Future Generation Computer Systems 115 (2021) 459-474

Contents lists available at ScienceDirect 2
FiBICis!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs s
Applying k-vertex cardinality constraints on a Neo4j graph database N
Check for
Martina Sestak *, Marjan Hericko, Tatjana Welzer DruZovec, Muhamed Turkanovi¢ —
Faculty of Electrical Engineering and Computer Science, University of Maribor, KoroSka cesta 46, 2000 Maribor, Slovenia
ARTICLE INFO ABSTRACT
Article history: As with any other database solution, graph databases also need to be able to implement business
Received 18 September 2019 rules related to a given application domain. At the moment, aside from integrity constraints, there is
Received in revised form 16 July 2020 a limited number of mechanisms for business rules implementation in Graph Database Management

Accepted 28 September 2020

Available online 2 October 2020 Systems (GDBMSs). The underlying property graph data model does not include any formal notation on

how to represent different constraints. Specifically, this paper discusses the problem of representing

Keywords: cardinality constraints in graph databases. We introduce the novel concept of k-vertex cardinality
k-vertex cardinality constraints constraints, which enable us to specify the minimum and maximum number of edges between a
Graph databases vertex and a subgraph. We also propose an approach, which includes the representation of cardinality
g;gcl’:crlg’reg;aph data model constraints through the property graph data model, and demonstrate its implementation through a

series of stored procedures in Neo4j GDBMS. The proposed approach is then evaluated by performing
experiments on synthetic and real datasets to test the influence of checking cardinality constraints
on query execution times (QETs) when adding new edges. Additionally, a comparison is performed on
synthetic datasets with varying outgoing vertex degrees in order to gain an insight into how increasing
the vertex degree affects QETs. In general, the results obtained for each test scenario show that the
implemented k-vertex cardinality constraints model does not significantly affect QETs. Also, the results
indicate that the model is dependent on the order of the underlying k-vertex cardinality constraints
and outgoing vertex degree in the dataset.

Business rules
Graph schema

© 2020 Elsevier B.V. All rights reserved.

1. Introduction process is performed, i.e. in which sequence the process actions
are executed, or limit some aspect of business process execution.

Graph databases have been in use for a few decades now [1- These steps are generally referred to as business rules [5], and
4]. Compared to other database solutions, graph databases store they are by nature atomic, i.e. defined in such a way that they
real-world entities and their connections in the form of a graph, cannot be further decomposed. In [6], Simsion and Witt include

i.e. vertices connected by edges. However, the ability to store enforcement of business rules as one of the measures of quality
additional information regarding connections between entities as of data models, and identify business rules as “top-level object
ec.lge properties makes them a good solution in domains with classes” generated during the business requirements gathering
highly connected data (e.g. social networks). , process, which must be defined before the enterprise starts doing
Even though graph database systems are continuously de- pyginess in order to specify how its information system (IS) be-
veloped to make them more stable in performance and richer ;65 in 3 particular situation. According to various authors [6,7],
in features, there IS.Stlll much work to be done before they business rules’ scope can vary from specifying how enterprise
Eﬁ) r;lsrr(lszt rtgl?atircr)lral;?rcizallneiils)Oflnoigiesrpi?)t:r Tvaen?f:ur?%r: gsrzl;l‘_l data is stored and handled to constraining how a given business
databasé 'mechanisms which c'an be used to, bridge the gap be- process is executed. l.n graph database context, various business
. L . . . rules might need be implemented, such as vertex/edge property

tween business logic and information systems in order to increase existence, unique and obligatory (not null) property values, etc
the applicability of graph database technology in a real-world Nevertheiess céiven the fa%t thzllt edges arepsegn ai; “ﬁrst—‘class'

business context. it h datab Slitisi cant to di busi
Namely, in each business environment, there exists a precisely citizens” in graph data ases [8], it is impor ant 1o discuss business
rules focusing on how edges are created in order to e.g. pre-

specified set of formal steps, which define how a given business * -) -
vent/detect fraudulent behaviour in graph-oriented domains, and
S make them a more reliable solution for varying-size enterprises
Corresponding author. . . .y . . .
;) ») « . . . and domains. For this purpose, traditional notions of integrity
E-mail addresses: martina.sestak@um.si (M. Sestak), marjan.hericko@um.si . . gt
(M. Hericko), tatjana.welzer@um.si (T.W. DruZovec), constraints developed in other database solutions (mostly rela-
muhamed.turkanovic@um.si (M. Turkanovic). tional databases) might be re-used with some adjustments to the

https://doi.org/10.1016/j.future.2020.09.036
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.09.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.09.036&domain=pdf
mailto:martina.sestak@um.si
mailto:marjan.hericko@um.si
mailto:tatjana.welzer@um.si
mailto:muhamed.turkanovic@um.si
https://doi.org/10.1016/j.future.2020.09.036

M. Sestak, M. Hericko, T.W. DruZovec et al.

context of graphs, which are mostly related to how connections
are established between entities. Even so, in the case of integrity
constraints like UNIQUE or NOT NULL, the syntax of modern
graph query languages somewhat resembles the SQL syntax in
terms of their specification.

A common type of business rule is one that specifies how
many instances (occurrences) of entities are linked to each other
(e.g., one employee has only one manager, while one manager
can manage more employees). In the context of databases, these
kinds of business rules define the so-called degree of an edge
(relationship), i.e. the cardinality between linked entities. There-
fore, a cardinality constraint determines “the participation of an
entity type E in a relationship type R” [9]. Since they affect the
database structure, cardinality constraints are considered to be
structural constraints [10]. Cardinality constraints can be further
categorized into two types [10]:

1. participation - an entity type must be involved in a given
number of relationship types, and

2. look-across - specify the minimum and maximum number
of relationship types, in which a given entity type can be
involved.

In relational databases, cardinality constraints are often spec-
ified during the conceptual database design, and represented as
labels within the Entity-Relationship (ER) diagram [9,11].

At the moment, most GDBMSs use several integrity constraints
and other mechanisms to enforce graph database integrity. For
instance, Neo4j GDBMS supports the definition of constraints on
unique vertex property values, vertex and edge property exis-
tence, etc., as well as a simple trigger mechanism to enforce
database integrity [12]. On the other hand, OrientDB supports
the so-called “in” and “out” constraints, which enable specifying
which edge type can be created between which two exact vertex
types [13] (e.g. Person and Car vertices can be connected only
by an OWNS edge type in an exact Person — Car direction).
Next, in OrientDB, duplicate edges between two vertices are
prevented by creating UNIQUE indexes. The combination of in/out
constraints and unique indexes can then be used to implicitly im-
plement cardinality constraints. A JanusGraph (formerly known
as TitanDB) allows the specification of edge label multiplicity,
i.e. how many edges of a specific label are allowed between two
vertices [14]. Most other GDBMSs (AllegroGraph, InfiniteGraph,
HyperGraphDB) rely on user-defined mechanisms implemented
on the application level to maintain integrity. In general, since
graph databases rely on the “flexible schema” principle [15],
indexes, integrity constraints and triggers are mechanisms used
most often to maintain graph database integrity.

Motivation. Even though integrity constraints represent a reliable
mechanism for maintaining database integrity, business rules
related to a given domain can often be more complex to be repre-
sented and implemented in any type of databases. In this paper,
we focus on the rules that specify how many instances of entities
can be connected to each other, i.e. cardinality constraint rules. As
an example, these types of rules can be used to limit people who
can apply for a job posting, or how many tasks an employee can
be assigned to in a given period of time. In relational databases,
these kind of constraints are often represented in the ER diagram
as one-to-one (1:1), one-to-many (1:M) or many-to-many (M:N)
relationships [16]. However, there has been little research done in
representing and implementing cardinality constraints in graph
databases [17-19]. In his recent paper [20], Angles presents a
formal definition of the property graph database model, and
mentions cardinality constraints as a valuable extension to the
graph database schema. So far, most authors have focused their
research efforts towards limiting the number of binary edges

460

Future Generation Computer Systems 115 (2021) 459-474

allowed between two vertices. However, the integrity of a piece
of information ensured by cardinality constraint rules in graph-
driven domains often encompasses more than two vertices at
once, which is a challenging scenario to represent and implement
using current approaches. We tackle this challenge by making
the k-vertex cardinality constraints concept able to represent
higher order cardinality constraints between multiple vertices.
Our motivation was further supported by the fact that there
are a limited number of GDBMSs with the ability to implement
cardinality constraints (e.g. JanusGraph [14]).

Contributions. In general terms, the main contributions of this
paper are the formal definition of the k-vertex cardinality con-
straints, a novel cardinality constraints model for their repre-
sentation, and the definition of procedures for the model imple-
mentation within a GDBMS. The introduced model enables the
specification and the representation of higher order cardinality
constraints, exploits the advantages of graph data representation,
and enhances the graph database architecture. To achieve this, we
present the following specific contributions:

e We introduce the concept of k-vertex cardinality constraints
along with its formal definition and syntax for specification,
We present a novel k-vertex cardinality constraint model,
which enables the representation of higher order cardinality
constraints (between several vertices),

We present an implementation approach for the proposed
k-vertex cardinality constraint model in graph databases,
focusing on the Neo4j GDBMS,

We evaluate our model implementation on synthetic and
real datasets,

We analyse the query execution times with and without
checking the cardinality constraints, and

Based on the results of the performance analysis, we dis-
cuss the positive influence of checking k-vertex cardinality
constraints on graph query performance.

