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Abstract

Across the full range of software systems (e.g., in data centers, mobile appli-

cations, etc.) energy is considered a critical resource. At the current rate of

growth, the total energy required by ICT alone is estimated to be over 1020

Joules by 2040; which is approximately a �fth of the global energy production

and use in 2013 (5.67 x 1020 Joules). The role of the ever increasing use of

robotics cannot be discarded in this growth. The goal of this technical report

is to empirically evaluate architectural tactics for energy-e�cient robotics soft-

ware. The Robot Operating System (ROS) ecosystem has been used to extract

four green tactics from real projects developed in real development contexts.

This technical report performs an empirical evaluation of the identi�ed green

tactics. Speci�cally, each green tactic is implemented in a real robotic system

running a common ROS software stack. Then, an objective assessment and

measurement is carried out of the run-time impact of each tactic in terms of

the energy consumption of the robot through di�erent missions and physical

environments. The experiment is carried out on a ROBOTIS TurtleBot3. The

robot is instrumented with a hardware component in order to sample �ne-

grained data about its power consumption. In total 300 individual runs of the

robotics system are performed, for a total of more than 10 hours of sheer run

time.

This empirical evaluation concludes its experiments with the analysis of the re-

sults and the answering of the �ve research questions of this study. This study

�nds that almost all of the researched green architectural tactics show some

positive impact, some (signi�cantly) more than another, on energy consump-

tion. This technical report then goes on to conclude if the use of the tactic is

encouraged or not and gives the rationale thereof.
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Introduction

Across the full range of software systems (e.g., in data centers (1), mobile applications (2),

etc.) energy is considered a critical resource. At the current rate of growth, the total energy

required by ICT alone is estimated to be over 1020 Joules by 2040; which is approximately

a �fth of the global energy production and use in 2013 (5.67 x 1020 Joules) 1.

The role of the ever increasing use of robotics cannot be discarded in this growth (3).

Industrial robotics stand at the basis of the fourth industrial revolution, also referred to

as Industry 4.0 (4). Industrial �rms contribute to 36% of total global energy consumption

and 24% of total CO2 emissions (5). Energy consumption in the manufacturing sector

has been declining since 1998. For instance, in the U.S., the energy consumption in the

manufacturing sector decreased by 17% from 2002 to 2010 (6). Despite these improvements,

Fysikopoulos et al. (7) assert that 20% to 40% unnecessary use of energy may still be found

in industrial �rms. Hence the energy performance of manufacturing systems is a major

area of research and a concern for many manufacturing companies.

According to the IFR Statistical Department (8), the level of automation in the au-

tomobile frame- and body construction process was 90%, which implies a heavy use of

industrial robots in related tasks. Also, Engelmann (9) states that about 8% of the total

energy consumption in automotive industries belongs to industrial robots.

Robots also exist outside an industrial setting, these are however often in the form of

commercially available mobile robots (e.g., vacuum cleaner robots, lawn mower robots,

etc.) Some hospitals are using mobile robots to provide quick and safe medicine delivery

(10). Batteries are often used to provide power for mobile robots; however, as of writing,

they are heavy to carry and have limited energy capacity. A Honda humanoid robot can

1https://www.zmescience.com/ecology/climate/how-much-renewable-energy/
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1. INTRODUCTION

walk for only 30 minutes with a battery pack they carry on the back (11); energy is the

most important challenge for mobile robots.

Considering the aforementioned, it is logical to understand that the e�ort to maximize

energy e�ciency in robotics will have signi�cant impact, being two-fold; (i) It will make a

non-negligible impact on the world's energy use and consequently CO2 emissions. (ii) For

mobile robots, it will increase their operating time (i.e., battery life) and thus signi�cantly

improve the use for such robotic systems.

This technical report is part of a two-part research e�ort; (i) Identifying architectural

tactics for energy-e�cient robotics software. (ii) Empirically evaluating said tactics in a

real-world experiment.

This technical report, consists of part (ii), based on the energy-e�cient tactics as iden-

ti�ed in part (i) Supplementary Material (RQ1).

The goal of this technical report is to empirically evaluate architectural tactics for

energy-e�cient robotics software. At the core of the study lies the concept of architec-

tural tactic, i.e., design decisions that in�uence the achievement of system qualities and

can be reused across projects (12).

As part of part (i) of this study, the Robot Operating System (ROS) - further detailed

in the next section 2.1 - ecosystem has been used to extract four green tactics from real

projects developed in real development contexts by applying software repository mining

techniques. The mined datapoints were rigorously and iteratively analysed and grouped

into universal tactics by �ve di�erent researchers, after which the actual green architectural

tactics were de�ned.

This technical report performs an empirical evaluation of the identi�ed green tactics.

Speci�cally, each green tactic is implemented in a real robotic system running a common

ROS software stack. Then, an objective assessment and measurement is carried out of the

run-time impact of each tactic in terms of the energy consumption of the robot through

di�erent missions and physical environments. The experiment is carried out on a ROBOTIS

TurtleBot3 (13), a compact and customizable ground robot widely used in research and

open-source projects1. The robot is instrumented with a hardware component in order to

sample �ne-grained data about its power consumption. In total 300 individual runs of the

robotics system are performed, for a total of more than 20 hours of execution time.

1https://github.com/ROBOTIS-GIT/turtlebot3
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Background

2.1 Robotics Software

The Robot Operating System (ROS) (14), is the de-facto standard and key technologi-

cal enabler for robotics software. ROS supports more than 140 types of robots and has

a vibrant open-source ecosystem with many GitHub repositories containing ROS-based

software, 4,152 publicly-available ROS packages, 7,696 ROS Wiki users, and 36,229 ROS

Answers users (15)(16).

ROS comes in two major versions: ROS11 and ROS22. Each major version has multiple

distributions; a new one being developed approximately each year. As of writing, multi-

ple distributions for both major versions are currently LTS (Long Term Supported) and

regularly updated. The multiple distributions are available and LTS as to not break any

existing software which might not be compatible with a new distribution. Distributions

across major versions are by de�nition not compatible, as their underlying communication

protocol di�ers signi�cantly. It should be noted however, that some distributions within

major versions are compatible with one another, such as ROS1 Melodic3 (2018) and ROS1

Kinetic4 (2016). ROS Allows for the development of hardware components and robotic

systems without having to be aware of the development environment that they are possibly

deployed in (i.e., Operating Systems (OS), Programming Languages, System Hardware,

etc.). As long as the development environment implements a mutually supported and

compatible ROS version and distribution, the two components, be it only a hardware com-

ponent added to a robotic system or a complete robotic system added to a cell of robotic

1http://wiki.ros.org/Distributions
2https://index.ros.org/doc/ros2/Releases/
3http://wiki.ros.org/melodic
4http://wiki.ros.org/kinetic
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2. BACKGROUND

systems, will be able to communicate with one another.

This is made possible by the ROS communication methods available to ROS components.

Each component can register itself as a ROS Node, each node can register the following

communication methods with other nodes:

Topics Allow for many-to-many writing or reading asynchronous, continuous data streams

by Publishing or Subscribing to a topic respectively1.

Actions Allow for, one-to-one, synchronous and asynchronous client-to-server calls for specif-

ically meant for use with long lasting tasks2.

Services Allow for, one-to-one, client-to-server synchronous RPC (Remote Procedure Calls)3.

These methods are the only communication methods available to ROS nodes. This signif-

icantly simpli�es communication across nodes and it allows one node to make assumptions

about another node's access points.

One could see the similarities between ROS and an API, e.g., a RESTful API, which

regardless of OS, programming language or hardware, allows for the communication of

data between systems / nodes / components.

2.2 Architectural Tactics

At the core of the study lies the concept of architectural tactic, i.e., design decisions that

in�uence the achievement of system qualities and can be reused across projects (12).

Architectural tactics are a part of a software architect's design arsenal in order to achieve

some desired system quality. A formal de�nition of architectural tactics is provided by

Bachmann, Bass, and Klein; they de�ne architectural tactics as a means of satisfying

quality attribute response measures by manipulating some aspect of a quality attribute model

through architectural design decisions (17).

For this study, the quality attribute desired is Energy E�ciency and the green archi-

tectural tactics mentioned before are identi�ed as response measures speci�cally for this

quality attribute as they are observed to be manipulating some aspect of a quality attribute

model through architectural design decisions.

To empiricially observe and quantify their impact on Energy E�ciency, is the single

most important contribution of this technical report.

1http://wiki.ros.org/Topics
2http://wiki.ros.org/actionlib
3http://wiki.ros.org/Services
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Study Design

In this section the design of this technical report is explained. In subsection 3.1 the tactics,

as identi�ed by part (i) of this study - as explained in section 1 - are given and detailed.

In subsection 3.2 the GQM (Goal Question Metrics) method is applied and the therefrom

arising experiment de�nition is further explained in subsection 3.3. The robot missions

embodying the experiment are explained in subsection 3.4. The hardware additions to

the ROBOTIS TurtleBot3, needed for instrumenting and facilitating the experiment, are

explained in subsection 3.5. Anything involving the data, its manipulation and its analysis

is explained in section 3.6, concluding the study design.

3.1 Energy-E�cient Architectural Tactics De�ned

The set of four green architectural tactics have been identi�ed using four sequential phases.

These will be brie�y discussed, as they were part of part (i) of this study - as explained in

section 1. However describing the process, albeit more brief than as described in the tech-

nical report; Supplementary Material (RQ1), is paramount for understanding the validity

of the four identi�ed green architectural tactics, and thus consequently the validity of the

results of this technical report's empirical evaluation.

3.1.1 Data Identi�cation Phases

3.1.1.1 Phase 1: Dataset Construction

The goal of this phase was to build a dataset containing as much ROS-related data as

possible. The following data sources were mined:

� Open-source repositories: Publicly-available dataset of 335 GitHub/GitBucket repos-

itories containing real open-source ROS-based systems (18).

5
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� Cloned all the repositories and extracted 17,165 source code comments and

Markdown �les

� Crawl1 all pull requests/issues (including their discussions) and all commit mes-

sages for a total of 271,625 distinct data points.

� Stack Over�ow : Crawl all questions with the ROS tag, their answers, comments, and

related metadata, for a total of 1,180 data points.

� ROS Answers: This is the Q&A platform for ROS developers. The same information

as for Stack Over�ow has been crawled for all its posts, answers, comments, and

related metadata.

� ROS Discourse: This is the platform for announcements and discussions of the ROS

community. All its posts, discussions, and related metadata has been crawled.

� ROS Wiki : It hosts all the documentation, guidelines, and tutorials about ROS and

o�cial ROS packages. We crawl all its pages and related metadata.

This phase resulted in a total set of 339,563 datapoints.

3.1.1.2 Phase 2: Energy-Relevant Data Identi�cation

In this phase, the data points mentioning energy-related topics, such as battery/power/en-

ergy consumption, sustainability etc. were identi�ed. The keywords for identi�cation

have been identi�ed by considering, analyzing and combining mining strategies in previous

empirical studies on software energy e�ciency (19)(20)(21)(22).

After the �ltration, step one of this phase was completed and resulted in a �ltered set of

3,354 datapoints. The high discard rate is not surprising, as it is in accordance with with

existing research; con�rming that developers have limited knowledge of energy e�ciency

(23).

The second step of this phase involved the manual validation of all 3,354 datapoints by

three separate researchers. The validation involved removing datapoints that were clearly

outside the scope of the study, e.g., datapoints not automatically �ltered out because of

sentences like �Problems with powering on a robot�.

