Derctuo

Kragen Javier Sitaker
Buenos Aires
December, 02020
Public domain work

Derctuo is a book of notes on various topics, mostly science and
engineering with some math, from the first year of the COVID-19
pandemic, 02020 CE. Its primary published form is a gzipped tarball
of 9MB of HTML files and sources, although there’s also an inferior
PDF version of about 1000 pages for reading on hand computers or
printing. It uses a page size slightly smaller than standard for
improved readability on hand computers.

My original plan was to write a reproducible computation system
so that the book would be entirely reproducible from a minimal
computational core, allowing all of its calculations to be not only
verified but also easily extended, reused, and studied. I didn’t get
very far on that plan. Instead it’s mostly just about a quarter million
words of dead text, with some static inline images, plus a bundled
library of source material, which is not included in the PDF version.

It contains some novel discoveries, but some of it is just my notes
from exploring the enormous feast of knowledge now available on
the internet to anyone who takes the time to taste of it, and some
other parts are explorations that didn’t pan out — left here only as a
cautionary tale to the next explorer.

There are lots of notes in here that aren’t “finished” in the usual
sense; they end in the middle of a sentence, or say “XXX”, or have a
note in them that the foregoing is wrong in such-and-such a way.
But I am publishing the final version of Derctuo today. I might make
future versions of some of these notes, but not of Derctuo itself.

Derctuo is the sequel to Dercuano, a larger collection of my notes
which I published in 02019.

Like Dercuano, Derctuo is lacking in scholarship: many of the
notes reflect fields I understand poorly, and so often they fall victim
to known pitfalls, and fail to describe how they relate to existing
knowledge. It is best thought of as working notes published despite
their incomplete state.

Often in Derctuo, as in Dercuano, I refer to something being
“published”. By this I generally mean “made public”. There’sa
current fad in academia (over the last, say, half century) to use
“published” to mean “brought up to the standards of scholarly
publication and approved as such by means of scholarly peer review”.
This is usually not what I mean.

Public-domain dedication

notes/library
notes/library
http://canonical.org/~kragen/dercuano

As far as I'm concerned, everyone is free to redistribute Derctuo, in
whole or in part, modified or unmodified, with or without credit; I
waive all rights associated with it to the maximum extent possible
under applicable law. Where applicable, I abandon its copyright to
the public domain. I wrote and published Derctuo in Argentina in
02020 (more conventionally called 2020, or 2020 AD).

The exception to the above public-domain dedication is the ET
Book font family used, licensed under the X11 license (p. 13). This
doesn’t impede you from redistributing or modifying Derctuo but
does prohibit you from removing the font’s copyright notice and
license (unless you also remove the font). The PDF embeds part of
FreeFont and of the DejaVu fonts, whose copyright notices are also
included (p. 14), but DejaVu and FreeFont are not used in the
HTML tarball.

Gitlab

At this writing, there’s a replica of this repo on Gitlab.

Notes
02020-04

* Difficulty estimation of programming tasks (p. 16) 02020-04-20
(2 minutes)

* Pure functional Ul (p. 17) 02020-04-21 (4 minutes)

* Pure functional VM (p. 19) 02020-04-21 (1 minute)

* A reproducible vector-instruction VM? (p. 20) 02020-04-21
(updated 02020-06-17) (30 minutes)

* Ballpoint SPIF (p. 36) 02020-04-25 (7 minutes)

* Bitwise reproducibility (p. 39) 02020-04-25 (1 minute)

02020-03§

* Reversible parsing (p. 40) 02020-05-11 (6 minutes)

* Bloomtags: a Bloom-filter tree for efficient and flexible database
queries (p. 44) 02020-05-13 (21 minutes)

* Static hypertext on CCN (p. §1) 02020-05-16 (2 minutes)

* Feeds or streams on CCNs (p. $2) 02020-05-16 (15 minutes)

» Commit log transfer (p. §7) 02020-05-16 (1 minute)

* One pass sort (p. §8) 02020-05-16 (15 minutes)

* Optimized finger joints (p. 63) 02020-05-16 (4 minutes)

* Solar furnace CPC (p. 65) 02020-05-16 (12 minutes)

* Pandemic collapse (p. 69) 02020-05-17 (updated 02020-12-16)
(22 minutes)

* Font rendering with all-pass filters (p. 76) 02020-05-18 (7 minutes)
» Single output build (p. 79) 02020-05-19 (4 minutes)

* Electronics kit (p. 81) 02020-05-23 (updated 02020-12-20)

(14 minutes)

02020-06

* Sodium silicate (p. 86) 02020-06-04 (32 minutes)

https://gitlab.com/kragen/derctuo

* One big text file (p. 97) 02020-06-04 (updated 02020-06-06)

(20 minutes)

* Monoid prefix sum (p. 105) 02020-06-05 (13 minutes)

* Writing a shopping list in TeX (p. 110) 02020-06-05 (4 minutes)
* A 6-bit “variac casero” (p. 112) 02020-06-06 (22 minutes)

» Tentative outline of a body of knowledge (p. 120) 02020-06-06
(updated 02020-10-28) (10 minutes)

* Ghettobotics soldering iron (p. 124) 02020-06-17 (4 minutes)

* An outline of the design process leading up to the Veskeno virtual
machine (p. 126) 02020-06-17 (updated 02020-07-10) (88 minutes)
* Convincingness (p. 164) 02020-06-20 (1 minute)

* Lantern gears (p. 165) 02020-06-20 (updated 02020-06-28)

(1 minute)

* Segments and blocks (p. 166) 02020-06-20 (updated 02020-12-16)
(51 minutes)

» Slide rule addition (p. 183) 02020-06-22 (3 minutes)

* Hacker calendar (p. 185) 02020-06-28 (updated 02020-12-03)

(15 minutes)

* Trying to drive a speaker with a buck converter (p. 191)
02020-06-29 (4 minutes)

* Using Numpy for non-numerical computation: what would a good
example be? (p. 193) 02020-06-29 (updated 02020-06-30)

(3 minutes)

02020-07

* Modelica notes (p. 196) 02020-07-06 (updated 02020-07-07)

(9 minutes)

* Ultra machining (p. 200) 02020-07-06 (updated 02020-07-18)

(s minutes)

* Importing the WHO’s COVID-19 data into SQLite (p. 202)
02020-07-10 (2 minutes)

* Migrating app snapshots (p. 204) 02020-07-10 (updated
02020-07-11) (14 minutes)

* Virtual machine setup (p. 209) 02020-07-10 (updated 02020-07-14)
(17 minutes)

* Long distance radio (p. 216) 02020-07-17 (19 minutes)

* A generic universal entity-component simulatorium (p. 223)
02020-07-18 (1 minute)

* Line-numbered ISAM bulffers (p. 224) 02020-07-18 (updated
02020-07-23) (14 minutes)

* Retro teletext (p. 229) 02020-07-18 (updated 02020-07-23)

(18 minutes)

* The orbital drive and stepped planetary drive (p. 235) 02020-07-28
(updated 02020-08-02) (10 minutes)

02020-08

* Fossil geothermal (p. 238) 02020-08-02 (updated 02020-11-13)

(12 minutes)

* Pyrolysis 3-D printing (p. 242) 02020-08-02 (updated 02020-11-24)
(20 minutes)

* Machine teeth (p. 251) 02020-08-02 (updated 02020-12-31)

(8 minutes)

* 3-D printing iron by electrodeposition? (p. 255) 02020-08-15
(11 minutes)

* Peroxide and bleach (p. 259) 02020-08-15 (2 minutes)

* Cyclic fabrication systems (p. 260) 02020-08-17 (updated
02020-09-10) (56 minutes)

* Foil-marking glass (p. 277) 02020-08-18 (4 minutes)

02020-09

* Inductively-coupled plasma torches (p. 279) 02020-09-10

(s minutes)

* Oxygen generator rocket (p. 281) 02020-09-10 (1 minute)

* Penalized bits (p. 282) 02020-09-10 (3 minutes)

* Phosphate precipitation (p. 284) 02020-09-10 (12 minutes)

* Notable quotes from Steinmetz’s 1892 hysteresis paper (p. 288)
02020-09-10 (2 minutes)

* The programmable world (p. 289) 02020-09-10 (0 minutes)

* Smart plumbing (p. 290) 02020-09-10 (updated 02020-09-12)
(11 minutes)

* Inorganic burnout (p. 294) 02020-09-11 (updated 02020-09-12)
(18 minutes)

* Micro material sorting (p. 300) 02020-09-12 (2 minutes)

* Sparse sinc (p. 301) 02020-09-17 (12 minutes)

* An index of the 1880 edition of Cooley’s Cyclopzdia (p. 305)
02020-09-17 (updated 02020-10-23) (9 minutes)

* Spark gap logic (p. 309) 02020-09-20 (updated 02020-12-16)
(25 minutes)

* Copper salts (p. 317) 02020-09-21 (updated 02020-09-23)

(8 minutes)

* Hot fabrication (p. 320) 02020-09-21 (updated 02020-09-23)
(16 minutes)

* Aluminum-air batteries (p. 326) 02020-09-23 (4 minutes)

* A digital Dagarti might save your life (p. 328) 02020-09-23

(3 minutes)

* Solar netting (p. 330) 02020-09-23 (9 minutes)

* Mild bases (p. 333) 02020-09-23 (updated 02020-10-01) (3 minutes)

* Magnesium fuel (p. 335) 02020-09-23 (updated 02020-10-09)
(13 minutes)

* Ancient batteries (p. 340) 02020-09-23 (updated 02020-12-31)
(4 minutes)

* Modern material processing (p. 342) 02020-09-24 (updated
02020-09-26) (8 minutes)

* Materials shopping list (p. 345) 02020-09-25 (updated
02020-12-20) (1 minute)

» Toolpath optimization (p. 347) 02020-09-27 (updated
02020-09-30) (19 minutes)

* Reducing sucrose (p. 354) 02020-09-30 (7 minutes)

* Wang tile chemicals (p. 357) 02020-09-30 (updated 02020-12-31)
(2 minutes)

02020-10

* Scraping Sciencemadness (p. 358) 02020-10-01 (updated

02020-10-05) (4 minutes)

* Prate thoughts (p. 361) 02020-10-02 (updated 02020-12-30)

(12 minutes)

» Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.
365) 02020-10-02 (updated 02020-12-31) (17 minutes)

* Lithium fuel (p. 371) 02020-10-04 (7 minutes)

* Globoflexia (p. 374) 02020-10-05 (updated 02020-10-10)

(37 minutes)

* DNS Cache Rendezvous: a permissionless signaling channel for
bootstrapping end-to-end connections (p. 387) 02020-10-07

(13 minutes)

* Nodebook: autotagging quantities for ad-hoc calculation and
example-based end-user programming (p. 392) 02020-10-07