The rest of the paper is organized as follows: in Section 2,
we give an overview of previous research papers related to car-
dinality constraints in graph databases. Section 3 contains the
theoretical background necessary to define k-vertex cardinality
constraints (introduced in Section 4) and possible implementa-
tion approaches in Neo4j GDBMS. In Section 5, we describe the
set of operations through which the proposed k-vertex cardinality
constraint model can be implemented within a GDBMS, whereas
Section 6 contains a description of how the evaluation of the
model’s performance within the Neo4j GDBMS has been carried
out. In Section 7, we discuss the results of the performance
analysis and mention some limitations and future work. Finally,
in Section 8, we conclude this paper by summarizing the most
important findings.

2. Related work

In general, the topic of representing and enforcing cardinality
constraints in different database solutions has been widely stud-
ied over the years. Intuitively, cardinality constraints have mostly
been studied within the context of relational databases, and most
approaches build on representing cardinality constraints through
the ER model [11,21-24]. Camps focused his work on trans-
forming n-ary relationships to the relational database schema
through functional dependency patterns for different cardinality
combinations (e.g. 1:1:1, 1:N:N for ternary edges, etc.) [25]. In
object-relational databases, various cardinalities between rela-
tions can be implemented by pointers or via a hybrid approach
(pointers and foreign keys) [26].

Additionally, several approaches have recently been intro-
duced for modelling NOSQL databases in general [27]. In [28],

M. Sestak, M. Hericko, T.W. DruZovec et al.

the authors proposed a common conceptual model for NoSQL
solutions, in which the minimum and maximum cardinalities are
specified as the multiplicity property of the relationship defini-
tions, and include (cardinality) constraint validation as one of the
validation methods for the proposed model.

The topic of integrity constraints in graph databases has been
discussed in [17]. The authors explored the possibilities available
in Neo4j and other GDBMSs to express integrity constraints, and
presented a prototype implementation of new constructs devel-
oped to express these constraints. According to their overview,
Titan (currently renamed as JanusGraph at the moment) is the
only GDBMS that offers the possibility of specifying cardinality
constraints on a vertex and edge property, as well as different
edge cardinalities (1:1, 1:N, M:N). The authors propose extending
Cypher! with integrity constraints related to edge cardinality,
which could be used to express the limitations on the number
of edges a given vertex can be mapped to. However, the authors
have still not included this constraint in their prototype imple-
mentation. The authors present the role of cardinality constraints
as a mechanism for limiting how many edge types a given vertex
needs to have, but this topic is not discussed in further detail,
nor do they consider the possibility of specifying higher order
cardinality constraints between several vertices.

In [30], the authors studied the processing of label-constraint
reachability (LCR) queries. According to the authors, the goal
of these queries is to check the existence of a directed path
consisting of given edge labels between two vertices. For instance,
this category of reachability queries can be used in social net-
works to only find members (vertices) that are relatives, as the
label constraint in that case would be “isRelativeOf”. In most
cases, LCR queries are answered by computing transitive closures,
i.e. matrices, in which values indicate whether there is a path
between two vertices in a graph. In their approach, the authors
combined transitive closures with a real-time graph traversal to
optimize the computing of the path-label transitive closures [30].
The topic of LCR queries is somewhat relevant for our research,
as the goal of such queries (checking the existence of a path)
can be seen as a special type of cardinality constraint, which
ensures the participation of two vertices in a given edge type.
Therefore, such a scenario is supported by our enhanced model
when semantically formulated in a slightly different manner.

There have been a few papers discussing the topic of concep-
tual modelling in graph databases, in which different approaches
have been proposed for implementing business rules and con-
straints in graph databases. Specifically, in [31], Daniel, Sunyé
and Cabot proposed the usage of an intermediate graph meta-
model to map OCL?> conceptual schema to the Gremlin graph
query language and Blueprints abstraction layer in some graph
databases. The authors proposed a UMLtoGraphDB framework
for converting conceptual schemas into their graph representa-
tion and a series of Gremlin® queries based on business rules
and constraints expressed with OCL. In our approach, we avoid
using additional standardized languages such as OCL to express
constraints. Instead, we introduce a novel concept of k-vertex car-
dinality constraint, which is based on graph concepts, to specify
and represent constraints as vertices in the graph database.

Furthermore, in [33], the authors introduced an approach for
modelling graph database (GD) schema based on the Entity Re-
lationship (ER) diagram of the application domain by following

1 Cypher - Neo4j official graph query language based on pattern matching
paradigm [29].

2 Object Constraint Language (OCL) - declarative language for describing
business rules.

3 Gremlin — traversal-based graph query language included in the TinkerPop3
API, which can be used to query the underlying Blueprints graph data model or
Neo4j GDBMS [32].

461

Future Generation Computer Systems 115 (2021) 459-474

two steps: (1) adjusting the ER diagram to be able to create
GD schema and (2) mapping the adjusted ER diagram to GD
schema. During the first step, the authors use the same 1:1,
1:N and M:N ER notation to represent cardinality constraints
between two vertices in GD schema. In the next step, the au-
thors propose representing cardinality constraints in GD schema
through edges (relationships). However, compared to our re-
search, the authors do not specify how exactly these constraints
should be physically stored, and do not offer a concrete im-
plementation of the proposed approach. The same conclusion
can be made by looking at the research done by Ghrab et al.
who introduced a generic graph database model called GRAD,
which supports more complex graph structures and integrity
constraints, including cardinality constraints represented as se-
mantic constraints [34]. The authors use UML notation to indicate
cardinalities between classes of vertices. Nevertheless, as the
authors note, details regarding physical implementation of the
model are still to be resolved in their future work. De Sousa and
Cura [35] use the Extended Binary ER model for the conceptual
modelling phase, based upon which the logical graph database
model is specified. In their approach, cardinality constraints are
denoted as edgeRestricted properties of vertices, and they propose
a set of mapping rules for transforming the conceptual to the
logical scheme that also takes cardinality constraints into account.
However, the approach focuses on the binary edges between two
vertices only.

Recently, Hartig and Hidders presented an interesting ap-
proach for defining graph database schema by using the GraphQL
Schema Definition Language (SDL) [36]. The authors demonstrate
how annotations available in GraphQL SDL can be used to specify
1:1, 1:N, N:1 and M:N cardinality constraints. In their approach,
the limit on edge cardinality can be noted by specifying whether
a value of property, which represents an association between
two vertex types, is atomic (scalar or enumeration type) or a
list of atomic values. Compared to this paper, we developed an
enhanced k-vertex cardinality constraints model, which enables
specifying cardinality constraints inside the database itself with-
out using any external, third-party solutions or APIs. Also, our
proposed enhanced model is powerful enough to allow for the
specification of cardinality constraints of a higher order, which
include three or more vertex types.

Sedlmeier and Gogolla proposed and evaluated a graph-based
approach for conceptual data modelling and business require-
ments analysis called TEGel (Tibet Entity Graph Language) [37].
In their paper, they present a prototype database called Lhasa DB,
which supports several concepts defined within TEGeL language,
such as classification, inheritance, structured types representa-
tion, etc. In addition to rules related to entity structure represen-
tation, the proposed graph type also includes a mechanism for
specifying rules related to integrity constraints, specifically value
and structure constraints. Such rules can be defined through edge
types as so-called participation cardinality, which specifies how
many times a given entity instance can participate in a given
edge [37]. The authors also introduced the cardinality concept
to binary edges of different orders, in which first order edges
connect two entity types, whereas higher order (hyper) edges
connect first order edges with 1:1, 1:M and M:N mappings. Our
model represents a novel approach, thus further improvement in
specifying cardinality constraints of higher order and complexity.
Instead of using individual edges of different orders to specify
cardinality, we use a subgraph to specify the minimum and
maximum number of edges of a given type between a vertex and
that subgraph in general. This brings more flexibility to the entire
model by allowing us to specify cardinality constraints of a higher
order, which conform better to business rules (an example use
case is mentioned in 4).

M. Sestak, M. Hericko, T.W. DruZovec et al.

3. Preliminaries

In order to fully understand the concept and definition of
k-vertex cardinality constraints, it is necessary to first define
relevant graph concepts, such as the property graph, property
graph database schema, directed walk and cardinality constraints
in general.

Let us assume that L denotes an infinite set of vertex/edge
labels, N is an infinite set of atomic values, P represents an infinite
set of vertex/edge property names, T is an infinite set of data
types, whereas the function SET*(X) denotes a set of all finite
subsets of a given non-empty set X. [20].

Definition 1. A property graphis atuple G = (V,E, p, A, o) [20]
where:

1. Vs a finite set of vertices;

2. E is a finite set of edges such that E has no elements in
common with V;

. p:E— (VxV)is a total function that associates any edge
in E with a pair of vertices in V;

. A :(VUE) — SET*(L) is a partial function that associates
a vertex/edge with a set of labels from L;

.0 :(VUE) x P — SET™(N) is a partial function that asso-
ciates vertices/edges with properties, and for each property
it assigns a set of values from N.

Definition 2. A property graph schema is a tuple GS = (Ty, T, 8,
8) [20] where:

1. Ty C L is a finite set of labels representing vertex types;

2. Tg C L is a finite set of labels representing edge types,
where Ty N Ty = @;

. B:(TyUTg) x P — T is a partial function that defines the
properties of vertex/edge types, as well as the data types
of the corresponding values;

.8 : (Ty, Ty) — SET™(Tg) is a partial function that defines
the edge types allowed between a given pair of vertex

types.

Furthermore, the notion of k-vertex cardinality constraints is
currently dependent on the existence of a directed walk between
vertex and edge types included in the kCard definition. A directed
walk is a graph theory notion important for directed graphs,
whose definition we adjusted to our context as described in
Definition 3.

