Matches: 1
Range 1: 451 to 481 GenPept Grabhics
Se010

Query 2 ETSPIKEETFTETEFCRYPAQWRPLEDYKDDDDRSRGPV 40

>gnl|SRA|SRR11119766.121997761.1 121997761 (Biological)
CGCIGGIACAGCTGCTTCAGTGTTTCCTCTGAGATCTCGGTHGAGGGGTCCTCCAGCACG TrCTTGAGCAGCTCGTCAATATTGAATTCGG
>gnl|SRA|SRR11119766.121997761.2 121997761 (Biological)
ATGATACGACTCACTATAGGGAGACCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAA
CGGCCGCCAGTGTGCTGGAATTCGGCTTGGGGATATCCACCATGGAGACAGACACACTCC TGCTATGGGTACTGCTGCTCTGGGTTCCAGG
"A"
>gnl|SRA|SRR11119763.163404363.1 163404363 (Biological)
AGCAGGAGTGTGTCTGTCTCCATGGTGGATATCCCCAAGCCGAATTCCAGCACACTGGC GCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGGTCTCCCTATAGTGAGTCGTA tantrtccatangccagtanagatcganaga
>gnl|SRA|SRR11119763.163404363.2 163404363 (Biological)
CGMCACTMAGTACCGAG gagacagacacactcctcctagatcgang

Cloning vector pcDNA3.1_+, complete sequence
Sequence ID: MN996867.1 Length: 5428 Number of Matches: 1

Cloning vector pcDNA3.1_+, complete sequence
Sequence ID: MN996867.1 Length: 5428 Number of Matches: 1

Mammalian expression vector pcDNA3mB7-2, complete sequence
Sequence ID: LTT27375.1 Length: $\mathbf{6 4 0 7}$ Number of Matches: 1

Mammalian expression vector pcDNA3mB7-2, complete sequence
Sequence ID: LT727375.1 Length: $\mathbf{6 4 0 7}$ Number of Matches: 1

Fig.A5: Presence of pcDNA3.1 vectors within in SRX7756766, SRX7756765 and SRX7756762. The single large gap on the alignment with other available GenBank was identified as encoding an 1xFLAG peptide, DYKDDDDK, indicating a modification to the standard pcDNA3.1 vector.

A:"TTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAG TGTGCTGGAATTCGGCTTGGGGATATCCACCATGGAGACAGACACACTCCTGCTAGATCGGAAGA"