(7 minutes)

» Single-bridge Tor deanonymization? (p. 396) 02020-10-07

(4 minutes)

* LOGSL: Lisp object-graph serialization language (p. 398)
02020-10-07 (updated 02020-10-09) (8 minutes)

* Ancient machinists (p. 403) 02020-10-08 (26 minutes)

* Level shifter (p. 411) 02020-10-08 (updated 02020-10-10)

(9 minutes)

* Merkle ropes (p. 415) 02020-10-09 (15 minutes)

* A seamless CMG-driven walker (p. 420) 02020-10-11 (updated
02020-10-12) (6 minutes)

* Rigid glider (p. 422) 02020-10-12 (1 minute)

* Skip list variants (p. 423) 02020-10-12 (4 minutes)

* VGA oscilloscope? (p. 425) 02020-10-13 (5 minutes)

» Wire machines (p. 427) 02020-10-13 (updated 02020-12-31)

(12 minutes)

* Thermistors, resistance temperature detectors, and other thermal
sensors (p. 431) 02020-10-14 (updated 02020-11-06) (12 minutes)
» Atkinson differential blower (p. 435) 02020-10-14 (updated
02020-12-31) (10 minutes)

* Inspiration (p. 439) 02020-10-15 (3 minutes)

* Oscillating flexion (p. 440) 02020-10-15 (updated 02020-10-16)
(11 minutes)

* Reuleaux (p. 444) 02020-10-15 (updated 02020-10-18) (19 minutes)

* Intervals and gradients (p. 451) 02020-10-16 (4 minutes)

* Plaster foam (p. 453) 02020-10-16 (updated 02020-11-08)

(8 minutes)

* Fluidic household pumping (p. 456) 02020-10-18 (updated
02020-10-19) (7 minutes)

* Muriate thermal mass (p. 459) 02020-10-18 (updated 02020-10-28)
(11 minutes)

* Calcium strengthening (p. 463) 02020-10-21 (updated
02020-10-24) (23 minutes)

* Minimal cost computer (p. 471) 02020-10-23 (updated
02020-12-01) (12 minutes)

* Abbe-limited DRO (p. 476) 02020-10-24 (updated 02020-12-31)
(11 minutes)

* LED computation? (p. 480) 02020-10-25 (5 minutes)

* Sequestered CO, would fill many oil fields (p. 482) 02020-10-25
(2 minutes)

* Residue number systems (p. 483) 02020-10-26 (2 minutes)

* COVID-19 risk and vitamin D (p. 484) 02020-10-27 (updated
02020-10-28) (12 minutes)

* Some of the cheapest memory ICs (p. 488) 02020-10-27 (updated
02020-10-30) (1 minute)

* Desiccant climate control (p. 489) 02020-10-27 (updated
02020-11-24) (31 minutes)

* Bluepill aspirations (p. 499) 02020-10-30 (updated 02020-11-01)
(9 minutes)

02020-11

* Multimeter metrology (p. 502) 02020-11-01 (updated 02020-11-27)
(23 minutes)

* Guide to finding datasheets and avoiding malicious datasheet SEO
sites (p. 509) 02020-11-02 (updated 02020-12-22) (7 minutes)

* Audio vector image (p. §13) 02020-11-04 (2 minutes)

* Dead bugging (p. 514) 02020-11-04 (3 minutes)

* Ghettobotics nonshopping list (p. §16) 02020-11-04 (updated
02020-12-21) (22 minutes)

* Foaming infiltration (p. §24) 02020-11-06 (1 minute)

* Hard sticky balls (p. 525) 02020-11-06 (1 minute)

* OCR with linear optimization (p. §26) 02020-11-06 (1 minute)

* Pit firing (p. $27) 02020-11-06 (3 minutes)

* Machine-readable PNG circuit diagram watermarks (p. 529)
02020-11-06 (1 minute)

* Arduino support for STM32 (p. §30) 02020-11-06 (10 minutes)

* Swashplate screwdriver (p. §36) 02020-11-06 (1 minute)

* Thermal expansion speaker (p. $37) 02020-11-06 (1 minute)

* Copper segelin (p. $38) 02020-11-06 (updated 02020-11-08)

(19 minutes)

* Alien screws (p. $44) 02020-11-06 (updated 02020-11-11)

(4 minutes)

* The Spungot sentential database for end-user logic programming (p.
546) 02020-11-06 (updated 02020-12-31) (27 minutes)

* Rosining chips (p. $59) 02020-11-08 (2 minutes)

* Cold plasma (p. $60) 02020-11-08 (updated 02020-11-24)

(14 minutes)

* Cutting steel with steam (p. $65) 02020-11-11 (1 minute)

* Improvised humidity sensors with PET dielectric spectroscopy (p.
$66) 02020-11-11 (3 minutes)

* Printf tracebacks (p. 568) 02020-11-11 (2 minutes)

* Random synchronous motor (p. $69) 02020-11-11 (2 minutes)

* Specular photogrammetry (p. $70) 02020-11-11 (3 minutes)

* A compact textual format for interchange of electronic circuit
designs (p. $72) 02020-11-11 (updated 02020-11-26) (1 minute)

* Dictionary data structures for tiny memories (p. $§73) 02020-11-12
(3 minutes)

* Adiabatic separation (p. §75) 02020-11-12 (updated 02020-11-14)
(14 minutes)

* The rep-2 cuboid (p. 580) 02020-11-13 (5 minutes)

* Mica composites (p. §82) 02020-11-14 (3 minutes)

* Improvised display options for embedded hardware development (p.
584) 02020-11-16 (updated 02020-11-17) (16 minutes)

* Capacitor meter (p. §89) 02020-11-16 (updated 02020-12-03)
(26 minutes)

* Rebraining (p. 597) 02020-11-16 (updated 02020-12-06)

(12 minutes)

* Oscilloscope superresolution via compressed sensing? (p. 611)
02020-11-17 (1 minute)

* A solar panel from an LED garden light (p. 612) 02020-11-17
(updated 02020-12-01) (5 minutes)

* Representing E12 electronic component values musically (p. 614)
02020-11-17 (updated 02020-12-26) (16 minutes)

* Microcontroller inventory (p. 620) 02020-11-18 (updated
02020-11-28) (4 minutes)

* Keyboard object environment (p. 624) 02020-11-19 (13 minutes)
* Relay buzzer (p. 629) 02020-11-23 (2 minutes)

» Geomagnetic energy harvesting is barely feasible at near-kilometer
scales (p. 631) 02020-11-24 (3 minutes)

* Lava time capsule (p. 633) 02020-11-24 (8 minutes)

* Lenticular air bearing (p. 636) 02020-11-24 (2 minutes)

* Machine readable microcontroller output (p. 637) 02020-11-26
(9 minutes)

* Muldiv (p. 641) 02020-11-26 (1 minute)

* AVR OSCCAL probably won’t give you an FM radio (p. 642)
02020-11-26 (2 minutes)

* A field-programmable RTL array: a more efficient alternative to
FPGAS? (p. 643) 02020-11-26 (updated 02020-11-27) (11 minutes)
» Hardware queuing (p. 648) 02020-11-26 (updated 02020-12-16)
(11 minutes)

* Foam electro-etching and related techniques (p. 652) 02020-11-26
(updated 02020-12-31) (10 minutes)

* Using C99 compound literals unjustifiably (p. 656) 02020-11-27
(6 minutes)

* A reverse-biased diode thermometer (p. 660) 02020-11-27

(9 minutes)

* My very first opamp (p. 665) 02020-11-27 (4 minutes)

» Taking screenshots (p. 667) 02020-11-27 (updated 02020-12-20)
(14 minutes)

* Punk zine look (p. 675) 02020-11-28 (6 minutes)

02020-12

* Caching layout (p. 678) 02020-12-03 (8 minutes)

» Compressed imaging (p. 681) 02020-12-06 (3 minutes)

* A letter-by-letter Hamming code for manual ECC computation (p.
683) 02020-12-06 (updated 02020-12-16) (5 minutes)

* Majority logic with DRAM sense amps (p. 687) 02020-12-09

(30 minutes)

* Truth table search (p. 696) 02020-12-09 (11 minutes)

* Yablochkov arc cutter (p. 700) 02020-12-09 (1 minute)

* The Language of Choice, and other languages (p. 701) 02020-12-09
(updated 02020-12-31) (10 minutes)

* Scribal Basic: a 1960s language for the 02020s (p. 705) 02020-12-12
(updated 02020-12-15) (32 minutes)

* Hierarchical state space learning (p. 718) 02020-12-14 (8 minutes)

* Programming in the debugger (p. 721) 02020-12-15 (2 minutes)

* Transaction per call (p. 722) 02020-12-15 (updated 02020-12-23)
(69 minutes)

* Materials YouTube (p. 744) 02020-12-16 (updated 02020-12-17)
(1 minute)

* Electronics next project (p. 745) 02020-12-21 (updated
02020-12-22) (7 minutes)

* Electroforming networks (p. 748) 02020-12-22 (3 minutes)

* Time-scale material processing (p. 750) 02020-12-22 (3 minutes)
* Circle-portal GUIII (p. 752) 02020-12-22 (updated 02020-12-23)
(4 minutes)

* Methods for two-dimensional rotation with two or three real
multiplies (p. 754) 02020-12-23 (updated 02020-12-26) (14 minutes)
* Light pen latency (p. 760) 02020-12-23 (updated 02020-12-28)
(29 minutes)

* The sparsity of PEG memoization utility (p. 769) 02020-12-24
(updated 02020-12-28) (1 minute)

* Cheating étendue? (p. 770) 02020-12-26 (4 minutes)

» Stochastic fractional delay lines (p. 772) 02020-12-26 (9 minutes)
» Successive-approximation Ul design (p. 775) 02020-12-28

(1 minute)

» Differential dividing plate (p. 776) 02020-12-31 (14 minutes)

* ECM engraving (p. 780) 02020-12-31 (5 minutes)

* Electro-etching graded-index optics in porous silicon (p. 782)
02020-12-31 (2 minutes)

* Electrodeposition welding (p. 783) 02020-12-31 (2 minutes)

* Jigsaw blades (p. 784) 02020-12-31 (5 minutes)

* Table text (p. 786) 02020-12-31 (4 minutes)

Topics

* Materials (p. 788) (51 notes)

* Contrivances (p. 790) (44 notes)

* Electronics (p. 792) (42 notes)

* Performance (p. 794) (25 notes)

* Mechanical things (p. 795) (19 notes)
* Physics (p. 796) (18 notes)

* Ghettobotics (p. 797) (18 notes)

* Metrology (p. 798) (17 notes)

* Manufacturing (p. 799) (17 notes)

* History (p. 800) (17 notes)