When step two was �nished, this phase was �nished too and the �nal set of datapoints

consisted of 562 datapoints.

1We use the term �crawl� to refer to the systematic navigation of all target pages of a website, while

extracting relevant data in an automated manner.
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3.1.1.3 Phase 3: Architecturally-Relevant Data Identi�cation

In this phase an in-depth assessment of the 562 datapoints is performed to consider only

those discussing architecturally-relevant concerns. Borrowing the de�nition of a system

concern from (24), where it is de�ned as the interest in a system relevant to one or more

of its stakeholders (e.g., presence of integrator nodes, system layers, interfaces to other

systems). Inspired by the systematic literature review methodology (25), each data point is

manually analyzed and selected it according to a set of well-de�ned inclusion and exclusion

criteria. Two examples of representative inclusion criteria are: (i) data points concerning

a ROS architectural entity (e.g., ROS nodes, topics, services), (ii) data points mentioning

architecturally-relevant design decisions and rationale.

The result of this phase was a set of 97 datapoints.

3.1.1.4 Phase 4: Green Tactics Extraction

The 97 architecturally-relevant data points identi�ed in Phase 3 are carefully examined in

order to identify and extract green architectural tactics. The identi�cation and extraction

of green tactics is conducted by applying the thematic analysis methodology (26). The-

matic analysis was chosen because architectural information can be strongly dependent on

project- and system-speci�c characteristics and thematic analysis copes well with context-

dependent data (26)(18)(27). Four researchers are involved in this phase, whose activities

can be decomposed into four main sequential steps: (i) for each data point two researchers

independently collect the list of mentioned architectural entities (e.g., ROS nodes, topics,

services) and a extract a brief summary of the main design decisions employed for achieving

energy e�ciency; (ii) three researchers independently analyze each data point in its con-

text (e.g., by looking at the speci�c code changes associated to a pull request, checking the

system documentation) and categorize them into common themes (e.g., threshold-based

mechanisms, usage of low-power mode); (iii) all researchers collaboratively organize the

themes into a coherent set of distinguishable tactics via several iterations so to general-

ize, re�ne, and name each tactic; and (iv) each identi�ed tactic is carefully reported via

an extended version of the tactics template established in (28). The tactic template in-

cludes �elds such as motivation, description, a concrete example coming from the dataset,

constraints, dependencies, and variations.

The result of this phase is the set of four architectural tactics for energy-e�cient robotics

software which are de�ned in the next subsection 3.1.2 and which form the backbone of

this technical report.
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3.1.2 The Energy-E�cient Architectural Tactics

In this subsection, the four identi�ed architectural tactics for energy-e�cient robotics soft-

ware are de�ned. In the previously described phases, two families of architectural tactics

were eventually identi�ed; Energy-Aware and Energy-E�cient. As Energy-Aware tac-

tics do not necessarily improve energy e�ciency in any concretely measureable way, this

technical report's experiment explicitly focuses on the four Energy-E�cient architectural

tactics for robotics software. Each tactic is denoted by the pre�x EE, representing Energy-

E�cient.

The de�nitions of the tactics were to be very precisely followed by the actual implemen-

tation in the robot missions, these are explained in section 3.4. The validity of the results

of this empirical evaluation is decided by the adherence of the developed implementation

in the robot missions compared to the provided formal de�ntion of the identi�ed tactics.

We therefore give a brief (i.e., the de�nition, motivation and technical information

required for the implementation of the tactics) formal de�nition, as they are constructed

in the technical report; Supplementary Material (RQ2).

3.1.2.1 EE1 - Limit Task:

Motivation There are robotic activities, such as data sampling or large amounts of data transfer,

that consume a signi�cant amount of energy. When the robot enters the Energy-

Savings Mode - based on some battery threshold - limiting various robotic activities

is pivotal in order to meet the required reduction of energy usage during Energy-

Savings Mode.

Description 1. The Task Requester sends a task to the Arbiter.

2. After receiving the task, the Arbiter checks the battery level of the robot (pro-

vided by another component in the system).

3. If battery level is below the established threshold, the Arbiter obtains the

energy-savings mode task con�guration from the Energy-Savings Mode Man-

ager.

4. The Arbiter forwards the task to the Task Executor for execution in either

default mode or energy savings mode.

5. The Arbiter continues checking the battery level during the execution of the

task.

8
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6. If the battery level falls below the threshold, the Arbiter obtains the energy-

savings mode task con�guration from the Energy-Savings Mode Manager and

instructs the Task Executor to continue execution of the task in its energy-

savings mode.

7. Similarly, if the battery level rises above the threshold, the Arbiter instructs the

Task Executor to continue execution of the task in its default mode.

8. Once the task is completed the Task Requester is noti�ed.

Documentation The sequence diagram which the robot mission implementing EE1 - de�ned in section

3.4 - had to precisely adhere to, is given in �gure 3.1.

9
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Figure 3.1: EE1 Limit Task Sequence Diagram
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3.1.2.2 EE2 - Disable Hardware:

Motivation Hardware components (e.g., sensors, drivetrains) of a robot often consume a signi�-

cant amount of energy; for example, sensors consume energy to be able to function

and measure whatever it is that they are designed to measure. If this sensor data

is then not used, the energy is wasted. It is essential that unnecessary utilization of

hardware resources is prevented as much as possible, in order to be as energy e�cient

as possible.

Description Hardware is needed:

1. The HW Requestor requests to use the HW from the HW State Controller.

2. After receiving the request, the HW State Controller switches the HWController

to ENABLED.

3. Being enabled triggers the HW Controller to enable the HW device.

4. The message of the HW being successfully enabled is now sent back the the HW

Requestor.

Hardware is no longer needed:

1. The HW Requestor requests to disable the HW from the HW State Controller.

2. After receiving the request, the HW State Controller switches the HWController

to DISABLED.

3. Being disabled triggers the HW Controller to disable the HW device.

4. The message of the HW being successfully disabled is now sent back to the HW

Requestor.

Documentation The sequence diagram which the robot mission implementing EE2 - de�ned in section

3.4 - had to precisely adhere to, is given in �gure 3.2.
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Figure 3.2: EE2 Disable Hardware Sequence Diagram

12



3.1 Energy-E�cient Architectural Tactics De�ned

3.1.2.3 EE3 - Energy-Aware Sampling:

Motivation In robotics, many sensors are designed to provide a continuous stream of data (e.g.,

accelerometers, lidars). Sampling data from sensors is, varying based on the type

of the sensor and the energy consumption typically associated with such a type of

sensor, still an energy consuming task. When the robot's battery reaches a critical

point, the component in charge of sampling the sensor should be able to continue

sampling, and at the same time, enter into a state in which energy consumption is

reduced to avoid to drain the - now critical - battery at the same pace.

Description 1. The Sensor Requestor requests to sample the sensor from the Sampling Rate

Controller.

2. The Sampling Rate Controller requests the sampling rate from the Sensor Con-

troller

3. The Sampling Rate Controller adjusts the sampling rate of the Sensor Controller

continuously based on the energy level being su�cient or critical.

4. The Sensor Requestor samples the Sensor Controller through the Sampling Rate

Controller.

Documentation The sequence diagram which the robot mission implementing EE3 - de�ned in section

3.4 - had to precisely adhere to, is given in �gure 3.4.
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Figure 3.3: EE3 Energy-Aware Sampling Sequence Diagram
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3.1.2.4 EE4 - On-Demand Components:

Motivation Continuously running a component requires the spawning of a process which is an

energy-consuming task in terms of CPU usage (e.g., executing a CPU-intensive loop)

and other resources (e.g., sensors, motors, fans for cooling). For this reason, it is

necessary to ensure that the processes that are not being utilized do not consume

energy unnecessarily by running on the system.

Description 1. The Requestor orders the Component Manager to (de)spawn the On-Demand

Component

2. The Component Manager (de)spawns the On-Demand Component.

3. The On-Demand Component lets the Requestor know, through the Component

Manager, that it has been (de)spawned.

4. If SPAWNED ; The Requestor can now request services form the On-Demand

Component.

Documentation The sequence diagram which the robot mission implementing EE3 - de�ned in section

3.4 - had to precisely adhere to, is given in �gure 3.4.
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Figure 3.4: EE4 On-Demand Components Sequence Diagram
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3.2 Goal and Research Question

Following the Goal-Question-Metric approach (25), the goal of this study is to analyse the

ROS ecosystem for the purpose of identifying and evaluating a set of architectural tactics

with respect to their energy-e�ciency from the point of view of roboticists and researchers

in the context of open-source ROS-based systems. The goal drives the design of the full

study and leads us to the following research questions.

RQ1 � Which architectural tactics are applied in the development of energy-

e�cient robotics software? This research question is answered qualitatively ; we identify,

extract, and establish a concrete set of green tactics used in real-world robotics projects.

The tactics are synthesized via a multi-stage experimental study targeting several open-

source robotics projects and their related artifacts. Answering this research question helps

both (i) roboticists in designing and developing energy-e�cient robotics software via the

established tactics and (ii) researchers by providing an initial foundation for new scienti�c

contributions, such as techniques to automatically improve the energy e�ciency of robotics

software.

RQ2 � To what extent does the application of green tactics impact robotics

software' energy e�ciency? This research question is answered quantitatively ; for each

green tactic we carry out an empirical assessment of its run-time impact in terms of energy

consumption of a real robot. By answering this RQ, roboticists are o�ered objective data

on how di�erent green tactics can make their robotics systems more e�cient.

3.3 Experiment De�nition

In this section the de�nition of the experiment is given, consisting of:

1. The factors of the experiment.

2. The treatments of those factors.

3. The dependent and in-dependent variables involved.

4. The mission de�nition for the robotic platform in natural language.

5. The run schedule.

6. The amount of runs and time involved.
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Type Name Value Category

Independent

(main factors)

Tactics

baseline nominal

EE1 nominal

EE2 nominal

EE3 nominal

EE4 nominal

combined nominal

Movement

No Movement nominal

Fixed Movement nominal

Autonomous Movement nominal

Environment
Empty nominal

Obstacles nominal

Fixed

Dependent

(co-factors)

Robotic Platform ROBOTIS TurtleBot3 nominal

ROS Version ROS1 Melodic nominal

Network Connection Wi-Fi nominal

Device OS Raspbian nominal

Remote PC OS Ubuntu 18.04 nominal

Run Duration 120 Seconds ratio

Dependent

Energy Consumption (J) Joules ratio

CPU Usage (%) Percentage ratio

RAM Usage (%) Percentage ratio

Table 3.1: Factors, treatments and other experiment related variables.

18



3.3 Experiment De�nition

3.3.1 Factors and Treatments

In table 3.1, the factors, their treatments and other experiment related variables are given.

The experiment de�nition is rigorously de�ned and iteratively implementing feedback and

new ideas into the design.

For the Tactic factor, one can see the treatment baseline, which has not yet been dis-

cussed. The baseline treatment is just that, it is performing the mission, as de�ned in the

next subsection, without any green architectural tactic implemented. This, so that any of

the results of the tactics (EE1 - EE4) or the combined treatment can be compared to the

baseline, say; the control group.

3.3.2 Experiment Mission

The experiment as performed by the robotic platform; the ROBOTIS TurtleBot3, has to

satisfy three main factors: The Tactic Considered, The Movement of the TurtleBot3 and

The Environment it moves in.