Description	Common Name	Max Score	Total Score	Query Cover	$\begin{gathered} E \\ \text { value } \end{gathered}$	Per. Ident	Acc. Len	Accession
- Mammalian expression vector $\mathrm{pCDNA} 3 \mathrm{mB} 7-2$ complete sequence	Mammalian ex...	193	193	68\%	$3 \mathrm{e}-45$	100.00\%	6407	$\underline{L T 727375.1}$
- Expression vector pcDNA3-AQP4f.complete sequence	Expression vec...	185	185	66\%	$5 \mathrm{e}-43$	100.00\%	6510	EF437956.1
- Expression vector pCDNA3-AQP4e complete sequence	Expression vec...	185	185	66\%	$5 \mathrm{e}-43$	100.00\%	6675	EF437953.1
Expression vector $\mathrm{PCDNA} 3-\mathrm{AQP4d}$ complete sequence	Expression vec...	185	185	66\%	$5 \mathrm{e}-43$	100.00\%	6349	EF437951.1
- Mammalian expression vector PCDNA-B-catenin complete sequence	Mammalian ex...	183	183	65\%	2e-42	100.00\%	7806	$\underline{L T 727265.1}$
- Mammalian expression vector PCDNA-mCASP-8. complete sequence	Mammalian ex...	183	183	65\%	2e-42	100.00\%	6950	$\underline{1727263.1}$
- Mammalian vector pdcDNA-HA complete sequence	Mammalian ve...	183	183	65\%	2e-42	100.00\%	7173	$\underline{\underline{1727252.1}}$
Mammalian expression vector pcDNA1-hTNFR55-E complete sequence	Mammalian ex...	183	183	67\%	2e-42	99.02\%	5563	$\underline{17727190.1 ~}$
\checkmark Shuttle vector pMSK1-E-D565A complete sequence	Shuttle vector....	183	183	65\%	2e-42	100.00\%	6575	$\underline{\text { LT727062.1 }}$
\checkmark Shuttle vector PMSK1-E complete sequence	Shuttle vector...	183	183	65\%	$2 \mathrm{e}-42$	100.00\%	6575	LT727061.1
- Mammalian expression vector pCDNA3-hIRAK1-T66A complete sequence	Mammalian ex...	183	183	65\%	2e-42	100.00\%	7476	$\underline{L T 726935.1 ~}$
\ Mammalian expression vector PCDNA 3 -hIRAK1. complete sequence	Mammalian ex...	183	183	65\%	2e-42	100.00\%	7476	$\underline{\underline{L T} 26934.1}$
V Mammalian expression vector $\mathrm{PCDNA3}$-hIRAK1-KD . complete sequence	Mammalian ex...	183	183	65\%	2e-42	100.00\%	7476	$\underline{L T 726931.1 ~}$
- Expression vector pcDNA/HA-FLAG complete sequence	Expression vec...	183	183	65\%	2e-42	100.00\%	5560	FJ524378.1
- Cloning vector pOriR6K-zeo-ie, complete sequence	Cloning vector...	183	183	65\%	2e-42	100.00\%	2477	AY700022.1
V Expression vector PCDPT	Expression vec...	183	183	65\%	2e-42	100.00\%	3840	A J 132038.1
- Cloning vector plRES1hyg complete plasmid sequence	unidentified clo...	182	182	64\%	$6 \mathrm{e}-42$	100.00\%	5726	$\underline{U 9672.1}$
V Cloning vector pRcCMV-luc luciferase gene complete cds	Cloning vector...	180	180	64\%	2e-41	100.00\%	7290	$\underline{\mathrm{U} 3958.1}$
- Mammalian expression vector PBM6DraA6 , complete sequence	Mammalian ex...	169	169	66\%	$5 \mathrm{e}-38$	97.03\%	7949	$\underline{\underline{L T} 27632.1}$
V Mammalian vector PCR3-EYFPC-GW complete sequence	Mammalian ve...	137	137	49\%	$1 \mathrm{e}-28$	100.00\%	7475	$\underline{L T 726804.1}$

B:"ATTAAGGAAGAGACCTTCACCGAGACCGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGGACTACAAGGACGACGATG ACAAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCAT"

