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Abstract—Recently, the wake-up scheme has been proposed to
enhance the energy-efficiency of 5G mobile devices and prolong
its battery lifetime while reducing the buffering delay. The
existing wake-up optimization mechanisms use off-line methods
and are tied to specific traffic models. In this paper, a novel
concept of wake-up scheduling is introduced to further reduce
the energy-efficiency of mobile devices and to deal with realistic
traffic. The main idea is to use a fixed configuration of the wake-
up scheme and adjust the scheduling of the wake-up signals
dynamically. For this, a proactive wake-up scheduler is proposed
to take online decisions based on traffic prediction. Towards this
end, a framework to predict packet arrivals based on recurrent
neural networks is developed. Numerical results show that for
given delay requirements of video, audio streaming, and mixed
traffic flow, the proactive wake-up scheduler reduces the power
consumption of the baseline wake-up scheme without scheduler
by up to 36%, 28% and 9%, respectively.

Index Terms—5G, machine learning, wake-up scheme, energy
efficiency, LSTM.

I. INTRODUCTION

The emerging fifth generation (5G) mobile networks have
shown a promising capability to offer futuristic mobile appli-
cations and services. Such services require an increase in data
rates and enhanced quality-of-service (QoS) compared with
current wireless standards, and they are realized in New Radio
(NR) based 5G systems by adopting higher transmission band-
width, higher modulation orders, advanced coding techniques,
and sophisticated multi-antenna schemes [1]. However, the
utilization of such computationally intensive techniques comes
at the cost of higher energy consumption and can deplete the
battery of mobile devices very quickly.

The 3rd generation partnership project (3GPP) has specified
discontinuous reception (DRX) as the de facto power saving
mechanism for long-term evolution (LTE) based fourth gener-
ation (4G) systems [2], [3] and NR based 5G systems [4].
However, it has been shown in [5] that the time period
that a DRX-enabled mobile device spends monitoring the
physical downlink control channel (PDCCH) without any data
allocation has a major impact on its battery lifetime. In order to
reduce the energy consumption of unscheduled cycles in DRX,
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the wake-up scheme (WuS) has been recently proposed in [6].
In WuS, the mobile device monitors a narrow-band wake-
up signaling periodically (every wake-up cycle) at specific
time instants and subcarriers, which indicates to the device
whether to process the upcoming PDCCH or remain in sleep
mode. As soon as a packet arrive at the transmission buffer
of the base station, the wake-up indicator is assumed to be
sent at the next upcoming wake-up instant. In our previous
work [7], we introduced an off-line method to optimize the
WuS configuration (i.e., the wake-up cycle period) based on
a delay bound under the assumption of Poisson traffic.

Instead, in this paper we introduce a novel concept called
wake-up scheduling to further reduce the power consumption
of the mobile device. The main idea is of using a fixed
WuS configuration and then adjusting the scheduling of the
wake-up signals dynamically by determining whether to wake-
up the device or not. In particular, we propose a proactive
scheduler, which takes on-line decisions every wake-up cycle
based on traffic predictions over a forecast horizon. A multi-
step Long Short-Term Memory (LSTM) neural network is
trained with data from real user applications and tailored for
traffic prediction purposes. To the best of our knowledge, this
is the first attempt to introduce on-line wake-up scheduling
decisions with traffic prediction capabilities into WuS. In
addition, differently to previous works in [6], [7], the proposed
scheduler is not tied to specific traffic models.

The rest of this paper is organized as follows. Section II
briefly reviews the WuS principle of operation1 and introduces
the proposed wake-up scheduling concept. Then, Section III
presents the proactive scheduler. These are followed by simula-
tion results and conclusions in Sections IV and V, respectively.
Terminology-wise, according to NR specification [1], we use
gNB to refer to a base station and UE to denote a mobile
device.

