
Supplementary Material (RQ1)

Abstract

Modern computing devices which are equipped in robots, allow processing of

large amounts of data in short periods of time. This led to the fact that, using

a small number of sensors and executable devices, robots began to have greater

functionality, the implementation of which fell to the software that controls

the devices. The Robot Operating System (ROS) is known to be the de-facto

standard for robotics software. ROS includes drivers for various electronic com-

ponents, libraries, visualizers, and also provides a process control system, etc.

ROS is open source and is very popular among developers of robotics software

systems. Mobile robots typically carry their energy sources such as batteries, so

designing an energy-aware and energy-e�cient system in the early stage of soft-

ware development is key for conserving energy. It is imperative to establish a set

of green design options known as architectural tactics for creating energy-aware

and energy-e�cient robotics software. This project presents 11 green architec-

tural tactics for energy-aware and energy-e�cient robotics systems which can

also be applied and already have been applied in other application domains.

To achieve this, we (i) construct a dataset by mining various ROS open-data

sources, (ii) identify and extract energy-related data, (iii) identify and extract

architecturally-relevant data, and (iv) synthesize a concrete catalog of 11 green

architectural tactics used in the robotics systems as well as in other application

domains.

Contents

1 Introduction 1

2 Background 3

2.1 Architectural Tactics . 3

2.2 ROS-based Systems . 6

3 Study Design 9

3.1 Research Question . 9

3.2 Study Design . 10

3.2.1 Phase 1: Dataset Construction . 11

3.2.1.1 Pre-�ltering . 12

3.2.1.2 Web Scraping . 13

3.2.1.3 Data Storage - MongoDB . 14

3.2.1.4 Data Extractors . 15

3.2.1.5 Dataset Summary . 19

3.2.2 Phase 2: Energy-Relevant Data Identi�cation 23

3.2.2.1 Energy Query . 23

3.2.2.2 Document Query Engine 24

3.2.2.3 Removing False-Positive Energy Data 25

3.2.2.4 Level Of Agreement Calculation 25

3.2.2.5 Energy Dataset Summary 25

3.2.3 Phase 3: Architecturally-Relevant Data Identi�cation 27

3.2.3.1 Data Point Types . 27

3.2.3.2 Inclusion & Exclusion Criteria 28

3.2.3.3 AR Data Point Identi�cation 30

3.2.3.4 Level Of Agreement Calculation 31

3.2.3.5 AR Dataset Summary . 32

i

CONTENTS

3.2.4 Phase 4: Green Tactics Extraction 34

3.2.4.1 Stage 1: AT-Relevant Data Extraction 34

3.2.4.2 Stage 2: Green Tactics Categories Identi�cation 35

3.2.4.3 Data Point Classi�cation 36

4 Results 39

4.1 Tactic Tree . 39

4.2 Green Tactics . 40

4.2.0.1 EA1: Abort Mission . 42

4.2.0.2 EA2: Stop Task & Recharge 45

4.2.0.3 EA3: Dedicated Energy-Level Message 49

4.2.0.4 EA4: Energy-Level Info Within Diagnostics Message 51

4.2.0.5 E5: Aggregated Energy Information 54

4.2.0.6 EA6: Energy-Savings Mode 56

4.2.0.7 EA7: O�ine Energy Pro�ler 60

4.2.0.8 EE1: Limit Task . 62

4.2.0.9 EE2: Disable Hardware . 67

4.2.0.10 EE3: Energy-Aware Sampling 70

4.2.0.11 EE4: On-Demand Software Components 73

5 Discussion 77

6 Threats To Validity 79

6.1 External Validity . 79

6.2 Internal Validity . 79

6.3 Construct Validity . 80

6.4 Conclusion Validity . 80

7 Conclusion 81

7.1 Chosen ROS Projects . 83

References 85

ii

1

Introduction

Creating truly reliable and versatile robotic software is an extremely di�cult task. From

a robot's point of view, problems that seem trivial to people often require very complex

technical solutions. Often, the development of such solutions are beyond the capabilities

of one person (1).

The Robot Operating System (ROS) was created to stimulate the joint development of

robotics software. Each individual team can work on one speci�c task and using a single

platform allows the entire ROS community to get and use the results of a team for their

projects. ROS is a �exible platform (framework) for developing software for robots. It is

a set of various tools, libraries and communication middleware, the purpose of which is to

simplify the task of developing software for robots (2).

Robotics software is becoming more complex day by day as they often require advanced

computational power and depend on various sophisticated sensors and actuators (3). En-

ergy is always a critical factor when dealing with battery-powered robots as robots have a

limited allocation of energy. Robots are typically built with distinct hardware and software

resources, which often demand a lot of energy, to satisfy high computational demands (4).

They cannot operate regularly for long time frames since they have a limited amount of

energy available for being battery-powered (5). For example, unmanned aerial vehicles

(UAVs) play a critical role in the next generation cellular networks, where they act as

�ying infrastructure servicing ground users when the ground infrastructure is unavailable

or overloaded. UAVs are expected to operate wirelessly which means that they will last

only for 7-15 minutes in the air before the battery drops (6).

Energy consumption plays a critical role as a design factor in robotics software and must

be considered in the early stage of the development of the system (7). The �rst step

towards designing energy-e�cient and energy-aware robotics software is to establish a set

1

1. INTRODUCTION

of concrete design options known as architectural tactics (ATs) to serve as the foundation to

achieve the quality attributes energy-e�ciency and energy-awareness. A formal de�nition

of ATs is provided by Bachmann, Bass, and Klein; they de�ne architectural tactics as a

means of satisfying quality attribute response measures by manipulating some aspect of a

quality attribute model through architectural design decisions (8). Bass et al. de�nes a QA

as a measurable or testable property of a system that is used to indicate how well the system

satis�es the needs of its stakeholders (9).

The primary goal of this study is to provide the ROS community with an evidence-

based list of energy-e�cient and energy-aware architectural tactics for robotics software.

A four-phase approach is used to achieve this goal: (1) The initial dataset is constructed

by mining online data sources dedicated speci�cally for the ROS community and millions

lines of code from open-source ROS projects, (2) the dataset is then �ltered for energy-

speci�c data, (3) further, architecturally-relevant data is extracted, and (4) green tactics

are identi�ed and formulated.

The target audience of this study is the ROS community: developers, researchers,

enthusiasts, etc. For ROS researchers, this study is bene�cial as they will have a clear

understanding on the design decisions behind energy-aware and energy-e�cient robotics

software and they can use this insight to further make contributions in the form of new

algorithms, reference architectures, packages, etc, and/or identify gaps and limitations

in this �eld. The extracted catalogue of green tactics can be used by ROS developers

and developers not part of the ROS-community for designing and implementing their own

energy-aware and energy-e�cient software systems. This knowledge will further guide

them in improving already existing energy-aware and energy-e�cient robotics software.

The main contribution of this study is a concrete list of energy-e�cient and energy-

aware architectural tactics for robotics software. The architectural tactic template pro-

posed in (10) is used to formally de�ne each AT as well as an architectural template for

each tactic is provided.

The rest of this study is organized in the following manner: (Section 2) provides

the background information on architectural tactics and ROS-bases systems, (Section 3)

describes the study design process using a multi-phase approach, (Section 4) discusses the

results (extracted ATs), (Section 5) provides relevant discussion points and implications

for the ROS community, and (Section 6) presents the threats to validity identi�ed during

this study. The paper is closed with (Section 7) which consists of the conclusion and

future work.

2

2

Background

2.1 Architectural Tactics

An architectural tactic is a design option for an architect. A formal de�nition of architec-

tural tactics is provided by Bachmann, Bass, and Klein; they de�ne architectural tactics as

a means of satisfying quality attribute response measures by manipulating some aspect of a

quality attribute model through architectural design decisions (8). Architectural tactics are

meant to achieve and satisfy a given quality attribute. An example of a quality attribute

is availability which enables a system to endure system faults such that a service being en-

abled by the system remains compliant with its speci�cation (11). For example, to ensure

the availability of a software system, the architect must consider several design options to

achieve the QA. Figure 2.1 shows the hierarchy of availability architectural tactics.

Figure 2.1: A hierarchy of availability tactics for software systems (11)

In a scenario where a failure enters a system, one way to assure the availability of

the system, is to integrate a failure detection mechanism which can be implemented via a

ping/echo tactic. This is one of the many options an architect uses to ensure the availability

of a system.

3

2. BACKGROUND

Motivation

Availability is an important quality requirement that software systems are constantly

trying to promote. The �rst step towards ensuring the availability of a system and

mitigating possible threats is to detect failures in the system. The Ping/Echo tactic is

a common tactic used to detect failures in software systems.

Description

The tactic detects a failure by sending ping messages to receivers in a continuous

manner. If the sender does not receive an echo message back from a receiver within

a certain time-frame,the receiver is considered to have failed. Figure 2.3 provides a

concrete example of the Ping/Echo AT and how it works in practice. In this tactic,

three main components are involved: the sender, receiver, and a failure monitor

which are represented in the �gure as the PingSender, PingReceiver, FailureMonitor

. The PingSender starts sending ping messages every timeInterval to the PingReciever

. In a perfect scenario, the PingReceiver sends an echo message back to the PingSender

component to notify that it is alive. In the case when the PingReceiver component fails

to send an echo message and the maxWaitingTime is exceeded, the PingSender component

sends a noti�cation to the FailureMonitor component which in turn throws a

Noti�cationException.

Constraints
The ping/echo AT requires the the three main components - a sender, receiver and a

monitor.

Example

Figure 2.4 provides a practical example where the ping/echo tactic is used. Within

an access network, there is a host (PingSender) and 3 end-users (client - PingReceivers).

To check the availability and reachability of each client, the host sends a ping message.

If the client is reachable, it sends back an echo message. In the case when the client

fails to receive a ping message and/or fails to send back an echo message, the host

noti�es the ping/echo monitor (FailureMonitor) which handles the situation

Dependencies
The ping/echo tactic is typically combined with an exception tactic which takes care of

notifying a failure/exception to the exception handler.

Table 2.1: Ping/echo architectural tactic

Figure 2.2: The

ping/echo architectural

tactic

Figure 2.3: The

ping/echo architectural

tactic in an access

network

4

2.1 Architectural Tactics

A template (Table 2.1) for describing architectural tactics de�ned in (10) is used to de-

scribe the ping/echo AT for failure detection in a concrete style. During software design,

the designer decides which architectural tactics are appropriate to incorporate in regards

to the system's trade-o�s and context, and the cost to employ the selected architectural

tactics. To achieve this, the software architect typically refers to the seven categories of

design decisions: (i) allocation of responsibilities - this includes identifying important re-

sponsibilities, architectural infrastructure and determining how these responsibilities are

allocated to runtime and non-runtime elements, (ii) coordination model - identifying ele-

ments of the software system that must coordinate and choosing communication methods

between components of the system, (iii) data model - choosing data abstraction, oper-

ations and properties, and organizing the data (e.g., determining what kind of storage

to use), (iv) management of resources - identifying which resources need to be managed

and determining the impact of saturation on the di�erent resources (e.g., trade-o�s), (v)

mapping among architectural elements - mapping of modules and runtime elements, as-

signment of runtime elements to processors, etc, (vi) binding time decisions - establishing

the scope and the point in the life cycle, and (vii) choice of technology - deciding which

technologies and tools are available to realize the design decisions made throughout the

previous six categories.

5

2. BACKGROUND

2.2 ROS-based Systems

ROS is focused on maximizing code reuse in development. The main characteristics (12)

that make it possible to implement this are (i) distributed processes: the ROS framework

is designed as minimal units of executable processes (nodes), and each process runs in

isolation. The interaction of di�erent nodes occurs only at the messaging level, (ii) pack-

age management: several processes withing a common task are combined into a package.

Package management refers to a set of utilities that allow the developer to automatically

download, install, and uninstall packages. The package manager guarantees the health and

integrity of installed packages, (iii) public repositories and documentation: every available

package is published to a public repository. Package documentation is published in a single

system that makes it easy to �nd the packages one needs, (iv) uni�ed API: when devel-

oping a software system using ROS, one gets a simple and easily embeddable API. In the

sample programs, the API usage is not very di�erent from the language (C++ or Python),

and (v) multiple programming language support: ROS provides client libraries to support

various programming languages. The most popular are Python, C++, as well as languages

such as Lisp, JAVA, C #, Lua, and Ruby.

A ROS-based system is composed of Nodes which are OS processes that perform com-

putations (12). When the Node is initiated, it registers information about itself on the

ROS Master which acts as a server for connecting di�erent Nodes to each other (name of

the Node, types of messages being processed) (13). A registered Node can interact with

other Nodes using a publish/subscribe model based on Topics (publish and subscribe to

messages), or using a request/response model based on Services or Actions (request and

receive responses) as shown in �gure 2.4.

Figure 2.4: ROS Node Communication (14)

It is important to note that the exchange of messages between the Nodes works without

the participation of the ROS Master (the connection between the Nodes occurs directly).

The ROS Master only provides a single namespace for deciding where to connect to a

6

2.2 ROS-based Systems

speci�c Node. The Node's launch address is taken from the ROS_HOSTNAME environment

variable, which must be de�ned before starting. The port is set to an arbitrary unique

value (15).

In ROS, a Service is a communication model that operates on the principle of syn-

chronous bidirectional communication between a Service Client that requests data and

a Service Server that responds to requests. A Service Server is a communication Node

(process) that receives a request, processes the data and sends back a response. A Service

Client is also a communication node that creates a request on the Service Server and

receives a response after the request is completed. This interaction model represented in

Figure 2.5 is used to remotely perform various small operations within di�erent Nodes.

Figure 2.5: ROS Service Model

Another communication model in ROS is the Action communication model depicted in

Figure 2.6 which is used when the requested task takes a long time to complete (e.g., moving

the robot) and feedback from the process is needed. This is very similar to the Service

communication model: Service Request maps to the Action Goal and the Service Response

maps to the Action Result. There is also an additional entity, the Action Feedback, for

transmitting intermediate results to the Action Client.

Figure 2.6: ROS Action Model

Figure 2.7 shows the architecture for a fully autonomous robot system for urban search

and rescue (16). ROS Nodes are represented by blue ovals, and Topics by green rectangles.