The various treatments to these factors are given in table 3.1. Based on these treatments,

it is logical to understand that the missions as performed by the TurtleBot3 will di�er

signi�cantly.

3.3.2.1 Di�erentiating Aspects

Firstly, the various tactics - as de�ned in section 2.2 - di�er in what they change about the

robotic system signi�cantly. So signi�cantly, that the addition of hardware was needed to

be able to construct a single mission format in which all tactics could be tested. More about

this in section 3.5. For example, tactic EE3 controls the sample rate of a sensor, however

the TurtleBot3 does not have a sensor that allows for custom sample rates out-of-the-box.

Secondly, the code for performing the mission should be the bare minimum required to

make the robot succeed at the mission, so that the share of code which embodies the tactic

is as high as possible. Therefore, code that would deal with traversing an object, as needed

for the Obstacles treatment of the Environment factor, will not be present in the mission

which is designed for the Empty treatment of the same factor. The same goes for the

No Movement treatment of the Movement factor, compared to the Fixed or Autonomous

movement treatments. It would be illogical to have code present for moving the robot in

the mission de�ned for the No Movement treatment.
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3.3.2.2 The Arena

The robotic system will perform all of its missions inside a predetermined area, called the

arena. The arena measures 4.5m · 3.5m totalling 15.75m2. The arena can be seen empty

and with obstacles in �gures 3.5 and 3.6 respectively.

Obstacles: For the obstacles, a standard issue cone - used for automotive driving skill

training - has been used.
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Figure 3.5: The arena set up as an empty

environment

Figure 3.6: The arena set up as an obsta-

cled environment

3.3.2.3 The Missions

It should be noted here, that the description of the missions require the knowledge of

the hardware additions as described in the coming section 3.5. The hardware addition

in question, is the Raspberry Pi Camera Module that has been added to the TurtleBot3.

Any further details are given in section 3.5. For this section, it is enough to know that the

TurtleBot3 has a camera module that it can control through code.

The missions as performed by the TurtleBot3, are signi�cantly in�uenced by the treat-

ments of the main factors; Tactics, Movement. It is therefore, that the missions are de�ned

based on the the treatments of these factors.

The descriptions of each of the Movement treatments are given below, it should be

noted that for each mission the robot will rotate a full 360° every 20 seconds (even for the

No Movement treatment). This interval is chosen as it ensures the robot driving around

between rotations for 20 seconds, it is during these 20 seconds that the the six treatments

of the Tactics factor in�uence the robot in di�erent ways; hopefully resulting in di�erent

energy consumption. A 20 second interval will cause the robot to drive ≈ 50% and rotate

≈ 50% of the mission duration.

No The robot stands still, it will always be in the same position.

Fixed The robot is performing a 'sweeping' like motion - see �gure 3.7 - across the arena.

Autonomous The robot performs autonomous movement - see �gure 3.8 - driving around the

arena, deciding the next direction to drive in on each detection of an obstruction

of the motion path. The next direction the turtlebot will drive in is autonomously
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Figure 3.7: The sweeping trajectory as per-

formed for Fixed Movement

Figure 3.8: The non-deterministic trajec-

tory as performed for Autonomous Move-

ment

decided on runtime by the turtlebot. The next direction is chosen as the direciton

in which the longest distance can be traveled before being obstructed again.

Now that a de�nition for the missions is given based on the Movement factor, the next

de�ning factor can be considered; Tactics. However, before these de�nitions could be

constructed, one would �rst need to know what the actual implementation of the tactics

would entail for the robotic system (i.e., the TurtleBot3 with its hardware additions). The

implementation details, and their rationale, for the tactics are given below:

baseline Just perform the Movement treatment, recording the entire mission at 60 FPS.

(a) 60 FPS was chosen as it is the highest supported sampling rate for video for the

Raspberry Pi Camera Module.

EE1 Limit task: Movement by waiting 5 seconds before each rotation on interval1.

(a) Five seconds has been chosen to investigate the impact of limiting the movement

on energy e�ciency.

EE2 Disable HW: Disable the camera while moving from a location to another.

(a) The camera was chosen as the 'to-be-disabled hardware' as no other hardware

present on the TurtleBot3 platform would be able to be disabled without com-

promising the mission or the TurtleBot3 itself.

1Speci�cally interval, as the robot also performs rotations to navigate the arena. However, only rota-

tions on the set 20s interval are meant here.
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i. Disabling the motors would make the robot not able to move.

ii. Disabling the LiDar sensor would make the robot blind, driving into obsta-

cles or the walls of the arena.

iii. By default, there are not any other sensors or hardware components pro-

grammatically controllable by the TurtleBot3. This was the main reason a

hardware addition, in the form of the Raspberry Pi Camera Module, was

needed.

EE3 Energy-Aware sampling: sample the camera at 30 FPS.

(a) The camera was chosen as it is the only sensor now present on the TurtleBot3

that allows for a customisable sample rate.

(b) 30 FPS (50%) was chosen as a large enough value to be signi�cantly di�erent

from 60 FPS, and also still be a standard, de-facto sample rate for any 'normal'

camera system.

EE4 On-demand Components: On-demand camera component, despwaned while mov-

ing from a location to another.

(a) The camera component was chosen for the same reason as for EE2; no other

component would be able to be on-demand without being compromising.

(b) This tactic is di�erent from EE2, although it encapsulates it, considering it

does not only disable the hardware, but also completely removes the hardware

controller (the on-demand component) from any CPU scheduling.

combined Perform the mission, implementing EE1 to EE4.

(a) It should be noted for the Combined treatment of the Tactics factor; that EE4

- (de)spawning on-demand components by de�nition encapsulates EE2, as to be

able to spawn or despawn a component, the hardware used by that component

needs to be enabled or disabled. This Combined treatment therefore still adheres

to combining all four tactics (EE1 - EE4 ).
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Now that the treatments of the tactics factor are de�ned in their implementation, the

implementation of the actual missions can be described:

baseline The robot will perform the Movement treatment, while recording the entire mission

with the camera module at 60 FPS.

EE1 The robot will perform the Movement treatment, waiting 5 seconds before each

rotation to limit the amount of movement per run, while recording the entire mission

with the camera module at 60 FPS.

EE2 The robot will perform the Movement treatment, while recording only the full 360°

rotation at 60 FPS, disabling the HW while moving from a location to another.

EE3 The robot will perform the Movement treatment, while recording the entire mission

with the camera module at 30 FPS.

EE4 The robot will perform the Movement treatment, while recording only the full 360°

rotation at 60 FPS, despawning the on-demand camera component while mov-

ing from a location to another.

combined The robot will perform the Movement treatment waiting 5 seconds before each

rotation, while recording only the full 360° rotation at 30 FPS, despawning the

on-demand camera component while moving from a location to another.
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3.3.3 Run Schedule

Now that the missions and the various treatments of the main factors are de�ned, a run

schedule can be created. The run schedule depicts the combinations of treatments, in

table 3.2 all the combinations and the amount of runs are shown, depicting a total of 300

experiment runs as performed for this empirical evaluation.

Note: Considering the three main factors Tactics, Movement and Environment have 6, 3

and 2 treatments respectively, the total amount of variations can easily be calculated:

6 · 3 · 2 = 36

Tactics ·Movement · Environment = V ariations

However, we only consider 30 variations; considering the combination of the No Move-

ment treatment for the Movement factor with the Obstacles treatment of the Environment

factor would make no sense as the robot is standing still the entire mission and thus will

never cross an obstacle.

Therefore these 6 variations, the 6 runs of the tactics for this combination, are omitted

from the run schedule.

Considering the 30 variations; each variation is run 10 times, the total amount of runs for

this experiment will thus total 300 runs. Considering table 3.1, and the Run Duration

co-factor set to a agreed upon 2 minutes, or 120 seconds; the 300 runs will thus take 600

minutes or 10 hours.

This is 10 hours of sheer robot runtime. Each run will have a signi�cant amount of

overhead of manual labour involved:

1. Fit the robot with a new, completely charged, battery so that each run is started

with the same amount of battery potential.

(a) To make this process easier, we use three batteries and their dedicated chargers.

Otherwise, this overhead would have made the experiments extremely hard to

perform within reasonable time.

2. Read the robot's SD card with the data of the previous run into the computer

manually, format the SD card and put it back into the robot.

3. Put the robot on the designated start position and start the robot up.
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Table 3.2: Experiment Execution Run Schedule.

Movement Tactics Environment Amount of Runs

No Movement Empty

No Movement baseline Empty 10

No Movement EE1 Empty 10

No Movement EE2 Empty 10

No Movement EE3 Empty 10

No Movement EE4 Empty 10

No Movement combined Empty 10

Fixed Movement Empty

Fixed Movement baseline Empty 10

Fixed Movement EE1 Empty 10

Fixed Movement EE2 Empty 10

Fixed Movement EE3 Empty 10

Fixed Movement EE4 Empty 10

Fixed Movement combined Empty 10

Fixed Movement Obstacles

Fixed Movement baseline Obstacles 10

Fixed Movement EE1 Obstacles 10

Fixed Movement EE2 Obstacles 10

Fixed Movement EE3 Obstacles 10

Fixed Movement EE4 Obstacles 10

Fixed Movement combined Obstacles 10

Autonomous Movement Empty

Autonomous Movement baseline Empty 10

Autonomous Movement EE1 Empty 10

Autonomous Movement EE2 Empty 10

Autonomous Movement EE3 Empty 10

Autonomous Movement EE4 Empty 10

Autonomous Movement combined Empty 10

Autonomous Movement Obstacles

Autonomous Movement baseline Obstacles 10

Autonomous Movement EE1 Obstacles 10

Autonomous Movement EE2 Obstacles 10

Autonomous Movement EE3 Obstacles 10

Autonomous Movement EE4 Obstacles 10

Autonomous Movement combined Obstacles 10

Total: 300
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4. Wait for the robot to have started and connected to the wireless network, SSH into

the robot and start the mission - de�ned in 3.4 - and wait for all ROS Nodes, Topics,

and Services to be available.

5. Start the mission controller on the computer.

6. Wait for the Run Duration of 120 seconds, and repeat for 300 runs.

This overhead of manual labour took, on average, about 2 to 5 minutes. This brought

the total experimentation time needed to complete the 300 runs to ≈ 50h. The total time

spent performing the experiments was 7 days of 8 hours per day. Which would total ≈ 56h,

roughly correct including a co�ee and lunch break here and there.
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Figure 3.9: The framework developed, in a compact overview.

3.4 Mission Implementation

In this section the missions as implemented in software, and the framework built to support

them and their execution are explained.

3.4.1 Framework

For the execution of the missions, a framework has been built, this framework is depicted

in a compact overview in �gure 3.9. In this subsection the various parts are explained and

further depicted in detail.

To annotate �gure 3.9;

1. ROS Topics - are used to communicate asynchronous, continuous data (e.g., CPU

and RAM usage and the current state of the battery at any given moment in time.).

2. ROS Services - are used to communicate synchronously, one-way, much like RPC's1;

to execute tasks required for the correct functioning of the tactics in the mission

context (e.g., `/camera/spawn' - a single, synchronous, one-way RPC to spawn the

Camera Component as part of tactic EE4 ).

1Remote Procedure Call
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3.4 Mission Implementation

This framework has been built with reusability in mind and therefore all code that is

not mission-speci�c is abstracted away into the Common module which is imported and

used by the mission-speci�c �les.

The framework has been split into two parts; mission-runner and turtlebot-runner.

