
NEST by Example: An Introduction to the

Neural Simulation Tool NEST Version 2.6.0

Marc-Oliver Gewaltig1, Abigail Morrison2, and Hans Ekkehard Plesser3, 2

1Blue Brain Project, Ecole Polytechnique Federale de Lausanne, QI-J, Lausanne 1015,
Switzerland

2Institute of Neuroscience and Medicine (INM-6) Functional Neural Circuits Group, Jülich
Research Center, 52425 Jülich, Germany

3Dept of Mathematical Sciences and Technology, Norwegian University of Life Sciences,
PO Box 5003, 1432 Aas, Norway

Abstract

The neural simulation tool NEST can simulate small to very large networks of point-neurons or
neurons with a few compartments. In this chapter, we show by example how models are programmed
and simulated in NEST.

This document is based on a preprint version of Gewaltig et al. (2012) and has been updated for
NEST 2.6 (r11744).

Edited Sacha J. van Albada, May 2015

Updated to 2.6.0 Hans E. Plesser, December 2014

Updated to 2.4.0 Hans E. Plesser, June 2014

Updated to 2.2.2 Hans E. Plesser & Marc-Oliver Gewaltig, December 2012

1 Introduction

NEST is a simulator for networks of point neurons, that is, neuron models that collapse the morphol-
ogy (geometry) of dendrites, axons, and somata into either a single compartment or a small number
of compartments (Gewaltig and Diesmann, 2007). This simplification is useful for questions about the
dynamics of large neuronal networks with complex connectivity. In this text, we give a practical intro-
duction to neural simulations with NEST. We describe how network models are defined and simulated,
how simulations can be run in parallel, using multiple cores or computer clusters, and how parts of a
model can be randomized.

The development of NEST started in 1994 under the name SYNOD to investigate the dynamics of
a large cortex model, using integrate-and-fire neurons (Diesmann et al., 1995). At that time the only
available simulators were NEURON (Hines and Carnevale, 1997) and GENESIS (Bower and Beeman,
1995), both focussing on morphologically detailed neuron models, often using data from microscopic
reconstructions.

Since then, the simulator has been under constant development. In 2001, the Neural Simulation
Technology Initiative was founded to disseminate our knowledge of neural simulation technology. The
continuing research of the member institutions into algorithms for the simulation of large spiking networks
has resulted in a number of influential publications. The algorithms and techniques developed are not
only implemented in the NEST simulator, but have also found their way into other prominent simulation
projects, most notably the NEURON simulator (for the Blue Brain Project: Migliore et al., 2006) and
IBM’s C2 simulator (Ananthanarayanan et al., 2009).

Today, in 2012, there are several simulators for large spiking networks to choose from (Brette et al.,
2007), but NEST remains the best established simulator with the the largest developer community.

A NEST simulation consists of three main components:

1

0 200 400 600 800 1000
Time (ms)

−70

−68

−66

−64

−62

−60

−58

−56

−54

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
(m

V
)

Membrane potential

Neuron 1

Figure 1: Membrane potential of a neuron in response to an alternating current as well as random excitatory
and inhibitory spike events. The membrane potential roughly follows the injected sine current. The small
deviations from the sine curve are caused by the excitatory and inhibitory spikes that arrive at random
times. Whenever the membrane potential reaches the firing threshold at -55 mV, the neuron spikes and the
membrane potential is reset to -70 mV. In this example this happens twice: once at around 110 ms and
again at about 600 ms.

Nodes Nodes are all neurons, devices, and also sub-networks. Nodes have a dynamic state that changes
over time and that can be influenced by incoming events.

Events Events are pieces of information of a particular type. The most common event is the spike-event.
Other event types are voltage events and current events.

Connections Connections are communication channels between nodes. Only if one node is connected
to another node, can they exchange events. Connections are weighted, directed, and specific to one
event type. Directed means that events can flow only in one direction. The node that sends the
event is called source and the node that receives the event is called target. The weight determines
how strongly an event will influence the target node. A second parameter, the delay, determines
how long an event needs to travel from source to target.

In the next sections, we will illustrate how to use NEST, using examples with increasing complexity.
Each of the examples is self-contained. We suggest that you try each example, by typing it into Python,
line by line. Additionally, you can find all examples in your NEST distribution.

2 First steps

We begin by starting Python. For interactive sessions, we recommend the IPython shell (Pérez and
Granger, 2007). It is convenient, because you can edit the command line and access previously typed
commands using the up and down keys. However, all examples in this chapter work equally well with-
out IPython. For data analysis and visualization, we also recommend the Python packages Matplotlib
(Hunter, 2007) and NumPy (Oliphant, 2006).

Our first simulation investigates the response of one integrate-and-fire neuron to an alternating current
and Poisson spike trains from an excitatory and an inhibitory source. We record the membrane potential
of the neuron to observe how the stimuli influence the neuron (see Fig. 1).

In this model, we inject a sine current with a frequency of 2 Hz and an amplitude of 100 pA into a
neuron. At the same time, the neuron receives random spiking input from two sources known as Poisson

generators. One Poisson generator represents a large population of excitatory neurons and the other
a population of inhibitory neurons. The rate for each Poisson generator is set as the product of the
assumed number of synapses per target neuron received from the population and the average firing rate
of the source neurons.

The small network is simulated for 1000 milliseconds, after which the time course of the membrane
potential during this period is plotted (see Fig. 1). For this, we use the pylab plotting routines of Python’s
Matplotlib package. The Python code for this small model is shown below.

1 import nest

2 import nest . voltage trace

3 neuron = nest .Create(’ i a f n eu r on ’)

4 s i n e = nest .Create(’ a c g en e r a t o r ’ , 1 ,

5 { ’ amplitude ’ : 100 .0 ,

6 ’ f requency ’ : 2 . 0})

7 no i s e= nest .Create(’ p o i s s on gen e r a t o r ’ , 2 ,

8 [{ ’ r a t e ’ : 70000.0} ,

9 { ’ r a t e ’ : 2 0000 . 0}])

10 voltmeter = nest .Create(’ vo ltmeter ’ , 1 ,

11 { ’ withgid ’ : True })

12 nest .Connect (s ine , neuron)

13 nest .Connect (voltmeter , neuron)

14 nest .Connect (n o i s e [: 1] , neuron , syn spec={ ’ weight ’ : 1 . 0 , ’ de lay ’ : 1 . 0})

15 nest .Connect (n o i s e [1 :] , neuron , syn spec={ ’ weight ’ : −1.0 , ’ de lay ’ : 1 . 0})

16 nest . Simulate (1000 . 0)

17 nest . voltage trace . f r om dev ice (voltmeter)

We will now go through the simulation script and explain the individual steps. The first two lines
import the modules nest and its sub-module voltage trace. The nest module must be imported
in every interactive session and in every Python script in which you wish to use NEST. NEST is a
C++ library that provides a simulation kernel, many neuron and synapse models, and the simulation
language interpreter SLI. The library which links the NEST simulation language interpreter to the Python
interpreter is called PyNEST (Eppler et al., 2009).

Importing nest as shown above puts all NEST commands in the namespace nest. Consequently, all
commands must be prefixed with the name of this namespace.

