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A reduced reference metric for visual quality
evaluation of point cloud contents

Irene Viola, Member, IEEE, and Pablo Cesar, Senior Member, IEEE

Abstract—Point cloud representation has seen a surge of pop-
ularity in recent years, thanks to its capability to reproduce volu-
metric scenes in immersive scenarios. New compression solutions
for streaming of point cloud contents have been proposed, which
require objective quality metrics to reliably assess the level of
degradation introduced by coding and transmission distortions.
In this context, reduced reference metrics aim to predict the
visual quality of the transmitted contents, while requiring only
a small set of features to be sent in addition to the streamed
media. In this paper, we propose a reduced reference metric to
predict the quality of point cloud contents under compression
distortions. To do so, we extract a small set of statistical features
from the reference point cloud in the geometry, color and normal
vector domain, which can be used at the receiver side to assess
the visual degradation of the content. Using publicly available
ground-truth datasets, we compare the performance of our metric
to widely-used full reference metrics. Results demonstrate that
our metric is able to effectively predict the level of distortion
in the degraded point cloud contents, achieving high correlation
values with respect to subjective scores.

Index Terms—objective quality metric, point cloud, compres-
sion, reduced reference metric

I. INTRODUCTION

Recent advances in 3D acquisition and rendering technolo-
gies, such as low-cost sensors and cross reality (XR) devices,
as well as commodity hardware with sufficient computational
power, have led to a renewed interest in photo-realistic im-
mersive virtual reality experiences. In order to enable free
movement in the virtual world in 6 degrees of freedom, a three-
dimensional representation model is needed. Among others,
point cloud represents a popular format to acquire, transmit
and render volumetric content. However, the large amount of
data comprising a point cloud content can easily become a
bottleneck in current storage and delivery systems. To alleviate
the problem, point cloud compression has been extensively
examined in recent years, and a new compression standard is
expected to be released by the MPEG standardisation body [1].

In order to design and evaluate new compression solu-
tions that effectively remove redundancy in the data, without
compromising on its visual quality, subjective or objective
measures of quality distortions are usually employed. While
the former is commonly considered as ground-truth informa-
tion regarding the perceptual merit of distorted contents, it
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is cumbersome and expensive to execute. Thus, great effort
has been spent in the literature in order to create algorithmic
solutions that can mimic users’ perception. Objective metrics
for visual quality assessment are commonly classified as Full
Reference (FR), Reduced Reference (RR) and No Reference
(NR), depending on the availability, at computation time, of
undistorted reference information. FR metrics are undoubtedly
the most popular for point cloud contents, as they can leverage
information from the entire uncompressed content to estimate
the distortion. On the other hand, RR and NR metrics can
be usefully employed when little to no information is known
about the original content, which is a common occurrence
at the receiver’s side in broadcast and streaming scenarios.
However, to the best of our knowledge, no RR or NR metric
has been proposed yet for point cloud contents.

In this paper, we propose a new RR metric for visual quality
assessment of point cloud contents. In particular, we extract a
small set of features from a given reference content, based on
both structure and attribute domains. Such features are then
transmitted alongside the content, and are used at the receiver
side in order to predict the visual quality of the content under
exam. Moreover, we find the best combination of the proposed
features through a linear optimization algorithm. We test the
validity of our metric on four publicly available point cloud
datasets with ground-truth subjective scores. Our results show
the informative value of our features, demonstrating that our
metric is capable of accurately predicting the visual quality
of point cloud contents and achieving better performance
with respect to well-established FR point cloud metrics. An
implementation of the proposed metric is available here:
https://github.com/cwi-dis/PCM RR.

II. RELATED WORK

FR objective quality metrics for point cloud contents can
be broadly classified as a) point-based or b) projection-based.
In point-based metrics, correspondences between the points in
the reference and distorted contents are used as the basis for
the computation. Several point-based approaches have been
proposed in the literature to assess distortions in the geometry
and color domain. Point-to-point metrics are computed using
the Euclidean distances between pairs of associated points
that belong to the reference and the content under assess-
ment [2]. Point-to-plane metrics, on the other hand, rely on
computing the projected error between a displaced point and
a corresponding normal vector in the associated reference
point cloud [3]. A point-to-mesh approach has also been
proposed, in which the distance between a displaced point and
its reference reconstructed surface is computed [4]. However,
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TABLE I
FEATURE VECTOR ΦS FOR GEOMETRY AND LUMINANCE PROPERTIES.