Where mission-runner is the part that runs on the basestation (i.e., computer / laptop)

and turtlebot-runner, as the name implies, runs on the TurtleBot3. The turtlebot-runner

part of the framework is however also not at all TurtleBot3 speci�c and all reusable code

has been split away into the Common module.

3.4.1.1 mission-runner

The mission-runner part of the framework is designed to be the controlling part of the

framework. It controls the TurtleBot, or any other ROS-based system for that matter,

through predetermined ROS Nodes, Topics and Services.

Technical Overview:

In the technical overview, as shown in �gure 3.10, only the mission-runner part of the

framework is shown. The turtlebot-runner part is shown in the next subsection. It should

also be noted, that to depict the usability and the actual implementation of the frame-

work, the mission-speci�c details have, in its most abstract form, been incorporated in the

overview.

Some important aspects of the overview are given:

1. The EnergySavingsManager is the controller, using the BatterySensor, to provide the

information of a su�cient energy budget to any dependent of the EnergySavings-

Manager. In this manager, the threshold for the BatteryState can be given, which

compared to the actual BatteryState will tell any user of the EnergySavingsManager

if the energy budget is su�cient.

(a) Note: That for this experiment, the treshold has been set to 100%, so that

every tactic, which enacts its custm logic if the energy budget is found to be

insu�cient, actually enacts its logic from the start of the mission embodying

that tactic.

(b) This is logical, as the baseline mission emobodies the normal operation of the

robot, to which the results of the runs of the tactics are compared.
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Figure 3.10: The mission-runner part of the framework shown in a technical overview.
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2. The MetricsRecorder is responsible for recording any data published in any topic

that is needed for gaterhing metrics.

(a) These topics are provided by the Sensors and consist of the; BatterySensor,

CPUSensor and the RAMSensor which supply the data to the mission-runner

part of the framework as a representation of the data published by the turtlebot-

runner framework on the respective topics; /battery_state, /cpu_usage and

/ram_usage.

3. All Sensors are Singletons, as a ROS Topic is also a single channel (i.e., address;

e.g.,'/BatteryState') and so the code representing those topics is inherently Singleton.

4. The tactics are located in the Common module.

(a) Tactics and their arbiter - as described in section 3.1.2 - are de�ned as abstract

classes, enabling their functionality for whatever class inherits them. This code

is also resuable and can be used right now in any codebase for ROS-based

systems.

(b) Each tactic is a folder containing the abstract class representing the Arbiter,

and the controller, controlled by the arbiter, responsible for the control over

the entity (e.g., EE1MovementController, EE2CameraSensor representing the

implementations of EE1 and EE2 respectively).

(c) Note: That under any 'normal' circumstance, these abstract classes should

be inherited by the default controllers controlling the entity. However, as this

study explicitly studies four tactics, six treatments (including baseline and com-

bined), while sharing a common codebase, these had to be placed away from

the baseline, common code and placed in their respective folders.

(d) Note: That thanks to this abstract, modular construction, EE4 is very easily

implemented by de�ning the EE1MovementController as the default Movement-

Controller in the X_Combined.py �le for whatever movement treatment is con-

sidered. Furthermore, the default CameraSensor is changed to the EE4CameraSensor

which inherits the abstract EE3Con�gurableSampleRate and EE4OnDemandComponent

classes. Enabling these tactics automatically, using one codebase.

5. X_IMission, where X stands for theMovement factors. So; N_IMission, F_IMission

and A_IMission for the treatments No Movement, Fixed Movement and Autonomous

Movement respectively.
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(a) It is inherited by the six Tactics treatments, in the overview grouped under

'missions'.

(b) Each implements the mission as needed, and associated with that combination

of Tactic and Movement treatment.

(c) X_IMission always inherits the IMissionController which is not mission-speci�c.

It allows for the rest of the framework to make assumptions about what con-

stitutes a MissionController and de�nes the universal methods and variables

needed by each mission.

(d) X_IMission always makes the following controllers are available:

i. MovementController, for each mission will have to be able to move the

robot.

ii. The basic Sensors; OdomController and CameraController, for each mission

will have to be able to rotate, and thus have Odometry data available, and

each mission will have to be able to control the Camera.

iii. Note: That the LaserSensor is the only other sensor that would otherwise

be necessary to be able to perform missions. The other Sensors are only for

the MetricsRecorder to record them. But considering they are part of the

Common module, can of course be used and read out by any other �le.

6.

3.4.1.2 turtlebot-runner

The turtlebot-runner part of the framework is designed to be the part that is controlled

by the mission-runner part of the framework. It controls the TurtleBot directly, through

libraries directly in�uencing the hardware itself, in accordance with commands received

from the mission-runner. Note that also for this part of the framework, all code that

is not mission-speci�c is abstracted away into the Common module and that this code,

in conjunction with the mission-runner Common module, is completely independent and

resuable for any other ROS-based system, through predetermined ROS Nodes, Topics and

Services.

Technical Overview: In the technical overview, as shown in �gure 3.11, only the turtlebot-

runner part of the framework is shown. It should also be noted, that to depict the usability

and the actual implementation of the framework, the mission-speci�c details have, in its

most abstract form, been incorporated in the overview.
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Figure 3.11: The turtlebot-runner part of the framework shown in a technical overview.
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Some important aspects of the overview are given:

1. The turtlebot-runner part of the framework relies heavily on the de-facto mission

for a TurtleBot3 as given in the ROBOTIS E-Manual; turtlebot3_bringup1. This

command will start a ROS program for the TurtleBot3, enabling the TurtleBot3 ROS

node. This node is responsible for publishing data such as the Laser, Odometry and

BatteryState data. it is also responsible for responding to any movement commands.

2. __main__.py imports the missions and runs them directly, as the codebase for each

mission speci�c �le is so small. These �les only enable the required CameraController

according to their tactic.

3. __main__.py runs the ClientMetricsController which publishes data such as the

CPU and RAM usages in percentages on the dedicated '/cpu_usage' and '/ram_usage'

topics respectively. So that it can be recorded to a �le directly on the computer by

the MetricsRecorder of mission-runner on the other side.

4. The reusable codebase once more proves itself by the way the tactics have been imple-

mented. The Arbiters of the tactics have been implemented as abstract classes which

can be inherited by any other class what needs to implement any of the tactics. The

Combined treatment for the Tactics factor is also here a great example of this. The

CombinedCameraController only needs to inherit the EE3ClientCon�gurableSampleRate

class and the EE4ClientOnDemandComponent class to incorporate all four tactics

(EE1 - EE4).

5. EE1 Is missing from this overview, as the tactic is implemented solely on the mission-

runner side. As processing the movement commands remains the same, they are al-

tered based on the available energy budget on the mission-runner side before sending.

3.4.1.3 robot-runner

In this section, a brief explanation of robot-runner is given and the rationale for why it

was not used and why this is of importance. In January of this year (2020), we developed

robot-runner; a framework enabling the automatic execution of experiments de�ned as

mission �les and a con�g.JSON. This framework was to be used and for a long time that

made sense.

1https://emanual.robotis.com/docs/en/platform/turtlebot3/bringup/
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However, as speci�cs of the experiment and its requirements became clear; robot-runner

was built to automate the overhead of stopping and starting any experiment run. However,

this experiment would require a new, completly charged battery and the manual reading

and formatting of the SD card. Only if we would have been able to develop a second robot,

which could automate these things, we would have to do these things manually.

Therefore, robot-runner; a framework solely focused on automating the execution of

the experiment by starting a new run when another one ended, did not make sense to

use anymore. On top of this, the robot-runner framework was thus no longer suited for

this experiment as the code overhead, normally used for a succesful automatic end and

start of runs, was no longer needed and now a cumbersome, possibly result-in�uencing,

cumbersome risk.

It was this reason that lead to the decision to develop a new, more lightweight, framework;

mission-runner, in conjunction with turtlebot-runner. Both with the sole goal to create

code as reusable and lightweight as possible, with the assumption that a Human, manually

orchestrating the process, would ensure things like the availability of the correct ROS

nodes before starting the mission. This saved valuable lines of code which would check for

this, as present in the robot-runner framework, saving not only time, but also the risk of

in�uencing the results of the experiments as a result of running code which was not useful,

nor necessary to the experiment and reduced the share of the researched tactic in the used

codebase.

Next to this, the danger of the experimental robot-runner framework messing up a

substantial amount of runs was present and rather avoided than engaged with the limited

timeframe of this technical report in mind.

Hence, the resulting mission- and turtlebot-runner frameworks developed for and pre-

sented in this technical report.

3.4.2 Missions in Code

To make clear what the missions look like in code, two �les (F_Combined.py and F_IMission.py)

are given here as examples and any mentionable aspects are considered here:

3.4.2.1 Mission Implementation Example

F_Combined.py:

1 from F_movement.F_IMission import F_IMission

2 from common.tactics.ee1.movement.EE1MovementController import EE1MovementController

3 from common.tactics.combined.camera.CombinedCameraSensor import CombinedCameraSensor

35



3. STUDY DESIGN

4

5 class F_Combined(F_IMission):

6 def __init__(self):

7 super().__init__()

8 self .mvmnt_controller = EE1MovementController(self.ros_rate)

9 self .camera_controller = CombinedCameraSensor()

10

11 def do_mission(self) -> None:

12 self .do_mission_camera_recording_only_turns()

For F_Combined.py it can be noted that:

1. The MovementController and CameraController are de�ned for each misison by de-

fault in the IMissionController, inherited by each mission-speci�c �le through the

inheritance of the X_IMission.py �le where X stands for the treatment of the Move-

ment factor.

(a) It can be observed that for the Combined mission to be de�ned, only the default

controllers for the MovementController and CameraController need to be over-

written to the required controllers for that tactic to be implemented, as seen on

lines 8 and 9.

2. All X_IMission.py �les have the abstract method do_mission(), which needs to

be overridden, but also provides two versions of the baseline mission (the baseline

mission is alays executed, that what di�ers according to the tactic is only changed);

do_mission_camera_recording_only_turns() and do_mission_camera_recording_everything().

3.4.2.2 Tactic Implementations

In this subsection, the implementations of the tactic arbiters is explained (i.e., EE1, EE2,

EE3, EE4, Combined). The tactic implementations involve two parts, a part running on

the mission-runner and a part that is running on the turtlebot-runner.

Combined Tactic As example, the Combined tactic is chosen as it combines and imple-

ments all the individual tactics. In �gure 3.12 the structure can communication lines can

be observed between the two framework paths. The �gure is brie�y discussed here:

1. Communication lines are highly unusual in this kind of diagram, but essential for un-

derstanding the connectivity of the system. Just like it is important to understand
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that one class inherits and uses the functions of another class, so too is it impor-

tant to understand how the CombinedCameraSensor communicates with the actual

component it represents on the TurtleBot3.

(a) On the TurtleBot3, the tactic arbiters (e.g., EE3ClientCon�gurableSampleRate,

etc.) communicate an invocation of their provided ROS Services by invoking

the callback method as provided at initialisation of the class.

2. ServiceProxies are di�erent from Services as a Service is that which is registered, at

a speci�c address, where the ServiceProxy connects to that service at that speci�c

address. Allowing two-way, one-to-one, communication.

3. The ServiceCall text notations are an example of what could be transferred over

the ROS Service connection. For the possible Remote Procedure Calls over the

Service connection one can look at the provided Service channel addresses as given

as attributes of the corresponding classes (i.e., Service('/address')).

