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Abstract. Existing, fully supervised methods for person
re-identification (ReID) require annotated data acquired in the target
domain in which the method is expected to operate. This includes the
IDs as well as images of persons in that domain. This is an obstacle
in the deployment of ReID methods in novel settings. For solving this
problem, semi-supervised or even unsupervised ReID methods have been
proposed. Still, due to their assumptions and operational requirements,
such methods are not easily deployable and/or prove less performant to
novel domains/settings, especially those related to small person galleries.
In this paper, we propose a novel approach for person ReID that allevi-
ates these problems. This is achieved by proposing a completely unsu-
pervised method for fine tuning the ReID performance of models learned
in prior, auxiliary domains, to new, completely different ones. The pro-
posed model adaptation is achieved based on only few and unlabeled
target persons’ data. Extensive experiments investigate several aspects
of the proposed method in an ablative study. Moreover, we show that
the proposed method is able to improve considerably the performance of
state-of-the-art ReID methods in state-of-the-art datasets.

Keywords: Person re-identification · Unsupervised domain
adaptation · Agglomerative clustering

1 Introduction

During the recent years, person re-identification (ReID) has received a lot of
attention in the computer vision research community [30]. This is especially due
to the increased interest in surveillance applications related to security, crime
prevention and crowd analytics. The goal of person ReID, is to match peo-
ple across non-overlapping camera views at different times. In an effort towards
more accurate person identification, modern solutions propose learning discrimi-
native, appearance-based features with increased robustness against illumination
and pose variations, but also tolerant to missing information, such as occlusions.
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Table 1. Comparison of ReID methods according to their type and level of supervision.
Rows: requirements of the methods due to their supervision type and the resulting
suitability in real world settings (see text for details).

Supervision level → Fully-sup. Unsup. Semi-sup. UFT-

Properties ↓ reID

Requires auxiliary non-target dataset - optional optional �
Uses target training dataset � � � -

Requires ID annotations in target dataset � - partial -

Uses views from all cameras in target dataset � � � optional

Easy to deploy in new settings × � × �
Suitable for small galleries × × × �

These features are learned in a supervised, semi-supervised or unsupervised man-
ner, based on several public surveillance data.

Table 1 summarizes the requirements and properties of the person ReID
methods with respect to their type of supervision. Supervised learning is the most
prominent methodology, as it incorporates a lot of information from the target
domain in which these methods will need to operate. Such information includes
images depicting persons from multiple cameras, paired with the corresponding
person ids. The outcome of the learning process is a model capable of extracting
features to represent persons. The hope is that the training set contains enough
variability, therefore it is expressive and generalizes well. The model is afterwards
evaluated on images of unseen persons, while the cameras and other conditions
(e.g., illumination conditions) remain the same. As it is often demonstrated [13],
supervised models do not generalize well to new domains. This means that even
if two datasets are obtained in visually similar conditions training in one of them
(source) and directly using the model on the other (target) dataset, results in
very significant ReID performance degradation.

To overcome the expense of labeling requirements in the target domain, semi-
supervised transfer learning techniques have been developed. These techniques
incorporate labeled data from an auxiliary (source, non-target) domain and par-
tially labeled data from the new (target) domain. Other techniques, also referred
to as unsupervised domain adaptation, require no labelled data from the new
domain. Moreover, some recent unsupervised techniques such as the one pro-
posed in [18] depend only on unlabeled auxiliary data from the target domain.
The common ground of these techniques is their dependence on the availability
of a substantially large set of auxiliary data from the new, target domain.

In real world applications, enough amounts of data (even unlabeled) from the
target domain may be few, hard to obtain, or even unavailable. This holds espe-
cially for places where, within a specific time-frame, passers-by are in the dozens
rather than in the hundreds. This situation makes most of the existing ReID
methods inadequate, due to limited input for learning. For this reason, we argue
that effective, real-world solutions must require no same-domain auxiliary data.
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In that direction, we propose UFT-ReID, a novel ReID method that is unsuper-
vised with respect to the target domain and operates directly on unlabeled, test
target data, without requiring a training target dataset. Moreover, contrary to
existing approaches that use training input from all available cameras of the tar-
get domain, the proposed ReID method is demonstrated in situations were part
of the viewpoints are not available. Due to its loose supervision requirements,
UFT-ReID can be applicable even in small person galleries. Indeed, extensive
experiments with UFT-ReID prove that the proposed approach is very effective
even in such constrained settings.