* HCI (human-computer interaction) (p. 801) (17 notes)
* Digital fabrication (p. 802) (17 notes)
* Algorithms (p. 803) (17 notes)

* Pricing (p. 804) (14 notes)

* Microcontrollers (p. 805) (14 notes)

* Thermodynamics (p. 806) (13 notes)
* Systems architecture (p. 807) (13 notes)
* Programming (p. 808) (13 notes)

* Math (p. 809) (13 notes)

* Practical (p. 810) (12 notes)

* Security (p. 811) (11 notes)

* Energy (p. 812) (11 notes)

* Protocols (p. 813) (10 notes)

* Minerals (p. 814) (10 notes)

* Graphics (p. 815) (10 notes)

* Experiment report (p. 816) (10 notes)

* Refractory (p. 817) (9 notes)

» Mathematical optimization (p. 818) (9 notes)
* Independence (p. 819) (9 notes)

* Facepalm (p. 820) (9 notes)

* Embedded programming (p. 821) (9 notes)
* Derctuo (p. 822) (9 notes)

* Strength of materials (p. 823) (8 notes)

* Foaming (p. 824) (8 notes)

* The future (p. 825) (7 notes)

* The STM32 microcontroller family (p. 826) (7 notes)
* Physical computation (p. 827) (7 notes)

* File formats (p. 828) (7 notes)

» Falstad’s circuit simulator (p. 829) (7 notes)
* Electrolysis (p. 830) (7 notes)

» Communication (p. 831) (7 notes)

* Caching (p. 832) (7 notes)

* Self replication (p. 833) (6 notes)

* Radio (p. 834) (6 notes)

* Nostalgia (p. 835) (6 notes)

* LEDs (p. 836) (6 notes)

* Latency (p. 837) (6 notes)

* Calculation (p. 838) (6 notes)

* The AVR microcontroller (p. 839) (6 notes)
* Analog (p. 840) (6 notes)

* Zirconia (p. 841) (5 notes)

* Waterglass (p. 842) (s notes)

* Solar (p. 843) (s notes)

* Reproducibility (p. 844) (s notes)

* Optics (p. 845) (s notes)

* Instruction sets (p. 846) (s notes)

* Incremental computation (p. 847) (s notes)
* Household (p. 848) (s notes)

* Heating (p. 849) (5 notes)

* End-user programming (p. 850) (s notes)
* Digital signal processing (p. 8s1) (5 notes)
* Debugging (p. 852) (5 notes)

* Control (p. 853) (s notes)

 Composite materials (p. 854) (5 notes)

* Archival (p. 855) (5 notes)

¢ Ultrasound (p. 856) (4 notes)

* Text editors (p. 857) (4 notes)

* Steel (p. 858) (4 notes)

* Sensors (p. 859) (4 notes)

* Python (p. 860) (4 notes)

* Plumbing (p. 861) (4 notes)

* Photovoltaic (p. 862) (4 notes)

* Parsing (p. 863) (4 notes)

* Music (p. 864) (4 notes)

* Layout (p. 865) (4 notes)

* GUIs (p. 866) (4 notes)

* Publish/subscribe feeds (p. 867) (4 notes)

* Energy harvesting (p. 868) (4 notes)

* Cooling (p. 869) (4 notes)

* Coding (p. 870) (4 notes)

* Ceramic (p. 871) (4 notes)

* C (p. 872) (4 notes)

* Book notes (p. 873) (4 notes)

* Archaeology (p. 874) (4 notes)

* Alabaster (p. 875) (4 notes)

* Virtual machines (p. 876) (3 notes)

* Urbit (p. 877) (3 notes)

* Thermal storage (p. 878) (3 notes)

* SKETCHPAD (p. 879) (3 notes)

* Physical system simulation (p. 880) (3 notes)
* Sapphire (p. 881) (3 notes)

* Ropes (the data structure) (p. 882) (3 notes)
* Regrettable (p. 883) (3 notes)

* R (p. 884) (3 notes)

* Purification (p. 885) (3 notes)

* Prolog (p. 886) (3 notes)

* Programming by example (p. 887) (3 notes)
* Plasma (p. 888) (3 notes)

* Parsing expression grammars (p. 889) (3 notes)
* Merkle graphs (p. 890) (3 notes)

* Linux (p. 891) (3 notes)

* Hypertext (p. 892) (3 notes)

* Gradient descent (p. 893) (3 notes)

* Gearing (p. 894) (3 notes)

* Emacs (p. 895) (3 notes)

* Espacio de César (p. 896) (3 notes)

* Electrochemical machining (p. 897) (3 notes)
* Distributed systems (p. 898) (3 notes)

* Digital logic (p. 899) (3 notes)

* Desiccants (p. 900) (3 notes)

* Databases (p. 901) (3 notes)

* Crackpots (p. 902) (3 notes)

* Covid (p. 903) (3 notes)

* Constraint satisfaction (p. 904) (3 notes)

* Concurrency (p. 905) (3 notes)

* Concrete (p. 906) (3 notes)

* Build systems (p. 907) (3 notes)

* Basic (p. 908) (3 notes)

* Automatic differentiation (p. 909) (3 notes)
* Audio (p. 910) (3 notes)

* Art (p. 911) (3 notes)

* Arrays (p. 912) (3 notes)

* Arduino (p. 913) (3 notes)

* Yttria (p. 914) (2 notes)

* Web scraping (p. 915) (2 notes)

* Veskeno (p. 916) (2 notes)

* Utopias (p. 917) (2 notes)

* Transactions (p. 918) (2 notes)

* Toxicology (p. 919) (2 notes)

* TeX (p. 920) (2 notes)

* Ternary (p. 921) (2 notes)

* Sparkle (p. 922) (2 notes)

* Sorting (p. 923) (2 notes)

* Small is beautiful (p. 924) (2 notes)

» Silicone (p. 925) (2 notes)

* Scanning probe microscopes (p. 926) (2 notes)
* Rutile (p. 927) (2 notes)

* Quotes (p. 928) (2 notes)

* QEMU (p. 929) (2 notes)

* Projectors (p. 930) (2 notes)

* Programming languages (p. 931) (2 notes)
* Prefix sums (p. 932) (2 notes)

* Politics (p. 933) (2 notes)

* Pocket furnaces (p. 934) (2 notes)

* Pidgeon process (p. 935) (2 notes)

* Phosphates (p. 936) (2 notes)

* Paeth rotation (p. 937) (2 notes)

* Padauk (p. 938) (2 notes)

* Oscilloscopes (p. 939) (2 notes)

* Octave (p. 940) (2 notes)

* Numpy (p. 941) (2 notes)

* Muriate of lime (p. 942) (2 notes)

* Monoids (p. 943) (2 notes)

* Mole people (p. 944) (2 notes)

* Minsky algorithm (p. 945) (2 notes)

* Metamaterials (p. 946) (2 notes)

* Merging (p. 947) (2 notes)

* Magnesium (p. 9438) (2 notes)

* LSM-trees (log-structured merge trees) (p. 949) (2 notes)
* The Long Now Foundation (p. 950) (2 notes)
* Logic (p. 951) (2 notes)

* Lime (p. 952) (2 notes)

* Katka (p. 953) (2 notes)

* The JS language (p. 954) (2 notes)

* Interrupts (p. 955) (2 notes)

* Immediate-mode GUIs (p. 956) (2 notes)
* FPGAs (p. 957) (2 notes)

* FP-persistent data structures (p. 958) (2 notes)
* Flying machines (p. 959) (2 notes)

* Flexures (p. 960) (2 notes)

« Etendue (p. 961) (2 notes)

* Errors (p. 962) (2 notes)

* Epistemology (p. 963) (2 notes)

* Energy efficiency (p. 964) (2 notes)

* Earthships (p. 965) (2 notes)

* Drying (p. 966) (2 notes)

* Docker (p. 967) (2 notes)

* Corewar (p. 968) (2 notes)

* Copy on write (p. 969) (2 notes)

* Copper (p. 970) (2 notes)

» Compressed sensing (p. 971) (2 notes)

* Compilers (p. 972) (2 notes)

* Collapse (p. 973) (2 notes)

* Clusters (p. 974) (2 notes)

* Chifir (p. 975) (2 notes)

* Chat (p. 976) (2 notes)

» Content-centric networking/named-data networking (p. 977) (2
notes)

* Casting (p. 978) (2 notes)

* Carborundum (p. 979) (2 notes)
 Cameras (p. 980) (2 notes)

* Bootstrapping (p. 981) (2 notes)

* Bearings (p. 982) (2 notes)

* Batteries (p. 983) (2 notes)

* B-trees (p. 984) (2 notes)

* Automata theory (p. 98s) (2 notes)

* Assembly language (p. 986) (2 notes)

liabilities/LICENSE.ETBook

[This is the copyright notice from the ET Book font Dercuano uses.]

Copyright (c) 2015 Dmitry Krasny, Bonnie Scranton, Edward Tufte.

Permission is hereby granted, free of charge, to any person obtaining a copy of to
ohis software and associated documentation files (the "Software"), to deal in the ©
oSoftware without restriction, including without limitation the rights to use, copo
oy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Softo
oyare, and to permit persons to whom the Software is furnished to do so, subject to
0o the following conditions:

The above copyright notice and this permission notice shall be included in all coo
opies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIEo
oD, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A o
OPARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHo
ol HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTIo
o0N OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THEo
o SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

liabilities/dejavu-copyright

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Upstream-Name: DejaVu fonts

Upstrean-Author: Stepan Roh <src@users.sourceforge.net> (original author),
see /usr/share/doc/ttf-dejavu/AUTHORS for full list

Source: http://dejavu-fonts.org/

Files: *

Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved.
Bitstream Vera is a trademark of Bitstream, Inc.

DejaVu changes are in public domain.

License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of the fonts accompanying this license ("Fonts") and associated
documentation files (the "Font Software"), to reproduce and distribute the
Font Software, including without limitation the rights to use, copy, merge,
publish, distribute, and/or sell copies of the Font Software, and to permit
persons to whom the Font Software is furnished to do so, subject to the
following conditions:

The above copyright and trademark notices and this permission notice shall
be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular
the designs of glyphs or characters in the Fonts may be modified and
additional glyphs or characters may be added to the Fonts, only if the fonts
are renamed to names not containing either the words "Bitstream" or the word
"Vera".

This License becomes null and void to the extent applicable to Fonts or Font
Software that has been modified and is distributed under the "Bitstream
Vera" names.

The Font Software may be sold as part of a larger software package but no
copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT,
TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME
FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING
ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE
FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome
Foundation, and Bitstream Inc., shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream
Inc., respectively. For further information, contact: fonts at gnome dot

0rg.