7

2. BACKGROUND

Figure 2.7: Example of a ROS software architecture - a fully autonomous robot system for

urban search and rescue

As an example of communication between Nodes can be observed between the Victim

Detection Node and the Victim Localization Node. The Victim Detection Node is sub-

scribed to a Thermal Image topic which is publishes by some other Node in the system.

The Victim Detection Node also publishes messages to the Object Information topic which

is subscribed to by the Victim Localization Node.

8

3

Study Design

Intuitively, the main goal of this project is to identify a set of concrete, repeatable, and

quanti�able green architectural tactics for energy-e�cient robotics software. Table 3.1

shows a more formal de�nition of the goal using the Goal-Question-Metric technique (17).

To achieve this goal, the research question in Section 3.1 is answered by carrying out the

study design elaborated in Section 3.2.

Analyze ROS data sources

For the purpose of establishing a set of concrete,

repeatable, and quanti�able

green architectural tactics

With respect to energy-e�ciency and energy-

awareness

From the point of view of roboticists and researchers

In the context of ROS-based systems

Combination

Analyze ROS data sources for the purpose of establishing

a set of concrete, repeatable, and quanti�able green ar-

chitectural tactics with respect to energy-e�ciency and

energy-awareness from the point of view of roboticists

and researchers in the context of ROS-based systems.

Table 3.1: Goal de�nition

3.1 Research Question

The goal described above is re�ned into the following research question:

9

3. STUDY DESIGN

[RQ1]: Which green architectural tactics are employed for energy-e�cient and energy-

aware robotics software? This research question aims to identify, extract, and establish a

concrete set of green architectural tactics used in open-source robotics projects. Answering

this research question will help roboticists in designing and developing energy-e�cient

robotics software via the established green architectural tactics. The extracted green tactics

can be used by roboticists as well as other developers not part of the robotics community as

a checklist for inspecting if some improvements in the energy-e�ciency of software systems

can be caught in the early stage of software design. Furthermore, researchers can use the

extracted green tactics as a foundation for better supporting the development of greener

robots and other software systems (e.g., by inventing new methods or programming models

which support a green tactic by design).

3.2 Study Design

Figure 3.1 illustrates the overview of the study design which consists of four sequential

phases. In Phase 1, an initial dataset is constructed by crawling open data sources for

ROS-speci�c data. The dataset produced in Phase 1 is queried in Phase 2 to identify data

speci�cally related to energy.

Figure 3.1: Study Design

10

3.2 Study Design

The energy-related data produced in Phase 2 is queried in Phase 3 to identify data where

architecturally-relevant concerns are discussed. Finally, the dataset produced in Phase 3 is

used in Phase 4 to identify green architectural tactics for energy-e�cient and energy-aware

robotics software.

The rest of this section describes the speci�cs of each phase in detail.

3.2.1 Phase 1: Dataset Construction

It is important to note that the ROS community is extremely active. When a devel-

oper encounters a problem, �nding a solution and getting help becomes easier, not only

from ROS developers(Open Robotics), but also from other enthusiasts and professionals.

Everyday developers part of the ROS community are heavily involved in open-source de-

velopment of publicly available ROS packages. As of 2018, 2711 packages were published

on the o�cial ROS website1 and according to ROS Community Metrics Report, there are

about 15000 registered users for ROS-Answers2(Q&A platform) (18). These numbers sug-

gest that publicly available information is a favorable source of data and for this reason,

open-data resources are employed in the initial dataset construction.

Data Source Type Contents

https://stackoverflow.com/questions/tagged/ros Q&A Platform

Questions related to di�erent

aspects of ROS (e.g., error,

code problem)

https://answers.ros.org/questions/ Q&A Platform

Questions related to di�erent

aspects of ROS (e.g., error,

code problem)

https://discourse.ros.org/ ROS Forum

ROS discussion forum (e.g.,

announcements of new projects,

ROS-industrial related topics,

etc).

http://wiki.ros.org/Documentation ROS Wiki
Provides tutorias, ROS packages,

libraries, etc.

https://github.com/
Repositories for ROS-based

systems identi�ed in citemalavolta1.

Source code of ROS-based

systems.

https://bitbucket.org/
Repositories for ROS-based

systems identi�ed in citemalavolta1.

Source code of ROS-based

systems.

Table 3.2: Data sources used for this study

The data sources listed in Table 3.2 are a good representation of ROS-related topics

and are heterogeneous enough to achieve the goal of this study as these sources are known

to be used by practitioners as well as ROS-developers to post, answer, and collaborate

1https://www.ros.org/
2https://answers.ros.org/questions/

11

https://stackoverflow.com/questions/tagged/ros
https://answers.ros.org/questions/
https://discourse.ros.org/
http://wiki.ros.org/Documentation
https://github.com/
https://bitbucket.org/

3. STUDY DESIGN

on ROS-based topics. The ROS open-source repository dataset1 used in this project is

constructed and re�ned in an earlier Study (14).

3.2.1.1 Pre-�ltering

To ensure that the initial dataset is of high quality, it is essential to perform speci�c �ltering

procedures for pull requests from GitHub repositories. GitHub2 has several bots which

automate dependency requirements, perform code reviews, automate deployments, etc.

Figure 3.2 shows a pull request generated by dependabot - a GitHub bot that automates

dependency updates.

Figure 3.2: Dependabot - a GitHub bot

Intuitively, pull requests generated by the bots provide no relevant information for this

study, and therefore, can be discarded.

Figure 3.3 shows the steps for �ltering the GitHub repositories before extracting their

pull request data.

1https://github.com/S2-group/icse-seip-2020-replication-package/blob/master/ICSE_SEIP_2020.pdf
2https://github.com/marketplace

12

3.2 Study Design

Figure 3.3: GitHub Repository Filtering (pull requests)

First, repositories with no open or closed pull requests are �ltered out, and then, repos-

itories with pull requests initiated only by GitHub bots are removed from the set. After

scraping a list of GitHub bots from GitHub Marketplace and a list of GitHub users which

created the pull requests, it was evident that only two kinds of dependency bots were

present in the GitHub pull requests - renovate bot1 and dependabot2, by comparing

the two lists (GitHub bot list and GitHub pull request users list). This resulted in 155

GitHub repositories with open pull requests and 277 GitHub repositories with closed pulled

requests.

Similarly to GitHub, BitBucket also has bots in charge of automating pull requests,

however, there are only 15 BitBucket repositories in the initial ROS-repository dataset

and no bots were identi�ed in the BitBucket pull requests.

3.2.1.2 Web Scraping

In order to collect information from each data source, a dedicated software module - a Data

Extractor is implemented for each data source, as each one requires a di�erent methodology

to collect the data. More speci�cally, for StackOverflow, ROS-Answers, ROS-Discourse,

ROS Wiki, and GitHub/Bitbucket issues and pull requests data scraping techniques are

used to extract questions, answers and other metadata.

1https://github.com/renovatebot/renovate
2https://dependabot.com/

13

3. STUDY DESIGN

Web scraping has become one of the most e�ective data scraping techniques for extract-

ing data from the web; two most commonly used tools are used accomplish this task -

Scrapy1 and BeautifulSoup. For this study, Scrapy is chosen over BeautifulSoup as

the speed and load time of each webpage is very fast via Scrapy, big jobs (bulk of URLs

are crawled in less than a minute) are done easily with Scrapy whereas BeautifulSoup is

good for simple scraping jobs, and Scrapy o�ers custom con�gurations such as download

speed, middleware functionality, etc. Scrapy is a powerful, open-source, Python-based web

crawling framework used to harvest and process the data from websites.

Figure 3.4: Scrapy Architecture

Figure 3.4 illustrates the Scrapy architecture; it is an integrated system that consists

of a centralized engine which controls the data �ow between the scheduler (receives web

requests), the downloader (fetches web pages), the spider (custom class for parsing HTML

responses), and the item pipeline (process parsed data by the spider).

3.2.1.3 Data Storage - MongoDB

Due to the heavy amount of data mined for this project, it is imperative to store and

host the dataset in a remote database. MongoDB is a cross-platform document-oriented

database under the hood of NoSQL databases and is chosen as the data-storage for this

project. MongoDB employs the key-value pair format, similar to a Python dictionary

structure, making it easily integrable with a Python project. MongoDB supports documents

1https://scrapy.org/
1https://docs.scrapy.org/en/latest/topics/architecture.html

14

3.2 Study Design

in JSON format - a human-readable format, making it user-friendly. On top of this, MongoDB

is schema less meaning that there are not restrictions on schema design. MongoDB stores

the documents in collections - grouping of MongoDB documents. Figure 3.5 is an example

of a StackOverflow post stored as a document in a MongoDB collection. The collections

are schema less - thus, documents in the same collection can have di�erent �elds type, as

shown in Figure 3.5. The NOSQL database is also known for its �exibility, power, speed

and ease of use (19).

Figure 3.5: MongoDB document example

The dataset is stored and hosted in a MongoDB database in the MongoDB Atlas1 - a global

cloud database service. The database is also part of the public replication package for this

project.

3.2.1.4 Data Extractors

Before crawling and extracting the data it is fundamental to inspect the data sources and

the kind of metadata to extract. Figure 3.6 shows the StackOverflow website and its

webpages containing posts and the post details (question and answers).

StackOver�ow Posts StackOver�ow Question StackOver�ow Answer

Figure 3.6: StackOver�ow Posts, Question, Answer

1https://www.mongodb.com/cloud/atlas

15

3. STUDY DESIGN

The blue box around the text in the question and answer is an example of what is

extracted and stored in MongoDB. The goal of the crawler is to crawl through all of the

pages containing posts and extract the post details. In order to understand which parts of

the webpage to crawl and extract, it is important to inspect the elements on the webpage.

Figure 3.7 shows the element details of a post on StackOver�ow using the developer tools

in Google Chrome.

Figure 3.7: StackOver�ow Post Element Details

By navigating through the di�erent HTML tags, it is clearly visible which tags contain the

post details. After inspecting the webpages from each data source and understanding which

elements on the webpage to scrape, the Data Extractor module is ready to be implemented.

The custom Data Extractor module consists of a custom spider class implemented via

Scrapy for each data source due to the unique HTML structure of each website. Figure 3.8

shows the source code of a spider class for one of the data sources - StackOverflow.

16

3.2 Study Design

Figure 3.8: StackOver�ow Spider Class

Line 1 de�nes the spider class - SOSpider which inherits from the Scrapy CrawlSpider

class. This class provides powerful mechanisms for crawling websites and serves as the

default Scrapy spider class. Line 2 declares the name of the crawler - stackoverflow.

This is used to later start the crawler from the command line. Line 3 de�nes the start_urls

to be crawled. Several URLs can be passed into this variable, and all of them will be

crawled one-by-one. Lines 5-8 declare a Rule object: This rule uses a LinkExtractor

object to extract links from speci�ed HTML elements. In this example, after inspecting the

source code of StackOverflow, it is evident that the pagination is bounded by the .pager

element. The extracted link is passed to the parse_item method.

Lines 9-12 describe the parse_item method. This method navigates to the webpage

where the post is located by accessing the extracted link by the LinkExtractor rule.

Finally, Lines 13-35 describe the parse_detail_page method called by the parse_item

method. This method extracts the details of a post; i.e.: title, URL, answer, etc.

After crawling each data source and extracting relevant information such as the post title,

post contents, date of the post, url, etc, the extracted data is inserted into a designated

collection in a MongoDB database. Figure 3.9 provides an overview of the Data Extractor

17

3. STUDY DESIGN

module for crawling the data sources.

Figure 3.9: Data Extractor - Web Crawler

To extract information from the GitHub/Bitbucket ROS repositories such as source code

comments and contents of .md �les, a separate Data Extractor module is implemented in

Python, as Python libraries provide powerful �le and data manipulation functionalities.

Figure 3.10 illustrates the Data Extractor for the source code comments and .md �le con-

tents of the ROS repositories.

Figure 3.10: Data Extractor - Source code comments & .md contents

The 335 identi�ed ROS open-source repositories in (14) are cloned and inspected for

source code �les and .md �les. C++ and Python are identi�ed as the two main programming

languages used for the 335 ROS-based systems (14). A source code comment extractor and

markdown extractor are implemented in order to iterate through the cloned repositories,

parse �les, and extract source code comments and .md �le contents.

The markdown extractor module simply extracts the entire contents of an .md �le and

stores them in a MongoDB collection. The src comment extractor module extracts com-

18

3.2 Study Design

ments from .c/.cpp and .py �les as these were the identi�ed languages in a previous study

used to implement the 335 ROS projects (14). For example, to detect Python comments,

lines starting with or strings following a # are searched in the .py �les and extracted.

Figure 3.11 shows a snippet of code from the src comment extractor for Python �les.

Figure 3.11: Python comments src extractor

Line 2 ensures that only �les with the .py extension are opened and iterated through

in order to improve the algorithm e�ciency. Line 4 speci�es the search pattern via the

Python built-in re package. Lines of code that start with a # or strings following a # are

considered as Python comments and are successfully extracted if found. A similar approach

is used to implement the src comment extractor for .c/.cpp �les with the exception of

specifying di�erent search patterns. After iterating over the repositories and extracting

comments, the collected data points are stored in a separate collection in the MongoDB

database.

3.2.1.5 Dataset Summary

Table 3.3 recaps the timeline for extracting data from each data source.

Data Source Extraction Date

Stack Overflow February 17, 2020

ROS-Answers February 17, 2020

ROS-Discourse February 21-22, 2020

ROS Wiki April 12-14, 2020

GitHub src comments

and .md �les
February 24, 2020

GitHub/Bitbucket issues and PRs February 25 - March 1, 2020

Table 3.3: Data Extraction Timeline

19

3. STUDY DESIGN

Data Source #Repos #Repos(PRs) #Repos(Issues) #PRs #Issues

GitHub 320 280 289 30,045 23,214

Bitbucket 15 7 0 70 0

Table 3.4: Data Sources(1) Overview

Data Source #Posts

Stack Overflow 1,880

ROS-Answers 43,672

ROS-Discourse 2,604

ROS Wiki 2,547

Table 3.5: Data Sources(2) Overview

Programming Language #Repositories

C++ 59

Python 44

C++/Python 232

Table 3.6: Overview of # of repositories per programming language

Tables 3.4 and 3.5 present the summaries of the number of data points collected from

the repositories and websites. A big portion of the data originates from GitHub issues and

pull requests and ROS-Answers which indicates the popularity of the sources in the ROS

community. Table 3.6 shows the number of repositories for C++, Python and C++/Python

ROS projects.