II. WAKE-UP SCHEDULING CONCEPT

A. Review of wake-up scheme

In WuS, the cellular modem is configured with a wake-up
receiver (WRx), as a companion low-complex single-purpose

1Throughout this work, the term WuS is used interchangeably with WuS
without scheduler, which is used as a baseline reference method.
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Figure 1. Operation and corresponding parameters of WuS, without scheduler.

receiver in order to decode the wake-up signaling [6]. WuS
allows the terminal to reduce the energy consumption by
switching off the modem for long periods of time, activating
the modem (ON mode) only for short intervals to decode data
and control plane signals.

At every wake-up cycle (w-cycle), represented as tw, the
WRx monitors a wake-up signaling for a specific on-duration
time (ton) to determine if any data is scheduled or not (see
Fig. 1). Occasionally, based on the interrupt signal from WRx,
the modem switches on, decodes both PDCCH and physical
downlink shared channel (PDSCH), and performs connected-
mode procedures. The wake-up signaling on each w-cycle is
represented by 1-bit, referred to as wake-up indicator (WI),
where 0 indicates WRx to not wake up the modem (remaining
in OFF mode) and 1 triggers WRx to wake up the modem
(moving to ON mode) because there is a packet to receive [6].
When WI=1 is sent to WRx, the gNB expects the target
mobile device to decode the PDCCH with a time offset
equal to the start-up time (tsu). After successful decoding
of PDCCH/PDSCH, the UE initiates its inactivity timer with
duration ti. After the inactivity timer is initiated, if a new
PDCCH message is received before the expiration of inactivity
timer, the UE re-initiates its inactivity timer. However, if there
is no PDCCH message received before the expiration of the
inactivity timer, a sleep period starts.

In WuS, if there is one or more packet arrivals during the
sleep state, the gNB sends WI=1 to the target UE at the next
upcoming wake-up instant (as shown in Fig. 1). However, if
the WuS configuration (namely, tw and ti) is not properly
optimized for the upcoming traffic, the immediate waking up
of the UE can either adversely increase its energy consumption
and eventually decrease the benefits of using WuS (meaning
that the UE can tolerate longer w-cycles) or even create a worst
case scenario, in which the UE may not even satisfy its delay
requirements (implying the need for shorter w-cycles) [7].

B. Wake-up scheduling

In our proposal, both w-cycle (tw) and inactivity timer (ti)
are configured semi-statically, and the desired power and delay
trade-off is achieved by adjusting the wake-up instant. More
precisely, the wake-up scheduler does not send WI=1 as soon
as there is a packet in the w-cycle, but waits until some
condition is met; for instance, until the number of buffered
packets at gNB for a given UE is larger than a predefined
buffer size threshold, or until the estimated average buffering

Time scheduling cycle

n-
1-

th
 p

ac
ke

t a
rr

iv
al

n 
th

 p
ac

ke
t R

x

n-
th

 p
ac

ke
t a

rr
iv

al

n+
1-

th
 p

ac
ke

t a
rr

iv
al

N
um

be
r 

of
 b

uf
fe

re
d 

pa
ck

et
s

P
ow

er

n-
1 

th
 p

ac
ke

t R
x

n+
1 

th
 p

ac
ke

t R
x

n+2-th packet arrival

n+
3-

th
 p

ac
ke

t a
rr

iv
al

ON mode

n 
th

 p
ac

ke
t R

x

n+
2 

th
 p

ac
ke

t R
x

n+
3 

th
 p

ac
ke

t R
x

OFF mode

Time 

Figure 2. Wake-up scheduling concept, for the case that the gNB sends WI=1
once the buffered packets is 3.

delay exceeds a predefined threshold. The former condition is
illustrated in Fig. 2, where gNB does not send WI=1 until the
number of buffered packets reaches to 3, and it takes four w-
cycles to reach the threshold. This way, instead of switching
on the UE for three times, it is switched on only once after the
fourth w-cycle. In this paper, we focus on the latter condition
in order to allow the network to meet maximum tolerable
delays of the target applications, as explained in the next
section in detail.