Files: debian/*
Copyright: (C) 2005-2006 Peter Cernak <pce@users.sourceforge.net>
(C) 2006-2011 Davide Viti <zinosat@tiscali.it>
(C) 2011-2013 Christian Perrier <bubulleGdebian.org>
(C) 2013 Fabian Greffrath <fabiantdebian@greffrath.com>
License: GPL-2+
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with this package; if not, write to the Free
Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA

On Debian systems, the full text of the GNU General Public
License version 2 can be found in the file
Jusr/share/common-1icenses/GPL-2" .

Difficulty estimation of
programming tasks

Kragen Javier Sitaker, 02020-04-20 (2 minutes)

As I was writing file T000.nd I was trying to figure out how fast or
slow I actually am at programming and how predictable this is.

Ur-Scheme was 1553 lines of Scheme and mostly took me four
weeks and three days, from February 3 to March 4 of 02008, exactly a
person-month. David A. Wheeler's "SLOCCount" says it should
have taken 3.8 person-months using the basic COCOMO formula 2.4
% (KSLOCx*1.06), so let's suppose that instead of being the famous "10x
programmer" I am a 3.8x programmer, not compared to normal
modern programmers but to whatever losers the COCOMO model
was calibrated on.

As another more recent data point, Dercuano's genpdf.py took me s
days (0.25 person-months), and it's 550 lines of code, suggesting 1.28
person-months --- a productivity factor of about sx for me. s is
pretty close to 3.8.

I'd like to evaluate StoneKnifeForth's development speed in this
way, but I don't have any reasonable way to do so, since I don't know
how to evaluate either how many lines of code it is or how long it
took me to write.

SLOCCount says that the part of BubbleOS I have written so far
should have taken 17 person-months since it contains 6473 lines of
code, although about 800 of those are the actuarial tables in the death
clock Toki. In fact, I wrote most of it from October 12, 02018, to
February 22, 02019, which is almost four months; this is also lower
than SLOCCount's estimate by only a factor of about 3-5.

I wrote Dumpulse mostly October 15-17, 02017, about 0.14
person-months. Checking out the commit
s2fioesasd22c9ef8f78992cdcgscbdb8edqee79 I get 646 lines of code,
nominally 1.52 person-months. In this case the multiplier is closer to
1ox. I think this is partly because I'd already been thinking and
talking about how to do it and partly because I was able to stay pretty
focused for three days --- although the git commits cluster into only
four or five hours on each of those days.

I might be able to speed things up by taking advantage of new
programming technology like generative testing, or by choosing
especially conservative and well-understood designs.

Topics

* Programming (p. 808) (13 notes)
* Derctuo (p. 822) (9 notes)

* Psychology

* Dercuano

* BubbleOS

Pure functional Ul

Kragen Javier Sitaker, 02020-04-21 (4 minutes)

How about a pure functional approach? An image is, perhaps, a
function from (x, y) to (r, g, b), perhaps augmented with an aspect
ratio (max x?); an animation is a function from time to images; a
function is some code and some closed-over data; a graphical user
interface state is an image or, perhaps, an animation, and a function
from input events (such as mouse and keyboard events, but perhaps
also idle time and timer expiry) to new states. Such definitions permit
caching, checkpointing, undo, rendering frames in parallel,
interrupting computations, and resampling, but no real composition
--- no way to provide a GUI state as a parameter to another GUI
state.

The function to render a character-cell display is pretty simple:

def pixat(x, y):
row, xoff = divmod(x * cols, 1)
col, yoff = divmod(y * rows, 1)
glyph = font [text [row] [col]]
return glyph[round(xoff * font.height)] [round(yoff * font.width)]

This is closed over variables cols, rows, font, and text.

If we've resigned ourselves to the cost of starting up and shutting
down a new "process" for each keystroke, mouse movement, and
frame to paint, a reasonable assembly-level interface for a
machine-code computation to access its input data is to map all the
input and state data "files" into a newly invoked process's memory
space, one memory segment per file. Rather than identifying these
segments by ordinal number, I think it's better to identify them by
textual name, and expect the process to invoke a library function to
look up the segment descriptor --- like Unix environment variables,
but each name is associated with a whole memory segment rather
than just a NUL-terminated string.

For composition of computations with arbitrary machine code, we
need ways for a computation to produce more output than just an
image and take more diverse input than just keyboard and mouse
events. A capability to spawn child computations --- write output
files, in effect --- would go some distance, but that only supports
fanout, not the much more ubiquitous fanin. You need some kind of
way to provide an existing computation as an argument to another
computation, and the user interface affordances for this need to work
in a more efficient way than simply iterating over all computations
that exist, querying each one in turn.

A simple approach would be Golang-interface-like duck typing,
where to request an object as input you specify a list of method names
(or method type signatures) you want the object to support, and only
objects supporting all of these methods are offered to the user as
options. In some cases these may just be things like "asString" or
"asImage". To support backward compatibility, you might be able to
accept N different interfaces instead of just one.

A different way to do composition is using event channels: when
an event is posted to an event bus, all the subscribers on that event bus
are awoken with a copy of that event. Usually this approach implies
some degree of nondeterminism; the Urbit approach is to wait on
(possibly remote) futures instead of on pub-sub event channels. There
is still potentially some nondeterminism in the Urbit approach, since
in Urbit it is possible for a particular future to be satisfied by more
than one different process, and generally whichever one arrives first is
the one that wins.

A potentially more satisfying approach would be to make data files,
rather than stateful computations, the fundamental objects of the
world, but prescribe a FlatBuffers-like layout.

Topics

* HCI (human-computer interaction) (p. 801) (17 notes)
* Caching (p. 832) (7 notes)
* GUIs (p. 866) (4 notes)

Pure functional VM

Kragen Javier Sitaker, 02020-04-21 (1 minute)

I'm trying to figure out how to specify reproducible computations
for Derctuo in a way that won't cost me months of work before I can
start using it.

Urbit approaches the problem of doing reproducible computations
with a pure functional virtual machine rather than an imperative one.
This rules some things out of scope: issues of efficiency, memory
usage, and latency, for example. But it certainly simplifies the kind of
computation whose purpose is to compute an unknown result, rather
than to react to events in the world. And it might be possible to make
it fast enough on modern machines, at least under most circumstances.

There's lots of information out there about how to do reasonably
efficient evaluation of A-calculus expressions, and I've done a few
compilers along those lines myself. My Bicicleta work instead uses
Abadi and Cardelli's g-calculus as the basis, which is slightly more
verbose than the A-calculus but, I think, considerably more
convenient for programming. Using name-value pairs rather than
positional arguments to pass data around permits decentralized
extensibility.

The Bicicleta interpreter that I wrote, however, is extremely slow,
close to the speed of bash script. I'm sure I can do better than that,
using approaches like those I used in Ur-Scheme.

Topics

* Systems architecture (p. 807) (13 notes)
* Derctuo (p. 822) (9 notes)

* Reproducibility (p. 844) (s notes)

* Instruction sets (p. 846) (5 notes)

* Urbit (p. 877) (3 notes)

* Bicicleta

A reproducible vector-instruction
VM?

Kragen Javier Sitaker, 02020-04-21 (updated 02020-06-17)
(30 minutes)

A big part of the mission for Derctuo is to make computational
experiments reproducible, both by removing nondeterministic choices
from the implementation and by minimizing environmental
dependencies. Can we reconcile this with efficiency by implementing
a vector virtual machine?

This note describes an approach to Veskeno's design (p. 126) that I
am not currently pursuing.

The background of the problem

Computational experiments are more compelling when they can
use a larger fraction of the power of your computer, and typical
interpreted languages waste on the order of 97% of your computer's
computational power. Now that everybody's computer is massively
parallel with 4-wide SIMD operations and 4-32 cores, even
single-threaded nonvectorized C wastes on the order of 97% of your
computer's computational power; typical interpreted languages like
Python or PHP thus waste 99.9% of its power. (And that's assuming
you don't have a GPU, which can easily push that to 99.99%.) In
effect, using languages implemented in this way costs you three orders
of magnitude of performance, pushing you 15 years into the past, to
02005 or so --- a performance price that implies a progressively
longer timespan as we get further and further out of the shadow of
Moore's Law.

Simple untyped virtual machines like Chifir, Dontmove, Wirth's
RISC, or the Cult of the Bound Variable's Universal Machine suffer
a similar performance hit: not only are they single-threaded, but also,
like Forth, they typically spend about §X as much work on
instruction dispatch as they do on useful computation. This is less
than all the suffering induced by all of Python's type-checking and
bounds-checking, but it's still painful. This offers implementors an
unappealing tradeoft: either they can accept painfully limited
performance, or they can add a lot of complexity to their
implementation in the form of clever optimizations to try to reduce
the performance price, at the potential cost of breaking correctness.

One of the great historical advantages of languages like Octave, R,
Numpy, Yann LeCun's Lush, and APL is that even a fairly
straightforward interpreter is capable of achieving reasonable speeds,
because the inner loops are not interpreted --- they happen within
primitives of the language like a+b, +/a, or *\a. This is somewhat
less true nowadays that our cache hierarchies are so deep and data
locality is so important; while straightforward Python code usually
runs around 3% of the speed of C, locality effects usually limit
straightforward Numpy code to around 20% of the speed of C
(comparable to interpreted Forth or something like Chifir), and

optimized Numpy code usually runs around 33% of the speed of C.

Nowadays, a potential additional interesting advantage is that
programs in such languages expose data parallelism in a way that a
relatively straightforward interpreter could potentially exploit, if the
overhead for moving data between threads or processes in the host
system is not too great. Maybe you could use 20% of your whole
machine instead of 20% of one core.

You could easily imagine splitting a computation like this one
across cores by either row or column, although perhaps not until it's
much larger:

>>> np.arange(12) .reshape((3, 4)) * (np.arange(3) + 4).reshape((3, 1))
array([[0, 4, 8, 12],

(20, 25, 30, 35],

[48, 54, 60, 6611)

Implementation limits

As I've said elsewhere, Lorie's UVC falls down on compatibility
grounds when it refuses to apply limits to things like register bit sizes.
Not putting a limit in the specification doesn't mean that
implementations won't have limits; it just means that every
independent implementation will have different limits, so the
specification is insufficient for compatibility.

In particular, in this case, I think there should be maximum sizes on
all arrays and indices, probably 2*%*32.

Determinism via non-mutation

Still, it seems likely that implementors still face an unappealing
performance-correctness tradeoff, in a different way: they will want
to perform loop fusion to avoid useless traffic to main memory, but
for some virtual-machine designs, it would be easy for such loop
tusion to produce different results in some circumstances, specifically
when the output aliases one or more of the inputs. Numpy
sometimes does produce unexpected results when the output of an
operation aliases its input --- by itself, that doesn't necessarily violate
the desideratum of reproducibility, but you would have to nail down
precisely what results are required, and it would be easy for
loop-fusion optimizations, among others, to accidentally break those
results.