Feature Name Definition

Mean f1 = 1
P

∑
i si

Std f2 =
√

1
P

∑
i (si − f1)2

Median f3 = 1
2

(Ŝ⌊P+1
2

⌋ + Ŝ⌈P+1
2

⌉)

Mode f4 = {si | P(si) ≥ P(sj), j 6= i}
Entropy f5 = −

∑
i P(si) log2 P(si)

Energy f6 =
∑

i P(si)
2

Sparsity f7 =
|Z|
NB , Z = {si | P(si) 6= 0}

as the method relies heavily on the mesh construction process,
it is considered suboptimal. Plane-to-plane metrics have been
suggested, using angular similarity among normal vectors
in reference and distorted point cloud objects to assess the
level of impairment [5]. Once the point distances have been
calculated, the overall geometric distortion is usually measured
using Mean Squared Error (MSE) or Hausdorff Distance, and
a measure of quality can be expressed using Peak Signal to
Noise Ratio (PSNR). Using similar approaches, the changes to
the color attribute introduced during compression can also be
measured at each point. A generalized Hausdorff distance has
been proposed to improve the performance of geometry-based
metrics [6], as well as a scale-invariant, point-to-distribution
geometry metric based on Mahalanobis distance [7]. Recently,
curvature statistics have also been proposed in order to esti-
mate the distortion of a point cloud with respect to its reference
[8], and they have been extended to include color informa-
tion [9]. Viola et al. incorporate color distortion in geometry-
based metrics, using luminance histogram information [10],
whereas Diniz et al. use local binary pattern descriptors to
estimate texture distortion [11]. In [12], Alexiou et al. propose
the usage of local statistical features in order to obtain a global
measure of degradation, similarly to the Structural Similarity
Index (SSIM) in the image domain.

Projection-based metrics rely on mapping the original and
distorted point clouds on planar surfaces, and then using
popular image quality assessment metrics on the resulting
projected images. The approach has the advantage of naturally
combining geometry and color distortions; moreover, it can
leverage existing image distortion metrics, such as PSNR and
SSIM. The approach has been pioneered by Queiroz et al [13]
to drive the rate-distortion optimization in their codec, and its
performance has been analyzed in [14]. Alexiou et al. [15]
investigated the impact of the number of viewports on the
performance of the metric, and proposed a weighting system
based on user interaction.

III. PROPOSED METRIC

RR metrics need to rely on extracting a set of features from
a reference content in order to predict the level of distortion in
the content under assessment. As the set of features needs to be
transmitted alongside the content, it needs to be as informative
as possible while maintaining a low cardinality. RR metrics
have been adopted in the image and video community in
order to produce a real-time estimation of visual quality at
the receiving side of the transmission [16], [17]. However,

TABLE II
FEATURE SET ΦN FOR NORMAL CONSISTENCY PROPERTIES.

Feature Name Definition

Mean of Means f1 = 1
kP

∑
i

∑
j θ(i, j)

Mean of Stds f2 = 1
k

∑
j
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Std of Means f4 =
√

1
P

∑
i ( 1
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adapting a RR framework to point cloud contents requires
rethinking in terms of what dimensions will be affected by
compression and transmission distortions. Traditional static
2D contents lie on a regular grid, which is unlikely to be
tampered with. Hence, distortions will likely be present in the
luminance or color domain. On the other hand, static point
cloud contents can be distorted in the geometrical domain,
along with the point attributes domain. In our work, we
propose to use statistical features computed on the geometry
information, luminance channel, and normal vectors, in order
to measure the level of distortion of a degraded point cloud
content.