Table 3.7 displays the demographics of the social discussion data sources, Table 3.8

shows the demographics of the 232 C++/Python ROS repositories, Table 3.9 shows the

demographics for 59 C++ ROS repositories, and Table 3.10 shows the demographics for 44

Python ROS repositories. As shown in the tables, the dataset is quite heterogeneous - for

the social discussion data sources in terms of the post age and the number of posts per

distinct user, and for the ROS repositories in terms of commits, PRs, issues, contributors,

and .md which proves that the data sources considered for this study are of competent

quality and accurately representative of real-world use cases.

20

3.2 Study Design

Post age (in # of days)

Data Source Min Max Median Mean SD CV

StackOverflow 0 2903 758 917.151 689.051 0.751

ROS-Answers 0 3289 1662 1635.377 926.820 0.566

ROS-Wiki 4 3834 1731 1715.986 943.656 0.549

ROS-Discourse 1 1460 502 557.002 365.672 0.656

#Questions per distinct user

StackOver�ow 1 27 1 1.346491 1.405331 1.043698

ROS-Answers 1 486 1 2.956587 7.121926 2.408834

ROS-Wiki 1 270 1 5.213992 15.67964 3.007223

ROS-Discourse 1 217 1 3.062874 10.21929 3.336502

Table 3.7: Descriptive Statistics - Social Data Sources

Repository demographics

Details Min Max Median Mean SD CV

Commits 101 7700 398.5 821.689 1231.91 1.499

Pull requests 0 2222 25.5 104.765 235.184 2.244

Issues 0 1070 25 81.509 141.58 1.736

Contributors 1 278 15.5 27.144 35.157 1.295

.md �les 0 231 3 9.693 26.285 2.711

Table 3.8: Descriptive Statistics - C++/Python ROS Repositories

Repository demographics

Details Min Max Median Mean SD CV

Commits 102 677 221 237.203 127.576 0.537

Pull requests 0 352 20 36.203 59.433 1.641

Issues 0 195 11 34.033 45.843 1.347

Contributors 2 43 8 11.457 9.156 0.799

.md �les 0 49 1 2.983 6.587 2.208

Table 3.9: Descriptive Statistics - C++ ROS Repositories

21

3. STUDY DESIGN

Repository demographics

Details Min Max Median Mean SD CV

Commits 103 4175 208 452.045 696.664 1.541

Pull requests 0 746 7 61.909 149.865 2.420

Issues 0 848 8.5 42.5 130.595 3.072

Contributors 1 126 10 15.477 20.125 1.301

.md �les 0 14 1 1 1 1.863

Table 3.10: Descriptive Statistics - Python ROS Repositories

It is also interesting to note that even though there are 59 C++ ROS projects and 44

Python ROS projects, the number of commits, pull requests, issues, and contributors is

higher in Python-based projects which might suggest that the Python-based ROS projects

are in more active development. There are more .md �le present in the C++-based ROS

projects, which might also hint that the C++-based projects are more meticulously docu-

mented.

22

3.2 Study Design

3.2.2 Phase 2: Energy-Relevant Data Identi�cation

After successfully collecting, constructing and loading the initial dataset into a database in

MongoDB, an Energy Detector is implemented and used to identify data speci�cally related

to energy-e�ciency. Figure 3.12 illustrates the architecture of our Energy Detector.

Figure 3.12: Energy Detector

To implement the Energy Detector, PyMongo - a python library is used to interact with

the MongoDB database. The Energy Detector consists of a document query engine software

component which is in charge of processing documents from a MongoDB collection. The

MongoClient (a PyMongo object) serves as a bridge between the MongoDB database and the

document engine query component by establishing a connection to the server where the

MongoDB database is hosted. The MongoClient sends a query to the server and receives a

document(s), and then forwards the document(s) to the document query engine to process.

The document query engine then exports each processed document to a JSON �le.

3.2.2.1 Energy Query

To mine data related to energy-e�ciency and energy-awareness, a combination of di�er-

ent energy-related keywords are used to construct the energy query. The inspiration for

constructing the energy query was taken from an earlier study on mining energy-aware

commits from open-source repositories (20). It was important for us to include as many

keywords as possible in order to capture all energy-related data. We agreed to include the

23

3. STUDY DESIGN

keywords battery, energy, power, green and sustainability in our query as all of these key-

words typically concern energy-e�ciency. We were debating whether or not to include the

keywords consumption and e�ciency in our query; we ruled out these two keywords out

by agreeing that consumption and e�ciency are typically paired with energy and battery

keywords which are already present in our query. The following is the �nal constructed

energy query :

(*batter* OR *power* OR *energy* OR *green* OR *sustainab*)

The * character acts as a wildcard: documents where the �elds (e.g., post title, post

content/answer, source code comment) contain at least one of the keywords will be selected

regardless of the beginning or the end of the �elds contents. The energy query is fed to

the document query engine which uses it to retrieve energy-related data.

3.2.2.2 Document Query Engine

The document query engine is a software module written in Python. The sole responsibility

of this module is to query a collection in the MongoDB database using the energy query and

process the matched documents. Figure 3.13 shows an example of a document query engine

module for the StackOverflow data source.

Figure 3.13: Document Engine Query

Line 1 de�nes the list of �eld names (keys) in the StackOverflow collection. Line

3 de�nes the regex keywords of the energy query. In Lines 5-6 , the �elds in the

StackOverflow collection are queried with the regex keywords from the energy query.

Finally, in Lines 7-8 the returned documents by the energy query are appended to a list.

The same principle is used to implement the document query engine for the rest of the

data sources.

24

3.2 Study Design

3.2.2.3 Removing False-Positive Energy Data

After querying all of the collections in the MongoDB database for energy-related data, a

total of 3,354 data points are identi�ed to be related to energy. However, it is necessary

to perform a manual selection before to proceeding to the next phase.

The purpose of the manual selection process of each data point is to ensure that the

�nal energy-related dataset does not contain any false-positives. "Problems with powering

on a robot", "Kinect green light keeps freshing", "What is the next ROS distribution?...I

think most of OSRF's energy is focused on ROS2" are all examples of a false-positives that

should not be present in the �nal energy-related dataset.

3.2.2.4 Level Of Agreement Calculation

The manual selection for deciding if a data point is indeed talking about energy is divided

into two rounds; for each round, 50 data points from each collection are randomly selected

and analyzed by two reviewers (each reviewer analyzes the same exact set of the randomly

chosen data points in each round) in order to avoid bias. After completing each round, the

level of agreement is assessed using Cohen's kappa. If the level of agreement is not high

enough(Cohen's kappa is below .80), an arbiter is called to perform the manual selection a

third time. Table 3.11 provides the summary of the Cohen's kappa results for each round.

% of agreement Cohen's kappa

Round 1 96.012% 0.904

Round 2 92.409% 0.804

Table 3.11: Cohen's Kappa Results Overview

The level of agreement is nearly perfect for both of the rounds and even though Cohen's

kappa is less in Round 2 than in Round 1, it is still high enough to proceed without an

arbiter.

3.2.2.5 Energy Dataset Summary

After completing both rounds of randomly selected data points, one reviewer is left to

�nish o� the manual selection of the rest of the data points. A total of 562 data points are

identi�ed to be strictly related to energy.

25

3. STUDY DESIGN

Data Source # Data Points

BitBucket (PRs) 1

BitBucket SRC Comments 4

BitBucket Commits 3

GitHub PRs 62

GitHub Issues 6

GitHub SRC Comments 72

GitHub Commits 206

Table 3.12: Data Sources (1) Overview

Data Source # Data Points

StackOverflow 3

ROS-Answers 170

ROS-Wiki 23

ROS-Discourse 12

Table 3.13: Data Sources (2) Overview

Tables 3.12 and 3.13 show the number of energy data points per data source. StackOverflow

and BitBucket have signi�cantly less energy data points in comparison to the other data

sources indicating that majority of the content in these two data sources is not related to

energy. Figure 3.14 shows examples of extracted energy-related data points.

Energy Commit Data Point Energy GitHub PR Data Point

Figure 3.14: Examples of energy data points

26

3.2 Study Design

3.2.3 Phase 3: Architecturally-Relevant Data Identi�cation

In this phase, the 562 data points identi�ed to be related to energy in Phase 2 are �ltered

once more to identify data points where architecturally-relevant (AR) concerns are con-

ferred (e.g., presence of integrator nodes, system layers). In order to �gure out which data

points talk about AR concerns, a manual approach is used to perform the identi�cation

instead of an automated method similar to the one used in Phase 2. Prior to settling down

with the manual approach, we came up with three options on how to approach this phase

of the project. Table 3.14 depicts the three di�erent strategies for approaching this phase

along with their pros and cons.

Option Pro Con

1. Manual approach: identify architecturally relevant

data manually.
Maximum accuracy. Time consuming.

2. Manual approach + architecture recovery tool: apply

manual approach on StackOver�ow, ROS-Answers,

ROS-Wiki, ROS-Discourse. Apply an architecture

recovery tool (e.g., Haros (10)) on repository comments,

commits and data points with complete source code of the

system(e.g, pull requests, issues).

More precise for

data points with

source code.

More time consuming

in comparison to

Option 1. Manual

check will still be

needed.

3. ML pipeline similar to (10): identify if a data point

is an ARP (architecture-relevant post/data point).

Apply preprocessing on the data points and

classi�cation feature. A manual check is still needed

to ensure the �nal dataset is accurate.

Mostly an automated

process.

Time consuming to

develop. Manual

check will still be

needed.

Table 3.14: Proposed strategies for identifying architecturally-relevant data points

It is obvious from the above table that the �rst option - the manual approach is the

winner, as the other two options still require a manual approach at the end for ensuring

that the resulting dataset is accurate. We also have to deal with only 562 data points in

this phase, so we agreed that the manual approach would not be very time-consuming and

decided to proceed with it, as it promises maximum accuracy. The 562 data points are

manually analyzed and classi�ed using a set of constructed inclusion and exclusion criteria.

The result is a dataset with strictly AR data points.

3.2.3.1 Data Point Types

In the energy dataset there are two kinds of data points: a code data point and a social

discussion data point. A code data point is a data point where code is the main source

27

3. STUDY DESIGN

of information and likewise, a social discussion data point is a data point where textual

discussions are the primary source of information.

Table 3.15 lists the data sources of social discussion and code data points. A GitHub

issue can be classi�ed either as a social discussion data point or a code data point reason

being that sometimes the issue might be solely a conversation post with no linked code,

thereby classi�ed as a social discussion data point. Due to this heterogeneous nature of the

dataset, 3 lists of inclusion/exclusion criteria are compiled to accommodate the �ltering of

the data points.

Data Point Type

StackOverflow Social discussion

ROS-Answers Social discussion

ROS-Wiki Social discussion

ROS-Discourse Social discussion

GitHub/BitBucket commit Code

GitHub/BitBucket pull request Code

GitHub/BitBucket src comments Code

GitHub issue Code, Social Discussion

Table 3.15: Data Point Types

3.2.3.2 Inclusion & Exclusion Criteria

Figure 3.15: Inclusion & Exclusion Criteria Flow

28

3.2 Study Design

Figure 3.15 illustrates the process of �ltering the data points via the 3 sets of inclu-

sion/exclusion criteria. A General inclusion/exclusion list is built to serve as the starting

point for classifying the energy dataset. This list is composed of basic de�nitions for an

AR data point such as data points concerning ROS entities (see Table 3.16) or data points

concentrating on energy consumption. In the case where the General list is insu�cient

to judge whether or not a data point is architecturally-relevant, a Social Discussion or a

Code criteria inclusion/exclusion list are used to assess the data point depending on the

nature of the data point's source. These lists are constructed in a more meticulous fashion

compared to the General Criteria list in order to further accurately asses the data points.

ROS Entities

1. Node/nodelet

2. Topic

3. Publisher

4. Subscription

6. Service call

7. Action client

8. Action server

Table 3.16: ROS Entities

Inclusion Criteria Exclusion Criteria

I1. Data points concerning an

architectural entity (see ROS entity table)

E1. Data points only about visualizing

energy data (e.g., using green leds for

battery levels)

I2. Data points focussing on architectural

solutions (e.g., tactics, patterns, styles,

views, models, reference architectures).

E2. Data point reporting only technical

speci�cations or fact sheets of a robot

(e.g., fact sheet of a commercial robot)

I3. Data points focussing on energy

consumption.

E3. Data points related to low-level

aspects whose scope is only on the inner

details of ROS nodes.

Table 3.17: General Criteria List

29

3. STUDY DESIGN

Inclusion Criteria Exclusion Criteria

I1. Data points mentioning architecturally-

relevant design decisions and rationales

E1. Data points without any relevant

discussion (e.g., a question in

StackOverflow without any answers).

E2. Data points asking about a (system)

energy warning/error (i.e. laptop battery

state) but with no relevance to SA.

E3. Tutorial-like data points (e.g., a

StackOverflow question asking how

to install a speci�c ROS package).

Table 3.18: Social Discussion Criteria List

Inclusion Criteria Exclusion Criteria

I1. Data points containing architecturally

-relevant source code(referring to at

least one architectural element of ROS

- see ROS entity table).

E1. Data points reverting or redoing the

same source code changes performed in

an already-considered data point.

Table 3.19: Code Criteria List

Tables 3.17, 3.18, 3.19 present the inclusion and exclusion criteria for the General, Social

Discussion and Code lists. A data point is not classi�ed architecturally-relevant if and

only if at least one of the exclusion criteria is satis�ed.

3.2.3.3 AR Data Point Identi�cation

The following is an example of the classi�cation process of a sample data point coming

from the actual energy dataset which is depicted in Figure 3.16.

30

3.2 Study Design

Figure 3.16: StackOverflow sample data point

In summary, this StackOverflow post asks how to navigate a Turtlebot 3 while simu-

lating its battery state. The user is looking for input from experienced ROS developers.