2 Related Work

Modern person ReID approaches learn robust person representations by incor-
porating appropriate CNN architectures and objective functions that result from
different training and supervision objectives. Below, we discuss these two com-
ponents separately as usually, they are independent to each other.

2.1 CNN Architectures

Initial ReID approaches, including [1,11,16] borrowed or got inspired by CNN
models that were designed specifically for object classification. This trend is
followed by current works [10,15,18], too. Recent efforts in CNN architecture
design incorporate methods which take into account that person images are
constrained, i.e., they only contain standing persons rather than generic object
classes. Towards this direction, some methods propose rough segmentation of a
person’s body into parts [26,27,33,39]. Other methods directly integrate pose
estimation [23,25,32] or dense part correspondence [40] for extracting part-aware
features. In contrast to competing works, [21,38,45] do not adopt an ordinary
backbone network, but propose their own. Finally, some recent works proposed
modified architectures that better generalize to new domains [14,44].

2.2 Training Objectives

CNN models are trained by minimizing some properly designed loss objective
function. In order to express and quantify the loss, this function may (or may not)
utilize the ground truth person IDs. In this light, approaches may be classified
to supervised, semi-supervised or unsupervised.

Supervised Methods: The majority of proposed works present supervised
methods, while most common losses are classification and metric loss. Classi-
fication loss is inspired by object classification and is usually implemented as
cross-entropy loss. In this case, each person is regarded as a different object
class. Approaches which adopt the classification loss include [9,17,23,45]. More
interestingly [34] measured separate classification loss for each body part. Met-
ric loss is inspired by the distance metric learning framework. Its objective is
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Fig. 1. Overview of the two-step approach followed by the proposed UFT-ReID
method.

twofold; to simultaneously minimize intra-class and maximize inter-class dis-
tance. Variances of this loss, also referred to as triplet loss, are adopted by the
methods in [4,11,22,24,37]. Some works proposed novel loss functions [8,38].
Finally, combinations of losses are incorporated in [2,21,38,40].

Unsupervised Methods: Methods that do not use any supervision with
respect to target domain fall into two subcategories. First, domain adaptation
methods, aim at adapting well-performing models that are trained on auxiliary
data, to a different target domain. Recent methods which follow this approach
are [6,7,33,35,36]. Completely unsupervised methods, including [5,18] do not
include supervision at any stage of training. Some of these works propose generat-
ing pseudo-labels [7,18,35] or pseudo-positive samples [33] that can be utilized as
previously within classification or metric losses, respectively. The notion of such
pseudo labels has been effectively explored in other visual tasks such as [3,20],
too. Other methods propose more appropriate unsupervised objectives [28,35].

Semi-supervised Methods: Semi-supervised approaches require that only a
part of target data is labeled. These works borrow and combine methodolo-
gies from both supervised and unsupervised settings. Some recent works in this
domain are [19,29].

Our Approach and Contribution: The proposed UFT-ReID method corre-
sponds to domain adaptation techniques, while it is achieved by unsupervised
fine-tuning on the target domain. In contrast to other works, UFT-ReID oper-
ates directly on target persons’ data. This is a novel formulation that is more
relevant to real-world situations, where the requirement for same-domain auxil-
iary data is hard or even impossible-to-fulfill. We demonstrate that this setting
is feasible and that our approach is very effective, especially for small person gal-
leries. Our work adopts the pseudo-label generation approach and correspond-
ing loss function from [18], however it deviates from them as follows. Firstly
and most importantly, our method and corresponding evaluation scheme do not
require same-domain auxiliary person data. Such data are extensively utilized
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by [18] to facilitate learning in a completely unsupervised way. Instead, we pre-
train on auxiliary domain dataset (domain adaptation). We argue that for real
deployment one should always perform supervised pre-training on existing re-id
datasets, since this results to already capable baselines [45]. Finally, our architec-
tures are specially designed for the ReID task, in contrast to the general ResNet
utilized in [18].