A. Geometry-based features

Distortions in the geometrical composition of a point cloud
content include reduction in the number of points, such as
compression-based artifacts, or their displacement, such as
additive Gaussian noise [18]. The intuition behind this work
resides in the fact that both types of distortions will likely
result in changes in the statistical distribution of the points
along the three axes (x, y, z).

Given a point cloud P , comprised of P points pi(xi, yi, zi),
we define the set X as the coordinates of all the points along
the x-axis:

X := {xi | pi(xi, yi, zi) ∈ P} (1)

Sets Y,Z are similarly defined. For each set X ,Y,Z , we
also compute the relative histograms HX , HY , HZ , defined
as the probability P(xi) that a point pi ∈ P would have
coordinate xi ∈ X (respectively, P(yi) for yi ∈ Y , and P(zi)
for zi ∈ Z). The number of bins NB in the histogram is
based on the maximum range of the set. For each of the three
sets, a vector of features ΦG

S is then computed. To minimize
the impact of the point cloud orientation in 3D space, the
feature set ΦG is obtained through max pooling, resulting in
7 features. Table I gives a definition of the feature vector Φ
for a given set S. Note that Ŝ denotes the ordered list of S.

B. Luminance-based features

When it comes to measure distortion on the color attributes
of a point cloud content, it has been shown that computing
global characteristics, such as color histograms, allows to bet-
ter capture the perceptual level of degradation with respect to
point-based solutions [10]. Following the recent literature, we
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compute our features in the luminance channel, which shows
better correlation with human perception of color [19]. We
convert the color attributes R,G,B at each point pi ∈ P using
the matrix defined in ITU-R Recommendation BT.709 [20], in
order to obtain the set L, comprised of all the luminance-
channel attributes of point cloud P . We also compute the
luminance histogram HL, defined as the probability P(ỹj)
that a point pi ∈ P has luminance value ỹj . In this case,
NB = 256. The chosen set of features is defined similarly to
geometry-based features in section III-A, and is summarized
in Table I. Thus, the set ΦL is comprised of 7 features.

C. Normal-based features

Normal attributes indicate the orientation of a given point
in 3D space; as such, they are informative on the underlying
planar surface of which the points can be considered as a
sample. Thus, they have been used in the literature as an
indicator for visual distortions in the geometrical domain of
a given point cloud [3], [5]. In order to extract meaningful
features from our point cloud contents, we first introduce the
notion of normal consistency as a measure of the similarity
between the normal vector of a point, with respect to the
normal vectors of its neighbors. In particular, for each point
pi ∈ P with normal vector ni, we select the set K of k-
nearest neighbors of pi, sorted according to distance. Then,
for each point pj ∈ K, we compute the angular similarity
θ(i, j) ∈ Θ between ni and nj , following [5]. The result is
matrix Θ ∈ RP,k.

As there are two dimensions to Θ, the feature set ΦN

cannot be obtained by directly applying what seen in Table I.
Moreover, the values under exam more closely resemble
a continuous distribution, whereas sets X ,Y,Z and L are
discrete. Thus, we redefine the feature vector to be more
informative of the normal consistency attributes. In particular,
we do not use the concept of mode, as the probability of a
single value for continue distributions is equal to 0. Moreover,
we define the histogram HN as the probability P(θ̃i) that the
value θ̃i, obtained by averaging the values of θ across k, lies
in a predetermined interval, induced by the number of bins
NB . The set ΦN is comprised of 7 features, summarized in
Table II.

D. Unified perceptual quality score

The feature sets ΦG,ΦY ,ΦN , comprised of 21 features
f̂i extracted from a given distorted point cloud content, are
compared to the features extracted from the corresponding ref-
erence content. In particular, for each pair of features (fi, f̂i),
we compute the absolute difference di = |fi − f̂i|. We then
obtain our perceptual quality score as a linear combination of
such differences:

PCMRR =
∑
i

widi. (2)

The weights wi ∈ [0, 1] are obtained and validated via training
on a point cloud dataset, as described in the following section.

TABLE III
PERFORMANCE RESULTS OF THE PROPOSED METRIC IN THE

CROSS-VALIDATION ON M-PCCD [21].