First, the General criteria list is used to identify whether or not this data point is

architecturally relevant. It is clear that the General criteria list is insu�cient for this data

point as there is no evidence of architectural ROS entities or solutions being discussed in

the post. Secondly, being a StackOverflow data point, the Social Discussion criteria list

is used to classify the post. The data point satis�es exclusion criteria E1 and E3 since (i)

there are no answers, comments or discussions attached to this post and (ii) the question

asks how to perform, con�gure a ROS package, implying that this is a tutorial-like post.

With this type of reasoning, it is evident that this data point is not architecturally relevant.

The rest of the data points in the energy dataset are classi�ed using the same identi�cation

method and logical reasoning.

3.2.3.4 Level Of Agreement Calculation

Prior to �ltering the entire energy dataset, the initial classi�cation is divided into two

rounds similar to the one in Phase 2 ; for each round, 25 data points from each data source

are randomly selected and analyzed by two researchers. Each researcher analyzes the

same exact set of the randomly chosen data points in each round in order to mitigate the

possibility of bias. After completing each round, the level agreement is once more assessed

using Cohen's kappa. Table 3.20 shows the summary of the Cohen's kappa results for each

round.

31

3. STUDY DESIGN

% of agreement Cohen's kappa

Round 1 100% 1

Round 2 97.11538461538461% .9259259259259259

Table 3.20: Cohen's Kappa Results Overview

As shown in the table, the level of agreement is perfect for Round 1 and nearly perfect

for Round 2, indicating that no bias is present in the classi�cation process. The rest of the

dataset is classi�ed by one of the reviewers. A total of 97 data points are identi�ed to be

architecturally relevant.

3.2.3.5 AR Dataset Summary

Data Source # Data Points

BitBucket SRC Comments 2

GitHub Issues 1

GitHub PRs 24

GitHub SRC Comments 16

GitHub Commits 38

ROS-Answers 7

ROS-Wiki 7

ROS-Discourse 2

Table 3.21: Data Source Overview

Table 3.21 shows the overview of the �nal AR dataset. StackOverflow is not present

in this dataset indicating that there are no AR-relevant data points present in this data

source. GitHub PRs and GitHub commits seem to carry most of the AR data points, which

emphasizes that GitHub is a heterogeneous data source.

32

3.2 Study Design

AR ROS-Answers Data Point

AR GitHub PR Data Point from

cob_command_tools

Figure 3.17: Examples of AR data points

Figure 3.18: Sample of GitHub PR code from cob_command_tools

Figure 3.17 illustrates examples of AR data points from ROS-Answers and GitHub (pull

request). Figure 3.18 shows a sample piece of code for the GitHub pull request in Figure

3.17. Here we can see that depicted piece of changed code contains an architectural change;

the dashboard_aggregator node is subscribed to di�erent topics which are published by

di�erent nodes.

33

3. STUDY DESIGN

3.2.4 Phase 4: Green Tactics Extraction

The 97 architecturally relevant data points identi�ed in Phase 3 are carefully examined in

order to identify and extract green architectural tactics. The identi�cation and extraction

of green tactics is conducted via a manual approach divided into 5 stages; (i) a list of

parameters is identi�ed for extracting AT-relevant data from the 97 AR data points (some

data points are discarded if it is not possible to extract green tactics from them), (ii)

three researchers compose separate lists describing potential tactic categories and merge

the lists together to establish the �nal tactic categories, (iii) the �nal tactic category list is

then used to classify the �nal set of data points , (iv) a tactic tree depicting the identi�ed

green tactics and their corresponding families is compiled, and (v) each identi�ed tactic is

described via the tactic template established in study (10).

3.2.4.1 Stage 1: AT-Relevant Data Extraction

In this stage, AT-relevant data is extracted from each AR data point. In order to ensure

meticulous and sound results, several parameters are identi�ed for the data extraction

process. These parameters indicate what kind of data is extracted from the data points.

The following is a list of parameters identi�ed for the extraction of AT-relevant data from

each data point:

� code - list[a,b,...] : this parameter is used to identify if the data point has any relevant

source code.

� targeted QA - list[a,b,...] : this parameter is used to identify the QAs targeted by

the data points.

� tactic-relevant contents - String : this parameter is used to extract the relevant

tactic descriptions from each data point.

� response - String : this parameter is used to extract the relevant-tactic response

from each data point (e.g., saves energy, warns user).

� ROS entity - list[a,b,...] : this parameter is used to extract the relevant ROS-entities

featured in the data points.

� external data sources - String : this parameter is used to identify other data

sources mentioned in the data points.

34

3.2 Study Design

� is tactic - Boolean: this parameter is used to identify whether or not an architec-

tural tactic can be extracted from the data point based on the previously identi�ed

parameters.

After characterizing each data point using the parameters described above, 67 data

points are identi�ed to contain green tactics, and energy-e�ciency and energy-awareness

are identi�ed as the two QAs targeted by the 67 data points. Figure 3.19 shows an example

of a characterized GitHub pull request data point which is identi�ed as a source for a green

tactic.

Figure 3.19: Data point identi�ed as a source for a green tactic

3.2.4.2 Stage 2: Green Tactics Categories Identi�cation

To avoid bias and to ensure that the �nal list of green tactics is sound, three researchers

compose a separate list containing the description of the tactics targeting energy-e�ciency

and energy-awareness based on the AT-relevant data extracted in the previous stage. Dur-

ing this process, the source code of each data point is closely inspected to understand how

the data point is implemented. After the compilation of the three tactic category lists, the

following observations were made:

� Researcher #1: provided general descriptions of the tactic (e.g., tactic families).

� Researcher #2: provided general descriptions of the tactic (e.g., tactic families).

� Researcher #3: provided speci�c scenarios based on the contents of the data points

(e.g., technical descriptions).

Based on these observations, we came to an agreement to merge the three tactic category

lists. Even though we mainly focus on ROS-based systems, we ensure that the identi�ed

tactics are not limited to only ROS-based systems, but can be applied in other robotics

systems as well. Tables 3.22 and 3.23 depict the identi�ed energy-awareness and energy-

e�ciency tactics. The tables provide the tactic ID, the name of the tactic, the family the

tactic belongs to, and a short tactic description.

35

3. STUDY DESIGN

ID Name Family Description

EA1 Abort Mission Task Interruption
Aborts a task when the energy level of the robot is

too low.

EA2 Stop Task & Recharge Task Interruption
Stop a task when the battery level of the robot is too

low, recharge the battery and resume the task.

EA3
Dedicated Energy-Level

Message
Energy-Level Provider

Monitors the energy level of the robot and provides

it in a dedicated message.

EA4
Energy-Level Info Within

Diagnostics Message
Energy-Level Provider

Includes the energy level of a hardware component

within a generic diagnostics message.

EA5 Aggregated Energy Information Energy-Level Provider
Aggregates energy-level information of di�erent

components into a single interface.

EA6 Energy-Savings Mode Energy-Level Provider
Dictates to the components in a system whether or

not to enter into a state in which energy must be saved.

EA7 O�ine Energy Pro�ler Other

Builds an energy pro�ler from previous executions which

is then used in a current execution for providing energy level

state diagnostics.

Table 3.22: Energy-Awareness Tactics

ID Name Family Description

EE1 Limit Task Energy-E�ciency
Con�gures a task based on any set criteria for tasks under

the energy-savings mode.

EE2 Disable HW Energy-E�ciency
Disables hardware components when they are not strictly

needed.

EE3 Energy-Aware Sampling Energy-E�ciency
Adjusts the rates for sampling a sensor based on the energy-level

of the robot.

EE4 On-Demand Components Energy-E�ciency
Brings up new components only when their functionalities

are needed.

Table 3.23: Energy-E�ciency Tactics

3.2.4.3 Data Point Classi�cation

After establishing the green tactic categories in the previous stage, the 67 data points are

classi�ed using Tables 3.22 and 3.23. During the classi�cation of the data points, it was

evident that some of the data points employ more than one tactic. Figure 3.20 provides an

overviews of the classi�cation of the 67 data points by assigning a tactic(s) to each data

point.

36

3.2 Study Design

Figure 3.20: Data Points Classi�cation Summary

After classifying and associating each data point with a tactic(s), it is easy to notice

that energy-awareness tactics are prominent. A large portion of the data points relate to

energy-level warnings, indicating that ROS developers are constantly trying to promote

energy-awareness in systems they develop, which implies that energy is always a concern

in robotics-software systems. This observation leads to the fact that even though the

presence of energy-e�cient tactics in the �nal dataset is slightly less than the presence of

energy-awareness tactics, the energy-e�cient tactics identi�ed target di�erent areas of the

robotics-software systems which shows their diversity and importance.

Stages 4 and 5 - that compiled tactic tree and detailed descriptions of each tactic are

presented in the Results section of this paper.

37

3. STUDY DESIGN

38

4

Results

In this chapter, the tactic tree and the extracted green tactics are presented.

4.1 Tactic Tree

Figure 4.1 illustrates the tactic tree that is constructed using Tables 3.22 and 3.23 presented

in Phase 4, Stage 2. The energy tactics are divided into two categories: energy-awareness

and energy-e�ciency tactics.

Figure 4.1: Tactic Tree

39

4. RESULTS

The second level of the tree contain the families identi�ed for some of the tactics. The

energy-awareness tactics are grouped under three families: tactics EA1 and EA2 belong

to the Task Interruption family as their essential goal is to interrupt a task when the

energy-levels are critical, tactics EA3-EA6 belong to the Energy-Level Provider family

as these tactics provide some means of delivering the energy-level to the user or a third

party, and tactic EA7 belongs to the Other family as it does not �t the criteria for a Task

Interruption or Energy-Level Provider tactic. Tactics EE1-EE4 are direct children of the

Energy-E�ciency family, as the main goal of these tactics is to save energy. The third

level of the tree marked with T represents the actual tactics denoted as the leaves of the

tree. The �nal level of the tree marked with R shows the responses of the green tactics.

4.2 Green Tactics

In this section, the 11 green tactics are presented using the tactic template introduced in

study (10). The template is slightly adjusted by introducing new �elds. Table 4.1 shows

the contents of the adjusted tactic template and how each tactic is described.

Tactic Name The name of the tactic.

Targeted QA The QA targeted by the tactic.

Family The family the tactic belongs to.

Motivation The rationale behind the tactic.

Description A component interface + sequence diagrams followed by a detailed explanation of the diagrams.

ROS Example

A diagram depicting the tactic in a ROS-based system followed by a detailed explanation of the

diagram. The example is taken from an actual data point in the dataset. Section 7.1 in the Appendix provides the

list of ROS projects used to formulate the ROS example.

Other Examples Examples of other application domains where the tactic is used.

Constraints Assumed conditions in order to apply the tactic in an existing robotic system.

Dependencies (Optional) Other tactics required by the tactic.

Variations (Optional) Di�erent ways of implementing the tactic.

Table 4.1: Tactic Template

Since the scope of our project is limited to ROS-based systems, we provide speci�c ROS

examples for each tactic illustrating a speci�c scenario presented in some of the data points

in the dataset. However, even though our dataset mainly focuses on ROS-based systems,

we believe that our tactics can be applied in other robotic systems, therefore, we present

the extracted tactics in a general fashion by not limiting the tactic descriptions to ROS-

speci�c cases. We also ensure that we do not impose a speci�c implementation of the

tactics: for this reason, we use component diagrams to depict the components involved

in the system and the interfaces provided and required by the components. A sequence

diagram is also included to illustrate the order of interactions between the components and

40

4.2 Green Tactics

how operations are carried out. It is up to the developer(s) to decide how to carry out

the tactic implementations and which tools to use. The extracted green tactics will help

roboticists extend their design reasoning and development towards energy-e�cient robotics

software.

Table 4.2 contains the motivations for di�erent ROS and non-ROS communication meth-

ods depicted in the ROS examples of the tactics:

Topic
Typically, a ROS-topic is used to communicate the energy-level state information

to a ROS node as topics are used for one-way continuous data streams (21).

Action

Actions are typically used for any type of behaviour that involves moving the robot,

or tasks that run for a longer time. Actions can also be preempted and they satisfy

real-time constraints and provide feedback during the execution of a task (22).

Service
Service calls are blocking so typically, they are used for remote procedure calls that

terminate quickly (e.g., query state of a node, calculations) (23).

Bag
A bag is used to represent the logged energy data as bags are the primary

mechanism in ROS for data logging (24).

Non-ROS

communication

Information sent directly from a physical device employs non-ROS communication

methods as a non-ROS component represents the hardware component and the

communication does not use ROS primitives.

Table 4.2: ROS Communication Method Motivations

Energy awareness is a crucial tool in robotics software systems as robots are often re-

quired to manage their energy wisely. Tactics EA1-EA7 help in facilitating robot energy

management by providing di�erent methods for promoting energy-awareness in the robotics

software systems.

41

4. RESULTS

4.2.0.1 EA1: Abort Mission

� Tactic Name: Abort Mission

� Targeted QA: Energy Awareness

� Motivation: This tactic o�ers system-wide energy-awareness by monitoring the

state of the robot's energy level and ensuring that tasks execute to completion only

if the energy levels are enough for the robot to execute them safely.

� Description: This tactic aborts a task when the energy-level of the robot reaches a

critical point. Figure 4.3 presents the component interface and sequence diagram of

the tactic.The Task Requestor is responsible for requesting to execute a certain task,

the Arbiter is responsible for deciding whether or not to abort or execute the task,

and the Task Executor is responsible for either aborting or executing the task. First,

the Task Requestor creates a task and sends it to the Arbiter (labels 1,2). After

receiving an initial task, the Arbiter gets the energy-level of the robot (labels 3, 4);

this information is provided to the Arbiter by another component in the system.

If the energy-level is critical, the Arbiter immediately removes the task (label 15,

the task is not forwarded to the Task Executor). In the case when the energy-level

is su�cient, in a separate thread, the Arbiter sends the task to the Task Executor

(label 5) and the Task Executor starts executing the task (label 6). In another parallel

thread, the Arbiter starts checking the energy-level within a loop (labels 7,8). If the

energy-level remains to be su�cient throughout the entire execution of the task,

the Task Requestor is noti�ed that the task has been completed (labels 13, 14). If

during the execution of the task the energy-level becomes critical, a break statement

is issued and the loop is exited (break fragment). The Arbiter then instructs the

Task Executor to gracefully abort the task (labels 9, 10, 11, 12). The order of the

calls in the sequence diagram does not necessarily take place in a chronological order:

for example, after label 4, label 15 may take place instead of label 5, depending on the

scenario.