The main motivation behind not sending WI=1 as soon as
a packet arrives at the gNB but rather waiting and sending
the packets consecutively, is that the state-of-the-art modems
suffer from large start-up and power-down stages [6]. There-
fore, it is desired in terms of energy-efficiency that once the
modem is at ON mode, it receives multiple packets, and not
a single packet. Although, waiting for longer times to buffer
packets can eventually increase the buffering delay. This extra
buffering delay should not be problematic as long as the
average delay is maintained within a maximum bound.

Under the wake-up scheduling, the ON and OFF periods of
the UE vary based on its traffic dynamics. For this purpose, we
define the scheduling cycle as the length of a full cycle of OFF
and ON modes. The scheduling cycle starts from expiry of the
inactivity timer of the previous scheduling cycle, and ends by
the expiry of the current cycle’s inactivity timer. During the
ON mode, the modem consumes the high power of PWon,
and either it is processing the packets or its inactivity timer
is running. For the modem during OFF mode, packets are
buffered, and it consumes low power of PWoff .

The scheduler can be located at the network side (e.g.,
MAC layer of the gNB), and hence all the computationally
intensive processing is performed by the network. Without
loss of generality, we assume that the UE can process a single
packet (regardless of its size) per transmission time interval
(TTI) and that the packet arrival rate is at most one packet per
TTI. TTI of 1 ms is assumed. Also, we assume that packets
are served individually based on first-input first-output.
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III. PROACTIVE SCHEDULER

Proactively knowing the packet arrival times for a forecast
horizon, allows the UE to remain at OFF mode for longer
periods. The proposed scheduler balances power consumption
and packet delay by adaptively and autonomously determining
when to send the WI, according to the traffic pattern and a
maximum tolerable delay (denoted by Dmax). The proactive
scheduler does not assume any a priori knowledge about the
traffic statistics, and thus it is general and can be applied to
all traffic distributions as well as mixed traffic combinations.
The proposed scheduler increases the sleep period of the UE
as much as possible in a greedy manner by not sending WI=1
until the average buffering delay approaches Dmax.

For this purpose, the average delay is estimated for k
packets, in every w-cycle. In the proposed scheme, traffic
predictor forecasts the packet arrival times of the target UE
for the forecast horizon of one w-cycle based on past packet
arrival times. In other words, the traffic predictor observes
the session’s packet arrival time for p previous TTIs until
beginning of the current TTI (c) and then predicts the packet
arrival times for the upcoming w-cycle with TTI indexes of
[c, c + tw).

Furthermore, in every w-cycle, a delay estimator block esti-
mates the average buffering delay (D̂) of k packets, assuming
that the UE is switched on at the end of the upcoming w-
cycle. If D̂ is higher than Dmax, the network realizes that the
only way to have shorter delay is by sending WI=1 promptly.
Otherwise (D̂<Dmax), it leaves the UE to remain in OFF mode
for at least another w-cycle. Finally, a delay comparator block
performs the task of comparison and decision making (i.e.,
whether to send WI=1 or WI=0) accordingly.

The overall block diagram of the proposed proactive wake-
up scheduler is shown in Fig. 3. The different modules and
variables are described below.

A. Dataset from real traces

In this paper, the performance of the proactive wake-up
scheduler is investigated using real video and audio streaming
traces. For this, we monitored one operative network in Spain
during one month using the online watcher presented in [8].
We have selected only those traces gathered during the night
hours (1am - 6am) to be sure that the selected cell is serving
very few users. This allows us to assume that our traces are
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Figure 4. Proposed architecture for the packet arrival time prediction.

not affected by the packet scheduler at the base station, since
an adequate number of radio resources per TTI is available to
accommodate all the transmitting UEs.

Our dataset includes two columns: the Identifier of the UE,
and the timestamp of the packet arrival (with TTI granularity).
The classifier introduced in [9] is used to properly select the
traces of the apps of interest. The collected dataset consists
of 1500 sessions of different traffic type. For the sake of
comparison, we also generated Poisson traffic with mean
packet arrival rate of 0.2 p/TTI (video and audio traffics have
varying packet arrival rates up to 0.2 p/TTI) and added them
to the dataset.