3 The UFT-ReID Method

The workflow of UFT-ReID (Fig. 1) consists of two steps: (1) supervised model
training and (2) unsupervised model fine-tuning. In both cases, model refers
to the same deep neural network. Supervised training is accomplished using
an auxiliary domain data, while fine-tuning is performed directly on the target
domain and especially on target persons; those of ReID interest.

3.1 Supervised Model Training

Given a labeled person dataset from a particular domain, our goal is to learn
a mapping from the original image space, to a feature space in which, images
of the same person are close, while images of different persons are more dis-
tant. This mapping can be effectively structured by typical supervised learning
approaches, using conventional or problem-specific CNN architectures, loss func-
tions and training methodologies. The outcome of learning is a feature extraction
model, robust for unseen persons in this particular domain, though limited for
other domains. For this step we utilized and experimented with two modern
architectures as described in Sect. 4.2.

3.2 Unsupervised Model Fine-Tuning

Unsupervised training techniques are naturally more suitable for real-world
applications where we are not aware of the identity of each person in a gallery
and live manual annotation is highly undesirable, as it is costly or even impos-
sible. Instead of training from scratch, we propose to refine the model of the
previous (supervised model training) step, solely in an unsupervised fashion.
This model has been trained on a separate domain; different cameras, lighting
conditions etc, but on the same task (person ReID). It is expected that a tuning
to the new domain should be sufficient to adapt the model to the new persons’
appearances, without mitigating its generalizability.

Model fine-tuning is a well known technique for transfer learning. Given a pre-
trained CNN, the common practice is (a) to modify its output layer to contain
the new classes and (b) train the rest of the model according to some initial,
relatively small learning rate. Note that, depending on the model architecture,
it may be useful to define different learning rates for groups of layers. This is
explained by the structure of CNNs, where first convolutional layers represent
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primitive information, which is a common base across different datasets and even
tasks.

Traditional fine-tuning depends on availability of class labels (supervision).
As previously posed, supervised methods require resource-intensive identity
annotation, therefore they are not easily applicable to new domains. In this
work we are interested in the unsupervised setting which is more suitable for
our task. Lack of person ids guided us to seek for an unsupervised solution with
respect to target domain. In this light, we are inspired by a recent unsupervised
framework [18], also employed for person ReID, however for a different setting.
More specifically, our approach relies on the use of pseudo-labels. A common
method for proposing pseudo-labels during learning is clustering. This approach
is followed for example in [7,18,35]. However, in [18] clustering is naturally inte-
grated with training. A bottom-up clustering approach is proposed, for jointly
optimizing the CNN and the relationship between individual samples (images).

In UFT-ReID we utilize this framework as follows. At first, we initialize
our CNN with weights pre-trained from the previous, supervised step. We also
prepare the model for the unsupervised task, by keeping only relevant layers
and assign unique labels to each training sample. This is because initially, all
training samples are considered as independent clusters. At each training stage,
cluster numbers are utilized as pseudo-labels for optimizing the CNN. However,
the number of clusters is not constant, but gradually lowers as clusters merge.
In more detail, the training scheme operates as follows:

1. Initialization stage: All training samples are regarded as unique clusters.
The CNN is trained for ei epochs, with respect to minimization of the repelled
loss.

2. Merging stage: The current state of the CNN is utilized for features extrac-
tion. Afterwards, according to a merging criterion, m clusters are merged and
CNN is trained for another em epochs.