In line 3, we use the command Create to produce one node of the type iaf neuron. As you see in lines
4, 7, and 10, Create is used for all node types. The first argument, ’ iaf neuron ’, is a string, denoting
the type of node that you want to create. The second parameter of Create is an integer representing
the number of nodes you want to create. Thus, whether you want one neuron or 100,000, you only need
to call Create once. nest.Models() provides a list of all available node and connection models.

The third parameter is either a dictionary or a list of dictionaries, specifying the parameter settings
for the created nodes. If only one dictionary is given, the same parameters are used for all created
nodes. If an array of dictionaries is given, they are used in order and their number must match the
number of created nodes. This variant of Create is used in lines 4, 7, and 10 to set the parameters
for the Poisson noise generator, the sine generator (for the alternating current), and the voltmeter. All
parameters of a model that are not set explicitly are initialized with default values. You can display
them with nest.GetDefaults(model name). Note that only the first parameter of Create is mandatory.

Create returns a list of integers, the global identifiers (or GID for short) of each node created. The
GIDs are assigned in the order in which nodes are created. The first node is assigned GID 1, the second
node GID 2, and so on.

In lines 12 to 15, the nodes are connected. First we connect the sine generator and the voltmeter to
the neuron. The command Connect takes two or more arguments. The first argument is a list of source
nodes. The second argument is a list of target nodes. Connect iterates these two lists and connects the
corresponding pairs.

A node appears in the source position ofConnect if it sends events to the target node. In our example,
the sine generator is in the source position because it injects an alternating current into the neuron. The
voltmeter is in the source position, because it polls the membrane potential of the neuron. Other devices
may be in the target position, e.g., the spike detector which receives spike events from a neuron. If in

doubt about the order, consult the documentation of the respective nodes using NEST’s help system.
For example, to read the documentation of the ac generator you can type nest.help(’ac generator’).
Dismiss the help by typing ‘q’.

Next, we use the command Connect with the syn spec parameter to connect the two Poisson gener-
ators to the neuron. In this example the synapse specification syn spec provides only weight and delay
values, in this case ±1 pA input current amplitude and 1 ms delay. We will see more advanced uses of
syn spec below.

After line 15, the network is ready. The following line calls the NEST function Simulate which runs
the network for 1000 milliseconds. The function returns after the simulation is finished. Then, function
voltage trace is called to plot the membrane potential of the neuron. If you are running the script for
the first time, you may have to tell Python to display the figure by typing pylab.show(). You should
then see something similar to Fig. 1.

If you want to inspect how your network looks so far, you can print it using the commandPrintNetwork():

>>>nest .PrintNetwork ()

+−[0] r oot dim=[5]

|

+−[1] i a f n eu r on

+−[2] a c g en e r a t o r

+ − [3] . . . [4] p o i s s on gen e r a t o r

+−[5] vo ltmeter

If you run the example a second time, NEST will leave the existing nodes intact and will create
a second instance for each node. To start a new NEST session without leaving Python, you can call
nest.ResetKernel(). This function will erase the existing network so that you can start from scratch.

3 Example 1: A sparsely connected recurrent network

a b

0

10

20

30

40

50

N
e
u
ro

n
 I
D

Raster plot from device '10002'

0 50 100 150 200 250 300
Time (ms)

0

32

64

97

R
a
te

 (
H
z)

Figure 2: Sketch of the network model proposed by Brunel (2000). a) The network consists of three popu-
lations: NE excitatory neurons (circle labeled E), NI inhibitory neurons (circle labeled I), and a population
of identical, independent Poisson processes (PGs) representing activity from outside the network. Arrows
represent connections between the network nodes. Triangular arrow-heads represent excitatory and round
arrow-heads represent inhibitory connections. The numbers at the start and end of each arrow indicate
the multiplicity of the connection. See also Table 1. b) Spiking activity of 50 neurons during the first 300
ms of simulated time as a raster plot. Time is shown on the x-axis, neuron ID on the y-axis. Each dot
corresponds to a spike of the respective neuron at the given time. The histogram below the raster plot shows
the population rate of the network.

Next we discuss a model of activity dynamics in a local cortical network proposed by Brunel (2000).
We only describe those parts of the model which are necessary to understand its NEST implementation.
Please refer to the original paper for further details.

The local cortical network consists of two neuron populations: a population of NE excitatory neurons
and a population of NI inhibitory neurons. To mimic the cortical ratio of 80% excitatory neurons and
20% inhibitory neurons, we assume that NE = 8000 and NI = 2000. Thus, our local network has a total
of 10,000 neurons.

For both the excitatory and the inhibitory population, we use the same integrate-and-fire neuron
model with current-based synapses. Incoming excitatory and inhibitory spikes displace the membrane
potential Vm by JE and JI , respectively. If Vm reaches the threshold value Vth, the membrane potential
is reset to Vreset, a spike is sent with delay D = 1.5 ms to all post-synaptic neurons, and the neuron
remains refractory for τrp = 2.0 ms.

The neurons are mutually connected with a probability of 10%. Specifically, each neuron receives
input from CE = 0.1 ·NE excitatory and CI = 0.1 ·NI inhibitory neurons (see Fig. 2a). The inhibitory
synaptic weights JI are chosen with respect to the excitatory synaptic weights JE such that

JI = −g · JE (1)

with g = 5.0 in this example.
In addition to the sparse recurrent inputs from within the local network, each neuron receives ran-

domly timed excitatory input, mimicking the input from the rest of cortex. The random input is modeled
as CE independent and identically distributed Poisson processes with rate νext, or equivalently, by a sin-
gle Poisson process with rate CE · νext. Here, we set νext to twice the rate νth that is needed to drive a
neuron to threshold asymptotically. The details of the model are summarized in Tables 1 and 2.

Fig. 2b shows a raster plot of 50 excitatory neurons during the first 300 ms of simulated time. Time
is shown along the x-axis, neuron ID along the y-axis. At t = 0, all neurons are in the same state Vm = 0
and hence there is no spiking activity. The external stimulus rapidly drives the membrane potentials
towards the threshold. Due to the random nature of the external stimulus, not all the neurons reach the
threshold at the same time. After a few milliseconds, the neurons start to spike irregularly at roughly
40 spikes/s. In the original paper, this network state is called the asynchronous irregular state (Brunel,
2000).

3.1 NEST Implementation

We now show how this model is implemented in NEST. Along the way, we explain the required steps
and NEST commands in more detail so that you can apply them to your own models.

3.1.1 Preparations

The first three lines import NEST, a NEST module for raster plots, and the plotting package pylab. We
then assign the various model parameters to variables.

1 import nest

2 import nest . raster plot

3 import pylab

4 g = 5.0

5 eta = 2 .0

6 de lay = 1.5

7 tau m = 20 .0

8 V th = 20 .0

9 N E = 8000

10 N I = 2000

11 N neurons = N E+N I

12 C E = N E/10

13 C I = N I /10

14 J E = 0.1

15 J I = −g∗J E

Table 1: Summary of the network model, proposed by Brunel (2000).

A Model Summary

Populations Three: excitatory, inhibitory, external input

Topology —

Connectivity Random convergent connections with probability P = 0.1 and fixed in-degree
of CE = PNE and CI = PNI .

Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time
(voltage clamp)

Channel models —

Synapse model δ-current inputs (discontinuous voltage jumps)

Plasticity —

Input Independent fixed-rate Poisson spike trains to all neurons

Measurements Spike activity

B Populations

Name Elements Size

E Iaf neuron NE = 4NI

I Iaf neuron NI

Eext Poisson generator 1

C Connectivity

Name Source Target Pattern

EE E E Random convergent CE → 1, weight J , delay D

IE E I Random convergent CE → 1, weight J , delay D

EI I E Random convergent CI → 1, weight −gJ , delay D

II I I Random convergent CI → 1, weight −gJ , delay D

Ext Eext E ∪ I Divergent 1 → NE +NI, weight J , delay D

D Neuron and Synapse Model

Name Iaf neuron

Type Leaky integrate-and-fire, δ-current input

Sub-
threshold
dynamics

τm ˙Vm(t) = −Vm(t) +RmI(t) if not refractory (t > t∗ + τrp)

Vm(t) = Vr while refractory (t∗ < t ≤ t∗ + τrp)

I(t) = τm

Rm

∑
t̃
wδ(t− (t̃+D))

Spiking

If Vm(t−) < Vθ ∧ Vm(t+) ≥ Vθ

1. set t∗ = t

2. emit spike with time-stamp t∗

E Input

Type Description

Poisson generator Fixed rate νext · CE, one generator providing independent input to each target
neuron

F Measurements

Spike activity as raster plots, rates and “global frequencies”, no details given

Table 2: Summary of the network parameters for the model, proposed by Brunel (2000).

G Network Parameters

Parameter Value

Number of excitatory neurons NE 8000

Number of inhibitory neurons NI 2000

Excitatory synapses per neuron CE 800

Inhibitory synapses per neuron CE 200

H Neuron Parameters

Parameter Value

Membrane time constant τm 20 ms

Refractory period τrp 2 ms

Firing threshold Vth 20 mV

Membrane capacitance Cm 1 pF

Resting potential VE 0 mV

Reset potential Vreset 10 mV

Excitatory PSP amplitude JE 0.1 mV

Inhibitory PSP amplitude JI −0.5 mV

Synaptic delay D 1.5 ms

Background rate η 2.0

16 nu ex = eta ∗V th /(J E∗C E∗tau m)

17 p ra t e = 1000.0∗ nu ex ∗C E

In line 16, we compute the firing rate nu ex (νext) of a neuron in the external population. We define
nu ex as the product of a constant eta times the threshold rate νth, i.e. the steady state firing rate which
is needed to bring a neuron to threshold. The value of the scaling constant eta is defined in line 5.

In line 17, we compute the combined input rate due to the external population. With CE incoming
synapses per neuron, the total rate is simply the product nu ex∗C E. The factor 1000.0 in the product
changes the units from spikes per ms to spikes per second.

18 nest . SetKernelStatus ({ ’ p r i n t t ime ’ : True })

Next, we prepare the simulation kernel of NEST (line 18). The command SetKernelStatus modifies
parameters of the simulation kernel. The argument is a Python dictionary with key :value pairs. Here,
we set the NEST kernel to print the progress of the simulation time during simulation.

3.1.2 Creating neurons and devices

As a rule of thumb, we recommend that you create all elements in your network, i.e., neurons, stimulating
devices and recording devices first, before creating any connections.

19 nest . SetDefaults (’ i a f p s c d e l t a ’ ,

20 { ’C m ’ : 1 . 0 ,

21 ’ tau m ’ : tau m ,

22 ’ t r e f ’ : 2 . 0 ,

23 ’E L ’ : 0 . 0 ,

24 ’ V th ’ : V th ,

25 ’ V re se t ’ : 10 .0})

In lines 19 to 25, we change the parameters of the neuron model we want to use from the built-in values
to the defaults for our investigation. SetDefaults expects two parameters. The first is a string, naming
the model for which the default parameters should be changed. Our neuron model for this simulation is

the simplest integrate-and-fire model in NEST’s repertoire: ’ iaf psc delta ’. The second parameter is a
dictionary with parameters and their new values, entries separated by commas. All parameter values are
taken from Brunel’s paper (Brunel, 2000) and we insert them directly for brevity. Only the membrane
time constant tau m and the threshold potential V th are read from variables, because these values are
needed in several places.

26 nodes = nest .Create(’ i a f p s c d e l t a ’ , N neurons)

27 nodes E = nodes [: N E]

28 nodes I = nodes [N E :]

29

30 no i s e = nest .Create(’ p o i s s on gen e r a t o r ’ ,1 ,{ ’ r a t e ’ : p r a t e })

31

32 nest . SetDefaults (’ s p i k e d e t e c t o r ’ , { ’ t o f i l e ’ : True })

33

34 sp i k e s = nest .Create(’ s p i k e d e t e c t o r ’ , 2 ,

35 [{ ’ l a b e l ’ : ’ brunel−py−ex ’ } ,

36 { ’ l a b e l ’ : ’ brunel−py−in ’ }])

37 sp ik e s E = sp ik e s [: 1]

38 s p i k e s I = sp i k e s [1 :]

In line 26 we create the neurons. Create returns a list of the global IDs which are consecutive
numbers from 1 to N neurons. We split this range into excitatory and inhibitory neurons. In line 27 we
select the first N E elements from the list nodes and assign them to the variable nodes E. This list now
holds the GIDs of the excitatory neurons.

Similarly, in line 28 we assign the range from position N E to the end of the list to the variable nodes I.
This list now holds the GIDs of all inhibitory neurons. The selection is carried out using standard Python
list commands. You may want to consult the Python documentation for more details.

Next, we create and connect the external population and some devices to measure the spiking activity
in the network.

In line 30, we create a device known as a poisson generator, which produces a spike train governed
by a Poisson process at a given rate. We use the third parameter of Create to initialize the rate of the
Poisson process to the population rate p rate which we previously computed in line 17.

If a Poisson generator is connected to n targets, it generates n independent and identically distributed
spike trains. Thus, we only need one generator to model an entire population of randomly firing neurons.

To observe how the neurons in the recurrent network respond to the random spikes from the external
population, we create two spike detectors. By default, spike detectors record to memory but not to file.
In line 32 we override this default behavior to also record to file. Line 34 then creates one detector for
the excitatory neurons and one for the inhibitory neurons. The default file names are automatically
generated from the device type and its global ID. We use the third argument of Create to give each
spike detector a ’ label ’, which will be part of the name of the output file written by the detector. Since
two devices are created, we supply a list of dictionaries.

In line 37, we store the GID of the first spike detector in a one-element list and assign it to the
variable spikes E. In the next line, we do the same for the second spike detector that is dedicated to the
inhibitory population.

3.1.3 Connecting the network

Once all network elements are in place, we connect them.

