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Abstract

Dear Chief Editor, recently, we have been informed that our publication “A detailed characterization
of complex networks using Information Theory” has an important problem that must be considered before
calculating the Network Fisher Information Measure for complex networks. Dr. Sang Hoon Lee and
Dr. Vinko Zlatic pointed out that, since the quantifier we are proposing for networks consider the node
indices to build the random-walk-based distribution, if we permute these indices without altering the
network structure, our results for Network Fisher may change. This is, indeed true, and we acknowledge
that this is problematic when using our proposal. Nonetheless, we have found an adequate solution that
enhances our results for both synthetic and real networks; and does not compromise the initial discussion,
only improves it, but it comes with additional computational cost. Thus, as our paper did not address
this issue at first, we write you to add the discussion of the dependency of Fisher Information Measure
on node indices, and to update the results considering this preprocessing before the calculations.

1 Problem Description

In this work, we use two Information Theory quantifiers, namely Network Entropy and Network Fisher
Information Measure, to characterize complex networks accurately. We evaluate our results in a wide range
of different network varieties from synthetic to real-world systems. All the codes and datasets used in the
paper are public since its publication date. During the preparation of this work, we conducted a wide variety
of experiments to show the robustness of our results. Thus, our proposal works well in the networks with
labels ordered in its conception. For instance, when we take the same graph with different labels order, the
results are different.

Vinko Zlatic and Sang Hoon Lee indicated that our measure would fail for a random permutation of the
node labels, as it changes the adjacency matrix A that the quantifier relies on. Besides that, they suggested
that the Network Fisher Information Measure F does not follow the standard definition of the former discrete
Fisher for time series:

“Fisher information in principle measure the amount of new information needed to describe the
system if the parameters changed.”

Also, they stated that the changes in node labels should not, in any way, affect the amount of information
needed to describe the system. We respectfully disagree. The system’s representation may change the
amount of information that we can extract from it, and for this, we understand that there are n! matrices
A that describe the same network, but there may be an optimal representation A∗ that can reveal the most
patterns, if they do exists [Behrisch et al., 2016]. Finally, Zlatic and Lee suggested that we checked the
labeling issue, reproducing the results for WS and BA, after shuffling the node indices before calculating
FIM.

We evaluated WS networks, the rewiring probability β, and the initial average degree k that control the
system We expect a k-ring network for β = 0, and a random network such as ER graphs for β = 1. Initially,
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for k-ring networks, the algorithm creates a ring order (Fig. 1a) (e.g., 1–2, 2–3, 3–4, . . . , n–1), which results
in a very organized adjacency matrix (Fig. 1b), where varying k and β will result in the behavior originally
shown in our paper.

The connections start to change when we increase the rewiring probability. Hence, the adjacency matrix
will suffer from some “disorder,” and the values of F will increase. Such “disorder” effect, as we observed
based on the comments raised, can also be achieved easily by shuffling the node labels (Fig. 1c,1d): when
we shuffle all the nodes, the values change from F = 0.5 to F = 0.97 as an example for k-ring with k = 2
and N = 1000. Nevertheless, these results become elusive, and we cannot conclude if the rewiring is causing
the growth in F , or it is merely the fact that we are reordering the matrix.

Figure 1: (1a) shows the 1-ring topology with N = 10 and original order from the algorithm available at
igraph. (1b) shows a very ordered adjacency matrix for 1-ring with ordered labels. (1d) shows the 1-ring
topology with N = 10 after randomly permuting the node labels. (1d) shows the resulting matrix after
shuffling the node labels for the 1-ring topology.

There is a natural ordering in the algorithm for BA networks: the first node to be inserted into the
system is node 1; the second is node 2, and so on. Thus, the results are always consistent with the analysis,
but if after generating the network we shuffle the node labels, then the same effect happens. Although, as
this model produces sparse networks, with a link density of around 0.003, the disturbance is less likely than
what happens for k-ring with k = 2. Still, it does happen, and our results become inconclusive.

Initially, we did not find a single example of a synthetic network generated by those algorithms that failed
the proposed characterization without the shuffling of node labels. Although, real-world networks produced
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some inconsistent results, all of them were reported in our paper.

2 Proposed solution

As the Fisher Information Measure is sensitive to the ordering of node labels, we want to find an order ϕ
that maximizes the amount of information that we can extract from the system using the adjacency matrix
A, i.e., an optimal representation A∗ that it can reveal the most patterns, if they do exist.

An ordering, or order, is a bijection ϕ(v)→ i from v ∈ V to i ∈ N = {1, . . . , n} that associates a unique
index to each vertex. We denote one specific ordering from the set of all possible orderings as ϕ∗. Usually,
a network comes with an arbitrary ordering that we call initial order, denoted ϕ0(v) to distinguish from
a computed order. A transformation from one ordering to another is called a permutation π. Formally, a
permutation is a bijection π(x)→ y such that:

π(xi) = yi, (x, y) ∈ N2 where yi = yj =⇒ i = j. (1)

Each permutation is implemented as a vector containing n distinct indices in N . We denote S the set
of all possible permutations n! for n. A reordering of an undirected network G consists in computing one
permutation π ∈ S that maximizes or minimizes an objective function q(π, G), such that:

arg min
π∈S

q(π, G). (2)

For each permutation π, we may have a different value of Network Fisher Information Measure I(π, G) ∈
F , where F is redefined as the set of all possible FIM for a given network G and permutation π.