Still, these problems only arise if data is mutable. Numpy data is
mutable, but, for example, APL data is purely immutable, at a logical
level. You can say R[3] <- 4 in APL, and after that R[3] is indeed 4,
but any aliases to R are not affected, though I think typically
implementations avoid making a physical copy when possible. If this
immutability were an inherent part of the virtual machine, the
opportunities for such nondeterminism would be vastly rarer. There's
still the possibility for an implementor to use reference counts to
conditionally do in-place updates in order to reduce memory traffic
(or memory usage) and botch it.

So, if the virtual machine definition treats arbitrary-sized arrays (up
to the maximum) as if they were immutable atomic numbers, it

should mostly steer clear of this kind of nondeterminism. This also
suggests treating the machine's memory as a storage not for bytes but
for arrays, like a Python module is a storage for Python objects.

Toward an instruction set design?

Simple scalar virtual machines like those mentioned above
commonly have 16 or so instruction opcodes: four or five arithmetic
operations, one to four bitwise operations, some comparisons and
conditional jumps, procedure call and return, and maybe load, store,
load literal, and maybe some kind of I/O operations (both Chifir and
the CBV UM have "read keyboard" instructions). By contrast,
len(dir(numpy)) is s87, and that doesn't even include the 163 methods
on Numpy arrays, though some are duplicates. Even old APLs
normally have on the order of 60 built-in functions, without counting
the results of operators like X.+ or +/. Can this be reduced down to
something reasonable? Maybe 32 opcodes or 64, not 700.

(Of course, many of these items in Numpy are non-fundamental
operations like average, bartlett, and fft.)

Lush is unusual among array languages in that it exposes some inner
machinery that is usually kept hidden; a Lush "matrix" or "tensor"
consists of a "storage" and an "index". The storage is a
one-dimensional array of some homogeneous atomic element type,
and the storage is realized as a base pointer, a length, an element type,
and flags indicating writability and memory-mappedness; the index
contains a pointer to a storage, a start offset into that storage, a
number of dimensions, and an upper bound and an address increment
(possibly zero!) for each dimension. Exposing something like this in
the instruction set might save the virtual machine a large number of
index-manipulation operations: reshape, matrix transposition, matrix
diagonal extraction, ravel, sliding windows (by having two
dimensions with the same stride), shape extraction, take, drop,
generating arrays filled with a constant, and so on.

One way to supply this facility would be to have the following:

» a shape(array) operation to extract a possibly-empty vector of
dimension bounds;

» a reshape(array, shape, strides) operation which creates a new array
of the given shape from the raveled elements of array, using the stride
vector strides;

* and a drop(N, array) operation which drops the first N items of
array.

If the array being reshaped or dropped is already irregular, we
might have to copy it, and it isn't clear what drop() should do on
non-one-dimensional arrays.

Could we get by with just one-dimensional vectors and slicing
operations? The Python expression s[3:10:2] gives us a list of items 3,
s,7,and 9; a similar instruction could take a vector, a start, a count
rather than an end, and a stride, which could be zero. Even this could
be decomposed into an index-generation instruction that produces the
vector [3 5 7 9] (just as the Octave expression 3:2:10 does) and an
indexing instruction. Is that kind of thing adequate to express my
example Numpy expression from earlier looplessly in terms of

one-dimensional arrays?

>>> np.arange(12) .reshape((3, 4)) * (np.arange(3) + 4).reshape((3, 1))
array([[0, 4, 8, 12],

(20, 25, 30, 35],

[48, 54, 60, 6611)

I don't think so. The column vector on the right [[4] [5] [6]] is in
effect being transformed into [[4 4 4 4] [s 5 5 5] [6 6 6 6]], which you
could get by indexing it with [[oooo] [t111] [2222]]ina
gathering operation. (You can literally do this in Numpy: (
np.arange(3) + 4)[[[[0, 0, 0, 0, [1, 1, 1, 1], [2, 2, 2, 2]]]].)

Another tricky problem is how to compile something like lambda x:
np.arange(12) .reshape((3, 4)) * x. You could apply this to an x like the
3-column above, in which case you need to broadcast each of its
elements across a row; but you could also apply it to an x such as
np.arange(4), in which case you need to broadcast each of its elements
across a column, or to a scalar, or to a 3X4 matrix, or for that matter
to a 2X3X4 array like np.arange(24) .reshape((2, 3, 4)). If you're going to
insert a sequence of virtual machine instructions to distinguish among
cases like these before every multiplication operation, you are going
to incur enough interpretation overhead that actual vector
programming languages will not run well on your vector virtual
machine; if you want to have this broadcasting logic at all, it is
probably better to push it down into the definition of the
virtual-machine operation; and of course that would require the VM
to see the values as N-dimensional arrays, not just vectors.

Operations on boolean arrays in APL are traditionally unified with,
I think, gcd and lem, but it seems to me more reasonable to unify
them with pairwise max and min. In some sense, an N-bit integer in
a computer is an N-item boolean vector, and this is an efficient way
to represent boolean arrays; since we probably need pairwise max and
min in any case, it might be best to specify two operations to translate
back and forth between boolean arrays and arrays of N-bit integers,
rather than specifying bitwise AND, OR, and NOT operations. An
efficient implementation can do this without copying.

There's an indexing operation. Indexing a vector by an array index
performs a gather, producing a result with the same shape as the
index. It isn't clear what should happen when you index a
multidimensional array by anything other than some scalars; see the
section below, "Numpy indexing and broadcasting".

There's an index update operation. It produces a new array that is
mostly the same as an old array, but has some indices replaced. For
things like painting pixels in a framebuffer, it seems like it might be
important to support things like pix[xs, ys] = red, although I guess you
could reshape the framebuffer into a vector first and index it with xs +
ys * width.

(The reshaping operation mentioned earlier could be seen as
indexing an array with one or more indices with special
characteristics, like "slice objects" or "range objects"; would it make
sense to just provide an index generation operation and leave the
reshaping to the indexing operation? A simple implementation could

omit optimizing the special case, and the extra orthogonality would
allow it to be used with index update as well, maybe. But in some
cases not optimizing that special case results in quadratic or worse
memory blowup.)

What about reductions and scans? Like indexing of
multidimensional arrays, these need some axis to run along, but they
also need a binary operator. You could use the reshape operation to
reorganize the axes so that the desired axis comes first, or maybe last.

Numpy indexing and broadcasting

There are several possible ways to index multidimensional arrays in
Numpy:

>>y # shape (2, 3)
array([['h', ‘o', "w'],
('dar, ', 'y'11,
dtype="151")
»> y[[0, 1, 0]] # Indexing by default is on the first dimension
array([['h', ‘o', "w'],
(', 1, 'y'l,
['h', o', "w'll,
dtype="151")

»> y[[0, 1, 0], ...] # equivalent
array([['h', ‘o', "w'],

[‘dl, |1|’ lyl],
[‘hl, |0|, lwl]],
dtype="[S1")

Indexing by a complicated thing replaces the indexed dimension
with its shape:

>> y[[[LL[o, 1, 0]1111]
array([[[[['R', 'o', W'
['da', "1, 'y']
['h', 'o', 'w
dtype="[S1")
>>> y[[L[[[0, 1, 0]]1]]].shape
(1,1,1,3,3)
» oyl [2, 2, 1, 2]] # Here we index on the other dimension
array([['w', "', 'o', "W'],
[‘y', 'y‘, 'l y']],
dtype="[S1")

If you're indexing along multiple dimensions at once, the indices
must be conformable, as if you were adding or multiplying them
together, which in a sense you are (see above about xs + width * ys):

»>yllo, 1, 0], [2, 2, 1, 2]]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: shape mismatch: indexing arrays could not be broadcast together with o
oshapes (3,) (4,)
>>> y[[07 1’ 07 O]) [27 2’ 17 2]]

array(['w', |y|, IO', le],
dtype="[51")

This can lead to some ambiguity about where the dimensions taken
from the index should be merged into the dimensions of the thing
being indexed; Numpy seems to prefer the earliest candidate
position:

>»> a

array([[[0, 1, 2, 3],
(4, 5, 6, 0],
(1, 2, 3, 417,
([5, 6, 0, 1],
[2, 3, 4, 5],
(6, 0, 1, 2111)

>>> a.shape

(2, 3, 4)

>»>alllt]], ..., [[]]
array([[[6, 3, 0111
>>> _.shape

11,3

This can be quite surprising in the presence of broadcasting:

>»>alllt], [, [, i, o, ..., (L, 1, 1, 1, 1, 1]]].shape
(5, 6, 3)

>»>alllt], 01, (1, @I, (131, ..., [, 1, 1, 1, 1, 1]].shape
(5, 6, 3)

>»>al..., . LI, 1,1, 1, 1, 1]]] . shape
(2,3,1,6)

I think the Numpy behavior of an insufficient number of indices is
disharmonious with Numpy broadcasting behavior in the following
sense. If you write a function like lambda x: x * [3, 1, 5], you are in
some sense expecting that the last dimension of x will be 3 (or possibly
1). And if yousayx * [[2, 3, 1], [4, 1, 5]], you are expecting that its
last dimensions will be (2, 3) (or broadcastable to (2, 3); for example,
(1, 1), (1, 3), or (2, 1).) As a general principle, this means that you can
write a function that works on, for example, an RGB triplet, and then
apply it to some large collection of RGB triplets (perhaps an array of
shape (320, 240, 3)), and hope that it will serendipitously generalize to
application elementwise. And as long as broadcasting is the only thing

being applied, this works:

>>> p = np.array([127, 63, 127])
>> (p * [3, 1, 5]).clip(0, 255)
array([255, 63, 255])
>> p = np.array([[127, 63, 127], [121, 23, 21]])
»> (p * [3, 1, 5]).clip(0, 255)
array([[265, 63, 255],
[255, 23, 105]1)

But this fails once indexing comes into play. For example, we

could extract the green channel of p with p[1] or possibly p[[1]]. But
this only works in the first case above; in the second case, instead of
extracting the red channel of each pixel, it extracts all three channels
of just the first pixel.

Many other Numpy operations have the same problem. If we want
the sum of the three components of the pixel, for example, p.sun()
gives them to us; but .sun() applies implicitly over all axes by default:

>>> p = np.array([[127, 63, 127], [121, 23, 21]])
>>> p.sun()
482

And even if we specify a particular axis, the axes are counted from
the left, not the right:

>>> p.sun(axis=1)
array([317, 165])

To get behavior harmonious with the broadcasting behavior, we
must specify a negative axis number:

>>> np.array([[[127, 63, 1271, [121, 23, 21]]]).sun(axis=-1)
array([[317, 165]])

Other operations have even stranger behaviors, like implicitly
flattening the array if no axis is specified:

>>> np.array([[[127, 63, 1271, [121, 23, 21]]]).cumsun()
array([l??, 190, 317, 438, 461, 482])

If we want to form a sum table of the color channel of each pixel,
we can specify axis=-2:

>>> np.array([[[127, 63, 1271, [121, 23, 21]1]).cunsun(axis=-2)
array([[[127, 63, 127],
(248, 86, 148]1])

For better or worse, this fails on a single pixel:

>>> np.array([127, 63, 127]).cunsun(axis=-2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: axis(=-2) out of bounds

This desideratum of supporting serendipitous vectorization by
implicit rank polymorphism probably requires redesigning the
"reshape" operator mentioned earlier so that it won't accidentally
break this vectorization.