Definition 3. In a directed graph, a directed walk W from vy
to v,, where n represents the size of Ty, vg,...,v, € Ty and
€, ...,en_1 € T, is an alternating sequence of vertex and edge
types defined as W = (vg, ey, v1, ..., Un_1, €4_1, Uy), such that
tail(e;) = v;_1 and end(e;) = v;, fori=1,2,...,n[38].

In general, Olivé [39] defined cardinality constraints as the
minimum and maximum number of edges allowed between two
entity types (Definition 4). In his definition, a given binary edge
type R is defined as R(p; : E1, p2 : E2), where p; and p, represent
entity (vertex) types E; and E, respectively, participating in R.

Definition 4. In the property graph G, a cardinality constraint
specified for a binary edge type is defined as Card(pi; po; R) =
(min, max) [39] where:

1. p1,p2 € Ty are vertex types representing entity types E;
and E,, respectively;

2. R € T is a binary edge type specified between two entity
types;

462

Future Generation Computer Systems 115 (2021) 459-474

. min € N is a positive number representing the minimum
number of allowed edges;

. max € N is a positive number representing the maximum
number of allowed edges;

4. k-vertex cardinality constraint

Due to the high connectedness of data stored in property
graphs, a single piece of information capturing a business ac-
tivity is often spread across more than one edge between two
vertices. A basic example to illustrate this situation is captur-
ing students’ course enrolment in different semesters. In this
case, the complete information would be captured by connecting
the Student, Course and Semester vertices within the constructed
property graph. Nevertheless, let us assume that there exists an
underlying business rule, which prohibits students from enrolling
into more than three courses in a given semester. In the context
of cardinality constraints, this implies that it is necessary to limit
how many edges can be created between a Student and a Course,
but with regard to a given Semester. In this case, the Course and
the Semester form a subgraph as a semantic unit, and the cardi-
nality constraints need to limit the number of edges between the
Student and this subgraph, as they store the information about a
given student enrolling into a given course in a given semester.
By limiting only the number of edges between the Student and
Course vertices would not capture the entire information, but
generally limit in how many courses a student can enrol.

To apply the concept of cardinality constraints to n-ary edges
between multiple vertices, i.e. a vertex and a subgraph, we ex-
tend Definition 4 and propose the concept of k-vertex cardinality
constraints, where a formal definition is given in Definition 5.
Informally, a k-vertex cardinality constraint specifies how many
edges (minimum and maximum) of type R are allowed between
a vertex labelled E and a subgraph S, which consists of k vertex
and edge types forming a directed walk.

For property graph G, let S = (Tys, Tgs, Sj) denote a subgraph
consisting of vertex and edge types Tys and Tgs (Tys € Ty and
Tgs € Tg), which form a directed walk W, where k represents the
order of subgraph S (i.e. number of vertex types in subgraph S),
2 <i<kandS; CS. Consecutively, the definition of a binary
edge type R is modified into R(p; : Eq1, p> : S), where p; and p,
represent the vertex and subgraph types E; and S, respectively,
participating in edge type R.

Definition 5. In the property graph G, a k-vertex cardinal-
ity constraint specified for a binary edge type is defined as
kCard(p;; p2; R) = (min, max) where:

1. p; € Ty is a vertex type representing the entity type E;

2. p, is a subgraph S consisting of vertex and edge types;

3. R € Tg is a binary edge type specified between the vertex
type p;1 and the subgraph p-;

min € N is a positive number representing the minimum
number of allowed edges;

max € N is a positive number representing the maximum
number of allowed edges;

4.

5.

Note that k-vertex cardinality constraints may also be included
in the property graph schema definition listed in Definition 2 as
an extension of the § function. In such a case, the § function
would define the minimum and maximum number of given edge
types allowed between a given vertex and subgraph type (instead
of two vertex types). Formally, the extended § function could then
be defined as § : (Ty,S) — SET(T¢) x N x N.

Based on Definition 5, several facts about k-vertex cardinality
constraints can be established.

M. Sestak, M. Hericko, T.W. DruZovec et al.

Fact 1. For a binary edge type R between two vertex types E; and
E, in graph G, Tgs and S; elements of subgraph S do not need to be
specified.

Therefore, a 1-vertex cardinality constraint includes a sub-
graph S, which consists of only one element, i.e the vertex type
Tys.

Fact 2. Specifying one k-vertex cardinality constraint is semantically
not equivalent to specifying k 1-vertex cardinality constraints.

As already shown in Section 2, current approaches and tools
mostly focus on the representation and implementation of car-
dinality constraints on edges between two vertices. The need
to include a subgraph into the cardinality constraint definition
stems from the high connectedness of information stored in
graph databases, as a result of which defining multiple constraint
rules between single vertices is not semantically equivalent to
defining one higher order constraint rule between a vertex and
a subgraph.

Specifically, modern graph-oriented domains must be able
to store information including multiple vertices, at once. For
instance, a single higher order constraint rule, which limits the
number of cash withdrawals a client can make in a given day
is not semantically equivalent to two constraint rules, one of
which limits the number of withdrawals a client can make,
and the other limits the number of withdrawals (in general)
within a given day. For instance, a 1-vertex cardinality con-
straint specified as kCard(Client; {Withdrawal}; MAKES) = (0, 5)
would denote that a client may make, at most, five withdrawals
in total. Conversely, a 2-vertex cardinality constraint specified
as kCard(Client; {Withdrawal, IN_DAY, {Day}}; MAKES) (0,5)
would limit the number of withdrawals that a client can make
in a given day, which is a more appropriate rule for the domain.

Fact 3. Within a given kCard constraint rule, a given vertex or
edge type can be included more than once as a different definition
element.

In the case of specifying kCard constraints on cyclic edges,
which connect vertices of the same types, it is possible to re-
peat the same vertex type in multiple levels of the definition.
For instance, to specify that a given employee may have only
one supervisor, the kCard constraint rule would be specified as
kCard(Employee; {Employee}; HAS_SUPERVISOR) = (0, 1), where
the Employee vertex type is included in both the E; and Tys
elements.

4.1. Properties of k-vertex cardinality constraints

In this section, we analyse three properties of k-vertex cardi-
nality constraints: semantics preservation, idempotency of their
verification and semantic independence.

Property 1 (Semantics Preservation). A k-vertex cardinality
constraint kCard specified for a given input business rule o is
preserving semantics if their property graph schema representations
Mod,, and Modycarq, respectively, are isomorphic.

The semantics preservation indicates that the k-vertex car-
dinality constraints can vividly represent the semantics of the
underlying business rules by directly mapping them into the
elements of the property graph.

Property 2 (Idempotency of kCard Verification). Let the function
T defined as t kCard — N denote the k-vertex cardinality
constraint verification function, which returns 1 or 0 depending on if
a given kCard rule is satisfied or not. The function t is an idempotent
operation if t(t(kCard)) = 1.

463

Future Generation Computer Systems 115 (2021) 459-474

The idempotency of the kCard rules verification indicates that
the verification process has no additional effect on the underlying
graph database regardless of the number of times it is executed,
i.e. it returns 1 (the rule is satisfied) each time. For instance, this
situation occurs when there are no patterns in the database that
match any kCard constraint pattern.

Property 3 (Semantic Independency). Two given k-vertex cardinality
constraints kCard1 and kCard2 are semantically independent if there
is no functional dependency between t(kCard1) and t(kCard2) and
vice versa.

The semantic independency indicates that, for given two k-
vertex cardinality constraints, the verification must be carried out
separately even if they partially include the same vertex and edge
types. In such cases, one kCard rule cannot be thought of as a
generalization of the other kCard rule since they carry different
meanings. For instance, a rule kCard(Student; {Course}; ENROLLS)
= (0, 3) (“A student can enrol at most three courses.”) is semanti-
cally independent and must be verified independently of the rule
kCard(Student; {Course, HELD_IN, {Semester}}; ENROLLS) = (0, 3)
(“A student can enrol at most three courses in a given semester.”).

4.2. Model approach

The proposed approach provides a mechanism for transform-
ing and representing input business rules, which limit the cardi-
nality of connections between entities within the property graph
data model by following a series of steps and representing these
constraints by the property graph data model. In general, the
proposed approach consists of two activities:

1. Cardinality constraint specification, whose goal is to build
a list of specifications of k-vertex cardinality constraints for
each input business rule, and

2. Cardinality constraint representation, whose goal is to build
a property graph data model, which represents the speci-
fied constraints.

During the first activity, a list of k-vertex cardinality con-
straints is built in accordance with the business rules by identi-
fying the attributes of the k-vertex cardinality constraint, i.e. the
vertex type (E), subgraph (S), edge type (R), and minimum and
maximum number of edges allowed for each given input busi-
ness rule. At the moment, the subgraph S is identified based
on the semantic interpretation of input business rules, i.e. the
vertices and edges affected by the cardinality constraint form
the subgraph path (vertex of type E excluded). However, various
graph theory algorithms could be used to make this step more
objective and automatic (e.g. highest density). In a given graph
database, any kCard rule is stored a vertex labelled Cardinal-
ityConstraint, whose properties represent the elements of the
formal definition (i.e. vertex, edge and subgraph type and the
minimum and maximum number of allowed edges). Specifically,
a given 2-vertex cardinality constraint rule formally defined as
kCard(py; p2; R) = (min, max) would be mapped into a Car-
dinalityConstraint vertex with the following syntax (i.e. vertex
properties): {Eq, Ry, {E2, Ry, {E3}}, min, max}.

Due to the possibly high effort and syntax knowledge nec-
essary to specify constraint rules, we plan to investigate the
possibility of using TextRank and other machine-learning algo-
rithms (available in Neo4j Graph Data Science library) to simplify
and automatize this step in our future work. For now, due to
the focus of this research, we have confined ourselves to the
manual approach of identifying the business rules and defining
the constraint rules.