B. Traffic predictor

The traffic prediction can be formulated as a time series
forecasting problem, where the packet arrivals at each TTI are
defined as the values of the time series. The dataset with size
z for a particular traffic type is represented by xt|z1, where xt

indicates the packet arrival time during the tth TTI.
In this work we tailor a stacked LSTM neural network

architecture [10] to predict the next packet arrivals over a finite
horizon. We choose LSTM since it has been proven in [10]–
[12] to have lower prediction errors than other time series
forecasting approaches, such as auto regressive integrated
moving average (ARIMA) [13].

In the proposed architecture, multiple LSTM units are
concatenated to form one layer of the LSTM network. Each
unit computes the operations on single TTI and transfer the
output to the next LSTM unit. The number of concatenated
units indicates the number of TTIs (p) that are considered
before making the prediction. The proposed architecture for
the traffic predictor is depicted in Fig. 4. The LSTM unit
of each layer extracts a fixed number of features, which are
passed to the next layer. The depth of the network (e.g.,
the number of layers) is to increment the accuracy of the
prediction, which is done by the last fully connected layer.

As shown in Fig. 3 and 4, the proposed network observes
xt|c−1

c−p and, then, predicts the traffic in the upcoming w-cycle
x̃t|c+tw−1

c by delaying the prediction for the duration of tw.
Finally, the output of the LSTM network (ht|c+tw−1

c ) is fed
to a fully connected neural network that performs the actual



Table I
TRAINING HYPERPARAMETERS

Initial learning rate 0.001
Number of epochs 100
Number of LSTM hidden states 64
Number of LSTM hidden layers 5
Number of feed-forward hidden layers 1
Optimization algorithm Adam
Loss function MAPE

prediction. The last feed-forward layer applies the softmax
activation function, which is needed during the training phase
to optimize the weights of the network neurons [11]. The first
layer size corresponds to p observed TTIs, while the last layer
output has a length equal to future horizon tw.

The traffic predictor is trained using the dataset in Sec-
tion III-A and specified for each of the considered traffic type.
In particular, we have trained the LSTM for four traffic pro-
files: Youtube videos, Spotify audios, Mixed Youtube/Spotify,
and Poisson traffic. The implementation of the traffic pre-
diction algorithm was performed in Python, using Keras
and Tensorflow, as backend. The chosen hyperparameters are
reported in Table I. The number of hidden layers is fixed
to 5, which is the number giving a good trade-off between
prediction accuracy and model complexity. For the training
part, we used the Adam’s algorithm [14] as optimizer and the
Mean Absolute Percentage Error (MAPE) as loss function. We
define the MAPE as follows,

MAPE =
100%

tw

c+tw−1∑
t=c

|x̃t − xt|
xt

, (1)

where x̃t is the predicted packet arrival time on the tth TTI.

C. Delay estimator

We categorize packet arrivals during past observation
[c−p, c) and forecast horizon [c, c+tw) into three disjoint
sets: (1) already served packets with index of 1≤n≤i, (2)
buffered packets with index of i+1≤n≤j where j≤p, and
(3) forecast packet arrivals for upcoming w-cycle with index
of j+1≤n≤k, where k−j≤tw. Delay estimator utilizes the
served packets’ delay times (Dn, for 1≤n≤i), and estimated
delays of buffered and forecast packets (D̄n, for i+1≤n≤k),
to estimate the average buffering delay (D̂), as follows,

D̂ =

∑i
n=1 Dn +

∑k
n=i+1 D̄n

k
. (2)

Finally, the decision whether to send WI=1 or not is decided
by comparing D̂ with Dmax. If the estimated delay is larger
than maximum delay bound, WI=1 is sent to the target UE.

IV. NUMERICAL RESULTS

In this section, a set of numerical results are provided
in order to evaluate the accuracy of the traffic predictor
and validate the functionality of the proactive scheduler, for
different traffic patterns.