4. Note: ROS only allows for the initialisation of one ROS node per OS process. This

also means, that despawning the ROS node (destroying the node) to then initialise

it again is impossible to do in the same process.

(a) This hindered EE4 from implementation as it requires to destroy and spawn the

node.

(b) As a workaround, it can be observed that in turtlebot-runner, the EE4 tactic

is represented by a controller, rather than an inheritable parent class. Now

the Combined entity can use the EE4OnDemandController to register a ROS

node, providing the necessary Spawn and Despawn Services. On invocation, the

controller invokes the callback method set by the Combined entity, which then

spawns the CameraController in a subprocess, or terminates that subprocess,

and with that the ROS node, respectively.

3.4.2.3 Mission Variables

In this section all mission variables as declared in the code, and easily changeable as a

result, are given so that the execution of the missions based on these values is clear. The

values are given in table 3.4.
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Figure 3.12: The implementation of the Combined tactic, communicating with the turtlebot-

runner part of the framework.
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3.4 Mission Implementation

Table 3.3: Experiment Mission Variables.

Variable Value In File

rotation_interval_in_seconds int = 20 IMissionController

minimal_turn_in_degrees int = 60 IMissionController

maximal_turn_in_degrees int = 140 IMissionController

forward_stopping_distance_threshold �oat = 0.5 IMissionController

default_speed �oat = 0.6 MovementController

rotation_base_speed �oat = 0.8 MovementController

percentage_limit �oat = 0.3 EE1LimitableMovement

battery_percentage_threshold int = 100 EnergySavingsManager
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Figure 3.13: The TurtleBot3 as seen

from the front with the camera and circuit

mounted

Figure 3.14: The camera mount and con-

nection to the Raspberry Pi from close up.

3.5 Hardware Additions

For the experiments to be feasible, considering the need for an additional sensor compared

to the TurtleBot3 out-of-the-box, some hardware additions were made. These are explaned

here, pictures are shown and everything required to be able to understand and recreate

the additions is given.

As an overview of the hardware additions, �gures 3.13, 3.14, 3.15 and 3.16 depict pictures

taken of the robot as it was used in the execution of the experiments.

3.5.1 Energy Measuring Circuit - Schematic

Considering that the TurtleBot3 topic published; /battery_state provides very rough data

in the form of the current percentage of charge hold by the battery, the need for a circuit

that allows for �ne-grain measurements of the consumed energy at any given point arose.

After research and discussion, it was found that the INA2191 with its detailed documen-

tation2 would be perfect for the job.

This had the following reasons:

1. Adafruit is a respected supplier of TinyTronics (Tiny Electronics) such as microcon-

trollers, sensors, etc.

1https://www.adafruit.com/product/904
2https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ina219-current-sensor-breakout.pdf
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3.5 Hardware Additions

Figure 3.15: The circuit mount and con-

nection with the battery and robot from close

up.

Figure 3.16: The circuit from close up.

2. The INA 219 is a respected, de-facto board for energy measurements in the IoT

(Internet of Things) and TinyTronics movements.

3. The INA 219 met the requirements of the project perfectly;

(a) The INA 219 has 1% precision in measurement as reported in its documentation;

�you can use this breakout to measure both the high side voltage and DC current

draw over I2C with 1% precision�.

i. Vital for the validity of this technical report and the results of the empirical

evaluation.

(b) The INA 219 was built to gather readings precisely in the, for this technical

report, required range (up to 26VDC, 3.2A).

(c) The INA 219 could be powered by 5V or 3.3V and is speci�cally designed to be

used with microcontrollers. This allowed the creation of a simple but e�ective

circuit, and guaranteed that the circuit would have minimal impact on the

energy consumption drawn from the battery.

(d) The INA 219 can measure Voltage, Amperes and power in milli-Watts simulta-

neously and at incredible speeds (up to 400kHz1).

1As said however, this speed was unachievable as the SD card formed the bottleneck.
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Now that the circuit for measuring the energy consumption was picked, complementary

hardware was required to actually be able to use the INA 219. For this the following

combination of hardware has been chosen:

1. The Arduino NANO

(a) Speci�cally chosen for its small power signature, smaller than the Arduino Uno,

and to still o�er enough computing power and IO pins necessary for a successful

circuit.

2. A Generic TinyTronics SD Card read/write module.

(a) This did not have to be anything fancy, as long as it was small, had a low power

signature and was able to do the job quickly and e�ectively.

3. A standard-issue LED

(a) This functions as a status LED to show if the energy measurements are being

written to the SD card and thus if it is safe to remove the SD card.

4. A standard-issue button

(a) This functions as a START/STOP button, which controls if the measurements

are being written to the SD card or not.

5. Battery leads (T Plug Connector) for connecting the battery to the circuit and the

robot to the circuit.

The schematic was created, drawn and realised by soldering the circuit to a PCB; this

schematic is given in �gure 3.17.

The code created and used for the circuit is given in the replication package of this

technical report. For mounting this circuit to the TurtleBot3, a custom 3D print has been

designed and printed with a Creality CR10S 3D printer. A picture showcasing the mount is

shown in �gure 3.18. The .stl �le for this 3D print is also given in the replication package.

3.5.2 Raspberry Pi Camera Module

As mentioned before, the TurtleBot3 required an additional sensor for the experiment de-

sign to be able to be executed on it. For this, a standard issue Raspberry Pi Camera
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3.5 Hardware Additions

Figure 3.17: The schematic of the power meter circuit.

Figure 3.18: The circuit mount as designed and 3D printed.
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3. STUDY DESIGN

Figure 3.19: The camera mount as designed and 3D printed.

Module V1.3 1 has been chosen. It also has excellent documentation 2 and most impor-

tantly; it is extensively programmatically controllable with the provided Python library

picamera3.

The Raspberry Pi Camera Module was chosen speci�cally for these reasons:

1. It uses quite a lot of power compared to any other TinyTronics sensors (350mA4)

(a) This was of importance, as the tactics would be manipulating this sensor and

thus its power usage; clear results in the form of bigger di�erences are desirable

for a valid conclusion and good, conclusive data analysis.

2. The Raspberry Pi Model 3B+ on the TurtleBot3 has a dedicated port for such a

camera and was thus easily installed.

3. It is extensively programmatically controllable.

4. It has excellent documentation and widespread use.

5. It is inexpensive.

For this hardware addition a 3D printed mount was also designed and printed and is

shown in �gure 3.19.

1https://www.tinytronics.nl/shop/nl/raspberry-pi/raspberry-pi-compatible-camera-5mp-v1.3
2https://www.raspberrypi.org/documentation/hardware/camera/
3https://picamera.readthedocs.io/en/release-1.13/
4https://tinyurl.com/yy7fux9z
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3.5 Hardware Additions

3.5.3 TurtleBot3 Battery Speci�cations

Table 3.4: TurlteBot3 LiPo Battery Speci�cations.

Variable Value

Voltage 11.1V

Capacity 1800mAh = 1.8Ah

Volt-Amp-Hours 11.1V · 1.8Ah = 19.98V oltAmpHours

Joules (J) 19.98V oltAmpHours · 3600J = 71.928J

Volt-Amp-Hours are of course the equivalent of its more prominent term: Watt-Hours

(Wh). As 1 Watt = 1 Joule per second it follows that 1 Watt-Hour = 3600 Joules, as there

are 3600 seconds in 1 hour. The total capacity of the battery, in Joules, is thus; 71.928J.
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3.6 Empirically Evaluating the Green Tactics (RQ2)

Data analysis � Firstly, we explore the collected energy measures via violin plots and

summary statistics. Then, we analyze the distribution of the energy measures in order to

check if a parametric test (e.g., the one-way ANOVA) can be applied, which can potentially

lead to higher statistical power w.r.t. non-parametric tests (25). However, a visual analysis

of Q-Q Plots and the application of the Shapiro-Wilks test (29) with α = 0.05 reveal that

the energy measures across tactics are not normally distributed. Even after applying several

data transformations (e.g., squared, reciprocal, log (30, 31)), energy measures are still not

normally distributed.

We apply the Kruskal-Wallis test (with α = 0.05), a rank-based non-parametric test

for testing whether two or more samples all come from identical populations (32). In

the context of our study, we use the Kruskal-Wallis to determine if there are statistically

signi�cant di�erences of energy consumption for every treatment of the tactic variable.

The magnitude of the di�erence of energy consumption is estimated via the Eta-squared

statistic and interpreted according to (33).

In order to identify which tactics lead to signi�cantly di�erent energy consumption, we

perform a pairwise comparison between each tactic and the baseline using the Wilcoxon test

(34) with Benjamini-Hochberg correction (35). The comparison is carried out both globally

and across all possible combinations of movement strategy and physical environment.

We assess the magnitude of the di�erence of each tactic via the Cli�'s Delta e�ect size

measure (36). The values of the Cli� Delta measures are interpreted according to (37).
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4

Results

4.1 Tactics for Energy-E�cient Robotics Software (RQ1)

The four green tactics identi�ed in this study share the common goal of saving the energy

consumed by a robot. Each tactic description below includes the motivation for using the

tactic, a component-and-connector (C&C) view that shows the main components of the

tactic (see Figure 4.1), a description of the tactic based on the C&C view, and an example

of how it is used in one of the data points considered in this study.

EE1: Limit Task � There are robot tasks that consume a signi�cant amount of energy

(e.g., streaming large videos or robot navigation). Therefore, limiting these tasks when a

robot reaches a critical energy level is important for extending the time that a robot is

operational. One way to limit execution of energy-hungry tasks is to place the robot in

energy-savings mode once the energy level reaches an established threshold. For each of

these tasks there is a default mode and an energy-savings mode, as shown in the examples

in Table 4.1.

Table 4.1: Default and Energy-Saving Mode for Robot Tasks
Default Mode Energy Savings Mode

Move in any direction at the max power rate Adjust power rate to 50% of set max power

rate

Publish any type of data Do not publish PCL point clouds

Send video stream to the operator display Do not send any video streams

The Limit Task tactic con�gures a robot's task to execute in energy-savings mode when

energy levels reach an established threshold (see Figure 4.1(a)). The Task Requester is

responsible for requesting to execute a task, the Arbiter decides whether to execute the

task in default mode or energy-savings mode, the Energy-Savings Mode Manager provides
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Figure 4.1: C&C view for the identi�ed green tactics
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4.1 Tactics for Energy-E�cient Robotics Software (RQ1)

the task con�guration for energy-savings mode, and the Task Executor executes the task

in either default or energy-savings mode, as such:

1. The Task Requester sends a task to the Arbiter.

2. After receiving the task, the Arbiter checks the energy level of the robot (provided

by another component).

3. If energy level is below the established threshold, the Arbiter requests the energy-

savings mode task con�guration from the Energy-Savings Mode Manager.

4. The Arbiter forwards the received task to the Task Executor for execution.

5. The Arbiter continues checking the energy level during the execution of the task.

6. If the energy level is below the threshold, the Arbiter obtains the task con�guration

from the Energy-Savings Mode Manager and instructs the Task Executor to continue

execution of the task in its energy-savings mode.

7. Similarly, if the energy level rises above the threshold, the Arbiter instructs the Task

Executor to continue execution of the task in its default mode.