SRCC ↑ PLCC ↑

PCMRR (LpOCV) 0.826 (σ = 0.102) 0.798 (σ = 0.111)
PCMRR (MCCV) 0.907 (σ = 0.028) 0.901 (σ = 0.029)

D1 0.759 0.720
D2 0.807 0.756

IV. RESULTS

A. Experimental setup

To train and evaluate our metric, we use the publicly
available dataset M-PCCD [21], consisting of subjective and
objective quality scores assigned to 8 point cloud contents
(4 human bodies, 4 inanimate objects) under compression
distortions, resulting in 232 stimuli. We extract the features
described in Section III from the reference and distorted
point clouds. As normal vectors were not given along with
the dataset, we estimate them using the built-in MATLAB
function. For the computation of Θ, we set k = 9, while the
corresponding NB = 300. Features are computed and stored
in single float precision, requiring 84 bytes to be transmitted.

To obtain the weights wi, we run a linear optimization
algorithm, which aims at maximizing the Pearson Linear
Correlation Coefficient (PLCC) between our metric PCMRR

and the corresponding subjective scores, after logistic fit-
ting [22]. To see how the metric generalizes to previously
unseen contents, we perform Leave p Out cross-validation
(LpOCV) by selecting 4 contents out of the 8 provided to be
used for testing, and training on the remaining 4. We repeat
the procedure for all

(
8
4

)
= 70 pairs, and we report the average

performance. Additionally, we perform Monte Carlo cross-
validation (MCCV) with 100 random splits on our dataset
(80% training, 20% test). Finally, we perform cross-dataset
validation on 3 additional point cloud datasets: PointXR [23],
IRPC [24], and SJTU-PCQA [25], using the optimal weights
defined in the LpOCV step. The PointXR dataset includes 5
static point cloud contents depicting cultural heritage, encoded
using an octree-based geometry module and 2 different color
compression schemes. The IRPC dataset includes 6 point
cloud contents under 3 types of geometric compression dis-
tortion, which are evaluated in 3 different settings, only one
of which includes undistorted color information. The SJTU-
PCQA dataset, finally, includes 9 contents under 7 types of
distortions, both on the color and geometry domain. Following
ITU-T Recommendations P.1401 [22], the performance of
our metric is assessed using the Spearman Rank Correlation
Coefficient (SRCC), along with the aforementioned PLCC,
to account for monotonicity and linearity, respectively, after
logistic fitting.

B. Results

Table III reports the mean correlation coefficient, along
with the corresponding standard deviation σ, obtained through
cross-validation in dataset M-PCCD [21]. To offer a com-
parison with widely-used metrics in the state of the art, we
also report the results of metrics D1 and D2, as defined
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Fig. 1. Optimal weights for each feature, averaged across the LpOCV splits,
with relative 95% confidence intervals.

TABLE IV
CROSS-DATASET VALIDATION ON POINTXR [23], IRPC [24] AND
SJTU-PCQA [25]. WEIGHTS FROM LpOCV ON M-PCCD [21].

PointXR IRPC SJTU-PCQA-1 SJTU-PCQA-2

SRCC ↑ 0.928 0.302 0.820 0.830
PLCC ↑ 0.956 0.434 0.821 0.821

and employed in the MPEG standardization efforts [1]. As
no training of parameters is involved, correlation results are
reported for the entire dataset. However, it should be noted
that those metrics are full reference, thus including infor-
mation from the full point cloud content, and only assess
distortion in the geometrical domain. We refer the reader to
the supplemental material, as well as [21] and [10], for a
more complete benchmarking on the same dataset. It can be
observed that our metric is outperforming the aforementioned
FR solutions both in terms of PLCC and SRCC, for both
cross-validation methods. Figure 1 depicts the optimal weight
for each feature, averaged across the 70 pairs in the LpOCV,
with relative confidence intervals. Features are grouped per
feature set to facilitate comprehension. It can be observed
that the two largest weights (0.285 and 0.141) are assigned to
features f6 in set ΦL and f1 in set ΦG, which corresponds
to the energy of the luminance histogram, and the mean
in the geometry domain, respectively. Generally, the weights
appear to be balanced between structure and color information,
although less weight is given to normal vector features: set ΦL

accounts for 48.47% of the total weights, whereas sets ΦG and
ΦN comprise 51.53% (41.54% and 9.99%, respectively).