� ROS Example: Data point #41: Figure 4.2 below shows how the Abort Mission

tactic is implemented in an autonomous multi-robot ROS-based system. There are

two nodes involved - the explorer node and the exploration_planner node. The ex-

plorer node represents the Task Executor and the Arbiter ; it creates a task and is

also subscribed to a battery_state topic which advertises information regarding the

42

4.2 Green Tactics

robot's battery such as the battery percentage. The exploration_planner node adver-

tises an explore action (starts executing a task) and an exploration_�nished action

(aborts a task). The explorer node sends a task to the exploration_planner node

and instructs the exploration_planner node to either start exploring (start task), or

�nish exploring (abort task), depending on the battery_level.

� Other Examples: (i) A quadrotor (UAV) - dictate to land when the energy levels

are critical. (ii) An autonomous marine surface vehicle - instruct to power o� vehicle

when energy levels are critical.

� Constraints: The tactic as described assumes that the communication between the

physical device and the Arbiter is already implemented.

� Dependencies: This tactic can be combined with tactic EA3 (e.g., provide the

energy level in dedicated energy-level component) or EA4 (e.g., include the energy

level in some generic component along with other diagnostics information).

� Variations: (i) Event-based logic can be used for checking the energy-level: for

example, a global value (e.g., ROS topic) can be accessed at any execution point

during runtime. (ii) The Arbiter may already check the energy-level in a loop prior

to receiving a task.

Figure 4.2: EA1 ROS Example

43

4. RESULTS

Figure 4.3: EA1 Component Interface & Sequence Diagram

44

4.2 Green Tactics

4.2.0.2 EA2: Stop Task & Recharge

� Tactic Name: Stop Task & Recharge

� Targeted QA: Energy Awareness

� Family: Task Interruption

� Motivation: Ensuring that robots are able to continuously execute a task is an

important part of continuous, repetitive, and autonomous robotic systems. Human

intervention is not always available when the battery levels are critical, therefore, it

is important that the robot is energy-aware, able to replenish its battery power when

needed, and is able to safely complete its current mission. This tactic is useful when

it is essential that the task is completed.

� Description: This tactic gracefully interrupts a task to prevent the robot from fully

discharging its battery by instructing it to recharge when the energy level reaches

a critical point. The task is resumed when the battery is su�ciently charged. Fig-

ure 4.5 shows the component interface and sequence diagrams for this tactic. The

Task Requestor is responsible for requesting to execute a certain task, the Arbiter is

responsible for deciding whether or not to stop a task and recharge the battery or

execute the task, and the Task Executor is responsible for either stopping or execut-

ing the task. After creating a task, the Task Provider sends the task (label 2) to

the Arbiter which then checks the energy-level of the robot's battery. If the energy-

level is critical, the Arbiter immediately removes the task (label 23, the task is not

forwarded to the Task Executor). In the case when the energy-level is su�cient, in

a separate thread, the Arbiter sends the task to the Task Executor(label 5) and the

Task Executor starts executing the task (label 6). In another parallel thread, the

Arbiter starts checking the energy-level within a loop (labels 7,8). If throughout the

entire execution of the task the energy-level stays su�cient, the Task Requestor is

noti�ed about the completion of the task (labels 21, 22). If during the execution of

the task the energy-level becomes critical, a break statement is issued and the loop

is exited (break fragment). A new loop is issued with two parallel threads running

inside: one thread where the Arbiter checks for the energy-level (labels 9, 10), and

another thread where the Arbiter decides what to do based on the energy-level. If

the energy-level is critical, the Arbiter will instruct the Task Executor to stop the

task (label 11) and request another component in the system to recharge the battery

45

4. RESULTS

(labels 15, 16). Once the battery is recharged (the energy-level is su�cient), the

Arbiter instructs the Task Executor to resume the task (label 17). If the energy-level

drops to a critical point, the previously described steps will take place (labels 11-16).

The order of the calls in the sequence diagram does not necessarily take place in a

chronological order: for example, after label 4, label 23 may take place instead of label

5,depending on the scenario.

� ROS Example: Data point #24: Figure 4.5 shows how the Stop Task & Recharge

tactic is implemented in an autonomous multi-robot ROS-based system. There are

two nodes involved - the explorer node and the exploration_planner node. The ex-

plorer node represents the Task Executor and the Arbiter ; it creates a task and is

also subscribed to a battery_state topic which advertises information regarding the

robot's battery such as the battery percentage. The exploration_planner node adver-

tises an explore action (starts executing a task) and an exploration_�nished action

(stops a task). The explorer node sends a task to the exploration_planner node and

instructs the exploration_planner node to either start exploring (start task), or �nish

exploring (stop task), depending on the battery_level. If the battery level is critical,

the explorer node sends a request to the exploration_�nished action to stop the task.

It then saves the current progress of the task by calling an internal method. It then

instructs another ROS node in the system to recharge the battery. Once the battery

is su�ciently charged, the explorer node sends a request to the explore action to

resume the interrupted task by providing the saved task information.

� Other Examples: (i) Autonomous vehicle - instruct vehicle to stop driving and

recharge when energy levels are critical. (ii) Robot executing tasks via SMACH

(state machine) - store state of containers, and when the battery level is critical,

navigate robot to a charging station, and resume current state when the battery is

su�ciently charged.

� Constraints: The tactic as described assumes that the communication between the

physical device and the Arbiter is already implemented.

� Dependencies: This tactic can be combined with tactic EA3 (e.g., provide the

energy level in dedicated energy-level component) or EA4 (e.g., include the energy

level in a generic component along with other diagnostics information).

46

4.2 Green Tactics

� Variations: (i) Event-based logic can be used for checking the energy-level: for

example, a global value (e.g., ROS topic) can be accessed at any execution point

during runtime. (ii) The Arbiter may already check the energy-level in a loop prior

to receiving a task.

Figure 4.4: EA2 ROS Example

47

4. RESULTS

Figure 4.5: EA2 Component Interface & Sequence Diagram

48

4.2 Green Tactics

4.2.0.3 EA3: Dedicated Energy-Level Message

� Tactic Name: Dedicated Energy-Level Message

� Targeted QA: Energy Awareness

� Family: Energy-Level Provider

� Motivation: The Dedicated Energy-Level Message tactic comes in handy when

robots require continuous energy-level management as the message communicates

information regarding the robot's energy information. This information can be used

in several scenarios to promote energy awareness, such as: i) a component that has

access to the dedicated energy-level message and uses the information to control the

energy-level of a component (e.g., physical battery), ii) without the need for human

intervention, a robot can also use the dedicated energy-level message to take certain

actions to manage the energy state on its own, and iii) a component which has ac-

cess to the dedicated energy-level message and uses the energy-level information to

notify the user directly. This tactic is ideal when a dedicated single access point for

energy-level information is needed.

� Description: This tactic monitors the energy level of the robot and provides it in a

dedicated message. Figure 4.7 shows the component interface and sequence diagram

for this tactic. The Energy Level Manager gets the energy level information (label

1) directly from the Energy Level Provider (e.g., physical battery) and provides this

information in a dedicated Energy Level State Interface which can be accessed by

other components in the system.

� ROS Example: Data Point #22: Figure 4.6 illustrates an example of the Dedi-

cated Energy-Level Message tactic and how it is employed in a maritime ROS-based

system. In this tactic, there is one ROS node and one non-ROS component: the

battery_monitor node which represents the Energy Level Manager (a ROS node

which monitors the state of the battery) and the battery component - the Energy

Level Provider (a non-ROS component which represents the physical battery of the

robot). The battery component is responsible for sending the information regarding

the robot's battery via a non-ROS communication method to the battery_monitor

node. The battery_monitor node publishes the received battery information in a

battery_state topic which can then be subscribed to by any other ROS nodes in the

system.

49

4. RESULTS

� Other Examples: (i) Energy management in mobile devices: Cinder operating

system allows users and applications to control and manage limited device resources

such as energy by collecting information about the device's battery (25). (ii) Energy

management for cloud computing: collecting sensor data from multiple locations and

managing physical sensor devices (26).

� Constraints: The tactic as described assumes that the communication between the

physical device and the Energy Level Manager is already implemented.

� Dependencies: -

� Variations: (i) The energy level information can be provided by a software compo-

nent (which is talking directly to the physical battery). (ii) Event-based logic can be

used for checking the energy-level: for example, a global value (e.g., ROS topic) can

be accessed at any execution point at runtime.

Figure 4.6: EA3 ROS Example

50

4.2 Green Tactics

Figure 4.7: EA3 Component Interface & Sequence Diagram

4.2.0.4 EA4: Energy-Level Info Within Diagnostics Message

� Tactic Name: Energy-Level Info Within Diagnostics Message

� Targeted QA: Energy Awareness

� Family: Energy-Level Provider

� Motivation: It is important for the system or user to be aware of the robot's state

and ensure that all parts of the robot are running correctly (in addition to the energy

level of the robot, information such as frequency, individual hardware component

state is important to provide). This tactic is employed when other information (other

than the robot's energy-level) regarding the robot's state is important to provide.

51

4. RESULTS

� Description: This tactic includes the energy level state of a hardware component

within a generic diagnostics message. Figure 4.9 provides the component interface

and sequence diagram of the tactic. The Diagnostics Provider is a generic component

which monitors the state of a Hardware Component via some monitoring mechanism

(labels 1,2) and provides the Hardware Component diagnostics information (e.g.,

connection, power, temperature, warnings) in the Diagnostics Interface. The status

of the Hardware Component's energy level is also included in theDiagnostics Interface

which is requested by the Energy Level State Requestor for further analysis (labels

3,4).

� ROS Example: Data Point #16: Figure 4.9 is an example of the Energy-Level Info

Within Diagnostics Message tactic and how it is employed in a humanoid robot via

a ROS-based system. In this tactic there are two ROS nodes - the battery_warning

node (maps to the Diagnostics Provider) and the battery_visualization node (maps

to the Energy Level State Requestor). There is also a battery component which repre-

sents a physical battery. The battery_warning node monitors the battery component,

which provides its diagnostics information. The battery_visualization requestor node

is subscribed to the diagnostics_agg topic which is published by the battery_warning

node for the battery_level state information, and publishes the received message in

a battery_state topic which can then be subscribed to by other ROS nodes in the

system for visualizing the information.

� Other Examples: (i) Diagnostics in mobile phones - built in diagnostics tools are

used for running tests to check things like the device's touch screen, audio, video,

camera, microphone, and other components of the phone - the diagnostics information

of the mobile device (e.g, frequency, battery state, sensor state) is used to promote

energy-awareness. (ii) On-board diagnostics (OBD) - self-diagnostic and reporting

capability of a vehicle. Provides access to the diagnostics information of di�erent

vehicle subsystems (e.g., airbag system, radio system, sensors) to the user (27).

� Constraints: The tactic as described assumes that the communication between the

Hardware Component and the Diagnostics Provider is already implemented.

� Dependencies: -

� Variations: (i) Event-based logic can be used for monitoring the Hardware Compo-

nent: for example, a global value (e.g., ROS topic) can be accessed at any execution

point during runtime.

52

4.2 Green Tactics

Figure 4.8: EA4 ROS Example

Figure 4.9: EA4 Component Interface & Sequence Diagram

53

4. RESULTS

4.2.0.5 E5: Aggregated Energy Information

� Tactic Name: Aggregated Energy Information

� Targeted QA: Energy Awareness

� Family: Energy-Level Provider

� Motivation: It is important for the robot to be aware of the energy state of its

di�erent components. Gathering the energy state of di�erent components and ag-

gregating it makes it easier for the robot or user to be aware of the energy state of

the di�erent components, identify patterns and trends that were not visible before

for data analysis, and provide a single access point for other software components in

the system to access the components' energy state data.

� Description: This tactic aggregates energy-level information (e.g., average charge,

battery capacity, voltage) of di�erent components (e.g., batteries) into a single in-

terface. Figure 4.11 provides a component interface and sequence diagram for the

tactic. The Energy Level Providers represent di�erent components of a robot which

provide their energy state. It is not limited to only two Energy Level Providers;

there an be more Energy Level Providers in the system. First, an initial request to

the Energy Level Aggregator is made by another component in the system to get the

aggregated energy information (label 1). Then, the Energy Level Aggregator gets the

energy state of the di�erent Energy Level Providers in two parallel separate threads

(labels 2-5) and aggregates the data (label 6). The aggregated data is then returned

to the requestor (label 7).

� ROS Example: Data Point #40: Figure 4.11 illustrates an example of the Aggre-

gated Energy Information tactic and how it is used in ROS drivers for controlling

Segway-based robots in a ROS-based system. In this tactic there are three ROS

nodes - the arduino_driver node (maps to the Energy Level Aggregator) and the bat-

tery_diagnostics nodes (maps to the Energy Level Providers, there can be more than

two battery_diagnostics nodes in the system). The battery_diagnostics nodes (e.g.,

batteries) publish energy-related information in the separate battery_state topics.

The arduino_driver node is subscribed to these topics and aggregates the energy-

related messages into a single message; it then publishes the message to a diagnostics

topic. This topic can be later subscribed to by other nodes in the system.

54

4.2 Green Tactics

� Other Examples: (i) Microgrid community: peer-to-peer energy-sharing method;

aggregated control of many small-scale batteries to manage energy requirements of

the entire community (28).

� Constraints: It is assumed that the Energy State Providers have an established

connection with the physical components in the system.

� Dependencies: -

� Variations: (i) Event-based logic can be used for getting the energy-level informa-

tion: for example, a global value (e.g., ROS topic) can be accessed at any execution

point at runtime.

Figure 4.10: EA5 ROS Example

55

4. RESULTS

Figure 4.11: EA5 Component Interface & Sequence Diagram

4.2.0.6 EA6: Energy-Savings Mode

This tactic is implemented by tactics EE1-EE4 which introduce di�erent methods on how

to implement the energy-savings mode.

� Tactic Name: Energy-Savings Mode

� Targeted QA: Energy Awareness

� Family: Energy-Level Provider

� Motivation: To ensure that all components are energy-aware, know when they

need to start saving energy, and adjust their behaviour accordingly, a shared space

for storing the information about the robot's state (e.g., blackboard) is needed.