8. Once the task is completed the Task Requester is noti�ed.

An example of the use of this tactic is a ROS-based system that uses haptic devices (data

point 36). Haptic teleoperation allows a user to perform manipulation tasks in distant,

scaled, hazardous, or inaccessible environments (38). In this system, the haptic device

controller is a ROS node that communicates tasks to another ROS node which in turn

controls the robot. When the energy of the robot arm reaches a critical level, the robot

arm controller node adjusts the received task based on its con�guration for energy-savings

mode. In addition, because the haptic device controller is subscribed to an arm feedback

topic, it can inform the user about the arm's battery state as an indication for why it is

operating at a slower speed so that haptic user feedback can be adjusted.

EE2: Disable Hardware � Hardware components (e.g., servos, drivetrains, manipulator

arms) of a robot often consume a signi�cant amount of energy. For example, in addition

to the energy required to power a motor such as the Dynamixel XC430-W240 (39), the

controller of the motor also consumes energy due to the CPU usage to process the produced

data (e.g., about its current velocity and temperature). It is therefore important to prevent

unnecessary utilization of hardware resources in order to extend the operation time of the

robot.

49



4. RESULTS

The Disable Hardware tactic disables hardware components when they are not strictly

needed, which results in less energy consumption by the robot and more e�cient power

management (Figure 4.1(b)). The tactic is implemented to manage the state of the actual

Hardware Device, as such:

1. The Hardware Requester noti�es the Hardware State Controller whether or not the

hardware device is needed for a certain task.

2. The Hardware State Controller instructs the Hardware Controller to disable or enable

the Hardware Device.

3. Before enabling or disabling the Hardware Device, the Hardware Controller checks if

it is safe to change the state of the HW device (e.g., to toggle a hardware pin).

4. If it is safe, the Hardware Controller enables or disables the Hardware Device.

5. Note that it is also possible for the Hardware Requester to obtain the state of the

Hardware Device at any time via the Hardware State Controller.

An example of the use of this tactic is the ros_control package (40), one of the most used

packages within the ROS ecosystem which includes ROS-based controller managers and

controller-hardware interfaces (data point 23). The controller_manager node advertises

two services: a load_controller service (enable hardware) and an unload_controller service

(disable hardware). If a node needs to enable the robot hardware, it sends a request to

the load_controller service. If it wishes to disable the robot hardware, it sends a request

to the unload_controller service. After receiving a request, the controller_manager node

performs the request by either enabling or disabling the robot hardware. The requesting

node is noti�ed with the result to ensure that it is aware of the robot hardware status.

EE3: Energy-Aware Sampling � In robotics, many sensors are designed to provide a

continuous stream of data (e.g., accelerometers, LIDARs, cameras) (41). However, sam-

pling data from sensors is an energy consuming task, especially as incoming data is con-

tinuously processed (CPU usage).

The Energy-Aware Sampling tactic shown in Figure 4.1(c) adjusts the rates for sensor

sampling based on the energy level of the robot, as such:

1. The Sensor Requester asks the Sampling Rate Controller to start sampling the Sensor

at a given rate.
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2. The Sampling Rate Controller instructs the Sensor Controller to start sampling the

Sensor at the given rate and continues checking the energy level during the execution

of the sampling task.

3. If the energy level reaches a critical threshold, the Sampling Rate Controller instructs

the Sensor Controller to start sampling at a lower rate and informs the Sensor

Requester of the adjusted sampling rate.

4. Note that it is also possible for the Sensor Requester to obtain sensor status at any

time from the Sensor Controller.

An example of the use of this tactic is a ROS-based driver for InvenSense's 3-axis gyro-

scope (42) (data point 51). An MPU controller node subscribes to a battery_state topic

to check the battery level and a sampling_rates topic to which sensor sampling rates are

published by an MPU node. Based on battery levels, the MPU Controller adjusts sensor

sampling rates accordingly by sending a request to the sampling action advertised by the

MPU node that controls the actual sensor.

EE4: On-Demand Components � Continuously running a software component (e.g., a

ROS node) requires the spawning of an operating system (OS) process which is an energy-

consuming task in terms of CPU/memory usage (i.e., executing a CPU-intensive loop) and

other resources (e.g., sensors, motors, fans for cooling). Therefore, it is necessary to ensure

that OS processes are not running if they are not needed.

The On-Demand Components tactic shown in Figure 4.1(d) starts new components only

when their functionality is needed. The Requester represents a component that requires the

functionality of the On-Demand Component. The Component Manager acts as a controller

that either starts up or shuts down a component based on requests, as such:

1. The Requester indicates to the Component Manager that it needs the On-Demand

Component to be in either the online or o�ine state.

2. The Component Manager starts up (online) or shuts down (o�ine) the On-Demand

Component if the request is di�erent from its current state.

3. The Component Manager noti�es the Requester of the state of the On-Demand Com-

ponent.

4. If the On-Demand Component is online, the Requester can start using its services.
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5. Once the Requester no longer requires the functionality of the On-Demand Compo-

nent it goes back to Step 1) to change its state to o�ine.

An example of the use of this tactic is the way that data point 14 uses cameras. In

order for the camera to operate, it requires the camera_driver ROS nodelet to be up and

running. The requester nodelet publishes the required state for the camera (online/o�ine)

to a camera_status topic, which is subscribed to by the nodelet manager. Based on

the published required status, the nodelet manager either starts up or shuts down the

camera_driver. Once the camera_driver is up and running, it advertises a service that

can be called by the requester.

4.2 Empirical Evaluation of the Tactics (RQ2)

We implement the green tactics into our Turtlebot as follows:

� EE1: limit the movement of the robot by waiting 5 seconds before each 360◦rotation;

� EE2: disable the camera of the robot (i.e., with no video acquisition) when the robot

is moving among locations;

� EE3: lower the frame rate of the camera to 30 FPS;

� EE4: kill the ROS node of the camera when the robot is moving and bring it up

before each 360◦rotation.

As discussed in Section 3.6, our experiment also includes a baseline treatment where no

tactics are applied and a combined treatment where all the tactics are applied simultane-

ously.

Data exploration. The energy consumption across all tactics ranges between 1067.08

and 1429.11 Joules (see Table 4.2), with a median (mean) of 1277.74 (1271.80) Joules.

Table 4.2: Descriptive statistics of the energy consumption in Joules (SD=standard devia-

tion, CV=coe�cient of variation)
Tactic Min. Max. Median Mean SD CV

Baseline (B) 1151.93 1416.81 1336.96 1318.11 60.92 4.62

EE1 1164.58 1386.37 1293.06 1291.62 51.70 4.00

EE2 1089.45 1369.67 1258.91 1255.11 62.44 4.97

EE3 1130.56 1429.11 1337.52 1313.29 72.78 5.54

EE4 1084.92 1321.92 1250.00 1239.13 63.67 5.14

Combined (C) 1067.08 1322.60 1225.36 1213.56 59.18 4.88

Global 1067.08 1429.11 1277.74 1271.80 72.77 5.72
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The standard deviation of the collected energy measures is non negligible and ranges from

51.70 for the EE1 tactic to 72.78 for the EE3 tactic; overall, the values of the standard

deviation are mainly due to the robot performing di�erent movements during the execution

of the mission and to the intrinsic �uctuation of energy and it justi�es our design choice of

repeating the runs of the experiment 10 times for each trial. Nevertheless, the coe�cient of

variation remains between 4% and 6%, making us reasonably con�dent about the reliability

of the measurement infrastructure we setup for the experiment.

Result 1 � On average all green tactics improve energy e�ciency, however not all tactics impact

the energy consumption of the system with the same magnitude.

As shown in Figure 4.2, tactic EE4 is the one impacting energy the most, making the

Turtlebot consume an average of 78.55 Joules less than the baseline treatment, followed

by EE2 and EE1 with an average saving of 63.0 and 26.49 Joules, respectively. The EE3

tactic shows a slightly di�erent behaviour; even though on average it saves 4.82 Joules,

when it is applied the system tends to consume the same (or even more) energy w.r.t. the

baseline (the median energy consumption of EE3 is 0.56 Joules higher w.r.t. the baseline).

This result may seem surprising, however it can be explained by the way we implemented

the EE3 tactic. Indeed, EE3 just changes the frame rate of the sensor to 30 FPS but the

Turtlebot does not use the acquired video stream, e.g., by persisting, manipulating, or

streaming the recorded video. We decided to implement EE3 in this way so to completely

isolate the application of the tactic from the business logic managing the data produced by

the camera. In summary, in the speci�c context of our experiment the application of EE3

did not lead to energy savings (the is also statistically con�rmed). This phenomenon is

also con�rmed in the mobile apps domain (43), where lowering the frame rate of a camera

does not impact its energy consumption per se, rather energy is impacted the most by how

the recorded video stream is used in other components of the system (e.g., streaming the

recorded video to the cloud).

These results are statistically con�rmed, with the Kruskal-Wallis test producing a p-

value of 2.74× 10−18 (with large e�ect size), which allows us to reject the null hypothesis

that the energy measures at each tactic come from identical populations (44). The pairwise

comparison between each tactic and the baseline with the Wilcoxon test further con�rm

our results; the p-value for EE1, EE2, and EE4 is lower than 4× 10−3, thus rejecting the

null hypothesis that the median di�erence between the baseline-EE1, baseline-EE2, and

baseline-EE4 pairs is zero. We �nd amedium e�ect size for EE1 (0.34) and a large e�ect size

for EE2 and EE4. These results provide evidence about the fact that the application of the
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Figure 4.2: Energy consumption across architectural tactics (B=baseline, EEi=ith applied

tactic, C=combined, �=mean)

EE1, EE2, and EE4 tactics lead to a signi�cantly di�erent amount of energy consumption

in the context of our experiment.

Result 2 � The combination of all green tactics improves energy e�ciency more than each tactic

in isolation.

The median (mean) energy consumed by the Turtlebot with all combined tactics is 111.6

(104.55) Joules less than the baseline. This di�erence is far higher than those related to the

individual tactics (see Table 4.2 and the right-most violin in Figure 4.2): the application

of the tactics leads to a 7.9% energy saving on average. To put this result into perspective,

considering that the total energy of the battery of the Turtlebot is 71928 Joules and that

on average our 2-minute missions consume 1271.8 Joules, the total lifetime of a Turtlebot

without tactics is about 109 minutes, whereas the application of the tactics would like to a

total lifetime of about 119 minutes (a 10-minute improvement over a mission of less than

2 hours). The previously mentioned Wilcoxon tests statistically con�rm this result with a

p-value of 5.75× 10−11 and the Cli�'s delta measure reveal a large e�ect size (0.78).

Result 3 � The movement strategy and the physical environment in�uence how energy is con-

sumed during the mission.

Figure 4.3 shows the power measurements collected during one randomly-chosen mission

for each combination of movement strategy and physical environment. Among others,

here we can clearly notice (i) the generally lower power consumption of the robot with
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the applied tactics with respect to the baseline, (ii) the low power consumption of the

robot with the noMovement strategy in the �rst 20 seconds of the mission, where the

robot still does not use at all the wheel actuators (Figure 4.3a), and (iii) the more chaotic

power consumption in the cluttered environment due to the avoidance of the encountered

obstacles (Figures 4.3c and 4.3e).

By looking at the combinations of tactic, movement strategy, and physical environment

(see Figure 4.4), we can witness that di�erent amounts of energy are consumed when the

robot is moving. This result is expected since additional energy is consumed by the two

actuators for rotating the wheels of the robot. More interestingly, we can also con�rm the

general results obtained when discussing results 1 and 2. Speci�cally, almost all tactic-

movement-environment combinations lead to a statistically signi�cant di�erence in terms

of energy consumption, with the exception of EE3. Moreover, when the results are statis-

tically signi�cant, their e�ect size is always large. This gives evidence about the fact that

applying tactics EE1, EE2, and EE4 (and their combination) likely leads to higher energy

e�ciency, with a large e�ect on it.