As an example, given the sample property graph shown in
Fig. 1, the following set of business rules have been defined

M. Sestak, M. Hericko, T.W. DruZovec et al.

Professor

:ENROLLS
date: 2/15/2019

:ENROLLS
date: 2/15/2019

title:

:ENROLLS
date: 2/15/2019

ects: 5

_id:1
name: John
Doe
year: 2
:ENROLLS
date: 2/15/2019 id: 8
title:
Databases 1
ects: 5

_id: 2
name: Anne
Davis
year: 2

:ENROLLS
date 9/13/2018

:ENROLLS
date: 9/13/2018

Programming

:TEACHES

_id: 12
title: Data
structures

:HELD_IN

:HELD_IN

Future Generation Computer Systems 115 (2021) 459-474

:TEACHES

:HELD_IN

_id: 3
code: 4
year: 2
title: summer

Professor

:TEACHES

_id:5
name: Martha
Fisher

_id: 1
name:
George
Kimball

:TEACHES

_id: 6
code: 1
year: 1

title: winter

title: Discrete "HELD_IN

Mathematics
ects: 4

Fig. 1. Sample property graph representing course enrolment process without applying business rules.

to specify some limitations related to course enrolment process
represented by the model:

(BR1) A course may be enrolled in by 0 to 150 students at any time.

(BR2) A course may be taught by 1 to 2 professors at any time.

(BR3) A professor may teach between 0 and 2 courses in one
semester.

(BR4) A student may enrol in between 0 and 3 courses in one
semester.

In our sample scenario, the result of the first activity is a set
of k-vertex cardinality constraints for input business rules:

(BR1) kCard(Course; {Student}; ENROLLED_BY) = (0, 150)

(BR2) kCard(Course; {Professor}; TAUGHT _BY) = (1, 2)

(BR3) kCard(Professor; {Course, HELD_IN, {Semester}}; TEACHES)
=(0,2)

(BR4) kCard(Student; {Course, HELD_IN, {Semester}}; ENROLLS) =
(0,3)

In the kCard definitions for rules BR3 and BR4, the subgraph
S consists of a directed edge labelled HELD_IN that connects
vertices of type Course and Semester, where Semester is the only

464

element of the subgraph S,. Formally, S corresponds to a sub-
graph structure in the form {Course, HELD_IN, {Semester}}, and
it is included here in the kCard specification for the purpose of
their property graph schema representation. For instance, the
syntax for specifying the kCard rule for BR3 has the following
form: “E: Professor, R: TEACHES, S: {E: Course, R: HELD_IN, S: {E:
Semester}}, min:0, max:2". This structure is passed as an argument
to the create_kCard() procedure responsible for creating a vertex
representing the kCard rule in the graph database, which will be
described in later sections.

Once extracted from the domain’s business rules, k-vertex
cardinality constraints can be included in the property graph
schema represented by the property graph data model dur-
ing the second activity, which can then be implemented in a
given graph database. An example of such a schema is shown
in Fig. 2. The schema presents specifications of four k-vertex
cardinality constraints for the above given scenario. For instance,
a 1-vertex cardinality constraint for BRI is formally defined as
kCard(Course;{Student};ENROLLED_BY) = (0,150), which means
that a given course may be enrolled in by 0 to 150 students. Sim-
ilarly, a cardinality constraint of a higher order can be specified.
For instance, a 2-vertex cardinality constraint for BR4 is defined

M. Sestak, M. Hericko, T.W. DruZovec et al.

Future Generation Computer Systems 115 (2021) 459-474

o (BRY) CF rencries
minKCard: 0 \minKCard: 0
maxKCard: 3 maxKCard: 2
:ENROLLED_BY
minKCard: 0 _ (BR1) (BR2)

maxKCard: 150

‘TAUGHT_BY
minKCard: 1
maxKCard: 2

Fig. 2. Property graph schema representation of k-vertex cardinality constraints.

as kCard(Student;{Course, HELD_IN, {Semester}};ENROLLS) = (0,3),
which means that a given student can enrol between 0 and 3
courses in a given semester.

It is important to note that in our proposed approach 1-vertex
cardinality constraints are semantically equivalent to cardinality
constraints specified between two vertices since subgraph S in
its definition contains a single vertex. However, by introducing
the subgraph structure in the k-vertex cardinality constraints
definition, we introduce the possibility of specifying both simple
(1-vertex) and higher order cardinality constraints (multiple ver-
tices), since subgraph S can have as many nested subgraphs as
necessary.

After building the k-vertex cardinality constraint model as a
property graph schema representation, we focus on its imple-
mentation in a Neo4j GDBMS.

5. The proposed implementation model

This section deals with the implementation details of the
proposed k-vertex cardinality constraint model. Due to the high-
level definition of the concept, our proposed model can be im-
plemented in any GDBMS through the usage of its extension
mechanisms, which allow users to implement additional business
logic into the system. For instance, in the Neo4j GDBMS, the
model can be implemented by using the user-defined procedure
mechanism.

Once implemented, the following three operations are avail-
able to create and evaluate k-vertex cardinality constraints:

1. Create_kCard({constraint}) - used for creating vertices rep-
resenting the kCard rules within the graph database,
Create_relationship(query_pattern, constraint_mode) - used
to insert a new edge within a given query pattern with/
without checking if the existing kCard rules are satisfied,
and
. Check_constraint(output_file_path) - used to evaluate the
existing data within a graph database against the kCard
rules and identify edges violating the constraints.

2.

At the moment, the kCard constraint rules are specified in
a given graph database instance manually by invoking the Cre-
ate_kCard({constraint}) operation, where the constraint argument
must be specified by following a custom syntax that relies on
their definition (already described in Section 4.2). However, in fu-
ture extensions, this human error-prone approach might be sup-
plemented by either developing an intuitive user interface, which

465

will translate user inputs into the underlying required syntax, or
by developing a “standardized” statement in a given query lan-
guage (e.g. Cypher) with a clear syntax to follow. For the purpose
on our research objective, we focused on the model definition and
its evaluation and left the aforementioned automatizing options
for possible future research.

Prior to invoking the create_relationship or check_constraint
operations, an initial set of defined k-vertex cardinality con-
straints must be stored as vertices in the graph database. Please
note that the model is flexible enough to allow users to add new
constraint vertices to the graph later if necessary.

A detailed description of procedures implementing the cre-
ate_relationship or check_constraint operations is given in the fol-
lowing subsections. Since we used the Neo4j GDBMS to demon-
strate this approach, the procedures can be used by invoking the
CALL Cypher statement on a Neo4j graph database instance.

5.1. Create_relationship procedure

Create_relationship is called when a user wants to add a new
edge between two vertices in a graph database. The first argu-
ment of the procedure is the query pattern, which forms the path
between two given vertices in the graph. For instance, to create an
edge of type ENROLLED between a student ‘John Doe’ and course
‘Web programming’, the input query pattern would be:

(n1:Student {name: ’John Doe’})-[r1:ENROLLED]->(n2:Course {title:
’Web programming’})

The second argument, constraint_mode, indicates whether a
cardinality check should take place when adding new edge to
the database or not. If the value of this argument is set to
“NO_CARDINALITY", the edge corresponding to the input query
pattern will be added to the database without checking for a
cardinality constraint violation. Otherwise, the procedure will
first ensure that inserting the new edge does not violate relevant
constraints, defined and stored in a separate graph database
(collection).

The input pattern (property values excluded) is matched
against patterns of constraints retrieved from the database in
order to identify if there is a cardinality constraint specified for
this pattern. In terms of k-vertex cardinality constraints, a 1-
vertex cardinality constraint would be specified in the database
with the following definition: kCard(Student,Course,1,ENROLLED).
In the graph model representation, this constraint is implemented

M. Sestak, M. Hericko, T.W. DruZovec et al.

as a vertex labelled CardinalityConstraint with properties E (value
“Student”), R (value “ENROLLED”), S (map with property E with
value “Course”) and the minimum and maximum properties
indicating cardinality limitations for a given edge.

If the patterns are equal, then a query is executed to retrieve
the current number of edges of a given type for a given start
vertex. If this number is still less than the maximum cardinality
specified by the constraint, i.e. the new edge would not yet violate
the constraint, the edge is added to the database. Otherwise, no
action is performed, i.e. a given edge is not inserted. The complete
pseudocode of this procedure is presented in Procedure 1 in
Appendix A.

5.2. Check_constraint procedure

This procedure is called on a property graph, which may
contain edges violating cardinality constraint rules. Hence, the
only argument for this procedure is the path of the output file,
in which the results of the procedure are written.

Algorithm-wise, the pseudocode of this procedure is slightly
different and more complex compared to the create_relationship
procedure (Procedure 2 in Appendix A).

For each cardinality constraint retrieved from the database,
the algorithm executes an additional query to retrieve all vertices
and edges, which match the pattern defined in the constraint.
Each retrieved start vertex is then put as a key into a map,
whereas the map value represents the number (counter) of edges
found for which the given vertex is the start vertex (map key).
If that number is smaller than the maximum number of edges
allowed by the constraint, the value is increased by 1, and the
edge is added into a list of edges, which do not violate the
constraint rules. Otherwise, the edge is declared to be the one
violating the cardinality constraint and added into a specific list
of violating edges. Finally, the list of violating edges is iterated,
and each member edge can be addressed as deemed necessary.