3. Stopping criterion: Training stops when the number of clusters due to
several merges reaches m.

The repelled loss is defined as the negative log probability (cross-entropy) that
a sample belongs to the correct cluster. For a single sample xi it corresponds to:

L = −log(p(ŷi|xi,V)), (1)

where p is defined as:

p(c|x,V) =
exp(V T

c υ/τ)
∑C

j=1 exp(V T
j υ/τ)

. (2)

In the above equations, x corresponds to the input samples within the batch,
υ are the L2-normalized features of these samples as extracted by the CNN at
the current state, C is the current number of clusters, V is a lookup table which
maintains the features of the centroid of each cluster, and τ is a temperature
parameter which controls the softness of the probability distribution [12]. The
contribution of repelled loss is that it computes probabilities based on feature
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Table 2. Choices of learning rate (lr) parameter for step 2 (fine-tuning). For each case,
lr is 10x smaller for all layers up to and including top base layer.

Model #IDs lr Top base layer

PCB
10-33 1e-3

ResNet-50.layer345-282 1e-4
383-702 1e-5

Model #IDs lr Top base layer

OSNet
10-83 1.5e-4

OSNet.conv4113-282 1.5e-5
383 - 702 1.5e-6

similarity and simultaneously trades off intra-cluster similarity and inter-cluster
diversity, over the whole training set.

Cluster merging is based on the minimum distance criterion. This criterion
takes the shortest Euclidean distance between samples in two clusters as the
dissimilarity measure. In order to ensure that all clusters contain approximately
the same number of samples, a diversity regularization term is introduced. This
boosts merging smaller clusters. The overall dissimilarity merging score is com-
puted as a sum of the minimum distance criterion and the regularization term,
whose impact is controlled by a parameter λ. For more details about bottom-up
clustering, we refer the reader to [18].

In UFT-ReID we utilize a pre-trained CNN on an auxiliary source domain
and we fine-tune it using the above framework. Fine-tuning is performed in
fewer data, containing only target persons. With respect to the CNN itself, we
choose and experiment with modern architectures (PCB [26] and OSNet [45], see
Sect. 4.2) specifically designed for the ReID task. These architectures take into
account that the image belongs to a person, therefore they are able to exploit
contextual information. Furthermore, the experimentation with different archi-
tectures essentially reveals that our approach is capable of applying successfully
transfer learning via unsupervised fine-tuning that is irrelevant to the backbone
architecture.

4 Experiments and Discussion

Our experiments where conducted on a PC equipped with Intel Core i7 CPU,
16GB RAM and an NVIDIA GTX1080 GPU. We re-implemented [18] as exten-
sion to Torchreid framework [43], based on the original reference code and appro-
priate modifications for supporting additional features related to our training
and evaluation strategies.

4.1 Datasets

To evaluate UFT-ReID we employ two recent datasets, Market1501 [41] and
DukeMTMC-reid [42] which comprise of multiple persons and multiple views
per person. Both datasets are utilized either as auxiliary/source or as target,
in different experiments. Let M → D denote fine-tuning on DukeMTMC-reid,
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Table 3. M → D fine-tuning results using the proposed UFT-ReID method for differ-
ent target gallery sizes.

Architecture 10 13 18 24 33 45 61 83 113 153 208 282 382 518 702

PCB Baseline 70.9 66.3 61.9 59.8 56.0 52.7 49.8 46.5 43.8 41.1 38.3 35.6 32.7 30.2 27.6

With UFT-ReID 78.6 74.3 73.5 70.8 68.1 64.7 62.9 60.5 57.6 55.2 51.7 47.5 40.5 38.6 35.6

% Benefit 7.6 8.0 11.6 11.0 12.1 12.0 13.1 14.0 13.8 14.1 13.4 11.9 7.9 8.4 8.0

OSNet Baseline 77.8 73.6 71.9 68.5 64.5 61.2 58.1 55.4 52.8 50.4 47.6 45.0 42.0 39.1 36.0

With UFT-ReID 75.1 75.3 76.0 79.4 78.5 76.2 72.3 66.5 64.9 62.8 60.3 56.4 48.9 46.9 43.9

% Benefit −2.8 1.7 4.0 11.0 14.0 15.1 14.1 11.1 12.1 12.4 12.7 11.3 7.0 7.9 7.9

Table 4. Left: D → M fine-tuning results using the proposed UFT-ReID method.
Fewer target gallery sizes have been tested because of the size of the target dataset
(Market1501). Right: M → Dr UFT-ReID results.