- select all 500 sequences selected	GenBank				Graphics		Distance tree of results	
Description	Common Name	Max Score	Total Score	Query Cover	$\begin{gathered} E \\ \text { value } \end{gathered}$	Per Ident	Acc. Len	Accession
- Mammalian expression vector pCDNA3-N-HA-LIC complete sequence	Mammalian ex...	113	113	82\%	$3 \mathrm{e}-21$	84.00\%	7397	KT359064.1
\checkmark Cloning vector pcDNA 3 1-anti-VEGF-scFV. complete sequence	Cloning vector ...	109	109	41\%	$4 \mathrm{e}-20$	100.00\%	6259	MN996868.1
\checkmark Cloning vector pcDNA3.1_さ. complete sequence	Cloning vector ...	109	178	67\%	$4 \mathrm{e}-20$	100.00\%	5428	M 1996867.1
\checkmark Cloning vector pCDNA3.1-AFP. complete sequence	Cloning vector ...	109	109	41\%	$4 \mathrm{e}-20$	100.00\%	7258	M 9996866.1
- Cloning vector pcDNA 3 1-LATS1 complete sequence	Cloning vector ...	109	109	41\%	$4 \mathrm{e}-20$	100.00\%	8821	M 9996863.1
- Cloning vector pADNpcDNA 3.1 KanR complete sequence	Cloning vector ...	106	106	40\%	$4 \mathrm{e}-19$	100.00\%	10000	KX176867.1
\checkmark Cloning vector pTcHS-Nluc/Orange-G/Zr. complete sequence	Cloning vector ...	106	106	40\%	$4 \mathrm{e}-19$	100.00\%	7604	KM603067.1
- Mammalian expression vector pSA 89 . complete sequence	Mammalian ex...	106	106	40\%	$4 \mathrm{e}-19$	100.00\%	5594	JQ624674.1
- Mammalian expression vector PSA83 . complete sequence	Mammalian ex...	106	106	40\%	$4 \mathrm{e}-19$	100.00\%	5599	JQ624673.1
\checkmark Cloning vector PTT-PB-SOKMLN-Cer complete sequence	Cloning vector ...	104	104	50\%	$1 \mathrm{e}-18$	92.31\%	13592	KM279352.1
- Rabies viral vector pHEP5.0-CVSG-mRFP DNA complete sequence	Rabies viral ve...	104	104	41\%	1e-18	98.41\%	17394	AB855657.1
- Rabies viral vector pHEP5.0-delG-mRFP DNA complete sequence	Rabies viral ve...	104	104	41\%	1e-18	98.41\%	15772	AB855650.1
- Cloning vector RS474_ErbB-RASER1C-dCas9VP64 complete sequence	Cloningvector...	102	102	40\%	$4 \mathrm{e}-18$	98.39\%	16350	MK801288.1

Fig.A6: These complete reads are not found in non-synthetic sequences, confirming their origin as from a synthetic cloning vector.

In order to validate the existence of the vector sequences within $\underline{S R X 7756766}, \underline{S R X 7756765}$ and SRX7756762, A BLAST analysis using the vector backbone, MN996868.1, was performed on all 3 datasets. All 3 datasets yielded near-complete sequences from the backbone confirming the existence of a synthetic eukaryotic expression vector within these datasets.

Fig.A7: Near-complete sequence mapping to MN996868.1 in SRX7756766, SRX7756765 and SRX7756762

No evidence of the the Pan-SL-CoV/GD sequence in other datasets deposited by Liu et al. or Xiao et al.
In order to confirm that these datasets that we have already covered were in deed the only datasets of which Coronavirus-like reads were present, we performed a BLAST analysis on the rest of the PRJNA607174 and PRJNA573298 datasets. We did not obtain any evidence of Coronavirus-like reads from these datasets.

| Job Title | gb\|MT121216| |
| :---: | :---: |
| RID | WVGXCM9K01R Search expires on 12-08 12:54 pm |
| Download All \checkmark | |
| Program | (3) Citation ${ }^{\vee}$ |
| Database | SRA See details ${ }^{\checkmark}$ |
| SRA Blast s | ch set information |
| SRX7756764 | SRR11119764 |
| Query Length | 29521 |
| Other reports | (2) |

Fig.A9: Contigs identified from SRX7756766, SRX7756765 and SRX7756762 using BLAST results with pcDNA3.1 as the query sequence.

Using paired-end information and sequences from SRX7756765 alone, we managed to obtain the full-length vector backbones from the obtained sequences using De-Novo scaffold assembly.

Fig.A10: Complete sequence backbone of two cloning vectors obtained from SRX7756765.
These sequence backbones were then verified against SRX7756766, SRX7756765 and SRX7756762, Full coverage of the sequences by reads are obtained in all 3 datasets, which confirmed the existence of this vector in all 3 datasets.

Fig.A11: existence of the sequence backbone within $\underline{S R X 7756766, ~ \underline{S R X 7756765} \text { and } \underline{S R X 7756762}}$
This sequence was then mapped using The Addgene sequence Analyzer[3] and identified as a modified pCR3.1 vector, with a f1(+) origin to prepare (+)ssDNA in the same direction as the mammalian expression cassette beginning with a CMV promoter and terminating with a bGH poly(A) signal.