39 nest .CopyModel(’ s tat ic synapse hom w ’ ,

40 ’ e x c i t a t o r y ’ ,

41 { ’ weight ’ : J E ,

42 ’ de lay ’ : de lay })

43 nest .Connect (nodes E , nodes ,

44 { ’ r u l e ’ : ’ f i x e d i n d e g r e e ’ ,

45 ’ indegree ’ : C E} ,

46 ’ e x c i t a t o r y ’)

47 nest .CopyModel(’ s tat ic synapse hom w ’ ,

48 ’ i n h i b i t o r y ’ ,

49 { ’ weight ’ : J I ,

50 ’ de lay ’ : de lay })

51 nest .Connect (nodes I , nodes ,

52 { ’ r u l e ’ : ’ f i x e d i n d e g r e e ’ ,

53 ’ indegree ’ : C I } ,

54 ’ i n h i b i t o r y ’)

On line 39, we create a new connection type ’ excitatory ’ by copying the built-in connection type
’static synapse hom w’ while changing its default values for weight and delay. The commandCopyModel

expects either two or three arguments: the name of an existing neuron or synapse model, the name of
the new model, and optionally a dictionary with the new default values of the new model.

The connection type ’static synapse hom w’ uses the same values of weight for all synapses. This
saves memory for networks in which these values are identical for all connections. In Section 5 we use a
different connection model to implement randomized weights and delays.

Having created and parameterized an appropriate synapse model, we draw the incoming excitatory
connections for each neuron (line 43). The function Connect expects four arguments: a list of source
nodes, a list of target nodes, a connection rule, and a synapse specification. Some connection rules,
in particular ’one to one’ and ’ all to all ’ require no parameters and can be specified as strings. All
other connection rules must be specfied as a dictionary, which at least must contain the key ’ rule ’ spec-
ifying a connection rule; nest .ConnectionRules() shows all connection rules. The remaining dictionary
entries depend on the particular rule. We use the ’ fixed indegree ’ rule, which creates exactly indegree
connections to each target neuron; in previous versions of NEST, this connectivity was provided by
RandomConvergentConnect.

The final argument specifies the synapse model to be used, here the ’ excitatory ’ model we defined
previously.

In lines 47 to 54 we repeat the same steps for the inhibitory connections: we create a new connection
type and draw the incoming inhibitory connections for all neurons.

55 nest .Connect (noise , nodes , syn spec=’ ex c i t a t o r y ’)

56

57 N rec = 50

58 nest .Connect (nodes E [: N rec] , sp ik e s E)

59 nest .Connect (nodes I [: N rec] , s p i k e s I)

In the next line (55), we use Connect to connect the Poisson generator to all nodes of the local
network. Since these connections are excitatory, we use the ’ excitatory ’ connection type. Finally, we
connect a subset of excitatory and inhibitory neurons to the spike detectors to record from them. If no
connection rule is given, Connect connects all sources to all targets (all to all rule), i.e., on line 55 the
noise generator is connected to all neurons (previouslyDivergentConnect), while on line 58, all recorded
excitatory neurons are connected to the spikes E spike detector (previously ConvergentConnect).

Our network consists of 10,000 neurons, all of which having the same activity statistics due to the
random connectivity. Thus, it suffices to record from a representative sample of neurons, rather than from
the entire network. Here, we choose to record from 50 neurons and assign this number to the variable
N rec. We then connect the first 50 excitatory neurons to their spike detector. Again, we use standard
Python list operations to select N rec neurons from the list of all excitatory nodes. Alternatively, we
could select 50 neurons at random, but since the neuron order has no meaning in this model, the two
approaches would yield qualitatively the same results. Finally, we repeat this step for the inhibitory
neurons.

3.1.4 Simulating the network

Now everything is set up and we can run the simulation.

60 simtime=300

61 nest . Simulate (simtime)

62 events = nest .GetStatus(sp ik e s , ’ n even t s ’)

63 r a t e ex= events [0] / simtime ∗1000.0/ N rec

64 print ” Exc i ta tory rat e : %.2 f 1/ s ” % ra t e ex

65 r a t e i n= events [1] / simtime ∗1000.0/ N rec

66 print ” I nh ib i t o r y rat e : %.2 f 1/ s ” % r a t e i n

67 nest . raster plot . f r om dev ice (sp ikes E , h i s t=True)

In line 60, we select a simulation time of 300 milliseconds and assign it to a variable. Next, we call the
NEST command Simulate to run the simulation for 300 ms. During simulation, the Poisson generators
send spikes into the network and cause the neurons to fire. The spike detectors receive spikes from the
neurons and write them to a file and to memory.

When the function returns, the simulation time has progressed by 300 ms. You can call Simulate

as often as you like and with different arguments. NEST will resume the simulation at the point where
it was last stopped. Thus, you can partition your simulation time into small epochs to regularly inspect
the progress of your model.

After the simulation is finished, we compute the firing rate of the excitatory neurons (line 63) and
the inhibitory neurons (line 65). Finally, we call the NEST function raster plot to produce the raster
plot shown in Fig. 2b. raster plot has two modes. raster plot.from device expects the global ID of a
spike detector. raster plot.from file expects the name of a data file. This is useful to plot data without
repeating a simulation.

4 Parallel simulation

Large network models often require too much time or computer memory to be conveniently simulated on
a single computer. For example, if we increase the number of neurons in the previous model to 100,000,
there will be a total of 109 connections, which won’t fit into the memory of most computers. Similarly,
if we use plastic synapses (see Section 7) and run the model for minutes or hours of simulated time, the
execution times become uncomfortably long.

To address this issue, NEST has two modes of parallelization: multi-threading and distribution.
Multi-threaded and distributed simulation can be used in isolation or in combination (Plesser et al.,
2007), and both modes allow you to connect and run networks more quickly than in the serial case.

Multi-threading means that NEST uses all available processors or cores of the computer. Today, most
desktop computers and even laptops have at least two processing cores. Thus, you can use NEST’s multi-
threaded mode to make your simulations execute more quickly whilst still maintaining the convenience of
interactive sessions. Since a given computer has a fixed memory size, multi-threaded simulation can only
reduce execution times. It cannot solve the problem that large models exhaust the computer’s memory.

Distribution means that NEST uses many computers in a network or computer cluster. Since each
computer contributes memory, distributed simulation allows you to simulate models that are too large for
a single computer. However, in distributed mode it is not currently possible to use NEST interactively.

In most cases, writing a simulation script to be run in parallel is as easy as writing one to be executed
on a single processor. Only minimal changes are required, as described below, and you can ignore the
fact that the simulation is actually executed by more than one core or computer. However, in some
cases your knowledge about the distributed nature of the simulation can help you improve efficiency even
further. For example, in the distributed mode, all computers execute the same simulation script. We
can improve performance if the script running on a specific computer only tries to execute commands
relating to nodes that are represented on the same computer. An example of this technique is shown
below in Section 6.

To switch NEST into multi-threaded mode, you only have to add one line to your simulation script:

nest . SetKernelStatus ({ ’ l o ca l num threads ’ : n})

Here, n is the number of threads you want to use. It is important that you set the number of threads
before you create any nodes. If you try to change the number of threads after nodes were created, NEST
will issue an error.

A good choice for the number of threads is the number of cores or processors on your computer. If
your processor supports hyperthreading, you can select an even higher number of threads.

The distributed mode of NEST is particularly useful for large simulations for which not only the
processing speed, but also the memory of a single computer are insufficient. The distributed mode of
NEST uses the Message Passing Interface (MPI, MPI Forum (2009)), a library that must be installed

on your computer network when you install NEST. For details, please refer to NEST’s website at www.
nest-initiative.org.

