Inner CGM virialization and its implications for disk galaxies, star formation and galactic winds "ICV"

Claude-André Faucher-Giguère Northwestern | CIERA

Jonathan Stern (see poster!), Drummond Fielding, Daniel Anglés-Alcázar, Sarah Wellons, Mike Grudić, Alex Richings, Alex Gurvich, Lindsey Byrne, Zach Hafen, José Flores, Megan Tillman, Phil Hopkins, Dusan Kereš, Eliot Quataert, Norm Murray + FIRE team

When do galaxies have large disks, and why?

DM halos have invariant AM profiles \Rightarrow something other than AM conservation must be important (cf. Fall & Efstathiou 80; MMW98, ...)

What drives observed redshift evolution?

High-z galaxies

z~0.5 z~1 z~2 HST

Local disk galaxy (M63)

disks increasingly common with decreasing z

Guo+15; R. Gendler

Roman: HST resolution but 100x FoV

→ greatly improved ability to test disk formation models, especially at high redshift

FIRE: Feedback in Realistic Environments

- Cosmological "zoom-ins" resolving GMCs
- Metal and molecular cooling to T~10 K; SF in dense, self-grav. gas
- Stellar feedback (SNe II&Ia, stellar winds, radiation)
 based on STARBURST99
- ISM properties, SF regulation, outflows, etc. emerge from energy injection on the scale of star-forming regions

Project web site: http://fire.northwestern.edu

z=0 mock Hubble images from FIRE

edge-on thin disk

Hopkins..FG+18

Multiple transitions occur at the same time, at $\sim L^*$

high gas density

rapid cooling (t_{cool}<t_{ff}) everywhere ("free fall")

accreting gas crashes supersonically onto galaxy

high gas density

rapid cooling (t_{cool}<t_{ff}) everywhere ("free fall")

accreting gas crashes supersonically onto galaxy

intermediate

slow cooling in outer halo, rapid in inner halo ("transonic")

still crashes supersonically

high gas density

rapid cooling (t_{cool}<t_{ff}) everywhere ("free fall")

accreting gas crashes supersonically onto galaxy

slow cooling in outer halo, rapid in inner halo ("transonic")

still crashes supersonically

low gas density

slow cooling (t_{cool}>t_{ff}) all the way galaxy ("cooling flow")

~hydrostatic

Outside-in CGM virialization in FIRE

Stern, FG+20b

Inner CGM virialization (ICV) → disk formation

Inner CGM virialization (ICV) → disk formation

ICV → bursty SF transition, wind suppression

ICV → bursty SF transition, wind suppression

Cartoon picture

High z, low mass

- free fall accretion + bursty feedback into low-pressure halo
- galaxy repeatedly blows itself apart in "inflow-SF-outflow" cycles

Cartoon picture

High z, low mass

Low z, high mass

in detail, sensitive to galaxy size, $v_c(t_{\rm ff})$, inner CGM metallicity ($t_{\rm cool}$)

- free fall accretion + bursty feedback into low-pressure halo
- galaxy repeatedly blows itself apart in "inflow-SF-outflow" cycles

- disk stably confined by hot inner CGM
- galactic winds suppressed by halo gas pressure
- SFR regulated to steady state

Summary: ICV explains multiple transitions at ~L* in FIRE

 $\eta = \dot{M}_{out}/SFR$