The strategy on how to address the violating edges can be
easily modified depending on the scenario (e.g. removed from
the collection, labelled as violating but kept in the collection or
moved to another location/collection). Currently, we have focused
our efforts on demonstrating how our concept could be used to
detect and “purge” data (i.e. edges) in violation of the cardinality
constraint rules. One of our future research directions will be
on modifying this procedure to include various strategies for
handling violating edges once they are all detected in the entire
database (e.g. store them in log files, move them to another
location, and so on), as this can be a useful feature in various
use cases and domains, especially anomaly and fraud detection.
Nevertheless, the primary goal of cardinality constraints should
be on preventing such data from being stored in the database at
all (i.e. the create_ relationship procedure with kCard constraint
check enabled), so this is the main aim of the proposed kCard
concept.

6. Evaluation

The evaluation of the proposed k-vertex constraint model has
been carried out in a test environment with both synthetic and
real datasets. The experiments described in this section aim at
analysing the effectiveness of the proposed k-vertex cardinality
constraint model and its implementation through the aforemen-
tioned procedures.

Throughout the experiment, the query execution times were
analysed with and without checking edge cardinalities by using
the k-vertex cardinality constraints. A comparison was made to
evaluate the effect of the implemented solution on the overall
effectiveness.

466

Future Generation Computer Systems 115 (2021) 459-474
6.1. Prerequisites

To evaluate the proposed model, two types of datasets have
been used:

1. Synthetic datasets consisting of 100, 1,000 and 5,000 edges,
and
2. Real dataset representing the New York City expense bud-
4
get.

Synthetic datasets consist of a varying number of vertices
and edges manually generated by using Cypher and functions
available in the Neo4j APOC (Awesome Procedures on Cypher)
library.

In addition to synthetic datasets with varying number of edges
(100, 1000 and 5000), the experiments were conducted on syn-
thetic datasets with varying outgoing vertex degrees. Note that
the maximum number of edges was rounded to 5000 in order
to generally achieve a scale corresponding to the real dataset
(from 100 to almost 10,000 relationships combined). In graph
theory, the outgoing vertex degree denoted as d(v) represents the
number of outgoing edges from a given vertex (node) v [40]. A
graph, in which all vertices are adjacent to each other has the
(outgoing) vertex degree of n-1. The purpose of including this
graph property in experiments was to explore how increasing
the outgoing vertex degree influences query performance, es-
pecially the complexity of finding edges that violate cardinality
constraints. Note that, for this research, an outgoing vertex de-
gree of 1 was excluded from experiments in order to give more
attention to more complex cases.

Hence, both the graph size, i.e. number of edges in the graph
database, and outgoing degree of vertices were used for a per-
formance analysis on a synthetic dataset. A summary table con-
taining database statistics (number of vertices/edges, database
size, etc.) is presented in Table 1. The table includes summary
information for databases after each test dataset (both synthetic
and real) have been imported.

For each of these datasets, a property graph schema was
built with an appropriate number of vertex and edge types. The
sample property graph schemas used to perform the experi-
ments on a dataset with 100 edges and outgoing vertex degree
3 (Syn100d3) and the real dataset (Real) are depicted in 3(a) and
3b, respectively.

Please note that synthetic datasets have been generated in
random order, i.e. with no specific preferences. Also, in this con-
text, n represents the number of vertices in the dataset, so that
the n-1 vertex degree indicates a complete graph scenario, where
each vertex is connected to every other vertex in the graph.
During the dataset creation, the main objective was to ensure that
the outgoing degree for each vertex in the dataset was 2, 3 or n-1,
depending on the test scenario. Therefore, it is possible that some
vertices have varying ingoing and outgoing degrees, because our
focus only went to the outgoing vertex degree.

On the other hand, a real dataset downloaded from Kaggle
in the CSV format was first analysed and transformed in order
to build a property graph data model. The dataset contains data
about New York City agencies’ expenses. A subset of columns
were selected from that CSV in order to formulate meaningful
graph vertices and edges. The built graph data model contains
vertices labelled Department, Fiscal Year, Account, Source_Fund
and Program (3077 vertices in total). There are five types of
directed edges in this model (9297 edges in total):

e IS_SUBDEPARTMENT_OF (Department -> Department)
e HAS_PROGRAM (Department -> Program)

4 https://www.kaggle.com/new-york-city/new-york-city-expense-budget.

https://www.kaggle.com/new-york-city/new-york-city-expense-budget

M. Sestak, M. Hericko, T.W. DruZovec et al.

Table 1
List of acronyms and graph database properties for synthetic and real test datasets.

Future Generation Computer Systems 115 (2021) 459-474

Dataset acronym Database storage size Outgoing vertex degree Number of vertices Number of vertex labels Number of edges

Number of edge types

Syn100d2 129.63 kB 2 50 3 100 6
Syn100d3 128.01 kB 3 34 5 100 7
Syn100dn 126.25 kB n-1 (complete graph) 25 3 100 7
Syn1000d2 265.84 kB 2 500 3 1000 6
Syn1000d3 242.58 kB 3 340 5 1000 7
Syn1000dn 228.64 kB n-1 (complete graph) 250 3 1000 7
Syn5000d2 871.31 kB 2 2500 3 5000 6
Syn5000d3 751.80 kB 3 1700 5 5000 7
Syn5000dn 683.72 kB n-1 (complete graph) 1250 3 5000 7
Real 1.45 MB - 3077 5 9297 5
Label3
‘TYPE1
‘TYPE4
Label1
\ dhie TYPE3
YRR Label2
pper—
‘TYPE?7
‘ ‘TYPES

‘TYPE3
‘TYPE2

Label5
uuid:
string

Label4

(a) Syn100d3 synthetic test dataset.

‘TYPE3

Fiscal_Year

Program

‘RUNS_IN
Prog_Code: i

string
Program_Name:

string

Department :HAS_PROGRAM

:SPONSORS
Source_Fund

Dept_Code:

string
Depstt_rmame: Fund_Code:
g Account string
Fund_Name:

string
‘Account_Code:

string
Account_Name:
string

:1S_SUBDEPARTMENT_OF

(b) Real test dataset.

Fig. 3. Property graph schemas for test datasets.

467

M. Sestak, M. Hericko, T.W. DruZovec et al.

o RUNS_IN (Program -> Fiscal_Year)
e SPONSORS (Source_Fund -> Program), and
e USES (Source_Fund -> Account).

Before analysing the query performance of the implemented
procedures, as mentioned in Section 5, it was necessary to specify
k-vertex cardinality constraints.

To test the proposed model, we decided to define cardinal-
ity constraints of a different order for each test scenario and
dataset. We chose to observe the model performance in scenarios
when there are both single cardinality constraints of a specific
order (1-vertex or 2-vertex), and when there is a combination of
constraints of different orders (1-vertex combined with 2-vertex
constraint) to see how large the difference in query execution
times is between these scenarios.

Therefore, the query performance was tested on three sce-
narios, which differ in the number and order of cardinality con-
straints stored in the database:

1. A single “simple” cardinality constraint specified for an
edge between two vertices (henceforth denoted as
SingleSimpleCard),

2. A single “complex” cardinality constraint specified for an
edge between a vertex and a subgraph (henceforth denoted
as SingleComplexCard) and

3. A combination of the two previous constraints (one “sim-
ple” and one “complex” constraint) (henceforth denoted as
CombCard).

For synthetic datasets, arbitrary 1- and 2-vertex cardinality
constraints have been specified for edges between vertices with
an existing path between them. On the other hand, in a real
dataset, we specified a meaningful 1- and 2-vertex cardinality
constraint appropriate for the selected dataset domain (i.e. New
York city budget). The following k-vertex cardinality constraints
have been specified on test datasets:

e Synthetic datasets:

- 1-vertex constraint:
kCard(Labell; {Label2}; Type6) = (0,1)
- 2-vertex constraint:
kCard(Label2; {Labell, Type3, {Label3}}; Type5) = (0,1)

e Real dataset:

- 1-vertex constraint ensuring that a department may be
a subdepartment of at most one other department:
kCard(Department; {Department}; IS_SUBDEPARTMENT _
OF) = (0,1)

- 2-vertex constraint ensuring that a source fund may
sponsor at most three programs in a given fiscal year:
kCard(Source_Fund; {Program, RUNS_IN, {Fiscal_Year}};
SPONSORS) = (0,3)

Furthermore, the experiments were conducted in a local test
environment comprised of a Neo4j Community Edition GDBMS
(version 3.3.5) running on a 1,6 GHz Intel Core i5 machine with
8 GB RAM running macOS High Sierra and Java 8. The user-
defined procedures used to implement the k-vertex cardinality
constraints model were written in the Java programming lan-
guage by following guidelines listed in the official Neo4j docu-
mentation available at [41]. The JAR file, which contains compiled
procedure code, was put in the /plugins directory of a given Neo4j
database instance.

468

Future Generation Computer Systems 115 (2021) 459-474
6.2. Performance analysis

The implemented procedures (creating edges with and with-
out a cardinality check and checking existing edges against car-
dinality constraints) have been called 12 times on each dataset,
as described in Section 6.1. The database server was restarted
and the database itself was recreated after each iteration, to
ensure that the database cache is clear and not affected by any
residual data. Furthermore, while executing each iteration, all
services and jobs, not related to the experiment and running
on the machine, were forced to stop. The final results of the
performance test contain query execution times in milliseconds
for each test scenario (e.g. create_relationship with cardinality
check procedure on (Syn1000d3) with a SingleSimpleCard
cardinality constraint in the database). To eliminate any outliers
that might affect the correctness and reliability of the perfor-
mance analysis, we excluded the minimum and maximum values
of query execution times for each test scenario, which in the end
resulted in 10 values available for further processing and in-depth
analysis.