The distributed mode of NEST is also easy to use. All you need to do is start NEST with the MPI
command mpirun:

mpirun −np m python s c r i p t . py

where m is the number of MPI processes that should be started. One sensible choice for m is the total
number of cores available on the cluster. Another reasonable choice is the number of physically distinct
machines, utilizing their cores through multithreading as described above. This can be useful on clusters
of multi-core computers.

In NEST, processes and threads are both mapped to virtual processes (Plesser et al., 2007). If a
simulation is started with m MPI processes and n threads on each process, then there are m×n virtual
processes. You can obtain the number of virtual processes in a simulation with

nest .GetKernelStatus(’ t o t a l num v i r t u a l p r o c s ’)

The virtual process concept is reflected in the labeling of output files. For example, the data files for
the excitatory spikes produced by the network discussed here follow the form brunel−py−ex−x−y.gdf,
where x is the ID of the data recording node and y is the ID of the virtual process.

5 Randomness in NEST

NEST has built-in random number sources that can be used for tasks such as randomizing spike trains or
network connectivity. In this section, we discuss some of the issues related to the use of random numbers
in parallel simulations. In Section 6, we illustrate how to randomize parameters in a network.

Let us first consider the case that a simulation script does not explicitly generate random numbers. In
this case, NEST produces identical simulation results for a given number of virtual processes, irrespective
of how the virtual processes are partitioned into threads and MPI processes. The only difference between
the output of two simulations with different configurations of threads and processes resulting in the same
number of virtual processes is the result of query commands such as GetStatus. These commands
gather data over threads on the local machine, but not over remote machines.

In the case that random numbers are explictly generated in the simulation script, more care must
be taken to produce results that are independent of the parallel configuration. Consider, for example, a
simulation where two threads have to draw a random number from a single random number generator.
Since only one thread can access the random number generator at a time, the outcome of the simulation
will depend on the access order.

Ideally, all random numbers in a simulation should come from a single source. In a serial simulation
this is trivial to implement, but in parallel simulations this would require shipping a large number of
random numbers from a central random number generator (RNG) to all processes. This is impractical.
Therefore, NEST uses one independent random number generator on each virtual process. Not all
random number generators can be used in parallel simulations, because many cannot reliably produce
uncorrelated parallel streams. Fortunately, recent years have seen great progress in RNG research and
there is a range of random number generators that can be used with great fidelity in parallel applications.

Based on this knowledge, each virtual process (VP) in NEST has its own RNG. Numbers from these
RNGs are used to

• choose random connections

• create random spike trains (e.g., poisson generator) or random currents (e.g., noise generator).

In order to randomize model parameters in a PyNEST script, it is convenient to use the random
number generators provided by NumPy. To ensure consistent results for a given number of virtual
processes, each virtual process should use a separate Python RNG. Thus, in a simulation running on Nvp

virtual processes, there should be 2Nvp + 1 RNGs in total:

• the global NEST RNG;

• one RNG per VP in NEST;

• one RNG per VP in Python.

We need to provide separate seed values for each of these generators. Modern random number
generators work equally well for all seed values. We thus suggest the following approach to choosing

seeds: For each simulation run, choose a master seed msd and seed the RNGs with seeds msd, msd+ 1,
. . .msd + 2Nvp. Any two master seeds must differ by at least 2Nvp + 1 to avoid correlations between
simulations.

By default, NEST uses Knuth’s lagged Fibonacci RNG, which has the nice property that each seed
value provides a different sequence of some 270 random numbers (Knuth, 1998, Ch. 3.6). Python uses
the Mersenne Twister MT19937 generator (Matsumoto and Nishimura, 1998), which provides no explicit
guarantees, but given the enormous state space of this generator it appears astronomically unlikely that
neighboring integer seeds would yield overlapping number sequences. For a recent overview of RNGs,
see L’Ecuyer and Simard (2007). For general introductions to random number generation, see Gentle
(2003), Knuth (1998, Ch. 3), or Plesser (2010).

6 Example 2: Randomizing neurons and synapses

Let us now consider how to randomize some neuron and synapse parameters in the sparsely connected
network model introduced in Section 3. We shall

• explicitly seed the random number generators;

• randomize the initial membrane potential of all neurons;

• randomize the weights of the recurrent excitatory connections.

We discuss here only those parts of the model script that differ from the script discussed in Section 3.1;
the complete script brunel2000−rand.py is part of the NEST examples.

We begin by importing the NumPy package to get access to its random generator functions:

import numpy

After line 1 of the original script (cf. p. 10), we insert code to seed the random number generators:

r1 msd = 1000 # master seed

r2 msdrange1 = range (msd , msd+n vp)

r3 n vp = nest .GetKernelStatus(’ t o t a l num v i r t u a l p r o c s ’)

r4 pyrngs = [numpy. random . RandomState (s) for s in msdrange1]

r5 msdrange2 = range (msd+n vp+1, msd+1+2∗n vp)

r6 nest . SetKernelStatus ({ ’ g rng seed ’ : msd+n vp ,

r7 ’ rng seed s ’ : msdrange2})

We first define the master seed msd and then obtain the number of virtual processes n vp. On line r4 we
then create a list of n vp NumPy random number generators with seeds msd, msd+1, . . .msd+n vp−1.
The next two lines set new seeds for the built-in NEST RNGs: the global RNG is seeded with msd+n vp,
the per-virtual-process RNGs with msd+n vp+1, . . . , msd+2∗n vp. Note that the seeds for the per-
virtual-process RNGs must always be passed as a list, even in a serial simulation.

After creating the neurons as before, we insert the following code after line 28 to randomize the
membrane potential of all neurons:

r8 node in fo = nest .GetStatus(nodes)

r9 l o c a l n od e s = [(n i [’ g l o b a l i d ’] , n i [’ vp ’])

r10 for ni in node in fo i f ni [’ l o c a l ’]]

r11 for gid , vp in l o c a l n od e s :

r12 nest . SetStatus ([g id] , { ’V m ’ : pyrngs [vp] . uniform (−V th , V th)})

In this code, we meet the concept of local nodes for the first time (Plesser et al., 2007). In serial and
multi-threaded simulations, all nodes are local. In an MPI-based simulation with m MPI processes, each
MPI process represents and is responsible for updating (approximately) 1/m-th of all nodes—these are
the local nodes for each process. In line r8 we obtain status information for each node; for local nodes,
this will be full information, for non-local nodes this will only be minimal information. We then use a list
comprehension to create a list of gid and vp tuples for all local nodes. The for-loop then iterates over
this list and draws for each node a membrane potential value uniformly distributed in [−Vth, Vth), i.e.,
[−20mV, 20mV). We draw the inital membrane potential for each node from the NumPy RNG assigned
to the virtual process vp responsible for updating that node.