Architecture 20 30 50

PCB
Baseline 79.2 76.4 71.7
With UFT-ReID 83.8 82.3 75.3
% Benefit 4.6 5.9 3.7

OSNet
Baseline 81.5 78.7 75.3
With UFT-ReID 85.9 83.1 79.8
% Benefit 4.4 4.4 4.5

Architecture 33 45 61

PCB
Baseline 63.2 58.9 55.1
With UFT-ReID 65.4 64.4 57.1
% Benefit 2.1 5.5 2.0

OSNet
Baseline 71.8 67.8 66.0
With UFT-ReID 77.0 74.9 71.6
% Benefit 5.2 7.1 5.6

based on a model which is pre-trained on Market1501, and D → M the oppo-
site. We point out that M → D is a more difficult task because Market1501
contains fewer images observed from less viewpoints, i.e., it is less general. As a
consequence, the pre-trained model is less expressive.

In our work we experiment with person galleries of varying size. In order to
simulate such galleries, we generate random subsets for each target dataset. Let
P be the number of persons contained in the test part of the target dataset and k
the number of persons in the subset. In this work we focus on galleries containing
k ≥ 10 persons. In order to simulate diverse scenarios, we choose 15 values of
k spaced evenly on a logarithmic scale in the range [10, P ]. We randomly select
k person ids and we repeat 20 times. In total, 300 random galleries of varying
ids and sizes are generated. We do such randomization once and prior to all our
experiments and store the galleries for further utilization. We further refer to a
gallery sized x as Gx, e.g. G30 denotes gallery containing 30 persons.

It should be noted that in both Market1501 and DukeMTMC-reid datasets,
the original gallery and query subsets contain person images obtained from the
same cameras. However, this comes in contrast to a more realistic, cross-camera
evaluation setting. Some person ReID methods [31,43] address this issue, but
only during evaluation, where images from same cameras are discarded dur-
ing pairwise matching. In contrast, in a separate experiment we purposely uti-
lized images from only two cameras from DukeMTMC-reid’s gallery during fine-
tuning, while leaving the rest six cameras for query. We refer to this reduced
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Table 5. Left: comparison with [33], standard eval. protocol. Right: comparison with
[33], our eval. protocol and gallery type G33.

Method % rank-1

PatchnetUn 65.7
PatchnetUn w. Pedal + Ipfl ([33]) 72.0

OSNet 68.1
OSNet w. repelled (UFT-ReID) 69.6

Method % rank-1

PatchnetUn 88.33
PatchnetUn w. Pedal + Ipfl ([33]) 89.95

OSNet 89.08
OSNet w. repelled (UFT-ReID) 89.50
OSNet w. repelled + Pedal + Ipfl (UFT-ReID) 90.47

dataset as Dr. This setting is more challenging, as refinement is based on images
captured by part of the cameras which are different to those used to capture the
test images.

4.2 Settings

CNN Architectures: We utilize two recently proposed person ReID architec-
tures named PCB [26] and OSNet [45]. PCB mainly aims at learning discrimi-
native part-informed features, without the need for exact part/pose estimation.
It is based on ResNet-50 architecture and augmented with additional layers.
These layers are parallel for each body subdivision, while the final descriptor is
the concatenation of the feature vectors from the separate layers. OSNet is a
novel architecture, capable for multi-scale feature learning at each level of the
architecture. The core of this architecture is an omni-scale residual block which
allows the propagation of smaller scale features to higher layers. For both archi-
tectures we used the implementations provided by [43]. We trained models on
source datasets using the default training parameters (Fig. 1, step 1).

Fine-Tuning Parameters: In the second step, we utilize the trained CNN
model, apart from its output layer (classifier). Batch size is chosen to be small
(16). Experiments with larger values are provided in Sect. 4.4. Learning rate is
also chosen to be small so that the original model does not alter much. During
preliminary experiments we found out that it is more beneficial to lower the
learning rate as the number of persons grows. Thus, we choose variable learning
rates, depending on the number of persons in the gallery. Furthermore, we choose
smaller learning rates for the base layers of the network. Detailed learning rate
settings are given in Table 2. The number of training epochs is not predefined, but
dependent on the total number of samples and clustering algorithm parameters,
as explained below.