As previously mentioned, four traffic types are considered:
video streaming, audio streaming, mixed audio/video stream-
ing, and Poisson traffic. One of the distinguishing features of
the video and audio streaming is their low playback latency.
The average latency to have high quality playback of a track is
265 ms [15]. Accordingly, for audio streaming, we assume that
the maximum delay bound (Dmax) is 265 ms. Similarly, we
assume that the maximum delay bounds for video streaming,
mixed flow and Poisson traffic are 40 ms, 40 ms, and 30 ms,
respectively.

Power consumption of the UE in different operating states
is highly dependent on the implementation, and also its opera-
tional configurations. For the numerical results, the power con-
sumption model used in [6] and [16] is employed, for which
PWwrx≈0 mW, PWon=850 mW, PWoff≈0 mW, tsu=15 ms,
and tpd=10 ms. Regarding the WuS parameters, we assume
ton=1/14 ms and ti=1 ms [6].

A. Prediction accuracy

In this section, we seek to evaluate the accuracy of pre-
dictions of the proposed traffic predictor as a function of the
number of previous observations (p), the length of the horizon
(tw), and the type of applications generating the traffic. For
that, we use the MAPE in Eq. (1) to quantify the accuracy of
traffic prediction.

The impact of tw and p on the prediction errors is illustrated
in Fig. 5. For shorter w-cycles, the predictions follow the
actual values closely, whereas for larger w-cycles, the pre-
diction error is bigger: longer forecast horizons (tw) decrease
the accuracy of the predictor, as expected. Furthermore, as it
can be observed, the MAPE reduces with a larger number of
observations (p) for all four traffic types. Also, the accuracy
decreases (i.e., MAPE increases) based on the different traffic
type. The accuracy rate is smaller for Poisson packet arrivals
than for video and audio traffics, due to its simpler traffic
pattern. For Poisson traffic, the MAPE increases around 15%
when tw increases from 10 to 30 TTIs for given p = 20 TTIs;
however, for other traffics the accuracy reduction is high and
MAPE increases around 50% for the same tw change.

As shown in Fig. 5, from prediction accuracy point of view,
it is desirable to reduce tw and enlarge p. However, in terms
of power consumption, such a reduction of the w-cycle would
contribute to a higher energy consumption due to frequent
checking of wake-up signaling. Additionally, a higher number
of past observations p involves a longer memory length of the
LSTM network and a large amount of information that must be
stored for a precise traffic prediction. As a result, the floating
point operations per second (FLOPS) of the LSTM network
increases. This complexity overhead can become very high,
especially if the number of users per cell increases.

Note that different parameters of the traffic predictor can be
configured in such a way that they provide adequate precision
for the proactive scheduler, which is measured in terms of
the estimated delay over a certain number of packets k (i.e.,
D̂ in Eq. (2)). In particular, the impact of traffic prediction
errors on the estimated delay depends on p, k and tw. To
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Figure 5. MAPE as function of number of past observations p and forecast horizon tw for different traffic types.

1
10

20
30

40 1
8

15
22

29
200

400

600

800

Video

1
10

20
30

40 1
8

15
22

29

200

400

600

800

Audio

1
10

20
30

40 1
8

15
22

29
400

500

600

700

800

Mixed

1
10

20
30

40 1
8

15
22

29
200

400

600

800

Poisson

100

200

300

400

500

600

700

800

Figure 6. Power consumption of proactive scheduler as function of number of past observations p and forecast horizon tw for different traffic types, while
maintaining the corresponding delay requirements of each traffic (k = 45 packets).

ensure efficient usage of the forecast horizon and, at the same
time, limit the long-term differences in the quality-of-service
to an acceptable level, k should be set longer than tw for the
upcoming w-cycle. At the same time, k should be sufficiently
short so that prediction errors are not strongly noticed by a
user. In this work, we set k to 45 packets.