Table IV reports the results of cross-dataset validation on the
three datasets PointXR [23], IRPC [24] and SJTU-PCQA [25],
using the weights illustrated in Fig. 1. For the PointXR dataset
we select the alternating variant, as it was associated with
better accuracy. To ensure a fair evaluation, for the IRPC
dataset we select the experiment in which both geometry and
color were rated. Similarly, for the SJTU-PCQA dataset we
select distortions Downsampling + Color Noise (SJTU-PCQA-
1) and Geometry Gaussian Noise + Color Noise (SJTU-
PCQA-2). The best performance is obtained on the PointXR
dataset, followed by the SJTU-PCQA-2 and SJTU-PCQA-1
datasets. This might be explained by the fact that the type
of distortions in the two datasets more closely resemble the
training dataset M-PCCD, as they apply geometrical and color
distortions simultaneously. In particular, despite the fact that

TABLE V
ABLATION STUDIES ON M-PCCD [21].

ΦG ΦL ΦN Φ{G,L} Φ{G,N} Φ{L,N} PCMRR

SRCC ↑ 0.694 0.841 0.655 0.850 0.761 0.817 0.826
PLCC ↑ 0.672 0.816 0.667 0.822 0.754 0.790 0.798

different types of geometric distortions are present in SJTU-
PCQA-2 and SJTU-PCQA-1, our metric is able to capture
random displacements as well as variations in the number
of points, as shown by the similar performance in the two
datasets. On the other hand, the worst results are obtained for
dataset IRPC. The dataset was created by applying distortions
uniquely on the geometry domain, while the color information
was uncompressed, and obtained through recoloring. Thus,
the color information may act as a distractor [12], hiding
impairments in the geometry domain. As our proposed weights
heavily include a measure of color distortion, a less than
optimal performance in this dataset is to be expected.

We refer the readers to the supplemental material for the
exact value of the optimal weights for each feature. Using
the optimal weights, the performance on the entire M-PCCD
dataset is PLCC = 0.868 and SRCC = 0.889.

C. Ablation studies

In order to understand the prediction power of our features,
we run ablation studies on the dataset M-PCCD [21]. In
particular, we run our linear optimization algorithm on the
feature sets ΦG, ΦL, ΦN (7 features each), and pairwise
combinations Φ{G,L}, Φ{G,N} and Φ{L,N}. Results are sum-
marized in Table V, where they are compared to the full feature
set PCMRR := Φ{G,L,N}. Results are shown on average over
LpOCV splits. Among the single feature sets, ΦL achieves the
best performance, showing that luminance distortion is the
best indicator of global visual quality on the dataset under
exam. However, clear gains can be observed when geometry
information is added to the luminance features, as shown
by the increase in performance for Φ{G,L}. Moreover, it is
shown that combining geometry and normal features greatly
improves the performance over the single sets, achieving closer
performance to ΦL. The best performance is achieved when
only geometry and luminance features are used, which might
lead to the assumption that normal features are not necessary.
However, when using only the features in set Φ{G,L}, a poorer
performance was obtained across other datasets (e.g., PointXR,
SRCC = 0.899; SJTU-PCQA-1, SRCC = 0.794) indicating
worse generalization capabilities.

V. CONCLUSION

In this paper, we propose a reduced reference metric for vi-
sual quality assessment of point cloud contents. Our set of fea-
tures, extracted from reference point cloud contents, requires
few bytes to be transmitted alongside the content. Results on 4
publicly-available datasets demonstrate the informative value
of our proposed features, and confirm the high performance of
our metric. Future work will focus on testing the metric on a
larger array of degradations, and test whether the feature space
can be further reduced. An implementation of the metric can
be found here: https://github.com/cwi-dis/PCM RR.
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