Unsupervised Algorithm Parameters: As explained in Sect. 3.2, during the
first ei fine-tuning epochs, the number of clusters is equal to the number of
gallery samples. Afterwards, and every em epochs, the number of clusters is
reduced by m, due to merges. This is an iterative process which stops when
the total number of clusters reaches m. In our experiments we set ei = 20
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Table 6. Comparison with OSNet variants [44,45] using our eval. protocol. Gallery
type: G33.

Architecture Baseline +UFT-reid % Benefit

OSNet (original) 64.5 78.5 14.0

OSNet-IBN [45] 74.5 77.6 3.1

OSNet-AIN [44] 76.5 80.0 3.5

Table 7. Average fine-tuning training duration in minutes (OSNet architecture).

Auxiliary source → Target 33 45 61

M → D 07:46 10:55 15:03

M → Dr 06:01 08.16 11:17

and em = 2. Nevertheless, we realized that by increasing em we obtain a clear
performance gain, at the cost of more time-consuming training. m is set to the
number of gallery ids. Finally, we experimentally confirmed that the optimal
value for the diversity regularization parameter λ is 0.05, as suggested in [18].
Section 4.4 presents additional experiments using various options for em and λ.

4.3 Experimental Results

Tables 3, 4 demonstrate the effectiveness of our method in various settings. In all
experiments we report the rank-1 accuracy, obtained by the CMC curve. More
specifically, Table 3 shows the impact of UFT-ReID fine-tuning for a wide range
of gallery persons. The particular experiment is conducted using a CNN model
pre-trained on Market1501, while galleries are sampled from DukeMTMC-reid
(M → D). It is shown that fine-tuning using UFT-ReID achieves considerably
better rank-1 accuracy, increasing the baseline up to 14% and 15.1% for PCB
and OSNet architectures, respectively. For both architectures, higher accuracy
is obtained in the case of mid-sized galleries. This may indicate that a mid-
sized gallery is a good balance for appearance diversity. Too small diversity
encountered in smaller galleries is not enough for generalized learning. On the
other hand, too large diversity, encountered in larger galleries may encompass
persons that are similar to each other, negatively affecting the overall accuracy.

In Table 4 (left) we present similar results for fine-tuning models pre-trained
on DukeMTMC-reid using some random Market1501 galleries (D → M). In this
case, the benefit is smaller on average. This is expected, because base models
are trained on a larger dataset, (DukeMTMC-reid), therefore better equipped
against a smaller dataset.

Finally, Table 4 (right) shows experimental results using the reduced
DukeMTMC-reid gallery dataset which, as explained in Sect. 4.1, contains images
from cameras that were not used for the unsupervised fine tuning step (M →
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Dr). Even in this case, UFT-ReID increases the accuracy of the baseline meth-
ods, although as expected, the benefit is on average smaller compared to the
M → D experiment.
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Fig. 3. Average % benefit of fine-tuning with respect to rank-1 accuracy. The experi-
ment includes variable gallery sizes and variable learning rates using PCB and OSNet
architectures.