Octave indexing and broadcasting

Octave has totally different behavior, implicitly flattening for
indexing with a single index:

octave:24> y = ['how'; 'dly'l;

octave:9> y([1 2 1])
ans = hdh

You do, however, get Numpy-like behavior when you supply both
indices:

octave:13> y(:, [1 2 1])
ans =

hoh
dld

octave:14> y([1 2 1], :)
ans =

how
dly
how

octave:32> y(:, [3323])
ans =

Wwow
yyly

Moreover, for Octave, "all objects have a minimum of two
dimensions", so indexing once into a vector is really indexing into the
second dimension of a matrix:

octave:15> z = 'waltz'

z = waltz

octave:17> z([1 2 1])

ans = waw

octave:18> z([1 2 1], :)

error: A(I,J): row index out of bounds; value 2 out of bound 1
octave:18> z(:, [1 2 1])

ans = waw

octave:19> z([1 1 1], [1 2 11)

ans =

waw
waw
waw

Note that this last result shows that Octave is not broadcasting the
indexes together the way Numpy does.

You can extend the matrix to an arbitrary number of dimensions,
treating this 1X§ matrix as a 1X§X1 array, or 1X§X1X1X_.

octave:34> size(z([1 1], [1 21], [1 1 1], [t 1], (1 1]))
ans =

octave:22> z([1 1], [1 21], [1 1 1])
ans =

ans(:,:,1) =

waw
waw

waw
waw

waw
waw

Note that the output here shows that Octave's index order is closer
to Fortran order than to C order: the rightmost indices vary most
slowly, not most quickly. This is consistent if you read down the
columns of each displayed matrix, but if you insist on reading each
row from left to right before proceeding to the next one, as if you
were reading English rather than Chinese, then the first two
dimensions are an exception. This is even clearer looking at the
behavior of reshape:

octave:54> w = reshape(1:24, [2 3 4])

w =
ans(:,:,1) =
1 3 5
2 4
ans(:,:,2) =
7 9 1
10 12
ans(:,:,3) =
13 15 17
14 16 18
ans(:,:,4) =
9 21 23
20 22 24

As with Numpy, you can get an output with a more complicated
shape by indexing once with a more complicated shape:

octave:27> z([1 2 4; 41 2])

ans =

wat
twa

However, this doesn't work if you're indexing multiple dimensions,
in which case instead of implicitly flattening the thing you're indexing
into, as above, you implicitly flatten each index, in Fortran order,
giving an INTERCAL-like flavor in this case:

octave:41> z([1 1], [314; 15 1])
ans =

lwwztw
lwwztw

octave:36> size(z([1 1], [121], [111;111]))
ans =

I thought that maybe Octave's (or rather MATLAB's) implicit
flattening is where Numpy gets its implicit flattening, but in fact
Octave doesn't implicitly flatten in sun, prod, nax, and cunsun, which
implicitly apply along the fastest-varying axis, which happens to be
the leftmost:

octave:48> sum([3 1 4; 159])
ans =

4 6 13

octave:49> max([3 1 4; 159])
ans =

octave:50> prod([3 1 4; 159])
ans =

3 5 36

octave:51> cumsum([3 1 4; 15 9])
ans =

3 1 4
4 6 13

However, these don't decrease the dimensionality of the result;
they just shrink one of its dimensions to size 1:

octave:58> size(w)
ans =

octave:59> size(sum(w))
ans =

You can specify a different axis for the aggregation, as in Numpy:

octave:73> size(sum(w, 2))
ans =

What about broadcasting? Unlike in Numpy, it's consistent with
sun and indexing, in that it left-aligns the dimensions rather than
right-aligning them, although this is somewhat confusing if you
forget that it considers an ordinary row vector to be 1XN:

octave:60> w + [100 1000]

error: operator +: nonconformant arguments (opl is 2x3x4, op2 is 1x2)
octave:60> w + [100 1000 10000]

warning: operator +: automatic broadcasting operation applied

ans =

ans(:,:,1) =

101 1003 10005
102 1004 10006

Still, though, there is no possibility of getting serendipitous
multiplicity generalization in Octave on a function that uses indexing;
indexing with too few indices will flatten the omitted trailing
dimensions down into the last dimension. This is a generalization of
what happens when you index with just a single dimension:

octave:69> w(:, 10)
ans =

19
20

octave:70> w(:, 10, :)

error: A(I,J,...): index to dimension 2 out of bounds; value 10 out of bound 3
octave:72> w(:, 1, 4)

ans =

19
20

R indexing and broadcasting
R almost completely lacks the kind of rank-polymorphism I'm

looking for.

R, like Octave, uses Fortran order (and 1-based indexing), and
implicitly flattens when you index a matrix with just one index:

>y<_ C(Ih', 'dl, 'O‘, Ill’ IW', |y|)
> din(y) < ¢(2,3)

>y

(11 [,21 [,3]
[1,] "n" "o "y
[2,] " My
> y[1]
(1] "
> y(1,]
[1] "h" "o" "w"
> y[,1]
[1] "h" "q"
> yle(1,2,1),]

(11 [,21 [,3]
1] " o
[,) """y
3] ot

Unlike in Octave, this really is a special case for a single index; you
can index a 2X2X2 array with one index or three, but not two:

>j<c,2,2,1,1,2,2,1)
> din(j) < ¢c(2, 2, 2)
>

[I R

2,] 2

> jl4]

[1] 1

> jl2,]

Error in j[2,] : incorrect number of dimensions
> jl2, 1]

Error in j[2, 1] : incorrect number of dimensions
>jl2, 1, 2]

(1] 2

This thing where the structure of a complicated index is replicated
in the output doesn't seem to be present; indexing by j above just
flattens j into a vector of indices:

> y[j]
[1] llhll I|d|l lld“ IIhll Ilhll lldll I|d|l llh“

(11 [,2] ,3]

[1,] "B o'
(2,] "g" "oty
[3,] "ar "1ty
[4,] "B 0"
[5,] b o'
[6,) """ vy
[7,] "ar vy
[8,] " "o

Multiple indices are not broadcast together, as in Numpy, but
instead give a Cartesian product, as in Octave:

> y(3,]]
(1) [,2] [,3) [,4] [,5) (,6] [,7] [,8]

[1,] "B" "o" "o" "R" "B o' o' 'R
P U E U U E KO U
KR U C U U T KO U
[4,0 "B" "o" "o" "h" "h' "o o' 'R
[5,] "b" "o" "o" "h' "B' "o" "o" 'h"
[6,] "d" 1" "1t ovgr gt vl
R U C U U T KO U
[8,] "' "o" "o" "H" "h" "o" o' 'R"

sun and cunsun flatten by default, as in Numpy:

> sun(p)

(1] 482

> cunsun(p)

(1] 127 190 317 438 461 482

There is no optional "axis" argument, as in Numpy and Octave;
instead there are some special-case functions:

> colSums(p)
[1] 317 165
> rouSuns (p)
(1] 248 86 148

Broadcasting left-aligns dimensions, as in Octave, but seems to be
limited to scalars and vectors, and has truly bizarre behavior:

> p <~ c(127, 63, 127, 121, 23, 21)
> din(p) <- ¢(3, 2)
>Dp
(L1 [,2]
1,] 127 121
2, 63 23
(3] 121 2
>pxc@3, 1, 5)
(L1 [,2]
[1,] 381 363
2, 63 23

[3,] 635 105

So far, so reasonable. But look at this:

>p+cll, 2,3, 4,5, 6)
(L1 [,2]

[1,] 128 125

2,] 6 28

(3,] 130 27

The vector got implicitly reshaped! Weirder still, given a 2-vector,
it gets broadcast down columns instead of across rows --- or does it?

>ptecll, 2)

(L1 [,2)
[1,] 128 123
2,] 65 24
(3,] 128 23

If the matrix is square so that the vector could be broadcast either
horizontally or vertically, it gets broadcast horizontally:

> pl,c(l, 2, 1)] + (1000, 10000, 100000)
(1 L2 [3]

(1,] 1127 1121 1127

(2,] 10063 10023 10063

(3,] 100127 100021 100127

> p + ¢(100, 1000, 10000, 5)
1) 2]

(1,] 2271 126

[2,] 1063 123

[3,] 10127 1021

Warning message:

In p + c(100, 1000, 10000, 5) :

longer object length is not a multiple of shorter object length

The horrifying truth is that it's just replicating the vector down the
columns to "broadcast" it --- it wasn't applying it to columns after all!
pl[,1] + 1is c(128, 64, 128), not c(128, 65, 128) as given above. But even
when it doesn't fit, you only get a warning.

At the other extreme, suppose you want to add a 2X2 matrix to our
2X2X2 j above. Nothing doing!

> 1 <= ¢(10, 100, 1000, 10000)

> din(i) < c(2, 2)

>14]

Error in 1 + j : non-conformable arrays

Given the above, you'd think we could do that if i is just a vector,
but no, apparently that implicit flattened replication is just for
matrices:

> dim(i) <-4
> 1 +j

Error in 1 + j : non-conformable arrays
> dim(j)

(11222

> dim(i)

(1] 4

We can still add a 2-vector to j, and it broadcasts horizontally and
depthwise as expected.

> j + ¢(100, 1000)
)) 1

[,1] [,2]
[1,] 101 102
(2,1 1002 1001

)) 2

(1 [,2]
[1,] 101 102
[2,] 1002 1001

And a 4-vector broadcasts depthwise:

> j + c(10, 100, 1000, 10000)
)) 1

(1 [,2]
(1,] 11 1002
(2,] 102 10001

.

L1 (2]
(1,] 11 1002
(2,] 102 10001

But we cannot add a 2X2-element array, or a 2-element array, to j,
because in R, vectors and arrays are different classes of things that just
happen to look exactly the same most of the time:

> k <= ¢(10, 100)

> din(k) < 2
>j+k

Error in j + k : non-conformable arrays
> k

(1] 10 100

> ¢(10, 100)

(1] 10 100

> class(c(10, 100))
(1] "numeric"

> class(k)

(1] “array"

> dim(c(10, 100))

NULL
> dim(k)
(1] 2

As far as I can tell, for arrays to be conformable, they must have
exactly the same shape, with no broadcasting.