We have three other exceptions to the main trend, namely the EE1-noMovement-empty,

EE1-sweep-empty, and EE2-autonomous-cluttered combinations. About the EE1-noMovement-

empty combination, we speculate that it is due to the fact that movement is a fundamental

component of EE1, thus having the robot standing still for the whole duration of the mis-

sion (the noMovement treatment) would have penalized the EE1 tactic. At the time of

writing we do not have hard evidence for explaining the results about the other two com-

binations since they all involve di�erent combinations of factors. Further analysis and

replications of the experiment are already planned for clarifying this speci�c part of the

study.
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b) Autonomous movement, empty environment
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c) Autonomous movement, cluttered environment
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d) Sweep movement, empty environment
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e) Sweep movement, cluttered environment

Figure 4.3: Examples of power measurements across all movements and environments (base-

line, combined)
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Figure 4.4: Energy consumption across all movements strategies and environments
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4.3 Discussion

Energy is infrequently discussed by roboticists. Of the 339,563 ROS data points

only 562 (0.17%) mention energy-related topics. This result is quite counter-intuitive,

considering that (i) the majority of the discussed systems involve battery-powered mobile

robots and (ii) the lifetime of current battery-operated robots is low. This phenomenon

might also relate to the lack of testing/debugging tools for energy-e�cient or at least

energy-aware robotics software (e.g., accessible energy measurement tools, libraries for

energy-aware programming for robots); concern also con�rmed in other domains, e.g.,

mobile apps (45), where two main problems are developer awareness and lack of tools. We

do not have hard evidence explaining whether the infrequence of energy-related data points

is due to lack of awareness, tools, or simply interest by roboticists. A follow-up qualitative

study might shed light on this phenomenon. Our answer to RQ2 empirically demonstrates

that the software design choices of roboticists do impact the energy e�ciency of robots,

often with large e�ects. This should motivate researchers on energy e�ciency to focus on

robotics software, and developers to adopt the green tactics we identi�ed and seek (and

document) new ones.

Roboticists tend to not document architecture. The advantages of architecture

documentation are widely reported (46), including facilitating the onboarding of newcomers

to open-source projects, and being able to discuss/reason about tradeo�s between system-

level quality attributes like energy and performance. However, none of the 97 analyzed data

points include a documented architecture, e.g., via a diagram or a thorough description

of the involved components, connectors, and their con�guration; �nding also con�rmed by

another study on the architecture of ROS-based systems (18). We suggest roboticists to

document the architecture of the (part of) system they want to discuss in order to better

clarify their general points, design decisions, and rationale to the reader of their posts in

discussion and social coding platforms and code/comments in their own source code.

There are other green tactics out there. The green tactics we identi�ed are not

meant to be complete. We designed our study so to let the green tactics emerge from

the practice; there may be other sources for the tactics, like robotics textbooks, interviews

with robotics experts, grey literature. Our choice is motivated by two main forces: (i)

to empirically assess how and to which extent practitioners deal with energy e�ciency at

the architectural level, and (ii) to focus on tactics that are applied in real robots and and

robotics contexts. In principle, the latter point makes the green tactics directly applicable
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in real projects, which, together with the empirical assessment in RQ2, should motivate

practitioners to adopt them.

The green tactics should be re�ned and used in context. The tactics should be used

and re�ned depending on the speci�c context of the system being developed. For example,

the main component of tactic EE1 (i.e., Limit Task) is the Arbiter, which decides whether

to execute a task in default or energy-saving mode. However, there are many di�erent

types of tasks (e.g., paint a wall, drive to a point of interest) and many de�nitions of modes

depending on the speci�c robot at hand (see Table 4.1). Thus, roboticists must understand

the context-sensitive tradeo�s implied by the system under development and apply the

tactics accordingly. This observation is specially true when considering performance and

maintainability since the presented tactics can involve having additional tactic-speci�c

components/roles (e.g., the Arbiter in EE1, the Component Manager in EE4), potentially

leading to (i) communication and computation overhead and (ii) higher complexity of the

system, thus hindering future improvements over time.

Know the Physics of your robot. One of the lessons learned during the execution of

our experiment is that sensors and actuators might behave in counter-intuitive ways from

the perspective of software developers. For example, the �rst implementation of tactic

EE1 consisted in limiting the robot to 30% of its nominal speed; the intuition was that

slower robots would make less �work� than faster robots, thus saving energy. Some pilot

runs showed that this assumption was completely wrong. Indeed, the electric motors for

rotating the wheel of the Turtlebot actually was consuming more energy at slower speeds!

This is mainly due to the fact that the majority of the input power at slower speeds was

used to overcome the dynamic friction inside the motors and as the speed was increasing,

friction played a smaller and smaller role in their overall e�ciency (39, 47). We suggest

researchers and roboticists to have the energy-related behaviour of their robots under

control by (i) carefully studying the technical speci�cations of all hardware components of

the robots and, based on that, (ii) benchmarking the energy consumption of their robots

under di�erent conditions and con�gurations.
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5

Threats to Validity

The threats to the validity of the results of this empirical evaluation are listed here.

5.1 External Validity

This threat is introduced by part (i) of this two-part research-e�ort:

This threat deals with the fact that the data sources and the 335 ROS-based open-source

projects hosted on GitHub and Bitbucket may not be representative of the robotics com-

munity. The data sources StackOver�ow, ROS-Answers, ROS-Wiki and ROS-Discourse

are heterogeneous in terms of the age of the posts, and number of questions per distinct

user and the 335 ROS repositories in terms of number of contributors, number of commits,

etc. This potential threat is avoided as the primary motivation for using ROS is that the

ROS community is very active in terms of the number of packages, questions posted in the

ROS forums, and open-source ROS projects. These reasons make us con�dent in the long

term future of ROS.

Considering this empirical evaluation is based on the tactics extracted from part (i), it

su�ers from the same External Validity threats and thus its mitigation is also the same.

This empirical evaluation's external validity is threatened by the fact that it might not

be representative for cases where another robot than the ROBOTIS TurtleBot3 is used.

This threat is mitigated by the use of ROS, which serves as the sole base for the framework

and the implementation of the tactics; the robotic system it is deployed on is therefore not

of interest. This empirical evaluation is thus valid for any ROS-based robotic system.

This empirical evaluation's external validity is threatened by the fact that it might not

be performed in a representative environment. This threat is mitigated as the robotic

arena constructed is constructed in such a fasion that it is comparable to robotic arena's
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widely used in robotic research. Furthermore, the robotic arena was static, and did not

change and was not altered during the execution of the experiments. The robotic arena

served as a controlled environment, in which any events that would threaten the validity

of the results were controlled.

This empirival evaluation's external validity is threatened by the fact that it might not

perform a representative set of missions. This threat was mitigated by �rst extensively

reading into scienti�c literature on robotic research, applications of robotic systems and

taking the mined datapoints as part (i) of this study into account. Based on this set of

data, the missions were rigorously and iteratively constructed.

5.2 Internal Validity

This threat has been mitigated as much as possible by de�ning the experiment, as explained

in section 3, as rigorously as possible. Iteratively de�ning it by discussing it after each

iteration.

This empirical evaluation's internal validity is threatened by the fact that the tactics

might not be correctly implemented. This threat is mitigated by the fact that the tactics

were implemented according to well de�ned sequence diagrams which had to be followed

to the letter. Any changes made, as given in section 3.4, were to be discussed. The tactic

implementations were also rigorously and iteratively de�ned, going through two iterations.

This empirical evaluation's internal validity is threatened by the fact that the measure-

ments might not be correct. This threat is mitigated by the choice for the AdaFruit INA

219; a de-facto standard in energy measurement for robotics and TinyTronics.

This empirical evaluation's internal validity is threatened by the fact that all the other

software involved in the experiment might in�uence the results. This threat was mitigated

by reducing the amount of software involved; apart from the developed framework and

the tactics, the only software used is the standard, de-facto ROS `bringup' mission from

ROBOTIS which allows control over the TurtleBot3. This is developed by ROBOTIS

themselves and can be considered rigorous and well tested. The other software used is

the AdaFruit library to gather the metrics from the INA 219 in the power meter circuitry.

For this software, the standard, de-facto AdaFruit INA 219 library was used, which serves

the metrics as single �oat values which can then be directly written to the SD card; for

which the standard Arduino SD card library was used. Mitigating the threat of any `faulty',

`wrong' or `experimental' software interfering negatively with the results of this evaluation.
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5.3 Construct Validity

To mitigate this threat, a well-de�ned goal and research question have been identi�ed to

cover the scope of this project. Each phase of the experiment design was carefully designed

and carried out;

as part of part(i): the energy-relevant and architecturally-relevant data was rigorously

identi�ed and selected via an established inclusion and exclusion criteria and veri�ed by

a second researcher. The green tactics were identi�ed and extracted using a pre-de�ned

protocol and veri�ed by three researchers.

For the empirical evaluation, the following threats were mitigated:

Inadequate preoperational explication of constructs

This sub-threat deals with constructs not being well de�ned before being translated into

measures. To mitigate this sub-threat, the experiment was de�ned using the GQMmethod,

meaning that the goal, the underlying questions and the metrics required to answer these

questions were de�ned in a cascading fashion.

Mono-method bias

This sub-threat occurs when there is only a single type of measurement or observation

used.

For this experiment the de-facto energy sensor for TinyTronic; AdafruitINA 219 was used

to measure the metrics. This has the potential to introduce the mono-method bias into the

experiment. This threat is mitigated by the fact that the readings from the INA 219 have

been retrieved redundantly, meaning; not only was the power in milli-Watts measured, but

also the values consituting that value, in order to be able to automatically validate the

data.

Additionally, the CPU usage, RAM usage and Battery Percentage as reported by the

TurtleBot3 have been measured by a seperate system; the `Remote PC' controlling the

experiments.

5.4 Conclusion Validity

The threat as introduced by part (i) of this two-part research-e�ort was mitigated:

To mitigate this threat and reduce potential biases, two researchers were involved in

identifying the energy-relevant and architecturally-relevant data
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by using Cohen's Kappa to measure the level of agreement to ensure that an arbiter was

not needed. Furthermore, three researchers were involved in the extraction process of the

green tactics and the �nal results were veri�ed by two other researchers.

For this empirical evaluation, the threat has been mitigated by extensive measures in

the experiment setup;

(i) The screwed-in-place arena which is unable to alter the physical setting in which the

experiments are performed. (ii) The marked start point in which the robot is to be placed

before each mission is started, guaranteeing the same starting position for each run. (iii)

The marked positions of the obstacles, guaranteeing the obstacles are always in the exact

same position for all runs.

The measures above describe the validity of the retrieval of the metrics. However, an-

other threat to this empirical evaluation's conclusion validity needs to be addressed; the

correctness of the statistical analysis.

The statistical analysis has been conducted according to well-accepted methodological

guidelines for statistical analysis.
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6

Conclusion

Based on an extensive mining of the ROS software ecosystem, in this paper we identify

and empirically evaluate a �rst body of architectural tactics for energy-e�cient robotics

software. The results show that (i) the green tactics signi�cantly help improve the energy

e�ciency of the robot and (ii) context and SW-HW interplay play an important role for

their most-e�ective selection. Given the surprising lack of focus of the studied roboticists

on energy-related topics, this green-tactics body of knowledge can help roboticists start

changing their practice by (i) adopting these green tactics and (ii) becoming aware of the

bene�t of documenting and communicating their architecture design decisions, possibly

leading to a new (energy-aware) development mindset.