7. Results and discussion
7.1. k-vertex cardinality constraints model

When applied to the sample property graph discussed in Sec-
tion 4.2 during the so-called data instance checking process,
edges violating the predefined k-vertex cardinality constraints
will be identified (in Fig. 4, such edges are marked with dotted
lines). Note that, in this scenario, a course titled Informatics 1 (id
10) is also marked separately as it violates the cardinality con-
straint, which requires that each course held in a given semester
to be taught by at least one professor.

At the moment, there is no general strategy specifying which
edge is to be marked as violating during the validity check. In our
current implementation, this depends on the order in which the
edges are retrieved and processed on the application level.

7.2. k-vertex cardinality constraints performance analysis

This section contains an overview and analysis of selected
summary results obtained through experiments performed on the
datasets described in Section 6.1.

7.2.1. Query execution times for creating edges with and without
checking cardinality constraints

Overall, the results of measuring query execution times for
creating new edges with and without checking cardinality con-
straints on synthetic datasets, are listed in Table B.4 in Ap-
pendix B.

Next, as shown in Fig. 5, the results indicate that there is
a slight increase in query execution times (QETs) for the cre-
ate_relationship procedure in general as the number of edges
in the synthetic datasets grows. Such results were to be ex-
pected because the underlying graph traversal algorithm needs
to visit more vertices and edges in order to perform necessary
queries during procedure execution. More interestingly, it can
be observed that the average difference in QET decreases with
the growing number of edges in the dataset. Also, the average
QET is the highest on datasets with an outgoing vertex degree
of 2, and it is inverse to the outgoing vertex degree, i.e. it de-
creases as the outgoing vertex degree increases. By taking the
observed correlations into account, it can be assumed that the
QET of create_relationship procedure will decrease with the in-
creasing number of edges and increasing outgoing vertex degree.
The reason for this lies in the underlying query execution plan

M. Sestak, M. Hericko, T.W. DruZovec et al.

:TEACHES \ Douglas

I
m
[
o
3

: :ENROLLS
:ENROLLS date: 2/15/2019
date: 2/15/2019

title:
L 1
i :ENROLLS
_fid: 1 date: 2/15/2019
name: John
Doe

year: 2

:ENROLLS
date: 2/15/2019

_id: 2
name: Anne
Davis

el :ENROLLS
date 9/13/2018

F™ oY

{ title:)

_ects:6

:ENROLLS
date: 9/13/2018

Programming

\Informatics 1;'\

_id: 12
title: Data
structures

:HELD_IN

Future Generation Computer Systems 115 (2021) 459-474

:HELD_IN

:HELD_IN

:TEACHES

:TEACHES

:HELD_IN
_id: 6
code: 1
year: 1
title: winter

_id:9
title: Discrete
Mathematics
ects: 4

:HELD_IN

Fig. 4. Sample property graph representing course enrolment process after applying business rules.

constructed by Neo4j GDBMS, which is affected by the graph
traversal strategy and its cache memory management.

A somewhat similar behaviour can be observed in QETs of
the procedure in case of varying order of specified cardinality
constraints; the procedure with the combined cardinality con-
straint (simple 4+ complex) scenario takes less time to execute
than in the single complex constraint scenario. Moreover, in some
cases (e.g. 100 edges and d(v) = 3) it executes even faster than
when only a single 1-vertex cardinality constraint is present in
the database. Another interesting fact is that the evaluation of
a single cardinality constraint of a higher order results in high-
est QETs compared to other two cases with varying constraint
order. This behaviour is most likely caused by the underlying
recursion, which requires more steps to build the constraint
pattern. The same behaviour can be observed in experiments,
which include testing the create_relationship constraint against
a real dataset (Table 2). The usage of recursive methods in the
underlying implementation also influences the overall time com-
plexity of the create_relationship procedure with additional costs
caused by their logarithmic running time. Hence, the overall time

469

Table 2

Query execution times of create_relationship procedure on real dataset with and
without checking cardinality constraints (in milliseconds).

Constraint order

Cardinality Query execution QET change

check time (ms) (%)
SingleSimpleCard ggs jgég 0.8
SingleComplexCard ggs gg?l 23.67
CombCard o 2007 3.89

complexity of the entire procedure can be estimated to O(n®> +
nlogn).

Overall, the results obtained by these experiments show that
the QET overhead caused by the implemented k-vertex cardi-
nality constraint model can be measured within approximately
10-170 ms, which is acceptable for the current research scope,
since the objective of this paper was to analyse the influence

M. Sestak, M. Hericko, T.W. DruZovec et al.

Future Generation Computer Systems 115 (2021) 459-474

zZ=(Np

Check

—no
- yes

»
£
()
€ 500-
C
S 450-
o
D
2 400-
()
Py
()
-
O 500~ I
.
450-
400-
100 1000

(Mp

L-U=

5000

Number of edges

Fig. 5. Query execution times of the create_relationship procedure on synthetic datasets with and without checking cardinality constraints (in milliseconds) for the

CombCard scenario.

of our novel k-vertex cardinality constraints model on query
execution performance in Neo4j GDBMS.

7.2.2. Query execution times for identifying and eliminating violat-
ing edges

In our case, any edge, which exceeds the limit of maximum
number of edges of a given type, allowed between a vertex and
a subgraph, is considered to be violating cardinality constraint
rule(s). However, currently the order, in which all edges are
processed, corresponds to the order, in which they are retrieved
from the database, which is to be further improved in future work
(e.g. to include edge priority, and similar).

As expected, the results listed in Table 3 show that the QET
of the procedure is highest in cases of combined cardinality
constraints. Also, it is possible to notice that the queries take
around 50 ms longer to execute with an increasing number of
edges in the dataset. However, we can observe that in some cases,
the QETs of the procedure on a dataset with 1000 and 5000 edges
are almost the same (or even lower on 5000 edges). Once again,
this can be attributed to the underlying graph traversal algo-
rithm. However, in general, we can conclude that the QET of the
procedure increases along with the increasing number of edges,
outgoing vertex degree and cardinality constraint order in the
dataset. The experiment results prove that the time complexity
of the check_constraint procedure is exponential, i.e. O(n?).

470

7.2.3. Scalability analysis

To further analyse the performance of the proposed concept
on larger datasets and more complex scenarios, additional syn-
thetic datasets with a larger number of edges have been created
(10,000, 100,000 and 500,000 edges). Additional experiments
were performed to test the model scalability. In order to gain
insights into the model performance in the most challenging en-
vironment, the experiments included only the most complex test
scenarios, i.e. complete graphs with all vertices inter-connected
(i.e. d(v) = n-1) and a simple and complex cardinality constraint
(CombCard scenario) included in the dataset.

The experiment results presented in Fig. 6 include QETs of
both create_relationship and check_constraint procedures on
synthetic datasets with 100, 1000, 5000, 10,000, 100,000 and
500,000 edges.

The results indicate an exponential influence of increasing the
number of edges on the check_constraint procedure, whereas the
QET of the create_relationship procedure does not reveal a partic-
ularly significant increase. In the case of the check_constraint pro-
cedure, little difference can be observed between QETs when the
number of edges is smaller than 10,000. On the largest dataset,
with 500,000 edges, this procedure takes more than 1.5 s to
execute. The higher increase in QET for this procedure is largely
affected by the chosen strategy for handling edges violating cardi-
nality constraint rules. Specifically, the strategy includes deleting

M. Sestak, M. Hericko, T.W. DruZovec et al.

Table 3

Future Generation Computer Systems 115 (2021) 459-474

Query execution times of check_constraint procedure on synthetic datasets (in milliseconds).

No of relationships Constraint order d(v) =2 d(v) =3 QET change (%) d(v) = n—1 QET change (%)
SingleSimpleCard 514.4 523.5 1.74 562.2 8.50
100 SingleComplexCard 604.7 641.7 5.76 649.7 6.92
CombCard 747.4 636.4 —17,44 709.5 —5.34
SingleSimpleCard 567.5 541.2 —4.86 584.7 2.94
1000 SingleComplexCard 626.2 614.9 —1.84 623 —0.51
CombCard 705.9 720.4 2.01 751.1 6.01
SingleSimpleCard 555.6 590.7 5.94 570.1 2.54
5000 SingleComplexCard 626.2 675.8 7.34 658.4 4.89
CombCard 758.4 784 3.26 665.2 —14.01
1500 -
— 1000 -
)
E
[0)
E
= Procedure
o :
S heck
= . check_constraint
8 = create_relationship
3
>
o)
>
g
500 -
0 -
100 1000 5000 10000 100000 500000

Number of edges

Fig. 6. Query execution times of procedures on an increasing number of edges in datasets.

violating edges from the database, which brings higher QET over-
head with the increasing number of edges in the database. On the
other side, the create_relationship procedure shows the most sig-
nificant increase in QET after the number of edges to be traversed
is over 10,000, which is most likely affected by the underlying
page cache size.

8. Conclusion and future work
In this paper, we addressed the topic and challenges related to

representing and implementing cardinality constraints in graph
databases. The overview of related work and the analysis of

471

current GDBMSs'’ features revealed that this topic has been poorly
explored so far. Therefore, we focused on exploring the possibility
of specifying higher order cardinality constraints on edges, which
could include specifying cardinality constraints between a vertex
and a subgraph.

The main original contribution presented in this paper is a
novel concept and a definition of k-vertex cardinality constraints,
which enables the specification of a minimum and maximum
number of edges of type R between a vertex labelled E and
subgraph S consisting of k vertices. We also demonstrated an ap-
proach to represent these constraints by using the property graph
data model. Next, we demonstrated the model implementation

M. Sestak, M. Hericko, T.W. DruZovec et al.

by using stored procedures in the Neo4j GDBMS, which enable
the creation of edges with and without checking cardinality con-
straints, as well as the identification of edges, which violate those
constraints. The source code of the model implementation proce-
dures is available on Github (https://github.com/MartinaSestak/
Neo4jCardinalityConstraints).