From our previous results, we observe that there exists a pattern of transitions between k-ring and
random networks, where k-ring are the most ordered matrices with block-diagonal patterns and the lowest
FIM values, with the exception of k = 1. Therefore, when the number of connections increases, the adjacency
matrix A starts to saturate with ones, and the Network Fisher decreases. Thus, we choose a permutation
π∗ that results in the smallest FIM I∗ for a given network G, such that:

I∗ = arg min
π∗∈S

I(π∗, G). (3)

Now that we know what to find, we need to define how to do it. Finding the best possible solution for
our problem is immediate if we run all the possible permutations, and we choose the one with the lowest
possible value of FIM. However, this is not feasible, as we have n! permutations for each undirected network
G. For this, there are several algorithms for matrix reordering or seriation, as it is called.

The block-diagonal pattern is one of the most sought-after matrix patterns. It consists of coherent
retangular areas that appear in ordered matrix whenever strongly connected components or cliques are
present in the underlying topology. Initially, we are focused on finding the best possible solution, and for
this task, the Optimal-Leaf-Ordering is the best algorithm as it finds an exact solution [Brandes, 2007, Bar-
Joseph et al., 2001]. However, is the most expensive technique with a time of complexity of O(n2 log(n))
and memory complexity of O(n).

Thus, we use this exact solution for N < 10000, but for N > 10000, we chose a sub-optimal algorithm that
focuses on the angular order of eigenvectors Friendly [2002]; as we evaluate many networks throughout our
study, it would be unfeasible to wait the exact reordering solution for a network with N = 10000 that takes
around 6 hours to complete, while the sub-optimal solution takes around 30 minutes. Although the exact
solution (obviously) performs better than the sub-optimal algorithm, the sub-optimal algorithm produces a
very consistent result, and it is our understanding that this algorithm gives us more information than the
natural ordering of the system, then, enhancing our results.
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3 Results and Discussion

Considering these new findings, we ran all the synthetic networks experiments again. The new approach
either improved many aspects of the original proposal of the Shannon-Fisher plane, or produced very similar
results. Although, the computational cost of our approach went much higher, and the analysis of huge
networks may become impracticable. Erdős-Rényi networks continue with a similar behavior: there is a
transition in between disconnected and connected networks, and a later saturation of the Fisher Information
Measure. However, the gap in between the different network sizes increased as we can observe in Figure 2.

Figure 2: Results showing the relationship of Shannon Entropy and Fisher Information Measure with link
density ((a) and (b)), and between Fisher Information Measure and Shannon Entropy (c) for 50 independent
Erdős-Rényi networks except when N = 10000. The dark-green circles correspond to N = 50; the light-green
squares to N = 1000; and the orange crosses to N = 10000.

Watts-Strogatz networks remain with a very similar behavior to what we initially observed. The reorder-
ing of the adjacency matrix actually solved a problem that we had in networks with k = 1: they overlapped
with BA networks. Besides that, as we see in Figure 3, the upper bound for random networks (WSk≈1) has
lower values than the original, as it no longer approaches one (1).

Figure 3: Relationship between Shannon Entropy and Fisher Information Measure with link density ((a)
and (b)), and between Fisher Information Measure and Shannon Entropy for Watts-Strogatz networks (c).
We restricted the analysis to N = 1000, k ∈ {1, 2, 3, . . . , 499, 500} and β ∈ {0, 0.001, 0.002, . . . , 0.99, 1}; the
downward red triangles correspond to k-rings (GN,k with β = 0); the upwards blue triangles are random
graphs (GN,k with β = 1). The blue gradient from dark to light corresponds to the rewiring probability β:
the intensity of the blue color is inversely proportional to the value of β.
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Figure 4 shows no intersections between Barabási-Albert networks (BA) and any other model, as we
previously had. Also, there is no oscillation between F = 0.999 and F = 0.5 when increasing the α; we
only have network FIM approaching I(∗) = 0.5, cf.Fig. 4b, removing another source of possible confusion.
Figures 5a,b remain very similar to the first results, but again, the values of FIM no longer approach one.

Figure 4: (4a) Barabási-Albert networks, non-linear preferential attachment with N = 1000, and α ∈ [0, 3].
For the sake of visualization, we plot the red downward triangles representing GWS with β = 0, i.e., k -ring
graphs; blue upward triangles are GWS with β = 1, i.e., random graphs. (4b) shows how changing α causes
disturbances in the Fisher Information Measure, when evaluating the Barabási-Albert model with non-linear
PA.

Figure 6 shows that the results for the Fitness model fall into a region similar to BA, but with some
networks closer to Random rather than Scale-Free.