As the next step, we create excitatory recurrent connections with the same connection rule as in the
original script, but with randomized weights. To this end, we replace the code on lines 39–46 of the
original script with

r13 nest .CopyModel(’ s t a t i c s y n ap s e ’ , ’ e x c i t a t o r y ’)

r14 nest .Connect (nodes E , nodes ,

r15 { ’ r u l e ’ : ’ f i x e d i n d e g r e e ’ ,

r16 ’ indegree ’ : C E} ,

r17 { ’ model ’ : ’ e x c i t a t o r y ’ ,

r18 ’ de lay ’ : delay ,

r19 ’ weight ’ : { ’ d i s t r i b u t i o n ’ : ’ uniform ’ ,

r20 ’ low ’ : 0 .5 ∗ J E ,

r21 ’ high ’ : 1 .5 ∗ J E }})

The first difference to the original is that we base the excitatory synapse model on the built-in static synapse
model instead of static synapse hom w, as the latter implies equal weights for all synapses. The second
difference is that we randomize the initial weights. To this end, we have replaced the simple synapse
specification ’ excitatory ’ with a synapse specification dictionary on lines r17–r21. Such a dictionary
must always contain the key ’model’ providing the synapse model to use. In addition, we specify a fixed
delay, and a distribution from which to draw the weights, here a uniform distribution over [JE/2, 3JE/2).
NEST will automatically use the correct random number generator for each weight.

To see all available random distributions, please run nest. sli run (’rdevdict info ’). To access docu-
mentation for an individual distribution, run, e.g., nest.help(’rdevdict :: binomial’). These distributions
can be used for all parameters of a synapse.

Before starting our simulation, we want to visualize the randomized initial membrane potentials and
weights. To this end, we insert the following code just before we start the simulation:

r22 pylab . f i g u r e ()

r23 V E = nest .GetStatus(nodes E [: N rec] , ’V m ’)

r24 pylab . h i s t (V E , b ins =10)

r25 pylab . f i g u r e ()

r26 ex conns = nest .GetConnections(nodes E [: N rec] ,

r27 synapse model= ’ ex c i t a t o r y ’)

r28 w = nest .GetStatus(ex conns , ’ weight ’)

r29 pylab . h i s t (w, b ins =100)

Line r23 retrieves the membrane potentials of all 50 recorded neurons. The data is then displayed as a
histogram with 10 bins, see Fig. 3. Line r26 finds all connections that

• have one of the 50 recorded excitatory neurons as source;

• have any local node as target;

• and are of type excitatory.

In line r28, we then use GetStatus() to obtain the weights of these connections. Running the script in
a single MPI process, we record approximately 50,000 weights, which we display in a histogram with 100
bins as shown in Fig. 3.

Note that the code on lines r23–r28 will return complete results only when run in a single MPI
process. Otherwise, only data from local neurons or connections with local targets will be obtained. It is
currently not possible to collect recorded data across MPI processes in NEST. In distributed simulations,
you should thus let recording devices write data to files and collect the data after the simulation is
complete.

The result of the simulation is displayed as before. Comparing the raster plot from the simulation
with randomized initial membrane potentials in Fig. 3 with the same plot for the original network in
Fig. 2 reveals that the membrane potential randomization has prevented the synchronous onset of activity
in the network.

As a final point, we make a slight improvement to the rate computation on lines 63–66 of the original
script. Spike detectors count only spikes from neurons on the local MPI process. Thus, the original
computation is correct only for a single MPI process. To obtain meaningful results when simulating on

a b c

−20 −15 −10 −5 0 5 10 15 20
Membrane potential V_m [mV]

0

1

2

3

4

5

6

7

8
Initial distribution of membrane potentials

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Synaptic weight [pA]

0

100

200

300

400

500

600
Distribution of synaptic weights (50206 synapses)

0

10

20

30

40

50

N
e
u
ro

n
 I
D

0 50 100 150 200 250 300
Time (ms)

0

29

58

88

R
a
te

 (
H

z)

Figure 3: a) Distribution of membrane potentials Vm of 50 excitatory neurons after random initialization.
b) Distribution of weights of randomized weights of approximately 50,000 recurrent connections originating
from 50 excitatory neurons. c) Spiking activity of 50 excitatory neurons during the first 300 ms of network
simulation; compare with the corresponding diagram for the same network without randomization of initial
membrane potentials and weights in Fig. 2.

several MPI processes, we count how many of the N rec recorded nodes are local and use that number
to compute the rates:

r30 N r e c l o c a l E = sum(nest .GetStatus(nodes E [: N rec] , ’ l o c a l ’))

r31 r a t e ex= events [0] / simtime ∗1000.0/ N r e c l o c a l E

Each MPI process then reports the rate of activity of its locally recorded nodes.

7 Example 3: Plastic Networks

NEST provides synapse models with a variety of short-term and long-term dynamics. To illustrate this,
we extend the sparsely connected network introduced in Section 3 with randomized synaptic weights as
described in Section 5 to incorporate spike-timing-dependent plasticity (Bi and Poo, 1998) at its recurrent
excitatory-excitatory synapses.

We create all nodes and randomize their initial membrane potentials as before. We then generate
a plastic synapse model for the excitatory-excitatory connections and a static synapse model for the
excitatory-inhibitory connections:

p1 nest .CopyModel(’ stdp synapse hom ’ ,

p2 ’ exc i t a tory−p l a s t i c ’ ,

p3 { ’ a lpha ’ : STDP alpha ,

p4 ’Wmax ’ :STDPWmax})

p5 nest .CopyModel(’ s t a t i c s y n ap s e ’ , ’ ex c i t a tory−s t a t i c ’)

Here, we set the parameters alpha and Wmax of the synapse model but use the default settings for all
its other parameters. The hom suffix in the synapse model name indicates that all plasticity parameters
such as alpha and Wmax are shared by all synapses of this model.

We again use nest.Connect to create connections with randomized weights:

p6 nest .Connect (nodes E , nodes E ,

p7 { ’ r u l e ’ : ’ f i x e d i n d e g r e e ’ ,

p8 ’ indegree ’ : C E} ,

p9 { ’ model ’ : ’ e x c i t a t o r y p l a s t i c ’ ,

p10 ’ de lay ’ : delay ,

p11 ’ weight ’ : { ’ d i s t r i b u t i o n ’ : ’ uniform ’ ,

p12 ’ low ’ : 0 .5 ∗ J E ,

p13 ’ high ’ : 1 .5 ∗ J E }})

p14

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Synaptic weight [pA]

0

100

200

300

400

500

600

Figure 4: Distribution of synaptic weights in the plastic network simulation after 300 ms.

p15 nest .Connect (nodes E , nodes I ,

p16 { ’ r u l e ’ : ’ f i x e d i n d e g r e e ’ ,

p17 ’ indegree ’ : C E} ,

p18 { ’ model ’ : ’ e x c i t a t o r y s t a t i c ’ ,

p19 ’ de lay ’ : delay ,

p20 ’ weight ’ : { ’ d i s t r i b u t i o n ’ : ’ uniform ’ ,

p21 ’ low ’ : 0 .5 ∗ J E ,

p22 ’ high ’ : 1 .5 ∗ J E }})

After a period of simulation, we can access the plastic synaptic weights for analysis:

p1 w = nest .GetStatus(nest .GetConnections (nodes E [: N rec] ,

p2 synapse model=’ exc i t a tory−p l a s t i c ’) ,

p3 ’ weight ’)

Plotting a histogram of the synaptic weights reveals that the initial uniform distribution has begun
to soften (see Fig. 4). Simulation for a longer period results in an approximately Gaussian distribution
of weights.