Comparison to State-of-the-Art: We compare our approach to that of [33]
which considers MSMT17 as source, while supervised training is conducted in a
combined train + test dataset. MSMT17 is the largest ReID dataset containing
4101 persons captured from up to 15 views, much larger than Market1501 and
DukeMTMC-reid. For fairness, we also utilized MSMT17 as the source dataset.
To perform the aforementioned comparison, we conducted two types of experi-
ments. First, we evaluated our work using the standard protocol they also use.
Corresponding results are presented in Table 5 (left). Our method is able to
obtain some benefit with respect to the baseline model, however smaller than
the one of [33]. We stress that this experiment regards a very large dataset
(MSMT17) as source. This captures a wide variety of appearance characteris-
tics, letting the supervised training to generalize better. Subsequently, impact
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of fine-tuning on the target domain is smaller. In a real-world scenario however,
such suitable source dataset will not always be available. We also note that the
particular experiment incorporates imagery of auxiliary persons from the same
domain (DukeMTMC-reid, train); a hard requirement which limits deployment
opportunities. Under these circumstances we consider that this experiment does
not address real-world demands. Second, in contrast to standard evaluation, we
employ our novel experimental protocol which considers multiple random subsets
of two datasets in order to simulate real-world situations, without utilizing any
same-domain auxiliary dataset. The results of the comparison with [33] using our
experimental protocol are shown in Table 5 (right)). In this case, both methods
achieve a small benefit, while the largest accuracy is obtained by UFT-ReID with
a combined loss approach (third row). An explanation for this can be based on
the evidence provided in Tables 3 and 5 (right) for the case of G33. The accuracy
of the Market1501-trained base model is much lower than the MSMT17-trained
base model for the same (OSNet) architecture, i.e. 64.5% vs. 89.08%. Thus, the
MSMT17 dataset results in an already capable baseline model, therefore fine-
tuning is left with less room for substantial improvement (Table 5 (right)).

Comparison to OSNet Variants: In all previous experiments, OSNet refers to
the originally proposed architecture, precisely denoted as “osnet x1 0”. This ver-
sion was proposed for same-domain supervised person ReID. More recently, the
authors of OSNet released two subsequent versions of their architecture [44,45],
specialized to generalize to new domains. These new architectures, denoted as
OSNet-IBN, and OSNet-AIN, are modifications to the original, however they
are able to address the substantial domain shift, resulting to better baselines.
Table 6 presents the benefit that UFT-ReID is able to achieve starting from these
new baselines, in an experiment with a G33 gallery. The original OSNet architec-
ture achieves a fairly low average rank-1 accuracy (64.5%), which is increased by
14% through UFT-ReID-based refinement. The OSNet-IBN variant sets a much
better baseline performance (74.5%) than the original OSNet, which is again
further improved by UFT-ReID by 3.1%. Interestingly, UFT-ReID refinement of
the original OSNet, results in better accuracy (78.5%) compared to either the
baseline or the refined OSNet-IBN variants. OSNET-AIN starts with an even
better baseline (76.5%). Still, UFT-ReID improves it further by 3.5%, achieving
the best result among the three variants.

Training Execution Time: Table 7 shows average training execution times of
UFT-ReID in a couple of experimental settings involving the OSNet architecture.
Duration varies, depending on the amount of training images contained in the
gallery. We notice that such durations are acceptable for some non time-critical
applications , such as for crowd analytics or cross-camera person tracking in
smart spaces.

We also compare the execution time of UFT-ReID to that of [33]. For a
fair comparison, we measured parts of the training process that are relevant to
each method, i.e. initializations, computations of losses and clustering. A G33

experiment has shown that the execution time of [33] is 2.5× the execution time
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of UFT-ReID. This is attributed mainly to the heavy computations required
within the Ipfl loss.

4.4 Ablation Study

We now show how different parameters affect the performance of our framework.
In most cases we chose small galleries, which is the main focus of our work. In
all following experiments we used the Market1501 as the source dataset and the
DukeMTMC-reid as the target dataset.

Internal Parameters: At first we experimented with two internal parameters
of the bottom-up clustering algorithm; the diversity regularization λ and the
number of merging epochs em. Experimentation on different values of λ is also
conducted by [18]. Our motivation for repeating the experiment, is both due
to the different formulation of the problem, as well as the utilization of fewer
data. More specifically, the chance that two persons share similar appearance is
smaller in the case of small-sized galleries. Experimentation was conducted on
20 random galleries containing 30 persons.

Figure 2 (left) demonstrates the effect of altering λ while keeping all other
parameters fixed. We confirmed that the optimal value for λ is 0.005.

Next, we experimented with the effect of increasing em. Our motivation is to
let the CNN stabilize between two cluster merging operations where the state
pseudo-labels remain the same. Our experiments included the following options
for em: {2, 3, 4, 5, 7, 11}.