From Eq. (2), it can be inferred that the estimated delay
has lower sensitivity with respect to prediction accuracy.
To illustrate this, we evaluate the impact of the prediction
errors on the actual proactive scheduler performance. Fig. 6
depicts the power consumption of the proactive scheduler as
a function of p and tw, for each traffic type, considering the
associated maximum delay bounds. It can be observed that
configuring p and tw to 20 and 15 TTIs, respectively, can
achieve reasonable power saving. Indeed, further reducing tw
and/or further increasing p beyond such values, reduces the
power consumption slightly. Accordingly, for the rest of paper,
we assume k=45 packets, tw=15 TTIs, p=20 TTIs.

B. Performance evaluation

In this section, to validate the functionality of the proactive
scheduler, the average power consumption of WuS with and
without the proactive scheduler are compared for different user
traffics. Two different sets of performance results, in terms
of power consumption and delay, are presented. Namely, (1)
wake-up scheme without scheduler (‘WuS’) that is considered

as a benchmark scheme, and (2) wake-up scheme with proac-
tive scheduler (‘Pro.’).

Fig. 7 shows the empirical cumulative distribution function
(CDF) of packet delay for the four different traffic types.
Generally, the video streaming’s session is much longer than
that of the audio traffic, and packets arrive burstly (implying
high self-similarity). As it can be seen for video results of
proactive scheduler, a large number of packets are served with
near to zero delay, and the reason is due to the consecutive
packet arrivals that are served while the inactivity timer is
triggered. At the same time, a large number of packets are
served with delays larger than the maximum delay budget
of video (40 ms), and this comes from the fact that the
proactive scheduler is a greedy method and waits until the
average buffering delay approaches to Dmax. As compared to
the proactive scheduler, WuS has a lower and consistent delay
regardless of the traffic types. However, this comes at cost of
an extra energy consumption (as it will be shown in Table II).

For mixed traffic flow (aggregation of video and audio
traffics), the average delays are similar to video traffic rather
than to audio traffic. The reason is that the delay bound plays
a pivotal role in the operation of wake-up scheme, which is the
same for both traffics. The small difference between mixed and
video traffic comes from the inaccuracy of the traffic predictor.

To complete the study, Table II shows the average delay and
the average power consumption in third and fourth columns,
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Table II
AVERAGE DELAY, POWER CONSUMPTION, AND PERCENTAGE OF WASTED

ENERGY FOR WUS AND PROACTIVE SCHEDULER UNDER DIFFERENT
TRAFFIC TYPES.

Method Traffic D [ms] Pc [mW] Ew [%]

WuS

Poisson 23 600 36
Video 21 625 44
Audio 22 405 48
Mixed 23 655 16

Pro.

Poisson 31 450 15
Video 43 395 12
Audio 269 290 26
Mixed 42 590 7

respectively. It is clear that the average power consumption of
WuS for all traffic types is higher than that of the proactive
scheduler; however, it achieves a much lower buffering delay.
To illustrate the benefits of the proactive scheduler better, we
define the wasted energy (Ew) as the ratio (in percentage)
of the energy that the UE consumes for transitory states plus
inactivity timer over the overall energy consumption of the UE.
Note that the rest of energy is consumed for processing the
packets. The wasted energy Ew is shown in the fifth column of
Table II. As it can be observed, the gain of the proactive sched-
uler is coming from having less amount of wasted energy,
owing to the use of an intelligently and greedily strategy so
that packets are served mainly in a consecutive manner without
the need for frequent start ups and power downs. Moreover,
it can be observed that audio streaming requires lower power
consumption than the rest of traffic types, due to the small
packet arrivals per given time period. Furthermore, due to the
fact that packets in video streaming and mixed traffic flow have
much higher self-similarity characteristics, the wasted energy
is slightly lower than that of other traffics.

V. CONCLUSIONS

In this work, the concept of wake-up scheduler, and in
particular proactive scheduler are proposed. The feasibility
of proactive scheduler based on user traffic prediction has
been investigated. For this purpose, a traffic predictor which
leverages on LSTM networks is proposed. Simulation results
show that proactive scheduler has lower energy consumption
than the wake-up scheme without scheduler. Moreover, the
promising results motivate jointly considering user traffic

prediction and wake-up scheduler in order to reduce the energy
consumption of users under different traffic circumstances.
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