56

4.2 Green Tactics

� Description: This tactic dictates to the components in a system whether or not to

enter into a state in which energy must be saved (enable or disable the energy-savings

mode). Figure 4.13 provides a component interface and sequence diagram for the

tactic. The Energy Savings Mode Controller acts as a blackboard (decentralized) that

shares the current energy-savings mode state (on/o�) with the rest of the components

in the system. The blackboard requests the current energy-savings mode state from

another component in the system, and based on the response, it dictates to the rest of

the components to either disable or enable the energy-savings mode and change their

state accordingly. Every component which is represented as the Observer receives

the current energy-savings mode state, switches to it, and updates the blackboard by

sending an acknowledgement message. With this approach, all of the Observers are

aware of the current energy-savings mode state of the system, and the blackboard is

aware of whether or not each component switched to the instructed energy-savings

mode state.

� ROS Example: Data Point #15: Figure 4.13 illustrates an example of the Energy-

Savings Mode tactic and how it is employed in an ROV via a ROS-based system.

There are two nodes involved in this tactic - the stepper node (maps to the Observer)

and the manipulator node (maps to the Energy Savings Mode Controller). The step-

per node represents nodes in the system which must adhere to a certain behaviour

depending on the current manipulator command (e.g.c current energy-savings mode).

The manipulator node publishes the current command to a manipulator_command

topic which is subscribed to by the stepper node. After receiving the current manip-

ulator command and adhering to it, the stepper node publishes its new state to the

stepper_state topic, which is in turn subscribed to by the manipulator node. With

this kind of structure, the manipulator node can keep track of whether or not all

nodes in the system behave according to the current issued command.

� Other Examples: (i) Mobile computing - e.g., power-saving mode (PSM) for mobile

computing in WiFi-hotspots - IoT - e.g., solar energy for IoT devices that are exposed

to sunlight. (ii) Appliances such as ovens, microwaves - e.g., turn o� the display when

in energy-savings mode. (iii) Hybrid vehicles - increase fuel e�ciency by adding a

battery-powered electric motor. When the hybrid auto is in �idle�mode (e.g., stops

at a stoplight), the engine is turned o�, and the battery-powered electric motor still

provides accessories such as audio, air conditioning, etc. (iv) IG-L - regulates CO2

emission by adjusting the digital speed signs on the highways to a lower rate (29).

57

4. RESULTS

(v) Industrial emissions within the EU - industrial companies are able to lower their

carbon footprint at moments where it will be increased signi�cantly (30).

� Constraints: It is assumed that the criteria for enabling or disabling the energy-

savings mode is already included in the Energy Savings Mode Controller. It is also

assumed that the communication between the Energy Savings Mode Controller and

the rest of the component in the system already exists and that the components know

how to behave when the energy-savings mode is on/o�.

� Dependencies: -

� Variations: (i) Pull-based approach: based on the energy-level, the blackboard main-

tains the state of the energy-savings mode, and the components in the system request

the mode.

Figure 4.12: EA6 ROS Example

58

4.2 Green Tactics

Figure 4.13: EA6 Component Interface & Sequence Diagram

59

4. RESULTS

4.2.0.7 EA7: O�ine Energy Pro�ler

� Tactic Name: O�ine Energy Pro�ler

� Targeted QA: Energy Awareness

� Family: Other

� Motivation: O�ine pro�ling provides multiple bene�ts for robotics developers and

researchers such as recording pro�led datasets, visualizing and labeling them, and

storing them for future use. Besides the previously listed bene�ts of o�ine pro�ling,

o�ine energy pro�ling also promotes energy-awareness by providing energy diagnos-

tics information from the previous executions to the current execution. For example,

this information can be used for estimating the remaining operating time of a battery.

For robotics developers and researchers, the recorded energy datasets can be used to

analyze trends, patterns, and provide insights on which robotic activities consume

the most energy.

� Description: This tactic builds an energy pro�ler from previous executions which is

then used in a current execution for providing energy level state diagnostics. Figure

4.15 provides a component interface and sequence diagram for the tactic. The Energy

Pro�ler builds an energy pro�ler by extracting logged energy-related data (labels 1,2)

(e.g., energy-related messages logged in ROS bag �les) and providing its estimations

to other components in the system. The Energy Level State Requestor requests

energy-level diagnostics information from the Diagnostics Provider (label 3). After

receiving the request, the Diagnostics Provider opens an existing energy-pro�ler and

gets the requested energy-level diagnostics information (label 4). This information

is then sent back to the Energy Level State Requestor (labels 5,6).

� ROS Example: Data Point #13: Figure 4.15 illustrates an example of the O�ine

Energy Pro�ler tactic and how it is employed in ROS drivers for controlling Segway-

based robots in a ROS-based system. There are two nodes involved in this tactic:

a battery_pro�ler node (represents the Diagnostics Provider and Energy Level State

Requestor), and a battery_diagnostic node (represents the Energy Pro�ler). The

battery_pro�ler node is in charge of building a battery-pro�ler based on logged bat-

tery data from previous executions (e.g., bag �les). The battery_diagnostics node

requests battery diagnostics information (e.g., battery life estimation) by opening

60

4.2 Green Tactics

an existing battery pro�ler. It then performs some computation and dispatches the

result to a local SMTP client.

� Other Examples: (i) Silicon Labs - multi-node energy pro�ler: several nodes moni-

tor di�erent devices, build energy pro�lers and use them in o�ine mode for visualiza-

tions, computations (e.g., battery estimation), etc (31). (ii) ALEA: A Fine-Grained

Energy Pro�ling Tool: �ne-grained energy pro�ling tool based on probabilistic anal-

ysis for �ne-grained energy accounting. An online module transfers the results of

pro�ling to an o�ine module that derives energy estimates (32).

� Constraints: This tactic as described assumes that the energy pro�ler exists.

� Dependencies:

� Variations: In the case when the energy pro�ler does not exist, error checking is

applied when opening the energy pro�ler.

Figure 4.14: EA7 ROS Example

61

4. RESULTS

Figure 4.15: EA7 Component Interface & Sequence Diagram

As of now, batteries (e.g., Lithium Ion, Lithium Polymer) are heavy to carry and have

a limited energy budget; therefore, preserving the robot's battery life is a critical task in

robotics software. Tactics EE1-EE4 are di�erent ways of how components in the system

behave when the energy-savings mode is enabled. The following tactics implement tactic

EA6 (the behaviour of the components under the energy-savings mode).

4.2.0.8 EE1: Limit Task

� Tactic Name:

� Targeted QA: Energy E�ciency

� Family: Energy E�ciency

62

4.2 Green Tactics

� Motivation: Robotic activities such as data sampling or large amounts of data

transfer consume a signi�cant amount of energy. When the robot enters the energy-

savings mode, limiting di�erent activities (see Description for list of possible robotic

activities) is pivotal in order to meet the energy-savings mode requirements.

� Description: This tactic con�gures a robotic task based on any set criteria for

tasks under the energy-savings mode. Figure 4.17 provides a component interface

and sequence diagram for the tactic. This tactic con�gures a robotic task based

on any set criteria for tasks under the energy-savings mode. The Task Requestor

is responsible for requesting to execute a certain task, the Arbiter is responsible

for deciding whether or not to con�gure the original task, the Energy-Savings Mode

Manager is responsible for providing the criteria for any task under the energy-savings

mode (energy-level is critical), and the Task Executor is responsible for executing

the original or con�gured task. First, the Task Requestor sends an initial task to the

Arbiter (label 2). After receiving the task, the Arbiter checks the energy-level of the

robot (labels 3,4) provided by another component in the system. If the energy-level

is critical, the Arbiter immediately removes the task (label 25), thus, not forwarding

it to the Task Executor. In the case when the energy level is su�cient, in a separate

thread the Arbiter forwards the task to the Task Executor (label 5) and the Task

Executor starts executing the task (label 6). In a parallel thread within a loop, the

Arbiter also starts checking the energy-level (labels 7,8). If during the execution

of the original task the energy-level becomes critical, the Arbiter breaks out of the

loop. A new loop is started, and in a separate thread, the Arbiter starts checking

the energy-level of the robot (labels 9,10). If the energy-level is critical, in a parallel

thread, the Arbiter gets the energy-savings mode criteria for the task provided by

the Energy-Savings Mode Manager (labels 11, 12), con�gures the task (label 13),

and instructs the Task Executor to start executing the con�gured task instead of the

original task (label 14). If the energy-level becomes su�cient during the execution

of the con�gured task (label 17), the Arbiter re-con�gures the con�gured task back

to the original one (label 18) and instructs the Task Executor to start executing the

original task instead of the con�gured one (label 19). If the energy-level drops again

to a critical point, the previously described steps will take place (labels 11-15). Some

examples of task con�gurations: (i) Initial task: move in any direction at a set max

power rate. Con�gured task: adjust power rate to a lower rate speci�ed in the set

criteria. (ii) Initial task: publish large amounts of data (e.g., publish PCL point

63

4. RESULTS

clouds, 3D map). Con�gured task: stop publishing data. (iii) Initial task: sample

data at a set con�gurable rate. Con�gured task: alter the sampling rate to a lower

rate speci�ed in the set criteria.

� ROS Example: Data point #36: Figure 4.17 is an example of how the Limit

Task tactic can be employed in a ROS-based system with haptic devices. Haptic

teleoperation allows a user to perform manipulation tasks in distant, scaled, haz-

ardous, or inaccessible environments. Haptic teleoperation provides telepresence by

allowing a user to remotely control a secondary robot through a main device while

haptically perceiving the remote environment (33). In this example, the Main repre-

sents a ROS-based system which consists of a haptic_device_controller node (maps

to the Task Requestor) which communicates directly with the physical haptic device.

The Secondary ROS-based system consists of an arm_controller_node (represents

the Arbiter, Task Executor and the Energy-Savings Mode Manager) which commu-

nicates directly with the robot arm. The arm_controller_node is subscribed to a

battery_state topic which is published by some other node. This topic publishes

information regarding the robot arm battery such as the battery percentage. The

Secondary communicates the data relevant to the robot arm to the Main and vice

versa via the network. In the Main, the haptic_device_controller node is subscribed

to an arm_feedback topic which publishes messages regarding the state of the robot

arm such as the battery percentage. This information is directly communicated

by the haptic_device_controller node to the user monitor which is used by an ac-

tual user controlling the haptic device. If the arm_controller_node (Secondary)

receives some task from the Main, and the robot arm battery level is critical, the

arm_controller_node adjusts the task by not providing feedback from the robot_arm

to the Main. Simultaneously, the haptic_device_controller node in the Main is sub-

scribed to the arm_feedback topic and communicates the battery feedback to the

user monitor. In this way, the user is aware of the robot arm's battery state.

� Other Examples: (i) Cloud integrated sensor network: when energy needs to be

saved, data-transmission techniques are replaced with energy-e�cient data-transmission

techniques such as a customizable sensor information system model which used to

modify data transmission and frequency of data collection to make it energy e�cient;

this approach also reduces CO2 emissions (34). (ii) Plug-in hybrid electric vehicles:

disable certain drive modes for a better power management.

64

4.2 Green Tactics

� Constraints: The tactic as described assumes that the communication between the

component providing the energy level information and the Arbiter already exists,

and that the criteria for any task under the energy-savings mode is already set.

� Dependencies: This tactic may involve tactics - EA1 for con�guring a task to abort

when the energy-savings mode is on - EA2 for con�guring a task to stop and recharge

the battery when the energy-savings mode is on - EA3-EA6 to get the energy level

state.

� Variations: Event-based logic can be used for getting the energy-level information:

for example, a global value (e.g., ROS topic) can be accessed at any execution point

during runtime by the Arbiter.

Figure 4.16: EE1 ROS Example

65

4. RESULTS

Figure 4.17: EE1 Component Interface & Sequence Diagram

66

4.2 Green Tactics

4.2.0.9 EE2: Disable Hardware

� Tactic Name: Disable Hardware

� Targeted QA: Energy E�ciency

� Family: Energy E�ciency

� Motivation: Hardware components (e.g., sensors, drivetrains) of a robot often con-

sume a signi�cant amount of energy; for example, sensors consume energy in terms

of CPU usage (i.e., sensors provide feedback based on the robot's surroundings and

send it to the CPU which then uses the feedback to make further decisions). It is

crucial to prevent unnecessary utilization of hardware resources in order to extend

the maximum operational time of the robot's battery.

� Description: This tactic disables hardware components when they are not strictly

needed, which results in the robot consuming less energy and in a more e�cient power

management during its tasks. Figure 4.19 illustrates the component interface and

sequence diagrams of the tactic. The tactic is implemented to control the physical

communication between the HW Controller and the actual hardware device. The

HW Requestor noti�es the HW State Controller whether or not the hardware device

is needed for a certain task (labels 1, 8). Then, the HW State Controller instructs

the HW Controller to disable or enable the hardware device (labels 2, 9). Before

enabling or disabling the hardware device, the HW Controller checks the task to

determine if it is safe to change the state of the hardware device (labels 3, 10) (e.g.,

toggle hardware pin, set boolean variable for instruction to TRUE/FALSE). In this

tactic, we assume that it is always safe to either enable or disable the HW device, so

the HW Controller enables or disables the HW device (labels 4, 11), based on the

input from the HW State Controller.

� ROS Example: Data Point #23: Figure 4.19 illustrates an example of the Dis-

able Hardware tactic and how it is employed in ros_control package which includes

ROS-based controller managers and controller and hardware interfaces. There are

two nodes: a controller_requestor node (maps to the HW Requestor) and a con-

troller_manager node (maps to the HW State Controller and HW Controller).

There is also one non-ROS component - the robot_hw (maps to the Device). The

controller_manager node advertises two services: a load_controller service (enable

HW) and an unload_controller service (disable HW). If the controller_requestor node

67

4. RESULTS

wishes to enable the robot_hw, it sends a request to the load_controller service to

enable the robot_hw. If it wishes to disable the robot_hw, it sends a request to

the unload_controller service to disable the robot_hw. After receiving a request, the

controller_manager node performs the request by either enabling or disabling the

robot_hw. The controller_requestor node is noti�ed with the result; this ensures

that the controller_requestor node is aware of the robot_hw status.

� Other Examples: (i) Windows power management: when the computer enters a

sleeping state, Windows puts the network interface card to sleep as well. (ii) Mobile

activity recognition system (ARS) for detecting human activities: disable GPS hard-

ware while the user is indoors (35). (iii) LG air conditioners: power consumption is

reduced by automatically turning o� the circulation fan as well as the exhaust fan

when the compressor is o�.