We conducted a set of experiments on synthetic and real
datasets to test the query performance of implemented proce-
dures. Specifically, we evaluated how the query execution time is
affected by the number of edges in the graph database, outgoing
vertex degree (2, 3 or n-1) and the order of k-vertex cardi-
nality constraints (1-, 2-vertex cardinality constraints and their
combination).

In general, the model implementation does not significantly
affect query performance, while ensuring that the database re-
mains consistent and conformed with business rules, i.e. k-vertex
cardinality constraints. The experiments on the create_
relationship procedure showed that its QET decreases with the
increasing number of edges and outgoing vertex degree. An
interesting observation based on experiment results is that the
create_relationship procedure with checking cardinality
constraints on synthetic datasets executes faster in cases with
combined 1- and 2-vertex cardinality constraints. As part of our
future work, we will investigate the causes of this behaviour
in more detail in order to prove that the underlying procedure
implementation and graph traversal algorithm employed are the
most probable causes of this behaviour. On the other hand, the
QETs of the check_constraint procedure, which identifies edges vi-
olating the cardinality constraints, are as expected. The procedure
takes longer to execute as the number of edges and outgoing
vertex and k-vertex cardinality constraint orders increase (with
some exceptions).

As part of our future work, we plan to further improve the k-
vertex cardinality constraint model. At the moment, the k-vertex
cardinality constraints definition focuses on limiting the number
of edges with vertex and edge types in mind. Nevertheless, a valu-
able extension of the concept would be to include vertex/edge
properties as well. The extended concept will be able to capture
the business rules more vividly (e.g. that a credit card may be
issued only to the owner of a given bank account). In our future
research, we will evaluate the influence of adding vertex/edge
properties to the proposed model on QETs of our procedures.
We will investigate a more automatic approach to specifying
k-vertex cardinality constraints from input business rules and
explore the possibility of using text mining techniques for this
purpose. Currently, the model implementation offers only the
possibility of checking the upper limit (maximum) on the number
of allowed edges between a vertex and a subgraph. Thus, we
plan to implement the minimum aspect as well. Also, as already
mentioned, different mechanisms for processing and detecting
violating edges will be proposed in future work. Furthermore,
the model will be extended to enable different actions to be
performed on edges violating k-vertex cardinality constraints be-
sides deleting them (e.g. moving them to another destination).
Regarding the performance of the model implementation, we will
also investigate if there are other solutions and possibilities to
minimize the influence of physical-level aspects (e.g. using an in-
memory graph database instead of Neo4j). With all this in mind,
we can conclude that there is still a lot of space for future contri-
butions to this topic, which will certainly increase the maturity
of graph database technology. Once all these improvements are
made to the k-vertex cardinality constraints model, the model
will represent a flexible and easy-to-implement mechanism for
maintaining graph database integrity. The underlying k-vertex
cardinality constraints bring a richer semantics to cardinality con-
straints already supported in relational databases. For instance,

472

Future Generation Computer Systems 115 (2021) 459-474

by using these constraints, we can limit to how many calls for
proposals published by a given European fund in a given program
and topic that a specific type of user can apply for simultane-
ously. Therefore, it will enable us to use the full power of graph
databases in representing relationships.

CRediT authorship contribution statement

Martina Sestak: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data cura-
tion, Writing - original draft, Writing - review & editing, Visual-
ization. Marjan Hericko: Conceptualization, Methodology, Soft-
ware, Validation, Writing - review & editing, Supervision. Tat-
jana Welzer DruZovec: Resources, Writing - review & editing.
Muhamed Turkanovic¢: Conceptualization, Methodology, Valida-
tion, Formal analysis, Writing - original draft, Writing - review &
editing, Visualization, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was funded by the Slovenian Research Agency (re-
search core funding No. P2- 0057), and also in part by EC H2020
Project CONCORDIA G.A. No. 830927.

Appendix A. Pseudocodes of the
constraints implementation algorithms

k-vertex cardinality

Procedure 1: create_relationship(queryPattern, constraintMode)

db < Neo4j database connection object;
if constraintMode = “no_cardinality” then
| db.createRelationship(queryPattern)

else

inputPattern <— property values omitted from queryPattern ;

constraints < db.retrieveConstraints() ;

foreach Constraint c : constraints do

constraintPattern <— buildConstraintPattern(c) ;

if inputPattern = constraintPattern then
firstNodeLabel < label of the first vertex in
inputPattern ;
noRelationships <— db.getNumberOfRels(firstNodeLabel)

if noRelationships < c.maxValue then
| db.createRelationship(queryPattern)
end

end

end

end

Appendix B. Query execution times of the create_relationship
procedure on synthetic datasets

See Table B.4.

https://github.com/MartinaSestak/Neo4jCardinalityConstraints
https://github.com/MartinaSestak/Neo4jCardinalityConstraints
https://github.com/MartinaSestak/Neo4jCardinalityConstraints

M. Sestak, M. Hericko, T.W. DruZovec et al.

Future Generation Computer Systems 115 (2021) 459-474

TQzIZl; l::(lecution times of create_relationship procedure on synthetic datasets with and without checking cardinality constraints (in milliseconds).

No of edges Constraint order Cardinality check div) =2 QET change (%) d(v) =3 QET change (%) d(v) = n—1 QET change (%)
SingleSimpleCard ggs Zggg 18.29 Zggg 20.6 g;? 15.18

100 SingleComplexCard ?:S gggf 2281 ggg:g 2167 ggg:g 17.28
CombCard o oy 2482 prou 6.77 oo 438
SingleSimpleCard :\(Igs zggg 79.28 :g?? 16.34 gg%g 4.89

1000 SingleComplexCard :‘(‘gs ‘5’3‘1’:2 17.81 gfg:g 2498 ggé:g 10.46
CombCard ggs 3234 15.35 ‘513;1 4 11.8 :gg? 3.59
SingleSimpleCard 2\{1:5 2;22 9.15 gggi 4.10 2(1)421} 233

5000 SingleComplexCard 10 200 6.95 PO 1122 s 13.80
CombCard ggs gg?;‘ 11.87 g;(l):g 178 :gg 144

Procedure 2: check_constraint(outputFilePath)

db < Neo4j database connection object ;

constraints < db.retrieveConstraints() ;

initialize dataMap < Relationship, Integer > ;

initialize listRegularRels ;

initialize listViolatingtRels ;

foreach Constraint c : constraints do

clear listRegularRels ;

clear listViolatingtRels ;

constraintPattern <— buildConstraintPattern(c) ;

vertexRelationshipResult < db.retrieveResults

(constraintPattern) ;

foreach Result r : vertexRelationshipResult do

if dataMap.contains(r.getStartVertex() then

currentNoRels < r.getStartVertex().value ;

if currentNoRels < c.maxValue then
increase r.getStartVertex().value by 1 ;
add r to listRegularRels ;

else
| add r to listViolatingtRels

end

else

| put (r, 1) to dataMap ;
end
end
end

print check result to file(outputFilePath) ;

foreach Relationship r : listViolatingtRels do
| db.deleteRelationship(r) ;

end

References

[1] R. Angles, C. Gutierrez, Querying rdf data from a graph database per-
spective, in: European Semantic Web Conference, Springer, 2005, pp.
346-360.

[2] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput.
Surv. 40 (1) (2008).

[3] RH. Giiting, Graphdb: Modeling and querying graphs in databases, in:
VLDB, Vol. 94, 1994, pp. 12-15.

[4] S. Flesca, S. Greco, Querying graph databases, in: International Conference
on Extending Database Technology, Springer, 2000, pp. 510-524.

[5] D. Hay, KA. Healy,]. Hall, Final Paper: DeFining Business Rules-What are
They Really, Tech. Rep. 34, Business Rule Group, 2000.

473

(6]
[7]

(8

9]
[10]

[11]

[12]

[13]

G. Simsion, G. Witt, Data Modeling Essentials, Elsevier, 2004.

H. Herbst, G. Knolmayer, T. Myrach, M. Schlesinger, The specification of
business rules: A comparison of selected methodologies, in: Methods and
Associated Tools for the Information Systems Life Cycle, Citeseer, 1994, pp.
29-46.

I. Robinson, J. Webber, E. Eifrem, Graph Databases, " O'Reilly Media, Inc.",
2013.

F. Boufares, H. Bennaceur, Consistency problems in er-schemas for
database systems, Inform. Sci. 163 (4) (2004) 263-274.

B. Thalheim, Entity-Relationship Modeling: Foundations of Database
Technology, Springer Science & Business Media, 2013.

M. Balaban, P. Shoval, Enforcing cardinality constraints in the er model
with integrity methods, in: Advanced Topics in Database Research, Volume
1, IGI Global, 2002, pp. 1-16.

Neo4j Inc., Chapter 5. schema, 2019, accessed April 22, 2019 at https:
//neodj.com/docs/cypher-manual/current/schema/.

OrientDB, Using schema with graphs, 2019, accessed June 4, 2019 at
http://orientdb.com/docs/last/Tutorial-Using-schema-with-graphs.html.

[14] JanusGraph Authors, Chapter 5. schema and data modeling, 2017, accessed

[15]

[16]

April 22, 2019 at https://docs.janusgraph.org/latest/schema.html.

Expero, Schema support in three property graph databases, 2018, ac-
cessed April 22, 2019 at https://medium.com/@experoinc/schema-support-
in-three-property-graph-databases- 1beff569855e.