8 Example 4: Classes and Automatization Techniques

So far, we have encouraged you to try our examples line by line. This is possible in interactive sessions,
but if you want to run a simulation several times, possibly with different parameters, it is more practical
to write a script that can be loaded from Python.

Python offers a number of mechanisms to structure and organize not only your simulations, but also
your simulation data. The first step is to re-write a model as a class. In Python, and other object-
oriented languages, a class is a data structure which groups data and functions into a single entity. In
our case, data are the different parameters of a model, and functions are what you can do with a model.
Classes allow you to solve various common problems in simulations:

Parameter sets Classes are data structures and so are ideally suited to hold the parameter set for a
model. Class inheritance allows you to modify one, a few, or all parameters while maintaining the
relation to the original model.

Model variations Often, we want to change minor aspects of a model. For example, in one version
we have homogeneous connections and in another we want randomized weights. Again, we can
use class inheritance to express both cases while maintaining the conceptual relation between the
models.

Data management Often, we run simulations with different parameters or other variations and forget
to record which data file belonged to which simulation. Python’s class mechanisms provide a simple
solution.

We organize the model from Section 3 into a class, by realizing that each simulation has five steps which
can be factored into separate functions:

1. Define all independent parameters of the model. Independent parameters are those that have
concrete values which do not depend on any other parameter. For example, in the Brunel model,
the parameter g is an independent parameter.

2. Compute all dependent parameters of the model. These are all parameters or variables that have
to be computed from other quantities (e.g., the total number of neurons).

3. Create all nodes (neurons, devices, etc.)

4. Connect the nodes.

5. Simulate the model.

We translate these steps into a simple class layout that will fit most models:

c1 class Model (ob j e c t) :

c2 ”””Model d e s c r i p t i o n . ”””

c3 # Define a l l independent v a r i a b l e s .

c4

c5 def i n i t (s e l f) :

c6 ””” I n i t i a l i z e the s imulat ion , s e t up data d i r e c t o r y ”””

c7 def c a l i b r a t e (s e l f) :

c8 ”””Compute a l l dependent v a r i a b l e s ”””

c9 def bu i ld (s e l f) :

c10 ”””Create a l l nodes ”””

c11 def connect (s e l f) :

c12 ”””Connect a l l nodes ”””

c13 def run (s e l f , simtime) :

c14 ”””Bui ld , connect , and s imu la te the model”””

In the following, we illustrate how to fit the model from Section 3 into this scaffold. The complete and
commented listing can be found in your NEST distribution.

c1 class Brunel2000 (ob j e c t) :

c2 ”””

c3 Implementation o f the spa r s e l y connected random network ,

c4 de s c r i b ed by Brunel (2000) J . Comp. Neurosci .

c5 Parameters are chosen f o r the asynchronous i r r e g u l a r

c6 s t a t e (AI) .

c7 ”””

c8 g = 5.0

c9 eta = 2 .0

c10 de lay = 1.5

c11 tau m = 20 .0

c12 V th = 20 .0

c13 N E = 8000

c14 N I = 2000

c15 J E = 0.1

c16 N rec = 50

c17 threads=2 # Number o f threads f o r p a r a l l e l s imu la t i on

c18 b u i l t=False # True , i f b u i l d () was c a l l e d

c19 connected=False# True , i f connect () was c a l l e d

c20 # more d e f i n i t i o n s f o l l ow . . .

A Python class is defined by the keyword class followed by the class name, Brunel2000 in this example.
The parameter object indicates that our class is a subclass of a general Python Object. After the
colon, we can supply a documentation string, encased in triple quotes, which will be printed if we type
help(Brunel2000). After the documentation string, we define all independent parameters of the model
as well as some global variables for our simulation. We also introduce two Boolean variables built and
connected to ensure that the functions build() and connect() are executed exactly once.

Next, we define the class functions. Each function has at least the parameter self , which is a reference
to the current class object. It is used to access the functions and variables of the object.

The first function we look at is also the first one that is called for every class object. It has the
somewhat cryptic name init ():

c21 def i n i t (s e l f) :

c22 ”””

c23 I n i t i a l i z e an o b j e c t o f t h i s c l a s s .

c24 ”””

c25 s e l f . name=s e l f . c l a s s . name

c26 s e l f . data path=s e l f . name+’ / ’

c27 nest .ResetKernel ()

c28 i f not os . path . e x i s t s (s e l f . data path) :

c29 os . makedirs (s e l f . data path)

c30 print ”Writing data to : ”+s e l f . data path

c31 nest . SetKernelStatus ({ ’ data path ’ : s e l f . data path })

init () is automatically called by Python whenever a new object of a class is created and before
any other class function is called. We use it to initialize the NEST simulation kernel and to set up a
directory where the simulation data will be stored.

The general idea is this: each simulation with a specific parameter set gets its own Python class. We
can then use the class name to define the name of a data directory where all simulation data are stored.

In Python it is possible to read out the name of a class from an object. This is done in line c25.
Don’t worry about the many underscores, they tell us that these names are provided by Python. In the
next line, we assign the class name plus a trailing slash to the new object variable data path. Note how
all class variables are prefixed with self .

Next we reset the NEST simulation kernel to remove any leftovers from previous simulations.
The following two lines use functions from the Python library os which provides functions related to

the operating system. In line c28 we check whether a directory with the same name as the class already
exists. If not, we create a new directory with this name. Finally, we set the data path property of
the simulation kernel. All recording devices use this location to store their data. This does not mean
that this directory is automatically used for any other Python output functions. However, since we have
stored the data path in an object variable, we can use it whenever we want to write data to file.

The other class functions are quite straightforward. Brunel2000.build() accumulates all commands
that relate to creating nodes. The only addition is a piece of code that checks whether the nodes were
already created:

c32 def bu i ld (s e l f) :

c33 ”””

c34 Create a l l nodes , used in the model .

c35 ”””

c36 i f s e l f . b u i l t : return

c37 s e l f . c a l i b r a t e ()

c38 # remaining code to c r ea t e nodes

c39 s e l f . b u i l t=True

The last line in this function sets the variable self . built to True so that other functions know that all
nodes were created.

In function Brunel2000.connect() we first ensure that all nodes are created before we attempt to draw
any connection:

c40 def connect (s e l f) :

c41 ”””

c42 Connect a l l nodes in the model .

c43 ”””

c44 i f s e l f . connected : return

c45 i f not s e l f . b u i l t :

c46 s e l f . bu i ld ()

c47 # remaining connect ion code

c48 s e l f . connected=True

Again, the last line sets a variable, telling other functions that the connections were drawn successfully.
Brunel2000.built and Brunel2000.connected are state variables that help you to make dependencies

between functions explicit and to enforce an order in which certain functions are called. The main
function Brunel2000.run() uses both state variables to build and connect the network:

c49 def run (s e l f , simtime =300):

c50 ”””

c51 Simulate the model f o r simtime m i l l i s e cond s and p r i n t the

c52 f i r i n g ra t e s o f the network during t h i s per i od .

c53 ”””

c54 i f not s e l f . connected :

c55 s e l f . connect ()

c56 nest . Simulate (simtime)

c57 # more code , e . g . , to compute and p r i n t r a t e s

In order to use the class, we have to load the file with the class definition and then create an object of
the class:

from b run e l 2000 c l a s s e s import ∗

net=Brunel2000 ()

net . run (500)

Finally, we demonstrate how to use Python’s class inheritance to express different parameter configura-
tions and versions of a model. In the following listing, we derive a new class that simulates a network
where excitation and inhibition are exactly balanced, i.e. g = 4:

c58 class Brunel balanced (Brunel2000) :

c59 ”””

c60 Exact ba lance o f e x c i t a t i o n and i n h i b i t i o n

c61 ”””

c62 g=4

Class Brunel balanced is defined with class Brunel2000 as parameter. This means the new class inherits
all parameters and functions from class Brunel2000. Then, we redefine the value of the parameter g.
When we create an object of this class, it will create its new data directory.