� Constraints: The tactic as described assumes that the communication between the

actual hardware device and the HW Controller already exists and that it is safe to

change the state of a hardware device. It is also assumed that the HW device has

the capability of being turned o� and that other components in the system already

noti�ed the HW State Controller regarding the demand for a hardware device.

� Dependencies: -

� Variations: (i) In the case when switching the state of the hardware device is not

safe, the HW Controller will check the task and suspend it. (ii) The HW State

Controller can check whether or not the actual hardware device is being currently

utilized.

68

4.2 Green Tactics

Figure 4.18: EE2 ROS Example

Figure 4.19: EE2 Component Interface & Sequence Diagram

69

4. RESULTS

4.2.0.10 EE3: Energy-Aware Sampling

� Tactic Name: Energy-Aware Sampling

� Targeted QA: Energy E�ciency

� Family: Energy E�ciency

� Motivation: In robotics, many sensors are designed to provide a continuous stream

of data (e.g., accelerometers, LiDARs) (35). Sampling data from sensors is an energy

consuming task as the transmission of data which occurs at regular intervals, leads

to a larger energy waste (36). When the robot's battery reaches a critical point, the

component in charge of sampling the sensor should be able to continue sampling, and

at the same time, enter into a state in which energy must be saved to avoid further

drain of the battery.

� Description: This tactic adjusts the rates for sampling a sensor based on the energy-

level of the robot. Figure 4.21 illustrates the component interface and sequence

diagrams of the tactic. The Sensor Controller provides con�gurable sampling rates

for the sensor. First, the Sensor Requestor requests to start sampling the sensor

and sends the request to the Sampling Rate Controller (label 1). After receiving

the request, the Sampling Rate Controller gets the initial sampling rate from the

Sensor Controller (labels 2,3). Then, in an in�nite loop and in a separate thread

the Sampling Rate Controller gets the energy-level which is provided by another

component in the system (labels 4,5); if the energy-level is critical (e.g., the battery

level is below a set threshold), the initial sampling rate is lowered (within the same

loop and in a parallel thread) (label 11). The adjusted sampling rate is then sent

back to the Sensor Controller (label 12) which uses the adjusted sampling rate to

sample the sensor (label 13). The sampled sensor state information is then provided

by the Sensor Controller which communicates this information back to the Sensor

Requestor (labels 14, 15). Under normal operation (e.g, energy-level is su�cient to

operate, battery level above a set threshold), the initial sampling rate is not altered

(label 6-10).

� ROS Example: Data Point #51: Figure 4.21 illustrates an example of the Energy-

Aware Sampling tactic and how it is employed in a ROS-based driver for InvenSense's

3-axis gyroscope. There are two nodes and one non-ROS component involved:

70

4.2 Green Tactics

the inv_mpu_controller node (maps to Sensor Requestor and Sampling Rate Con-

troller), the inv_mpu node (maps to Sensor Controller), and the sensor component.

The inv_mpu_controller node is subscribed to a battery_state topic to check the

battery level. It is also subscribed to a sampling_rates topic in which the sam-

pling rates are published by the inv_mpu node. After getting a sampling rate, the

inv_mpu_controller node checks the battery level and either adjusts or keeps the

original sampling rate based on the battery level. If the battery level is su�cient, the

inv_mpu_controller node keeps the original sampling rate and sends a request to

the sampling action advertised by the inv_mpu node to start sampling the sensor. If

the battery_level is critical, the inv_mpu_controller node �rst adjusts the sampling

rate, and then makes a request to the sampling action to start sampling the sensor.

The inv_mpu node samples the sensor via non-ROS communication methods and

publishes the sensor status to a sensor_status topic which is subscribed to by the

in_mpu_controller node.

� Other Examples: (i) Sensor network for automated water quality monitoring: if

the monitored parameters hardly �uctuate, lower sampling frequency is used; less

energy will be needed for data sampling, data processing and transmission (37). (ii)

Mobile activity recognition system (ARS) for detecting human activities: energy-

e�cient ARS - low sampling rates, can achieve high recognition accuracy and low

energy consumption (38).

� Constraints: This tactic assumes that the communication between the physical

sensor and the Sensor Controller is already established and that the initial sam-

pling rates are already con�gured. It also assumed that the sensor has con�gurable

rates and that the communication between the component providing the energy level

information and the Sampling Rate Controller already exists.

� Dependencies: This tactic can employ tactics EA3 - EA6 to get the state of the

energy level.

� Variations: (i) Event-based logic can be used for checking the energy-level: for

example, a global value (e.g., ROS topic) can be accessed at any execution point

during runtime.

71

4. RESULTS

Figure 4.20: EE3 ROS Example

Figure 4.21: EE3 Component Interface & Sequence Diagram

72

4.2 Green Tactics

4.2.0.11 EE4: On-Demand Software Components

� Tactic Name: On-Demand Software Components

� Targeted QA: Energy E�ciency

� Family: Energy E�ciency

� Motivation: Continuously running a component requires the spawning of an OS

process which is an energy-consuming task in terms of CPU usage (i.e., executing a

CPU-intensive loop) and other resources (e.g., sensors, motors, fans for cooling). For

this reason, it is necessary to ensure that OS processes that are not being utilized do

not consume energy unnecessarily by running in the system.

� Description: This tactic brings up new components only when their functionalities

are needed. Figure 4.23 illustrates the component interface and sequence diagrams

of the tactic. The Component Manager acts as a controller which either starts up or

shuts down a component based on its demand. The Requestor represents a component

which requires the On-Demand Component based on its status: online (startup a

component) or o�ine (shutdown a component). First, the Requestor sends its status

to the Component Manager (labels 1,6) which either brings up or shuts down the

On-Demand Component (labels 2,7). The status of the On-Demand Component is

communicated from the Component Manager to the Requestor (labels 3,4 & 8,9) so

that it is aware whether or not the On-Demand Component is up and running; if

it is up and running, the Requestor can start communicating with the On-Demand

Component (label 5).

� ROS Example: Data Point #14: Figure 4.23 is an example of how the On-Demand

ROS Component tactic can be employed in a practical scenario when dealing with

cameras. In this scenario, ROS nodelets are used instead of ROS nodes. The rea-

son behind this is that when ROS nodes are dealing with messages that contain

large amounts of data (i.e. camera images, point clouds), sending and unpacking the

messages takes a longer time over TCP. With nodelets, messages are communicated

within the same process via a booster shared pointer. This helps to reduce overhead of

data transfer (39). In this example, there is a nodelet_manager (maps to Component

Manager) which has a pool of threads shared among the nodelets spawned within

the same nodelet_manager. The camera nodelet (maps to Requestor) is a nodelet

73

4. RESULTS

that is one of the threads running within the nodelet_manager. In order for the cam-

era nodelet to operate, it requires the camera_driver nodelet (maps to On-Demand

Component) to be up and running. The camera nodelet publishes its status (online,

o�ine) to a camera_status topic which is subscribed to by the nodelet_manager.

Based on the camera nodelet's status, the nodelet_manager either starts up or shuts

down the camera_driver nodelet. The camera_driver nodelet's status is communi-

cated back to the camera nodelet. If the camera_driver nodelet is up and running,

it advertises a Service which can be used by the camera nodelet.

� Other Examples: (i) Cloud computing: delivery of on-demand computing re-

sources, ability to scale computing resources. (ii) iOS: on-demand resources (ODR)

API to reduce original download size of the application. Instead, the ODR API

is used to deliver the application contents after it has been downloaded. This is

especially useful for gaming applications (40).

� Constraints: It is assumed that On-Demand Component is already implemented

and is waiting to be brought up or shut down.

� Dependencies:

� Variations: Instead of having the Component Manager, the Requestor can spawn

the On-Demand Component directly.

Figure 4.22: EE4 ROS Example

74

4.2 Green Tactics

Figure 4.23: EE4 Component Interface & Sequence Diagram

75

4. RESULTS

76

5

Discussion

In this project we mined ROS data-sources for identifying and extracting green tactics for

energy-e�cient robotics software. We discovered that energy-awareness tactics are promi-

nent amongst the extracted green tactics which might indicate that there are already many

methods available for roboticists to design and implement energy-aware robotics software.

The four extracted energy-e�ciency tactics target both the software and the hardware

which also emphasizes the fact that roboticists are concerned with energy-e�ciency in

both levels of abstraction. This is further supported by the observation that for example,

tactic EE1 (software-level) is found in �ve data points and EE2 (hardware-level) in three

data points where each data point is associated with a unique ROS project.

It is also interesting to note that majority of the tactics are associated with battery-

operated robots even though we did not intend to only focus on such robots. This might

highlight the fact that batteries like Lithium Ion and Lithium Polymer have a limited energy

budget and therefore, battery-operated robots are constantly in need of a wise energy-

management scheme. Even though it happened that most of the tactics are extracted

from data points concerning battery-operated robots, we can �rmly say that most of the

tactics are applicable in robots that are powered directly from a cable and also in other

application domains � we support this claim by providing other examples where these

tactics have been already applied.It is essential to consider methods and techniques for the

minimization of energy consumption in batteryless robots. For example, the non-battery

operated robot arm is one of the most prominent and used robots in various industries

such as the automotive and medical industry. The robot arm has several capabilities such

as capturing and transporting a product or piece in a production line, perform welding,

cutting, milling, assembling, and performing or assisting surgery in medicine (41). Robot

arms are often operated dynamically to maximize production outputs, which results in both

77

5. DISCUSSION

high energy loss at high velocities as well as energy excess when decelerating. Furthermore,

several tasks are followed by idle times associated with a loss of productivity. (42)

During Phase 2 where we identi�ed energy-relevant data, we noticed that a signi�cant

portion of the data points concerned safety in robots, an area outside the scope of this

project, which happens to be a prominent QA in robotics software. For example, the robot

arm used in medical industries to perform surgeries comes into direct contact with a hu-

man, hence, the most important design consideration at premium is safety. Robot safety

depends on several factors, ranging from software dependability, to possible mechanical

failures, to human error, etc. Therefore, it is also important to consider design options

(ATs) for safety during the early stage of software design. This observation is interesting

as we suspected energy to be the major concern in robotics software, as robots are au-

tonomous and have restricted energy supplies. Interestingly enough, the StackOverflow

and ROS-Discourse data sources were discarded during Phase 3, indicating that GitHub,

BitBucket, ROS-Answers, and ROS-Wiki are good sources for green tactics. We also ob-

served that some of the energy-related data points identi�ed in Phase 2 did not concern

energy-e�ciency but focused on either visualizing energy-related data or focusing on tech-

nical speci�cations of fact sheets of a robot. It would be interesting to use a thematic

analysis approach (43) to examine, identify and record patterns (or themes) within the

dataset in Phase 2.

We believe that these green tactics are generally applicable, however, they should be

employed within the proper context. For example, it makes sense to apply tactic EE2

in a battery-powered environment rather than a batteryless environment, as tactic EE2

incorporates a recharging activity. That being said, tactic EE1 can be applied in both

battery-operated and batteryless environments; an example of a batteryless environment

is the soft, autonomous robot known as the octobot. The octobot runs on liquid hydrogen

peroxide fuel which gives o� oxygen gas to controll the ocotobot's eight arms (44). EE1

can be applied in the octobot to monitor the level of the fuel and adjust a task when there

is not enough fuel to operate continuously.

78

6

Threats To Validity

The following chapter reports on the di�erent kinds of threats to validity which have been

analyzed for the purpose of evaluating to what extent the results are sound and applicable

to the real world. In the following sections, the kinds of threats to validity are discussed

in detail.

6.1 External Validity

External validity refers to how well the outcome of a study can be expected to apply to other

settings. While rigorous research methods can ensure internal validity, external validity,

on the other hand, may be limited by these methods (45). This threat deals with the

fact that the data sources and the 335 ROS-based open-source projects hosted on GitHub

and Bitbucket may not be representative of the robotics community. The data sources

StackOverflow, ROS-Answers, ROS-Wiki and ROS-Discourse are heterogeneous in terms

of the age of the posts, and number of questions per distinct user and the 335 ROS

repositories in terms of number of contributors, number of commits, etc. This potential

threat is avoided as the primary motivation for using ROS is that the ROS community is

very active in terms of the number of packages, questions posted in the ROS forums, and

open-source ROS projects. These reasons make us con�dent in the long term future of

ROS.

6.2 Internal Validity

Internal validity is the extent to which a study establishes a trustworthy cause-and-e�ect

relationship between a treatment and an outcome. Internal validity depends largely on the

79

6. THREATS TO VALIDITY

procedures of a study and how rigorously it is performed (45). The study design of this

project was identi�ed and rigorously de�ned prior to the dataset construction, energy-

relevant data collection, architecturally-relevant data collection, and the green tactics ex-

traction. The replicability of this project and veri�cation of the results are documented in

a publicly available research protocol.

6.3 Construct Validity

Construct validity is about ensuring that the method of measurement matches the construct

wanted to be measured (46). To mitigate this threat, a well-de�ned goal and research ques-

tion have been identi�ed to cover the scope of this project. Each phase of the study design

was carefully designed and carried out; the energy-relevant and architecturally-relevant

data was rigorously identi�ed and selected via an established inclusion and exclusion cri-

teria and veri�ed by a second researcher. The green tactics were identi�ed and extracted

using a pre-de�ned protocol and veri�ed by three researchers.

6.4 Conclusion Validity

Conclusion validity is the degree to which conclusions reached about relationships in some

data are reasonable (47). To mitigate this threat and reduce potential biases, two re-

searchers were involved in identifying the energy-relevant and architecturally-relevant data

by using Cohen's Kappa to measure the level of agreement to ensure that an arbiter was

not needed. Furthermore, three researchers were involved in the extraction process of the

green tactics and the �nal results were veri�ed by two other researchers.