65



6. CONCLUSION

66



References

[1] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware

resource allocation heuristics for e�cient management of data centers for

cloud computing. Future generation computer systems, 28(5):755�768, 2012. 1

[2] Meiyappan Nagappan and Emad Shihab. Future trends in software engi-

neering research for mobile apps. In 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), 5, pages 21�32. IEEE,

2016. 1

[3] Roy Paulissen, Sandy Kalisingh, Jesse Scholtes, Alex van Geldrop, and

Anne-Lize Hoftijzer. Robotics in the Netherlands. Netherlands Foreign In-

vestment Agency (NFIA) report, 2016. 1

[4] H Lasi, P Fettke, and H Kemper. Industry 4.0. Bus Inf Syst Eng 6, pages

239�242, 2014. 1

[5] International Energy Agency. Office of Energy Technology and R&D.

and Group of Eight (Organization). Energy technology perspectives. Interna-

tional Energy Agency, 2006. 1

[6] US Energy Information Administration. Manufacturing energy consump-

tion survey (MECS). 2018. 1

[7] A Fysikopoulos, D Anagnostakis, K Salonitis, and G Chryssolouris. An

empirical study of the energy consumption in automotive assembly. Procedia

CIRP 3, pages 477�482, 2012. 1

[8] IFR Statistical Department. Executive summary of World Robotics. 2010.

1

67

http://www.eia.gov/consumption/manufacturing
http://www.eia.gov/consumption/manufacturing
https:// doi.org/10.1016/j.procir.2012.07.082
https:// doi.org/10.1016/j.procir.2012.07.082


REFERENCES

[9] J Engelmann. Methoden und Werkzeuge zur Planung und Gestaltung

energiee�zienter Fabriken. 2009. 1

[10] J Evans. An Autonomous Mobile Robot Courier for Hospitals. IROS, pages

1695�1700, 1994. 1

[11] R Aylett. Robots: Bringing Intelligent Machines To Life. 2002. 2

[12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.

Addison-Wesley Professional, 3rd edition, 2012. 2, 4

[13] PLATFORM - TurtleBot 3 - ROBOTIS, Jul 2020. [Online; accessed 30. Jul.

2020]. 2

[14] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source

Robot Operating System. In ICRA workshop on open source software, 3, page 5.

Kobe, Japan, 2009. 3

[15] ROS Community Metrics. http://wiki.ros.org/Metrics, Jul 2020. [Online; accessed

28. Jul. 2020]. 3

[16] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry. The

Robot Operating System: Package reuse and community dynamics. Journal

of Systems and Software, 151:226�242, 2019. 3

[17] F Bachman, L Bass, and M Klein. Deriving architectural tactics: A step

toward methodical architectural design. 2003. 4

[18] Ivano Malavolta, Grace Lewis, Bradley Schmerl, Patricia Lago, and

David Garlan. How do you Architect your Robots? State of the Practice

and Guidelines for ROS-based Systems. In ACM/IEEE International Conference

on Software Engineering, 2020. 5, 7, 58

[19] Shaiful Alam Chowdhury and Abram Hindle. Characterizing energy-

aware software projects: Are they di�erent? In Proceedings of the 13th In-

ternational Conference on Mining Software Repositories, pages 508�511, 2016. 6

[20] Haroon Malik, Peng Zhao, and Michael Godfrey. Going green: An ex-

ploratory analysis of energy-related questions. In 2015 IEEE/ACM 12th Work-

ing Conference on Mining Software Repositories, pages 418�421. IEEE, 2015. 6

68

http://www.robotis.us/turtlebot-3
http://wiki.ros.org/Metrics
http://www.ivanomalavolta.com/files/papers/ICSE_SEIP_2020.pdf
http://www.ivanomalavolta.com/files/papers/ICSE_SEIP_2020.pdf


REFERENCES

[21] Irineu Moura, Gustavo Pinto, Felipe Ebert, and Fernando Castor. Min-

ing Energy-Aware Commits. Working Conference on Mining Software Reposito-

ries, 2015. 6

[22] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions

about software energy consumption. In Proceedings of the 11th Working Confer-

ence on Mining Software Repositories, pages 22�31, 2014. 6

[23] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan. What

do programmers know about software energy consumption? IEEE Software,

33(3):83�89, 2015. 6

[24] ISO. ISO/IEC/IEEE 42010, Systems and software engineering � Architecture de-

scription, December 2011. 7

[25] C Wohlin, P Runeson, M Höst, M.C. Ohlsson, B Regnell, and A Wesslén.

Experimentation in software engineering. 2012. 7, 17, 46

[26] D. S. Cruzes and T. Dyba. Recommended Steps for Thematic Synthesis

in Software Engineering. In 2011 International Symposium on Empirical Software

Engineering and Measurement, pages 275�284, Sep. 2011. 7

[27] Faheem Ullah and Muhammad Ali Babar. Architectural Tactics for Big

Data Cybersecurity Analytics Systems: A Review. Journal of Systems and

Software, 151:81�118, 2019. 7

[28] Grace Lewis and Patricia Lago. Architectural tactics for cyber-foraging:

Results of a systematic literature review. Journal of Systems and Software,

107:158�186, 2015. 7

[29] S.S. Shapiro and M.B. Wilk. An analysis of variance test for normality

(complete samples). Biometrika, pages 591�611, 1965. 46

[30] Sira Vegas. Analyzing software engineering experiments: everything you

always wanted to know but were afraid to ask. In Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings, pages

534�535, 2018. 46

[31] Ryan A. Peterson. Using the bestNormalize Package, Jun 2020. [Online;

accessed 27. Aug. 2020]. 46

69

https://cran.r-project.org/web/packages/bestNormalize/vignettes/bestNormalize.html


REFERENCES

[32] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion

variance analysis. Journal of the American statistical Association, 47(260):583�621,

1952. 46

[33] Maciej Tomczak and Ewa Tomczak. The need to report e�ect size esti-

mates revisited. An overview of some recommended measures of e�ect size.

2014. 46

[34] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric

statistical methods, 751. John Wiley & Sons, 2013. 46

[35] David Thissen, Lynne Steinberg, and Daniel Kuang. Quick and easy imple-

mentation of the Benjamini-Hochberg procedure for controlling the false

positive rate in multiple comparisons. Journal of educational and behavioral

statistics, 27(1):77�83, 2002. 46

[36] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal

questions. Psychological bulletin, 114(3):494, 1993. 46

[37] Robert J Grissom and John J Kim. E�ect sizes for research: A broad practical

approach. Lawrence Erlbaum Associates Publishers, 2005. 46

[38] Paulo Rezeck, Bruna Frade, Jessica Soares, Luan Pinto, Felipe Cadar,

Hector Azpurua, Douglas G Macharet, Luiz Chaimowicz, Gustavo Fre-

itas, and Mario FM Campos. Framework for Haptic Teleoperation of a

Remote Robotic Arm Device. In 2018 Latin American Robotic Symposium, 2018

Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education

(WRE), pages 170�175. IEEE, 2018. 49

[39] ROBOTIS. Dynamixel XC430-W240 manual. https://emanual.robotis.com/

docs/en/dxl/x/xc430-w240, Aug 2020. [Online; accessed 20. Aug. 2020]. 49, 59

[40] ros_control - ROS Wiki. http://wiki.ros.org/ros_control, Aug 2020. [Online;

accessed 20. Aug. 2020]. 50

[41] Michael Beetz. Plan-based control of robotic agents: improving the capabilities of

autonomous robots, 2554. Springer Science & Business Media, 2002. 50

[42] 3-Axis | TDK. https://invensense.tdk.com/products/motion-tracking/3-axis, Aug

2020. [Online; accessed 20. Aug. 2020]. 51

70

https://emanual.robotis.com/docs/en/dxl/x/xc430-w240
https://emanual.robotis.com/docs/en/dxl/x/xc430-w240
http://wiki.ros.org/ros_control
https://invensense.tdk.com/products/motion-tracking/3-axis


REFERENCES

[43] Swaminathan Vasanth Rajaraman, Matti Siekkinen, and Mohammad A

Hoque. Energy consumption anatomy of live video streaming from a smart-

phone. In 2014 IEEE 25th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communication (PIMRC), pages 2013�2017. IEEE, 2014. 53

[44] Michael Sullivan and JCM Verhoosel. Statistics: Informed decisions using

data. Pearson Boston, MA, 2013. 53

[45] Gustavo Pinto and Fernando Castor. Energy e�ciency: a new concern

for application software developers. Communications of the ACM, 60(12):68�75,

2017. 58

[46] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord,

James Ivers, and Reed Little. Documenting software architectures: views and

beyond. Pearson Education, 2002. 58

[47] Why is an electric motor more e�cient at higher loads? https:

//physics.stackexchange.com/questions/46113/why-is-an-electric-motor-more-

e�cient-at-higher-loads, Aug 2020. [Online; accessed 27. Aug. 2020]. 59

71

https://physics.stackexchange.com/questions/46113/why-is-an-electric-motor-more-efficient-at-higher-loads
https://physics.stackexchange.com/questions/46113/why-is-an-electric-motor-more-efficient-at-higher-loads
https://physics.stackexchange.com/questions/46113/why-is-an-electric-motor-more-efficient-at-higher-loads

	1 Introduction
	2 Background
	2.1 Robotics Software
	2.2 Architectural Tactics

	3 Study Design
	3.1 Energy-Efficient Architectural Tactics Defined
	3.1.1 Data Identification Phases
	3.1.1.1 Phase 1: Dataset Construction
	3.1.1.2 Phase 2: Energy-Relevant Data Identification
	3.1.1.3 Phase 3: Architecturally-Relevant Data Identification
	3.1.1.4 Phase 4: Green Tactics Extraction

	3.1.2 The Energy-Efficient Architectural Tactics
	3.1.2.1 EE1 - Limit Task:
	3.1.2.2 EE2 - Disable Hardware:
	3.1.2.3 EE3 - Energy-Aware Sampling:
	3.1.2.4 EE4 - On-Demand Components:


	3.2 Goal and Research Question
	3.3 Experiment Definition
	3.3.1 Factors and Treatments
	3.3.2 Experiment Mission
	3.3.2.1 Differentiating Aspects
	3.3.2.2 The Arena
	3.3.2.3 The Missions

	3.3.3 Run Schedule

	3.4 Mission Implementation
	3.4.1 Framework
	3.4.1.1 mission-runner
	3.4.1.2 turtlebot-runner
	3.4.1.3 robot-runner

	3.4.2 Missions in Code
	3.4.2.1 Mission Implementation Example
	3.4.2.2 Tactic Implementations
	3.4.2.3 Mission Variables


	3.5 Hardware Additions
	3.5.1 Energy Measuring Circuit - Schematic
	3.5.2 Raspberry Pi Camera Module
	3.5.3 TurtleBot3 Battery Specifications

	3.6 Empirically Evaluating the Green Tactics (RQ2)

	4 Results
	4.1 Tactics for Energy-Efficient Robotics Software (RQ1)
	4.2 Empirical Evaluation of the Tactics (RQ2)
	4.3 Discussion

	5 Threats to Validity
	5.1 External Validity
	5.2 Internal Validity
	5.3 Construct Validity
	5.4 Conclusion Validity

	6 Conclusion
	References