Figure 2 (middle) shows the average rank-1 accuracy for these options. It
turns out that by increasing em, we obtain better accuracy. However, this is
at the cost of a more time-consuming fine-tuning, as training time increases
considerably. More specifically, in our experiments the training time when using
em = 11 was about three times more, compared to using em = 2. In all other
experiments, for achieving reasonable training duration, we kept em = 2.

Batch Size: We conducted experiments using random 30- and 50-person gal-
leries. Figure 2 (right) depicts a negative trend on the average rank-1 accuracy
when using batch sizes larger than 16. Therefore, we chose b = 16 for subsequent
experiments.

Data Augmentation: Typical CNN optimization requires lots of training
images in an effort to generalize to diverse scenarios. To compensate for lack
of such images, various online or offline data augmentation methods have been
proposed.

In [18] images are randomly cropped and horizontally flipped, in an online
fashion. We further experimented with randomly altering the color properties
of images, including brightness, contrast, hue and saturation. The motivation is
that our method is evaluated on smaller galleries, therefore lack of appearance
diversity is expected as opposed to the case of a complete dataset. We conducted
an experiment of random 30-person galleries to investigate the impact of aug-
mentation based on color jittering. Using such augmentation, rank-1 accuracy
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increased from 65.7% to 68.1% in the particular experiment. Its impact was quite
small, however it was used in subsequent experiments.

Learning Rate: As discussed in Sect. 3.2, lr is a crucial parameter for fine-
tuning, as it balances the adaptation to the new domain and the preservation of
the already learned knowledge. Preliminary experiments with small galleries (20–
50 persons) shown that the initial learning rate should be fixed around 10% of the
final value of a stepped learning rate reduce approach during supervised train-
ing. Our experiments in the full-scale experiment and dataset ranges (Sect. 4.1)
confirmed that such choice for learning rate is satisfactory for galleries with few
persons. For larger gallery sizes performance degraded significantly, and even
worsens the original trained model. For this case we experimented with lower lr.

Figure 3 demonstrates the benefit of fine-tuning for variable gallery sizes and
three options of lr. The outcome of the experiment is that larger gallery sizes
require smaller learning rates. As shown in Fig. 3, this happens regardless of the
choice of architectures (i.e., PCB or OSNet). We interpret this result as follows.
The original model is trained on a large variety of person appearances. By fine-
tuning we want to extend the model to new persons (i.e. appearances) from
the target domain. In traditional supervised training, the choice of learning rate
controls how large of a step to take in the direction of the negative gradient of the
loss function. The original model correctly represents such appearance diversity,
therefore smaller learning rates are required for not moving too far from the
initial solution. On the other hand, in the case of smaller gallery sizes we want
to mitigate the expressiveness of the model. This is achieved by adapting to
fewer data while using larger learning rates.

5 Summary and Discussion

We presented UFT-ReID, a novel method for person re-identification. UFT-ReID
performs fine-tuning and adaptation of a model already learned on an auxiliary,
source dataset to a new, target one. It does so, with no requirement for training
data on the target domain. Thus, it is compatible with real-world applications
that require easy deployment of ReID methods in novel settings.

We also presented a new evaluation protocol, that is more suitable for real-
world demands. Several experiments were conducted, demonstrating that UFT-
ReID is able to adjust models and improve their accuracy, bringing them above
state-of-the-art performance. Additionally, a number of experiments explored the
parameter space of UFT-ReID, providing evidence on proper parameter settings
and relevant justifications.

Ongoing work considers the extension of UFT-ReID by incorporating other
unsupervised losses, training methodologies including early stop, as well as exper-
imentation with novel optimizers. Another important topic of ongoing research
considers the improvement of the cluster merging criterion described in Sect. 3.2.
The selection of this criterion is crucial because it relates to the pseudo-labels
generated during the fine-tuning. Errors due to false cluster merges, eventually
propagate as errors within the objective function. Indicatively, in [5], another
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merging criterion is proposed, exploiting feature affinities within and between
clusters. Preliminary experiments with a G33 gallery using the PCB architec-
ture shows that the use of this criterion increases further the rank-1 accuracy of
UFT-ReID by 6.6%.
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