Fig.A12 :BLAST alignment of the assembled vector sequence against the NCBI $\mathrm{nr} / \mathrm{nt}$ database.
As sequences resembling mammalian expression vectors are unique to synthetic sequences, the identification of this mammalian expression vector backbone provides irrefutable proof of contamination of SRX7756766, SRX7756765 and SRX7756762 by customized, synthetic DNA sequences created with the intention of expressing foreign RNA and protein sequences within mammalian cells, which directly contradicts the claim of Xiao et al [4] that the samples were allegedly obtained from lung tissues of Malayan pangolins "confiscated by Customs and Department of Forestry of Guangdong Province in March and August 2019", which would not have contained any synthetic sequences due to their supposed origin from the wild.

A synthetic recombinant African Swine Fever Virus was found within PRJNA607174 During the sequence assembly process, one specific contig that was found to be divergent from the rest of the vector backbones in the 5'-terminus was obtained, which revealed itself to be the result of direct fusion of an African Swine Fever Virus genome to a vector containing the pBR322 origin sequence. We attempt to investigate further this sequence, which revealed an intact insert sequence in a separate, distinct vector backbone, originating from the African Swine Fever Virus isolate Wuhan-2019-1.

Fig.A13: A: partial DNA cassette from SRX7756765 harboring a fragment of DNA sequence from African Swine Fever Virus Wuhan-2019-1 inserted into a AGG1533-related backbone. B: One additional pair of reads just 5' to the insert sequence can be seen on the extreme 5' end of the alignment.

During assembly of the sequence, we obtained a single pair of reads from SRX7756765 which displays gene fusion to both the vector backbone, a sequence fragment from nearby the insert sequence and a sequence fragment from far outside of the insert sequence, with a distance between the two fragments being more than 7500bp apart. Such a peculiar sequence fusion is only possible if these two sequences transcribed from two distinct positions on the African Swine Fever Virus backbone were fused together through mRNA splicing, which require the fusion of the vector DNA and the ASFV genomic DNA as a single contiguous strand of DNA. This indicates the presence of an African Swine Fever Virus within the sample, containing an exogenously inserted synthetic DNA cassette into it's DNA genome replacing the DNA sequence from position 29104 to position 29498, making it a synthetic recombinant strain of ASFV. As no evidence of pig DNA was found within PRJNA607174, the presence of such recombinant African Swine Fever Virus within these supposedly wild samples of lung tissue have important implications on the integrity of Xiao et al[4] and the real sequence of events that happened during March-August 2019, the alleged collection date of the samples used in this study.
>gnl|SRA|SRR11119763.160830215.1 160830215 (Biological)
ACCCTGGCCCTTTTTCCAATGAAGGAGGTCCCAGTATGGCAGCTTTTCTTTTAAAGATGGC TGCCATCAATGTCTTCCTTTCGGCTACACTCCCATCCAGAGGAACCCTAAAAGCAGCCCA GGCTAATCTGCTGGAAAGACAGGTCACGAAG
>gnl|SRA|SRR11119763.160830215.2 160830215 (Biological)
ATGTTGGCATCTTTTATGGTCTTGTGGTTGACTGGGCTCAGCTACATGGTTCTTGCAGTG TTAGATGATTGCAGGCAGATGGTGGCTGGGGCTGGAGTTATCTGAAGGCTGGACATCCTG GATCGCTTCTTTACCCTCTTGTCTGGCACGT

African swine fever virus isolate ASFV Wuhan 2019-1, complete genome

Sequence ID: MN393476.1 Length: 190576 Number of Matches: 2
See 1 more title(s) マ See all Identical Proteins(IPG)
Range 1: 29023 to 29104 GenBank Graphics $\quad \nabla$ Next Match Δ Previous Match

Range 2: $\mathbf{3 6 6 6 5}$ to $\mathbf{3 6 7 1 0}$ GenBank Graphics $\quad \nabla$ Next Match Δ Previous Match $\boldsymbol{\Delta}$ First Match