Figure 7 presents the same behavior we saw initially, although now the values of FIM are a bit lower, as
it happened to BA and Random networks. The transition between Random and Hub-and-Spoke still exists,
and now it is even clearer: there are no longer oscillation for Hub-and-Spoke.

It is interesting to assess the configuration model; now, the networks built using a power-law with γ ∈ [2, 3]
represent a small area of the Shannon-Fisher plane (Fig. 8c), where the allegedly Scale-Free networks present
themselves. This behavior provides interesting an interesting perspective when evaluating real networks.

Figure 9 shows that the results changed significantly in comparison with the first version without matrix
reordering. We can now identify three separated clusters and two networks (6 and 14) a bit further from the
others.

5



Figure 5: (5a) Relationship between link density and Fisher Information Measure for Barabási-Albert net-
works using a non-linear preferential attachment; the gradient indicates how the preferential attachment
exponent α changes. (5b) Relationship between the Network Entropy and link density, where ξ = 0.002 for
any α. To help the visualization of the region where Barabási-Albert networks stand in relation to the other
synthetic networks, red downward triangles represent GWS with β = 0, i.e., k -ring graphs; blue upward
triangles are GWS with β = 1, i.e., random graphs.

4 Conclusions

Most of the initial conclusions hold, but now we have stronger evidences. The ordering of these networks
strengthens the validity of the Shannon-Fisher plane, considering the given synthetic networks. The Network
Fisher Information Measure reveals information about the network when given a good representation to work
with but, when evaluated alone, it becomes hard to draw strong conclusions. When the number of connections
in the network grows, the adjacency matrix saturates, and FIM starts losing information about the network
structure; the lower the values of FIM are, the more organized we expect the system’s representation to be.

Although real networks analysis requires more caution, as the results in comparison from the initial
ordering to an optimal order changed a bit, our contribution remains. Although there are differences in our
numerical results (in between the natural ordering and the optimal one); the discussion is still valid.

For these reasons, we write to you, Chief Editor of Scientific Reports, to ask your advice on how to
proceed with this issue. Our metric, as it is defined in our paper, may be affected by reordering the node
labels, but the results are consistent. Adding the reordering into the discussion enhances our contribution.
Reading through the politics of Scientific Reports, we believe there is room for a correction to alert the
readers of the need of using the improved metric.

Finally, a whole new discussion can be conducted considering different matrix reordering techniques and
their impacts on the FIM. Nevertheless, we believe that our work is still relevant.
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and (b)), and between Fisher Information Measure and Shannon Entropy (c) for the Aging model. The
gradient indicates the aging exponent ν ∈ [−3, 3] and how its growth controls the network scaling regimes.
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Figure 8: Relationship of Shannon Entropy and Fisher Information Measure with link density (a,b), and
between Fisher Information Measure and Shannon Entropy (c) for the configuration model with a degree
distribution following a pure power-law P (k) ∼ k−γ . The gradient indicates the degree exponent γ ∈ [2, 5]
and how it controls the network scaling regimes.

Table 1: Real networks and their descriptors.

ID Network N 〈k〉 ξ L C∆ S∆ γ p-value H F

1 Email Network 1133 9.622 0.009 3.606 0.166 17.146 6.775 1.000 0.253 0.868
2 Adolescent Health 2539 8.236 0.003 4.559 0.142 38.118 8.244 0.996 0.248 0.858
3 Arxiv AstroPh 18772 21.101 0.001 4.194 0.318 239.693 4.496 0.980 0.231 0.900
4 NetScience Collaborations 1461 3.754 0.003 5.823 0.693 271.946 3.607 0.401 0.141 0.659
5 Science Collaborations 23133 8.078 0.000 5.352 0.264 737.276 3.426 0.310 0.160 0.915
6 Slucene 2956 7.336 0.002 4.499 0.057 22.710 2.187 0.896 0.174 0.704
7 AS Caida 16301 4.043 0.000 3.771 0.008 66.782 2.124 1.000 0.070 0.986
8 Power Grid 4941 2.669 0.001 18.989 0.103 92.461 7.629 1.000 0.094 0.840
9 Amazon pages 2879 2.700 0.001 3.433 0.023 56.123 3.257 0.000 0.016 0.831
10 Roget’s Thesaurus 1010 7.224 0.007 4.075 0.134 17.770 6.246 0.919 0.250 0.885
11 Autobahn 1168 4.257 0.002 19.419 0.003 0.745 7.050 0.000 0.099 0.709
12 Protein Interactions 2018 2.681 0.001 5.611 0.024 23.907 2.782 1.000 0.077 0.871
13 Drosophila Medulla 1 1781 10.007 0.006 2.911 0.069 14.828 3.957 0.986 0.198 0.892
14 Mouse Retina 1 1076 168.794 0.157 1.861 0.400 2.526 2.312 0.000 0.693 0.443
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Figure 9: Relationship between Fisher Information Measure and Shannon Entropy for the real world net-
works. Blue upward triangles represent the ER graphs; the dashed-blue line indicates the upper limit of
the small-world region delimited by graphs GWS with β = 1; the downward red triangles represent k -ring
graphs, as the dashed-red line indicates a “rough” lower limit for the small-world region.
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