80

7

Conclusion

In this project we mined green tactics for energy-e�cient robotics software by using ROS-

based systems as the main focus in our dataset as the ROS community is proven to be

very active and an accurate representation of the robotics environment. We were inter-

ested in studying and answering one research question: Which green architectural tactics

are employed for energy e�cient-robotics software? (RQ1). We answered this question

by designing and carrying out a multi-phase study which resulted in 7 energy-awareness

tactics and 4 energy-e�ciency tactics. We discovered that all 11 tactics have already been

applied in other application domains, hence, we aimed to describe the tactics in a general

implementation-free manner to bene�t developers not part of the ROS-community. The

extracted green tactics can serve as an extensive guidance for roboticists as well as other

developers interested in architecting and implementing cutting-edge energy-e�cient soft-

ware. Furthermore, the extracted green tactics can serve as a basis for ROS developers on

understanding the gaps and limitations in green robotics software.

For future work, a thematic analysis approach can be applied to gather the patterns

across the dataset and extract recurring themes present in the data points. Moreover, this

would bring light to some of the most common energy-related problems faced by ROS-

developers. We noted previously that the safety QA concerned a signi�cant amount of

data points - exploring safety tactics for green-robotics software could be another future

work for roboticists and researchers interested in such direction. Due to the time-limit

and scope of this project, we are not able to state with certainty which of the extracted

green tactics are most commonly used by the ROS-developers; to achieve this, we will need

to survey roboticists actively involved in the ROS projects used for extracting the green

tactics.

81

7. CONCLUSION

Due to the scope and allocated time for this project, we did not provide evidence re-

garding the e�ectiveness of the green extracted tactics. In fact, in a currently on-going

project, the extracted energy-e�cient tactics are empirically evaluated by implementing

each energy-e�cient tactic into a real ROS-based system. Each tactic is assessed by eval-

uating the impact of each tactic in terms of energy consumption of the robot through

di�erent missions and physical environments.

82

Appendix

7.1 Chosen ROS Projects

.

Repository Name Description Data Point # Tactic Example

41 EA1
aau_multi_robot Autonomous multi-robot system.

24 EA2

robotx_core
Robotx_core packages are ROS packages for Jetson TX2 or other embeded boards

which is on our wam-v.
22 EA3

jsk_robot
Fundamental functions and systems necessary for future intelligent robots that will live

and work in the daily life �eld and human society.
16 EA4

kobuki Low-cost mobile research base designed for education and research on state of art robotics. 40 EA5

UBC-Thunderbots

/Software
Software for autonomous soccer-playing robots. 15 EA6

13 EA7
SubjuGator An autonomous underwater vehicle project.

14 EE4

turtlebot Low-cost, personal robot kit with open-source software. 36 EE1

ros_control
Set of packages that include controller interfaces, controller managers, transmissions and

hardware_interfaces.
23 EE2

segbot ROS drivers for controlling Segway-based robots. 51 EE3

Table 7.1: ROS projects used in the ROS examples for the green tactics

83

7. CONCLUSION

84

References

[1] Khan Saad Bin Hasan. What, Why and How of ROS. Medium: Towards Data

Science, 2019. 1

[2] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,

Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-

source Robot Operating System. ICRA Workshop on Open Source Software, 2009.

1

[3] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu

Ootsu, and Takashi Yokota. Architecture exploration of intelligent robot

system using ros-compliant FPGA component. 2016 International Symposium

on Rapid System Prototyping (RSP), 2016. 1

[4] Dayang N. A. Jawawi, Rosbi Mamat, and Safaai Deris. A Component-

Oriented Programming for Embedded Mobile Robot Software. Int. Journal

of Advanced Robotic Systems, 4:40, 2007. 1

[5] Ariel Podlubne and Diana Gohringer. FPGA-ROS: Methodology to Aug-

ment the Robot Operating System with FPGA Designs. 2019 International

Conference on ReConFigurable Computing and FPGAs (ReConFig), 2019. 1

[6] R. Irem Bor-Yaliniz, Amr El-Keyi, and Halim Yanikomeroglu. E�cient 3-

D placement of an aerial base station in next generation cellular networks.

IEEE International Conference on Communications, 2016. 1

[7] Gang Hou, Zhou Kuanjiu, Tie Qiu, Xun Cao, Mingchu Li, and Jie Wang.

A novel green software evaluation model for cloud robotics. Computers and

Electrical Engineering, 63:139�156, 2017. 1

85

https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

REFERENCES

[8] Felix Bachmann, Len Bass, and Mark Klein. Deriving Architectural Tac-

tics: A Step Toward Methodical Architectural Design. Carnegie Mellon Uni-

versity, Software Engineering Institute, 2003. 2, 3

[9] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in

Practice. Addison-Wesley Professional, 2012. 2

[10] Grace Lewis. Software Architecture Strategies for Cyber-Foraging Sys-

tems. PhD Dissertation: Vrije Universiteit Amsterdam, 2016. 2, 5, 34, 40

[11] James Scott and Rick Kazman. Realizing and Re�ning Architectural Tac-

tics: Availability. Carnegie Mellon University, 2009. 3

[12] Morgan Quigley, Brian Gerkey, and William D. Smart. Programming

Robots with ROS: A Practical Introduction to the Robot Operating Sys-

tem. O'Reilly Media, 2015. 6

[13] Nicholas DeMarinis, Stefanie Tellex, Vasileios P. Kemerlis, George

Konidaris, and Rodrigo Fonseca. Scanning the Internet for ROS: A View

of Security in Robotics Research. 2019 International Conference on Robotics and

Automation, 2019. 6

[14] Ivano Malavolta, Grace A. Lewis, Bradley Schmerl, Patricia Lago, and

David Garlan. How do you Architect your Robots? State of the Practice

and Guidelines for ROS-based Systems. Software Engineering in Practice, 2020.

6, 12, 18, 19

[15] Sergi Hernández Juan and Fernando Herrero Cotarelo. Multi-master

ROS systems. 2015. 7

[16] Yi Liu, Yuhua Zhong, Xieyuanli Chen, Pan Wang, Huimin Lu, Junhao

Xiao, and Hui Zhang. Fully Autonomous Robot System for Urban Search

and Rescue. Proceedings of the IEEE International Conference on Information and

Automation, 2016. 7

[17] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal

Question Metric Approach. Encyclopedia of Software Engineering, 1994. 9

[18] Pablo Estefoa, Jocelyn Simmonds, Romain Robbes, and Johan Fabryc.

The Robot Operating System: Package reuse and community dynamics.

Journal of Systems and Software, 151:226�242, 2 2019. 11

86

REFERENCES

[19] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mon-

goDB vs Oracle - database comparison. Emerging Intelligent Data and Web

Technologies, 9 2012. 15

[20] Irineu Moura, Gustavo Pinto, Felipe Ebert, and Fernando Castor. Min-

ing Energy-Aware Commits. ROS Wiki, 2015. 23

[21] ROS Wiki. ROS Topic. ROS Wiki. 41

[22] ROS Wiki. ROS Actionlib. ROS Wiki. 41

[23] ROS Wiki. ROS Service. ROS Wiki. 41

[24] ROS Wiki. ROS Bag. ROS Wiki. 41

[25] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David

Mazieres, and Nickolai Zeldovich. Energy Management in Mobile De-

vices with the Cinder Operating System. European Conference on Computer

Systems, 2011. 50

[26] Fumiko Satoh, Hiroki Yanagisawa, Hitomi Takahashi, and Takayuki

Kushida. Total Energy Management System for Cloud Computing. Cloud

Engineering (IC2E), 2013. 50

[27] Thorsten Ochs, Henrik Schittenhelm, Andreas Genssle, and Bernhard

Kamp. Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel

Particulate Filters (DPF). SAE International Journal of Fuels and Lubricants,

2010. 52

[28] Chao Long, Jianzhong Wu, Yue Zhou, and Nick Jenkins. Aggregated

battery control for peer-to-peer energy sharing in a community Microgrid

with PV battery systems. Energy Procedia, 2018. 55

[29] Thomas Greiner. Control of Pollutant Emissions by ITS on the Austrian

High Level. 16th ITS World Congress and Exhibition on Intelligent Transport Sys-

tems and Services, 2009. 57

[30] Danae Diakoulaki and Maria Mandaraka. Decomposition analysis for

assessing the progress in decoupling industrial growth from CO2 emissions

in the EU manufacturing sector. Energy Economics, 2007. 58

87

http://wiki.ros.org/ROS/Patterns/Communication
http://wiki.ros.org/actionlib
http://wiki.ros.org/Services
http://wiki.ros.org/Bags

REFERENCES

[31] Audun Bugge, Daymon Rogers, Jørn Norhei, Øivind Loe, Raman Sharma,

Timotej Ecimovic, and Tom Zudock. Silicon Labs: Multi-Node Energy

Pro�ler. Silicon Laboratories, 2017. 61

[32] Lev Mukhanov, Pavlos Petoumenos, Zheng Wang, Nikos Parasyris, Dim-

itrios S. Nikolopoulos, Bronis R. de Supinski, and Hugh Leather. ALEA:

A Fine-Grained Energy Pro�ling Tool. ACM Transactions on Architecture and

Code Optimization, 2017. 61

[33] Paulo A.F. Rezeck, Bruna Frade, Jessica Soares, Luan Pinto, Fe-

lipe Cadar Chamone, Héctor Azpúrua, Douglas Guimarães Macharet,

Luiz Chaimowicz, Gustavo Freitas, and Mario Fernando Montenegro

Campos. Framework for Haptic Teleoperation of a Remote Robotic Arm

Device. Workshop on Robotics in Education, 2018. 64

[34] Kalyan Das, Satyabrata Das, Rabi Kumar Darji, and Ananya Mishra. Sur-

vey of Energy-E�cient Techniques for the Cloud-Integrated Sensor Net-

work. Journal Of Sensors, 2018. 64

[35] Dawud Gordon, Jürgen Czerny, and Michael Beigl. Activity recogni-

tion for creatures of habit: Energy-e�cient embedded classi�cation using

prediction. Personal and Ubiquitous Computing, 2013. 68, 70

[36] Eduardo Souto, Reinaldo Gomes, Djamel Sadok, and Judith Kelner.

Sampling Energy Consumption in Wireless Sensor Networks. International

Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006. 70

[37] Tongxin Shu, Min Xia, Jiahong Chen, and Clarence de Silva. An Energy

E�cient Adaptive Sampling Algorithm in a Sensor Network for Automated

Water Quality Monitoring. Sensors, 2017. 71

[38] Lingxiang Zheng, Dihong Wu, Xiaoyang Ruan, Shaolin Weng, Ao Peng,

Biyu Tang, Hai Lu, Haibin Shi, and Huiru Zheng. A Novel Energy-E�cient

Approach for Human Activity Recognition. Sensors, 2017. 71

[39] Lentin Joseph and Jonathan Cacace. Mastering ROS for Robotics Pro-

gramming: Design, build, and simulate complex robots using the Robot

Operating System. Packt Publishing, 2018. 73

88

REFERENCES

[40] Stephen Richard Lewallen, David Makower, Jonathan Joseph Hess,

Patrick Heynenand Terry J. SANTAMARIA, William M. Bumgarner,

David Pickford, Christopher L. OKLOTA, and Anthony S. PARKER. Ap-

ple: On-demand resources. Apple, 2016. 74

[41] Mohammad Vahid Samet Siar and Ahmad Fakharian. Energy E�ciency in

the Robot Arm using Genetic Algorithm. Arti�cial Intelligence and Robotics,

2018. 77

[42] Giovanni Carabin, Erich Wehrle, and Renato Vidoni. A Review on

Energy-Saving Optimization Methods for Robotic and Automatic Systems.

MDPI, 2017. 78

[43] Jennifer Fereday and Eimear Caitlin Muir-Cochrane. Demonstrating

Rigor Using Thematic Analysis: A Hybrid Approach of Inductive and De-

ductive Coding and Theme Development. The International Journal of Quali-

tative Methods, 2006. 78

[44] Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak

Mosadegh, George M. Whitesides, Jennifer A. Lewis, and Robert J.

Wood. An integrated design and fabrication strategy for entirely soft,

autonomous robots. Nature, 2016. 78

[45] Arlin Cunic. Understanding Internal and External Validity How These

Concepts Are Applied in Research. Social Research Methods, 2020. 79, 80

[46] Fiona Middleton. The four types of validity. Social Research Methods, 2019.

80

[47] William M.K. Trochim. Social Research Methods - Conclusion Validity.

Social Research Methods, 2020. 80

89

	1 Introduction
	2 Background
	2.1 Architectural Tactics
	2.2 ROS-based Systems

	3 Study Design
	3.1 Research Question
	3.2 Study Design
	3.2.1 Phase 1: Dataset Construction
	3.2.1.1 Pre-filtering
	3.2.1.2 Web Scraping
	3.2.1.3 Data Storage - MongoDB
	3.2.1.4 Data Extractors
	3.2.1.5 Dataset Summary

	3.2.2 Phase 2: Energy-Relevant Data Identification
	3.2.2.1 Energy Query
	3.2.2.2 Document Query Engine
	3.2.2.3 Removing False-Positive Energy Data
	3.2.2.4 Level Of Agreement Calculation
	3.2.2.5 Energy Dataset Summary

	3.2.3 Phase 3: Architecturally-Relevant Data Identification
	3.2.3.1 Data Point Types
	3.2.3.2 Inclusion & Exclusion Criteria
	3.2.3.3 AR Data Point Identification
	3.2.3.4 Level Of Agreement Calculation
	3.2.3.5 AR Dataset Summary

	3.2.4 Phase 4: Green Tactics Extraction
	3.2.4.1 Stage 1: AT-Relevant Data Extraction
	3.2.4.2 Stage 2: Green Tactics Categories Identification
	3.2.4.3 Data Point Classification

	4 Results
	4.1 Tactic Tree
	4.2 Green Tactics
	4.2.0.1 EA1: Abort Mission
	4.2.0.2 EA2: Stop Task & Recharge
	4.2.0.3 EA3: Dedicated Energy-Level Message
	4.2.0.4 EA4: Energy-Level Info Within Diagnostics Message
	4.2.0.5 E5: Aggregated Energy Information
	4.2.0.6 EA6: Energy-Savings Mode
	4.2.0.7 EA7: Offline Energy Profiler
	4.2.0.8 EE1: Limit Task
	4.2.0.9 EE2: Disable Hardware
	4.2.0.10 EE3: Energy-Aware Sampling
	4.2.0.11 EE4: On-Demand Software Components

	5 Discussion
	6 Threats To Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 Conclusion Validity

	7 Conclusion
	7.1 Chosen ROS Projects

	References