We can use the same mechanism to implement alternative version of the model. For example, instead
of re-implementing the model with randomized connection weights, we can use inheritance to change just
the way nodes are connected:

c63 class Brunel randomized (Brunel2000) :

c64 ”””

c65 Like Brunel2000 , but wi th randomized connect ion we i gh t s .

c66 ”””

c67 def connect (s e l f) :

c68 ”””

c69 Connect nodes wi th randomized we i gh t s .

c70 ”””

c71 # Code f o r randomized connect ions f o l l ow s

Thus, using inheritance, we can easily keep track of different parameter sets and model versions and
their associated simulation data. Moreover, since we keep all alternative versions, we also have a simple
versioning system that only depends on Python features, rather than on third party tools or libraries.
The full implementation of the model using classes can be found in the examples directory of your NEST
distribution.

9 How to continue from here

In this chapter we have presented a step-by-step introduction to NEST, using concrete examples. The
simulation scripts and more examples are part of the examples included in the NEST distribution.
Information about individual PyNEST functions can be obtained with Python’s help() function. For
example:

>>>help (nes t . Connect)

Connect (∗ args , ∗∗kwargs)

Connect pre neurons to post neurons .

Neurons in pre and post are connected us ing the s p e c i f i e d connec t i v i t y

(one−to−one by de f au l t) and synapse type (s t a t i c synapse by de f au l t) .

De ta i l s depend on the connec t i v i t y r u l e .

. . .

To learn more about NEST’s node and synapse types, you can access NEST’s help system. NEST’s
online help still uses a lot of syntax of SLI, NEST’s native simulation language. However, the general
information is also valid for PyNEST.

Help and advice can also be found on NEST’s user mailing list where developers and users exchange
their experience, problems, and ideas. And finally, we encourage you to visit the web site of the NEST
Initiative at www.nest-initiative.org.

Acknowledgements

AM partially funded by BMBF grant 01GQ0420 to BCCN Freiburg, Helmholtz Alliance on Systems
Biology (Germany), Neurex, and the Junior Professor Program of Baden-Württemberg. HEP partially
supported by RCN grant 178892/V30 eNeuro. HEP and MOG were partially supported by EU grant
FP7-269921 (BrainScaleS).

Version information

The examples in this chapter were tested with the following versions.
NEST: pre-2.6.0 (r11744), Python: 2.7.8, Matplotlib: 1.3.1, NumPy: 1.8.1.

References

Rajagopal Ananthanarayanan, Steven K. Esser, Horst D. Simon, and Dharmendra S. Modha. The cat
is out of the bag: Cortical simulations with 109 neurons and 1013 synapses. In Supercomputing 09:
Proceedings of the ACM/IEEE SC2009 Conference on High Performance Networking and Computing,
Portland, OR, 2009.

G.-q. Bi and M.-m. Poo. Synaptic modifications in cultured hippocampal neurons: Dependence on spike
timing, synaptic strength, and postsynaptic cell type. Journal Neurosci, 18:10464–10472, 1998.

James M. Bower and David Beeman. The Book of GENESIS: Exploring realistic neural models with the
GEneral NEural SImulation System. TELOS, Springer-Verlag-Verlag, New York, 1995.

R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison,
P.H. Goodman, F.C. Harris, and Others. Simulation of networks of spiking neurons: A review of
tools and strategies. Journal of computational neuroscience, 23(3):349398, 2007. URL http://www.

springerlink.com/index/C2J0350168Q03671.pdf.

Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
Journal Comput Neurosci, 8(3):183–208, 2000.

M. Diesmann, M.-O. Gewaltig, and A. Aertsen. SYNOD: an environment for neural systems simulations.
Language interface and tutorial. Technical Report GC-AA-/95-3, Weizmann Institute of Science, The
Grodetsky Center for Research of Higher Brain Functions, Israel, May 1995.

J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M. Gewaltig. PyNEST: a convenient interface to
the NEST simulator. Front. Neuroinform., 2:12, 2009.

James E. Gentle. Random Number Generation and Monte Carlo Methods. Springer Science+Business
Media, New York, second edition, 2003.

Marc-Oliver Gewaltig and Markus Diesmann. NEST (Neural Simulation Tool). In Eugene Izhikevich, ed-
itor, Scholarpedia Encyclopedia of Computational Neuroscience, page 11204. Eugene Izhikevich, 2007.
URL http://www.scholarpedia.org/article/NEST_(Neural_Simulation_Tool).

Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser. NEST by example: An introduction
to the neural simulation tool NEST. In Nicolas Le Novère, editor, Computational Systems Neurobiology,
chapter 18, pages 533–558. Springer Science+Business Media, Dordrecht, 2012.

M. L. Hines and N. T. Carnevale. The NEURON simulation environment. Neural Comput, 9:1179–1209,
1997.

John D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):
90–95, May-Jun 2007.

D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, Reading, MA, third
edition, 1998.

P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number generators.
ACM Transactions on Mathematical Software, 33:22, 2007. URL http://www.iro.umontreal.ca/

~simardr/testu01/tu01.html. Article 22, 40 pages.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensonally equidistributed uniform pseu-
dorandom number generator. ACM Trans Model Comput Simul, 8:3–30, 1998.

M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and M.L. Hines. Parallel network simulations with
NEURON. Journal Comput Neurosci, 21(2):119–223, 2006.

MPI Forum. MPI: A message-passing interface standard. Technical report, University of Ten-
nessee, Knoxville, TN, USA, September 2009. URL http://www.mpi-forum.org/docs/mpi-2.2/

mpi22-report.pdf.

Travis E. Oliphant. Guide to NumPy. Trelgol Publishing (Online), 2006. URL http://www.tramy.us/

numpybook.pdf.

Fernando Pérez and Brian E. Granger. Ipython: A system for interactive scientific computing. Computing
in Science and Engineering, 9:21–29, 2007. ISSN 1521-9615.

H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and M.-O. Gewaltig. Efficient parallel simula-
tion of large-scale neuronal networks on clusters of multiprocessor computers. In A.-M. Kermarrec,
L. Bougé, and T. Priol, editors, Euro-Par 2007: Parallel Processing, volume 4641 of Lecture Notes in
Computer Science, pages 672–681, Berlin, 2007. Springer-Verlag.

Hans Ekkehard Plesser. Generating random numbers. In Sonja Grün and Stefan Rotter, editors, Analysis
of Parallel Spike Trains, Springer Series in Computational Neuroscience, chapter 19, pages 399–411.
Springer, New York, 2010.