Score	Expect	Identities	Gaps	Strand
91.7 bits(46)	$1 \mathrm{e}-14$	46/46(100\%)	0/46(0\%)	Plus/Minus
Query 1	GGTTTTGATTACAAAGGGTAGAAGCCCTTTTATTGAAACGTCTCGC 			
Sbjet 36710	GGTTMTGATT	AAAGGGTAGAAG	ATTGAAACG	C 36665

Cloning vector AGG1533, complete sequence
Sequence ID: MN720705.1 Length: $\mathbf{5 6 4 6}$ Number of Matches: $\mathbf{1}$
Range 1: $\mathbf{3 0 4 2}$ to $\mathbf{3 1 0 0}$ GenBank Graphics $\quad \nabla$ Next Match Δ Previous Match

Fig.A14: A pair of reads found within SRX7756765 Shows a triple fusion of two African Swine Fever Virus DNA fragments and a one pBR322 origin of replication.

Methods

Sequence extraction and alignment

The Multiple Cloning Site (MCS) sequence was obtained by BLAST analysis of reads with title "M13" found in SRX9503273. sequences aligned to the GD-1 reference genome MT121216 was masked, and the remaining end sequences of the reads were searched against the NCBI nr/nt database and
identified as a Multiple Cloning Site sequence. The 5 ' sequence and the 3 ' sequence was merged and used for downstream analysis.

This MCS sequence was then searched against SRX7756766, SRX7756765 and SRX7756762, which revealed matches to this sequence in all 3 datasets. This match was then searched against the NCBI $\mathrm{nr} / \mathrm{nt}$ database and identified as a Multiple Cloning Site from the cloning vector pcDNA3.1(+), with an additional inserted sequence identified as the coding sequence for the FLAG octapeptide DYKDDDDK.

Mammalian Expression Vectors from the NCBI nr/nt database are used to obtain alignments from SRX7756766, SRX7756765 and SRX7756762, the ILLUMINA sequencing adapter sequence Read 1: AGATCGGAAGAGCACACGTCTGAACTCCAGTCA and Read 2:
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT were trimmed away from the ends of the reads, and Contigs were de-novo assembled from the resulting alignments in SRX7756765 using EGassembler [2]. These contigs were identified as from cloning vectors and mammalian expression vectors in origin using the NCBI BLAST server and using the Addgene sequence analyser [3].

Assembly of full-length sequence of cloning vectors from SRX7756765

Contigs were analysed using the Addgene sequence analyser [3] and overlapping ends were identified. These overlapping ends are identified as being contiguous, and their order in the original sequence was deduced using Pair-end information from the SRX7756765 dataset. Specifically, spots matching the overlapping regions were obtained from $\underline{S R X 7756765}$ and the paired-end reads were aligned against each other in each spot and merged. Overlapping spots are obtained which fully bridges the assembly-related inconsistencies at the ends of each contig, which were then joined together into a single contiguous sequence using this information.

References

[1] Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W459-62. doi: 10.1093/nar/gkl066. PMID: 16845049; PMCID: PMC1538775.
[2] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14.
[3] https://www.addgene.org/analyze-sequence/
[4] Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, Li N, Guo Y, Li X, Shen X, Zhang Z, Shu F, Huang W, Li Y, Zhang Z, Chen RA, Wu YJ, Peng SM, Huang M, Xie WJ, Cai QH, Hou FH, Chen W, Xiao L, Shen Y. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020 Jul;583(7815):286-289. doi: 10.1038/s41586-020-2313-x. Epub 2020 May 7. PMID: 32380510.