Program serialization as strings of bytes:
let's use text!

The usual way to represent programs for a virtual machine is as
some kind of binary bytecode. This is relatively fast to load, but it
requires at least some kind of assembler to construct it from a
human-readable format (if not a compiler from a higher-level
language) and probably some kind of disassembler as well to help with
debugging. (If the virtual machine is producing the wrong results on
some program, you need some way to puzzle out what the program is
telling it to do, in order to figure out whether the bug is in the
program or the VM.)

I think that for this purpose it might be a reasonable alternative for
the virtual machine itself to parse a simple textual syntax that is
sufficiently friendly to write directly by hand and read with a text file
viewer, even if it lacks some of the amenities one might want in a
programming language. For example, you might use a syntax similar
to PostScript, or FORTH, or Lisp.

Topics

* Performance (p. 794) (25 notes)
* Derctuo (p. 822) (9 notes)

* Reproducibility (p. 844) (s notes)
* Python (p. 860) (4 notes)

* C (p. 872) (4 notes)

* R (p. 884) (3 notes)

* Arrays (p. 912) (3 notes)

* Octave (p. 940) (2 notes)

* Numpy (p. 941) (2 notes)

* Chifir (p. 975) (2 notes)

e SIMD

* Lush

Ballpoint SPIF

Kragen Javier Sitaker, 02020-04-25 (7 minutes)

At the Ohio State University, as in many other places, there is a
giant solid ball of granite floating in a pool of water. This is a
surprising sight, since granite is not known for its buoyancy, but it's
real; you can spin this three-meter-diameter sphere around with your
hand and feel its massive weight slowly easing into motion in
precisely the way a giant granite boulder sitting on the ground does
not do.

This remarkable phenomenon is the manifestation of a fluid
bearing, like the air bearings commonly used in
semiconductor-handling equipment or an air-hockey table, but in this
case the joint is a ball-and-socket type. Water is pumped up
underneath the boulder, lifting it just enough to allow the water to
escape around its edge, where without water it would rest on a
circular stone "valve seat" whose diameter is almost as large as that of
the boulder --- exactly like a ball-bearing-type check valve, with
gravity instead of the spring. Only enough water pressure is needed
to support the average vertical thickness of the boulder, (2/3) wr® /
Ystr? = /3, about half a meter; at 2.4 g/cc and 9.8 m/s/s, that works
out to about 12 kPa. In theory the water flow rate at this pressure can
be arbitrarily low; and lower water flow rates give higher positioning
precision, but also reduce the "side loading" force needed to crash the
boulder into the valve seat, incurring static friction and potentially
scratching it. In practice the boulder is thus suspended using several
liters per second of water, which means that only on the order of 100
watts is required to sustain this numinous apparition.

A really delightful attribute of fluid bearings of any kind is that
they have no static friction: as the velocity approaches zero, so do the
viscous losses in the fluid and thus the friction; thus the boulder is
always rotating. So one of their key applications is for low-velocity
kinematic pairs.

This brings us to single-point incremental forming, in which you
shape a metal sheet by pushing a metal finger into it and moving it
around. SPIF, like 3-D printing, is capable of producing a wide
variety of different shapes with no per-shape tooling, but it can
produce fully-dense forged sheet-metal pieces with no material waste
and no postprocessing required, just like the more usual kinds of
sheet-metal presswork, sometimes approaching the capabilities of
deep drawing. The toolpath planning process is somewhat more
involved than for 3-D printing because you need to do a FEM
analysis of candidate toolpaths to anticipate when they would cause
the metal to overheat, wrinkle, tear, or get too thin.

In particular, friction with the forming tool is a major obstacle, and
can be unpredictable. Typically the tool is a round shank of tungsten
carbide with a hemispherical end that is polished smooth, and to
reduce friction this tool is both lubricated with oil and rotated as it
moves around the work.

It occurs to me that the floating-boulder trick offers a far more

expedient alternative, if you shrink it down and crank up the pressure.
Instead of the round end of a carbide shank, you use a floating ball
bearing --- ideally ceramic, but maybe just metal --- and support it in
a liquid bearing that presses it against the workpiece. This allows you
to roll it around the workpiece like the ball of a ballpoint pen rolls
around on paper, entirely eliminating static friction and greatly
reducing dynamic friction. (Ballpoint pen balls do have static friction
because the ink isn't pressurized, so the analogy isn't perfect.)

The lubricant pressure needs to slightly exceed the average pressure
across the contact area between the tool and the workpiece, which
probably comes within about an order of magnitude of the yield stress
of the workpiece metal, perhaps tens of MPa (ASTM A36 structural
steel is supposed to have a yield stress of 250 MPa).

Lacking any experience with SPIF, my reasoning is as follows. If
your tool diameter is small compared to the metal sheet's thickness,
then it won't be able to form the whole sheet; it will just make an
indentation into one side, which is not what we want. Also, if the
tooltip is made of a similarly hard material, it will be deformed just as
much as the workpiece, which is very much not what we want. If the
tooltip diameter is a few times larger than the workpiece's thickness,
then the pressure applied across the whole tooltip face sums up to a
tensile force that is resisted by a ring of workpiece material around the
outside of the tooltip, and perhaps only on some sides of it, and this
allows you to do SPIF as desired. But if the tooltip diameter is many
times larger, you will be needlessly giving up surface precision, and
additionally you will have a greater tendency to just move the
workpiece around and rip it rather than forming it as intended.

So I tentatively conclude that you probably want the tooltip
diameter to be a few times larger than the workpiece thickness, but
not two or more orders of magnitude larger. So, for example, if you
are indenting an 0.2-mm-thick sheet with a 3-mm ball, you might
need to, very roughly, overcome the yield strength in an 0.2-m
annulus around the 3-mm ball using the pressure across the 3-mm
circle; this requires about 1/14 of the yield stress to be present across
the surface of the ball, about 18 MPa (2600 psi in archaic units) in the
case of 250-MPa steel. This is a feasible but challenging and
somewhat hazardous pressure for hydraulic fluids --- particularly
when the lube is going to be squirting every which way --- so where
feasible it would be nice to use a tooltip that is larger in comparison to
the gauge of the stock.

(Of course, in reality the pressure distribution is not uniform across
the face of the tooltip, nor is the tension distribution uniform around
the outside.)

Topics

* Mechanical things (p. 795) (19 notes)
* Physics (p. 796) (18 notes)

* Manufacturing (p. 799) (17 notes)

* Digital fabrication (p. 802) (17 notes)
» Strength of materials (p. 823) (8 notes)

* Steel (p. 858) (4 notes)
* Bearings (p. 982) (2 notes)

Bitwise reproducibility

Kragen Javier Sitaker, 02020-04-25 (1 minute)

The idea of reproducibility I want to base Derctuo on requires
some explanation, since there isn't anything else out there that aims at
this, as far as I can tell.

The objective of Derctuo's virtual-machine design is that running
the same program with the same inputs always reproduces
bitwise-identical outputs, unless it fails; that this should be the case
even when executed on independent cleanroom reimplementations
from the specification, whether this year or in 300 years, on the same
hardware or different hardware; that implementing the virtual
machine from the spec should require only a few hours of work; and
that this virtual machine should be sufficient to reproduce all the
computations I think are interesting.

Topics

* Systems architecture (p. 807) (13 notes)
* Derctuo (p. 822) (9 notes)
* Reproducibility (p. 844) (s notes)

Reversible parsing

Kragen Javier Sitaker, 02020-05-11 (6 minutes)

In Prolog you can write definite clause grammars, which make it
very straightforward to write grammars, which can then be used both
for text generation and for parsing:

. user@debian:~/devel/dev3; swipl

I library(swi_hooks) compiled into pce swi hooks 0.00 sec, 3,856 bytes
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://wiw.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?7- [user].

det —-> [the] | [a] | [that].
|: noun --> [buffalo] | [capacitor] | [philosophy].
[+ vi -—> [sucks] | [is, walking] | [glows].

|1 vt --> [supersedes] | [clobbers] | [loves].

|: sentence --> det, noun, vi |

|: det, noun, vt, det, noun.

|

I user://1 compiled 0.00 sec, 4,816 bytes
true.

?- phrase(sentence, S), append(Y, Z, S), append(X, [buffalo], Y).
S = [the, buffalo, sucks],
the, buffalo],

[
[
[
= [the, buffalo, is, walking],
= [the, buffalo],
= [is, walking],
(the] ;
= [the, buffalo, glows],
= [the, buffalo],
= [glows],
[.
[a, buffalo, sucks],
[a, buffalo],
(
(
[
[
(
(

a, buffalo, is, walking],
a, buffalo],
is, walking],

= [the, buffalo, loves, that, capacitor],
[the, buffalo],
= [loves, that, capacitor],

No< U2 -
1]

the, buffalo loves, that, philosophy],
the, buffalo],
loves, that, philosophy],

= [the, capacitor, supersedes, the, buffalo],

the, capacitor, supersedes, the] ;
Y = [the, capacitor, supersedes, a, buffalo],

< DN U2 <N N < U2 o<
"

s e B s Be e s s
-

the, capacitor, supersedes, a] .

A disadvantage of DCGs is that, in standard Prolog, they don’t
terminate on left recursion and can take exponential time, although
cuts can tame the exponential and I think tabled resolution can
conquer both in some cases (“DCGs + Memoing = Packrat Parsing,
But is it worth it?” by Ralph Becket and Zoltan Somogyi.)

Hmm, clearly I have a lot to learn about Prolog DCGs... Markus
Triska’s tutorial, Anne Ogborn’s tutorial, the SWI-Prolog manual,
and so on.

Anyway, what I was thinking was that for very straightforward
kinds of “grammars”, even a perfectly ordinary imperative language
suffices:

void employee card(card *s, employee *e)

{
int_colums(s, 0, 6, &e->empno);
colums(s, 6, 16, e->firstname, sizeof e->firstname);
columns(s, 16, 26, e->lastname, sizeof e->lastname);
blank columns(s, 26, 80);

}

This plain C function could be invoked either for input or for
output, if card contains a flag that indicates the direction and the
int_colums and colums functions consult that flag. And similar
bidirectional serialization/deserialization functions can be built for a
wider class of grammars. Field widths need not be fixed, and field
concatenation can be implicit:

void employee csv(stream *s, employee *e)
{
int_field(s, &e->empno);
text(s, ",");
delim s field(s, e->firstname, sizeof e->firstname, ',');
delim s field(s, e->lastname, sizeof e->lastname, '\n');

}

Again, this function can be used either for input or for output, and
multiple such functions can be composed together. If we add a little
bit of backtracking, we can get polymorphic records:

void foo(stream *s, thing *t)

https://mercurylang.org/documentation/papers/packrat.pdf
https://mercurylang.org/documentation/papers/packrat.pdf
https://www.metalevel.at/prolog/dcg
https://www.metalevel.at/prolog/dcg
http://www.pathwayslms.com/swipltuts/dcg/
https://www.swi-prolog.org/pldoc/man?section=DCG

{

begin(s);
{
equal int(s, &t->type, TYPE BAR);
byte(s, 'B');
nbytes(s, &t->bar.contents, sizeof t->bar.contents);
}
or(s);
{
equal int(s, &t->type, TYPE QUUX);
byte(s, 'Q');

s16 le(s, &t->quux.len);
nbytes(s, &t->quux.contents, t->quux.len);
}
end(s);
}

On input, the calls to equal int function as assignments to an integer
field, while the calls to byte function as assertions about which byte
comes next in the input; if one of these assertions fails, its effect on
the input stream is backtracked, so that a subsequent call to byte can
test the same input bytes. The backtracking state is set up by begin,
restored by or in case of failure, and torn down by end.