C. Allen, C. Creary, S. Chatwin, Introduction to Relational Databases,
McGraw-Hill, New York, NY, 2003.

[17] J. Pokorny, M. Valenta, J. Kovacic¢, Integrity constraints in graph databases,

[18]

[19]

[20]

[21]

[22]

Procedia Comput. Sci. 109 (2017) 975-981.

G. Fletcher, J. Hidders, J.L. Larriba-Pey, Graph Data Management, Springer,
2018.

R. Angles, A comparison of current graph database models, in: 2012 IEEE
28th International Conference on Data Engineering Workshops, IEEE, 2012,
pp. 171-177.

R. Angles, The property graph database model., in: Alberto Mendelzon
International Workshop on Foundations of Data Management, 2018.

D.C. Fernandez, P.M. Fernandez, E.C. Galan, Dealing with relationship
cardinality constraints in relational database design, in: Effective Databases
for Text & Document Management, IGI Global, 2003, pp. 288-317.

A. McAllister, Complete rules for n-ary relationship cardinality constraints,
Data Knowl. Eng. 27 (3) (1998) 255-288.

[23]]. Galindo, A. Urrutia, R.A. Carrasco, M. Piattini, Relaxing constraints in

[24]

[25]

[26]
[27]

[28]

enhanced entity-relationship models using fuzzy quantifiers, IEEE Trans.
Fuzzy Syst. 12 (6) (2004) 780-796.

F. Currim, N. Neidig, A. Kampoowale, G. Mhatre, The card system, in:
International Conference on Conceptual Modeling, Springer, 2010, pp.
433-437.

R. Camps, Transforming N-ary Relationships to Database Schemas: An Old
and Forgotten Problem, Research Repot LSI-5-02R of Universitat Politécnica
de Catalunya (Spain), 2002.

C. Soutou, Modeling relationships in object-relational databases, Data
Knowl. Eng. 36 (1) (2001) 79-107.

MJ. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose: Schema design for nosql
applications, IEEE Trans. Knowl. Data Eng. 29 (10) (2017) 2275-2289.

S. Banerjee, A. Sarkar, Modeling nosql databases: from conceptual to logical
level design, in: 3rd International Conference Applications and Innovations
in Mobile Computing (AIMoC 2016), Kolkata, India, February, 2016, pp.
10-12.

http://refhub.elsevier.com/S0167-739X(19)32409-4/sb1
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb1
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb1
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb1
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb1
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb2
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb2
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb2
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb3
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb3
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb3
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb4
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb4
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb4
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb5
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb5
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb5
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb6
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb7
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb8
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb8
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb8
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb9
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb9
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb9
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb10
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb10
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb10
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb11
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb11
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb11
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb11
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb11
https://neo4j.com/docs/cypher-manual/current/schema/
https://neo4j.com/docs/cypher-manual/current/schema/
https://neo4j.com/docs/cypher-manual/current/schema/
http://orientdb.com/docs/last/Tutorial-Using-schema-with-graphs.html
https://docs.janusgraph.org/latest/schema.html
https://medium.com/@experoinc/schema-support-in-three-property-graph-databases-1beff569855e
https://medium.com/@experoinc/schema-support-in-three-property-graph-databases-1beff569855e
https://medium.com/@experoinc/schema-support-in-three-property-graph-databases-1beff569855e
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb16
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb16
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb16
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb17
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb17
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb17
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb18
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb18
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb18
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb19
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb19
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb19
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb19
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb19
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb20
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb20
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb20
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb21
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb21
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb21
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb21
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb21
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb22
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb22
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb22
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb23
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb23
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb23
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb23
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb23
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb24
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb24
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb24
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb24
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb24
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb25
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb25
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb25
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb25
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb25
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb26
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb26
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb26
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb27
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb27
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb27
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb28

M. Sestak, M. Hericko, T.W. DruZovec et al.

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

Neo4j Inc., Cypher query language, 2020, accessed March 26, 2020 at
https://neo4j.com/developer/cypher-query-language/.

L. Zou, K. Xu, J.X. Yu, L. Chen, Y. Xiao, D. Zhao, Efficient processing of
label-constraint reachability queries in large graphs, Inf. Syst. 40 (2014)
47-66.

G. Daniel, G. Sunyé,]J. Cabot, Umltographdb: mapping conceptual schemas
to graph databases, in: International Conference on Conceptual Modeling,
Springer, 2016, pp. 430-444.

A. TinkerPop, The gremlin graph traversal machine and language, 2019,
accessed March 26, 2020 at https://tinkerpop.apache.org/gremlin.html.

N. Roy-Hubara, L. Rokach, B. Shapira, P. Shoval, Modeling graph database
schema, IT Prof. 19 (6) (2017) 34-43.

A. Ghrab, O. Romero, S. Skhiri, A. Vaisman, E. Zimanyi, Grad: On graph
database modeling, 2016, arXiv:arXiv:1602.00503.

V.M. de Sousa, L.M.d.V. Cura, Logical design of graph databases from an
entity-relationship conceptual model, in: Proceedings of the 20th Interna-
tional Conference on Information Integration and Web-Based Applications
& Services, 2018, pp. 183-189.

0. Hartig,]. Hidders, Defining schemas for property graphs by using the
graphql schema definition language, in: Proceedings of the 2nd Joint In-
ternational Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), ACM, 2019, p. 6.

M. Sedlmeier, M. Gogolla, Design and prototypical implementation of an
integrated graph-based conceptual data model, in: EJC, 2014, pp. 376-395.

[38] J.L. Gross,]J. Yellen, Graph theory and its applications, CRC press, 2005.

[39]

A. Olivé, Cardinality constraints, in: Conceptual Modeling of Information
Systems, Springer Berlin Heidelberg, 2007, pp. 83—102.

[40] J. Mattingley, Graph theory (basics), 2014, accessed April 17, 2019 at https:

[41]

//www.cs.colorado.edu/~srirams/courses/csci2824-spr14/graphs-29.html.
Neo4j Inc., 1.2.4. user-defined procedures, 2019, accessed April 17,
2019 at https://neodj.com/docs/java-reference/current/extending-neo4j/
procedures-and-functions/procedures/.

MARTINA SESTAK received her Master's degree in
Information and Software Engineering from the Faculty
of Organization and Informatics, University of Zagreb
in 2016. She is currently a Ph.D. student in Computer
Science at Faculty of Electrical Engineering and Com-
puter Science in Maribor. She is currently a Teaching
Assistant and a member of Laboratory for Information
Systems at the Faculty of Electrical Engineering and
Computer Science, University of Maribor. Her main re-
search interests include graph databases, data analytics
and knowledge graphs.

474

Future Generation Computer Systems 115 (2021) 459-474

MARJAN HERICKO received the Ph.D. degree in com-
puter science and informatics from the University
of Maribor in 1998. He is currently a Full Profes-
sor with the Faculty of Electrical Engineering and
Computer Science, University of Maribor, where he
is also the Head of the Institute of Informatics. His
main research interests include all aspects of IS de-
velopment with emphasis on software and service
engineering, software process improvement, data, and
process modelling.

TATJANA WELZER is a Full Professor at the Univer-
sity of Maribor, Faculty of Electrical Engineering and
Computer Science. She is the Head of the Database
Technologies Laboratory of the Institute of Informatics.
She received her Ph.D. in Computer Science in 1995.
Her research work covers areas of database technolo-
gies, cross-cultural communication and problems in
media communications

MUHAMED TURKANOVIC received the B. Sc. degree
and the Ph. D. degree in Computer Science and In-
formatics from the University of Maribor in 2011 and
2016, respectively. His Ph.D. thesis was on authen-
tication protocols for the Internet of Things. He has
authored several highly cited scientific articles, pub-
lished in renowned journals with an impact factor in
the field of computer science. He was a Managing
Director and a CTO of an IT company from 2013 to
2016. In 2017, he joined the Faculty of Electrical Engi-
neering and Computer Science, University of Maribor,

as an Assistant Professor of information technology. He is the head of a multi-
disciplinary group of researchers called Blockchain Lab:UM. His current research
interests include Advanced Database Technologies, Cryptography and Blockchain.

https://neo4j.com/developer/cypher-query-language/
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb30
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb30
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb30
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb30
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb30
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb31
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb31
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb31
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb31
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb31
https://tinkerpop.apache.org/gremlin.html
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb33
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb33
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb33
http://arxiv.org/abs/arXiv:1602.00503
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb36
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb37
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb37
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb37
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb38
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb39
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb39
http://refhub.elsevier.com/S0167-739X(19)32409-4/sb39
https://www.cs.colorado.edu/~srirams/courses/csci2824-spr14/graphs-29.html
https://www.cs.colorado.edu/~srirams/courses/csci2824-spr14/graphs-29.html
https://www.cs.colorado.edu/~srirams/courses/csci2824-spr14/graphs-29.html
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/

	Applying k-vertex cardinality constraints on a Neo4j graph database
	Introduction
	Related work
	Preliminaries
	K-vertex cardinality constraint
	Properties of k-vertex cardinality constraints
	Model approach

	The proposed implementation model
	Create_relationship procedure
	Check_constraint procedure

	Evaluation
	Prerequisites
	Performance analysis

	Results and discussion
	k-vertex cardinality constraints model
	k-vertex cardinality constraints performance analysis
	Query execution times for creating edges with and without checking cardinality constraints
	Query execution times for identifying and eliminating violating edges
	Scalability analysis

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Pseudocodes of the k-vertex cardinalityconstraints implementation algorithms
	Appendix B. Query execution times of the create_relationship procedure on synthetic datasets
	References