Appendix: FASTA sequence of the assembled vector backbone isolated from PRJNA607174
>vector1
CTTGCGTCGTCAGCAATCTGCTCCCTATCACCGAGACCTCCAGCGCTAAGGAGGAGACCAGCCCTATTAAGGA AGAGACCTTCACCGAGACCGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGGACTACAAGGACGA CGATGACAAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCT GTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAG

GAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGG GGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAA CCAGTGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCA TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCT GGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGG AAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGC TGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGT AAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGC TACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTG AAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGT TTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGG GTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAACCTGAGGCTATGGCAGG GCCTGCCGCCCCGACGTTGGCTGCGAGCCCTGGGCCTTCACCCGAACTTGGGGGGTGGGGTGGGGAAAAGG AAGAAACGCGGGCGTATTGGCCCCAATGGGGTCTCGGTGGGGTATCGACAGAGTGCCAGCCCTGGGACCGA ACCCCGCGTTTATGAACAAACGACCCAACACCGTGCGTTTTATTCTGTCTTTTTATTGCCGTCATAGCGCGGGT TCCTTCCGGTATTGTCTCCTTCCGTGTTTCAGTTAGCCTCCCCCTAGGGTGGGCGAAGAACTCCAGCATGAGAT CCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGGCGG CGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCT CAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCAC GAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAG CGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCA AGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTT CGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACG TGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCG CATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCAC TTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTC GTGGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAA AAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCC AGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCG AAACGATCCTCATCCTGTCTCTTGATCGATCTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT GGAATAGCTCAGAGGCCGGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAAT GGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATT GAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTG AGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCA CAGCTGGTTCTTTCCGCCTCAGGACTCTTCCTTTTTCAATAAATCAATCTAAAGTATATATGAGTAAACTTGGTC TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTG ACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGA GACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGT CCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAA TAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA GCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGG TCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTC TTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGT ATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGA TGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACA

GGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTT CAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAA ACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGCGCCCTGTAGCGGCGCATTAAGCGC GGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTC TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGA TTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACA ACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAAT GAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTACGCGCGCGTTGACAT TGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGT TACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACG TATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCC ACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTAT TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGT CTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAA CTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCT AACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTTGGTAC CGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTC
>vector2
CTCGTGGTCTCAGCCTCAGCAATCAACTTTCTGCTGCTCCAGAACGGGTCAGCCGTGCTGAGATACTCAACAGT GAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCC ACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCA CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCG CTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACC ATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAAC CGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTA CAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA CAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGT GCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCA CATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGTCGACGA ACAAAAACTCATCTCAGAAGAGGATCTGAATGCTGTGGGCCAGGACACGCAGGAGGTCATCGTGGTGCCACA CTCCTTGCCCTTTAAGGTGGTGGTGATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCATCTCCCTTATCAT CCTCATCATGCTTTGGCAGAAGAAGCCACGTTAGGCGGCCGCTCGAGATCAGCCTCGACTGTGCCTTCTAGTT GCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCT AATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGG ACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAG GCGGAAAGAACCAGTGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAG CAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGTCCACAGAATCAGGGGATAACGCA GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGG ACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCG GATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCG GTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCG GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGAT TAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAG AACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGC

AAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTC AAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGT CATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTA TATATGAGTAACCTGAGGCTATGGCAGGGCCTGCCGCCCCGACGTTGGCTGCGAGCCCTGGGCCTTCACCCG AACTTGGGGGGTGGGGTGGGGAAAAGGAAGAAACGCGGGCGTATTGGCCCCAATGGGGTCTCGGTGGGGT ATCGACAGAGTGCCAGCCCTGGGACCGAACCCCGCGTTTATGAACAAACGACCCAACACCGTGCGTTTTATTC TGTCTTTTTATTGCCGTCATAGCGCGGGTTCCTTCCGGTATTGTCTCCTTCCGTGTTTCAGTTAGCCTCCCCCTAG GGTGGGCGAAGAACTCCAGCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTC CGAAGCCCAACCTTTCATAGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGT CGGTCATTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGA ATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATC ACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAA GCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGC ATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGAT CGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGT AGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTG AGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCG AGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCA GGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCA TCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTG CGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCGATCTTTGCAAAAGCCTAGG ССTCCAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGGGCCTCGGCCTCTGCATAAATAAAAAA AATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGTTAGG GGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACT TTCCACACCTGGTTGCTGACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTT CCACACCCTAACTGACACACATTCCACAGCTGGTTCTTTCCGCCTCAGGACTCTTCCTTTTTCAATAAATCAATCT AAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGT CTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGG CCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCC GGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAG CTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACG CTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGT GCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCAT GGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACT CAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATAC CGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATC TTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACC AGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAAT GTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGC GCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGC CCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAAT CGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATG GTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGT GGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCG ATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCT TACAATTTACGCGCGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCA TAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC

Abstract

CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGT GGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGAC GTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGT ACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCG GTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAAC GGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGG TCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCAC TATAGGGAGACCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGGCT TGGGGATATCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGG TGACTATCCATATGATGTTCCAGATTATGCTGGGGCCCAGCCGGCCAGATCTCCCGGGATCCGCGGCATGCAT CATCACCATCACCACGCATCTGGGGGAGCATTCTGTCTGATCGCCAACGAC >ASFV-like cassette TTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAG AAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTA TCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCGCCCCTGCAGCCGAATTATATTATTTTTGCCAAA TAATTTTTAACAAAAGCTCTGAAGTCTTCTTCATTTAAATTCTTAGATGATACTTCATCTGGAAAATTGTCCCAA TTAGTAGCATCACGCTGTGAGTAAGTTCTAAACCATTTTTTTATTGTTGTATTATCTCTAATCTTACTACTCGATG AGTTTTCGGTATTATCTCTATTTTTAACTTGGATAAGGTTCAATTCATTGTTTTTTTCATCATAGTGAATAAAATC AACTGCTTTAACACTTGTGCCTGAACACCATATCCATCCGGCGTAATACGACTCACTATAGGGAGAGCGGCCG CCAGATCTTCCGGATGGCTCGAGTTTTTCAGCAAGATCATACTCAGAATGCCTATTATATTTGTTGAATTGTAA GTGGCAACATAATGGCTTATTTTTTTGATGAGGTTGATGGAAAGGTTTAGGTGAGACAGTAGTAAGTTCAAGG TTTTCCTGGAAGATTTTGCTTTTATCGCCACTAGTAAACATTGTTCTATCTGTGCGTGGGTTGATTGAGGAATG AAATAGATTAAAATTTTTCTATGGTTATAGGTTGCAGCTTGTGTTAGAATAATATTTATATTATCTTTATTATGA TCATACTTTAAGGTTTCTAGGATAAAATCTAAGTATCCTTTGGCTGCCACCTTATGTAGGAGTTGTAGGCTTGA AAGCATGCGAATATCTAAATGATGATACTTATCGGGTACGATTCTGTTATATATAAATCTATACCCCAAACAAT ATAGATGTAGATCCTTATGGGCAATAGCACAATCTTTCTAGAAGATCTCCTACAATATTCTCAGCTGCCATGGA AAATCGATGTTCTTCTTTTATTCTCTCAAGATTTTCAGGCTGTATATTAAAACTTATATTAAGAACTATGCTAACC ACCTCATCAGGAACCGTTGTAGGTGGCGTGGGTTTTCTTGGCAATCGACTCTCATGAAAACTACGAGCTAAAT ATTCAATATGTTCCTCTTGACCAACTTTATTCTGCATTTTTTTTGAACGAGGTTTAGAGCAAGCTTCAGGAAACT GAGACAGGAATTTTATTAAAAATTTAAATTTTGAAGAAAGTTCAGGGTTAATAGCATCCATTTTTTGCTTTGCA AGTTCCTCAGCATTCTTAACAAAAGACGTCTCTTTTGACATGTTTAAAGTTTAAACCTCCTGTGTGAAATTATTA TCCGCTCATAATTCCACACATTATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGC TAACTCACATTAATTGCGTTGCGCTCACTGCCAATTGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTA ATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCG CTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAAT CAGGGGATAACGCAGGAAAGAACATGTGAGCC