On output, the situation is precisely the other way around: the
calls to equal int function as assertions about what should be found in
t->type for that branch to proceed successfully, while the calls to byte
emit literal bytes on the output — bytes which are buffered so they
can be retracted if the case must be backtracked due to a subsequent
failed assertion.

But this is still a very simple case; in particular it does not handle
allocation, which in a C-like language probably must be part of the
state restored in case of backtracking.

You could consider something like
child node(s, &t->child, sizeof struct fulano);

struct fulano *f = (struct fulano *)t->child;
equal int(s, &f->type, TYPE FULAND);

byte(s, 'f');
decimal 1nt(s §f->x);
byte(s, ' ');
decimal int(s, &f->y);

where child node creates a new allocation on input (deallocated in
case of backtracking) and does nothing on output. But consider the
infix expression

3+ 1000/2/2/2/2/2

which in prefix notation is

(+3(/ (/(/ (/ (/1000 2) 2) 2) 2) 2)

so unfortunately we have to read the rest of the input before we

know how deep down the tree 1000 goes. I'm not even sure Prolog
DCGs handle this case in this form. I wrote a toy calculator program
tonight to explore some of the above ideas, and I refactored the
grammar to eliminate left recursion; here’s a simplified form of how
it parses terms like 1000/2/2:

int term()

{

int x = unary();

begin();
while (ok()) {
/* save() ensures that our progress so far will not be backtracked */
save(); /* zero or more multipliers, divisors, and modulos */
begin();
{
op("*");
int y = unary();
if (0k() x *= y;
}
or();
{
op("/");
int y = unary();
if (ok() x /= y;
}
end();
}
end();

return x;

}

x /= yin an AST would be something like x = new division node(x, y).
But it’s deeply unclear to me how to make that work bidirectionally:
the sequence of the input text is bottom-up, while normally the
structure of an AST is top-down.

A somewhat related thing is operator precedence and associativity.
If we take + to be associative, it might be reasonable to serialize both (+
1 (+23))and (+ (+12) 3)ininfixas1 +2 + 3, but clearly (- 1 (- 2 3)) is
1 - (2 - 3) while (- (- 12) 3) is conventionally 1 - 2 - 3. Similarly,
precedence dictates that (+ 3 (+ 4 5)) can be 3 + 4 * 5, but (x (+ 3 4) 5)
requires extra parentheses: (3 +4) * 5.

Topics

* Algorithms (p. 803) (17 notes)

* Parsing (p. 863) (4 notes)

* C (p. 872) (4 notes)

* Prolog (p. 886) (3 notes)

* Parsing expression grammars (p. 889) (3 notes)

Bloomtags: a Bloom-filter tree for
efficient and flexible database
queries

Kragen Javier Sitaker, 02020-05-13 (21 minutes)

Suppose you have a large file of lines tagged with hashtags and you
want to efficiently iterate over the lines satisfying a given hashtag
intersection. What kind of index structure supports this?

You could use a tree of Bloom filters with a relatively high
false-positive factor and add additional “synthetic tags” to improve
precision for certain pathological queries. This seems like it will
probably give reasonable efficiency, and it has some significant
efficiency advantages over existing database indexing approaches for
evaluating some kinds of queries.

The example problem: 8.5 billion lines of
data with 8 hashtags each

For concreteness, let’s suppose you have a tebibyte of 128-byte
lines, each of which is tagged with 8 hashtags, which follow a perfect
Zipf distribution, with the most common hashtag occurring in 25% of
all lines, so the next most common ones are in 12.5%, 8.3%, 6.25%, $%,
4%, etc., of all lines. So in total there are 8 gibilines. Let’s suppose
that the distribution of hashtags is otherwise uniform and
uncorrelated, for example with 3/8% of the lines being tagged with
both of the two most common tags.

There are perhaps 4 gibihashtags, although the majority are one of
the most common hashtags. So you can store a hashtag in 32 bits, but
you might be able to get away with a lot less in the average case, so
the 8 hashtags per line take up 32 bytes per line.

If the file is divided into 4-kibibyte blocks, there are 256
mebiblocks in the file. Reading any one of these blocks from a
modern SSD costs about 5o us (270 us on the machine I'm using,
with 120 megabytes per second throughput giving about a 32-kibibyte
bandwidth-delay product, but it’s second-rate, and most SSDs have
both more bandwidth and many more iops, bringing theirs closer to
4K — which is the smallest request size they support anyway), and
iterating through the 32 lines in it to determine whether they contain
the hashtag; this is less than 100 instructions, so it’ll be bottlenecked
on main-memory bandwidth, which in turn is probably bottlenecked
on SSD bandwidth.

I’'m informed that NVMe devices get close to 1 GiB per second
with 4k reads, and PCIe Optane devices can get 2.5 GiB per second
(the PCI controller limit) with 4k reads, implying upwards of 6ook
iops. So, doing the query by sequential scan on an Optane drive
would take g4ooms per gibibyte and thus 410 seconds.

Well, a thing we can already do to improve the situation is to
segregate a hashtags column or index elsewhere; it’s only a fourth of

the total file size, so we can fit the hashtags of 128 lines into each
4-kibibyte block. This would get our query time down to 102
seconds.

Most hashtags are extremely specific, occurring in only a single line.
If we have a query for such a hashtag, it would be nice to be able to
follow a tree of Bloom filters down to the single hashtag-column
block that contains the single line with that hashtag.

Bloom filter background

A Bloom filter is a bit vector. An m-bit Bloom filter for n keys e,
... en_y with k independent hash functions hy, ... hk_ such that i, j:
hi(ej) € [0, m) is a vector of m bits bp which are 1 precisely when 3i, j:
hi(ej) = p, but o otherwise. That’s all! You can see that if the hi are
random enough and m is large enough, then for some key d not in the
set, you can usually find some bit in the filter that is o, but would
have been 1 if d were in the set; but some false-positive probability
always exists, depending on k and the load factor f (the fraction of 1
bits), specifically jk . Typical values of the bits-per-element parameter
¢ = m/n range from 2 to 16, and typical values of k are also about 2 to
16.

bh = lambda i, e: hash((i+1)*hash(e)) # circumvent Python's weak hash()
bloom = lambda m, k, e: ([1 if any(bh(i, ej) % m == p
for i in range(k) for ej in e) else
0 for p in range(m)], k)
in bloom = lambda (bits, k), e: all(bh(i, e)) % len(bits) ==
for i in range(k))

As Norm Hardy explains, there are a lot of nice tricks you can do
with Bloom filters. Two of the relevant ones are unioning and

folding.

def bloom union((bits a, k a), (bits b, k b)):
assert k a ==k b
return [ai | bi for ai, bi in zip(bits a, bits b)], k a

You can OR several Bloom filters together, with or without a bit
shift or bit rotation; the result is a Bloom filter with a higher load
factor and consequently a higher false-positive rate that can be
efficiently queried to determine if any of the child filters might be
capable of containing the query key. With the shift or rotation, you
can also determine which.

You can also fold a Bloom filter: take it and OR its two halves
together to get a smaller Bloom filter with one less bit of address, and
also a higher load factor and false-positive rate. For example, if you
initially compute 64 Bloom filters with a load factor of 1.08%, you can
OR them together to get a single Bloom filter of the same size with a
50% load factor, or you can fold one of them six times to get a
64X%-smaller Bloom filter with the same set of keys as the initial filter
but the same 50% load factor.

The Bloom-filter tree index structure

http://www.cap-lore.com/code/BloomTheory.html

So suppose we take our 256 mebiblocks, each containing 32 lines
with 8 hashtags each, and compute a gigantic Bloom filter for each
one. We divide these into 64 groups of 4 mebiblocks, OR together
the filters, and then rotate-and-OR together all these filters to
produce a single master filter for the whole file with a 50% load
factor, which when queried will tell us which of these 64 groups
might contain the key. If we are satisfied with a 1/128 false-positive
rate, we can use seven bits per key (i.e., seven hash functions). All
together, this gives us 7 X 256 Mi X 32 X 8 bits to set in this master
filter to reach the 0% load factor, which works out to about 4.81 X
10", so we need about 690 gigabits, 87 gigabytes, in this master filter
and in each of the 64 group filters. You can verify that
math.exp(math.log(1 - 1/690e9)* (7 * 266 x 2x+20 * 32 8)) is about 0.5 in
Python. It is probably most practical to compute these large filters in
a blocked fashion, redundantly rehashing the whole file each time and
discarding the hash values that fall outside of the current block.

Now by probing our 87-gigabyte master filter seven times with
seven random reads, we can almost determine which of the 64
4-mebiblock groups contain a rare hashtag: we’ll have on average 1.5
hits, one real one and o.5 false positives on average. Each of these
groups has a 1.4-gigabyte filter as well — but these aren’t simply
folded versions of the original 64 filters, but rather versions built from
64 smaller subfilters which are rotated before being added together.

So in this way, with 87 gigabytes per level of the tree, we have a
five-level tree of Bloom filters which allow us to rapidly follow the
trail down to an individual 4-kilobyte block of 32 lines; individual
filters at each level cover respectively 256Mi, 4Mi, 64Ki, 1Ki, and 16
blocks, with sizes of respectively 87GB, 1.4GB, 21MB, 330KB, and
sKB per filter. If we must do on average 11 probes per intermediate
level (7 in the correct block and 4 or so in the false positive, which
half the time will contain no false positive) then our tree traversal
requires respectively 7, 11, 11, 11, and about 2 block reads, for a total of
42 block reads, about a third of a second on classic spinning rust, 12
milliseconds on the SSD I have here, or 70 us on a PCI Optane
device. This is between 200 and a million times faster than the same
query without the index.

XXX you don’t have to keep probing once you’ve found a cleared
bit; you’ll only on average probe a node that was a false positive in its
parent less than twice, in the case of 7 hashes 1 + % + % + 18 + 1/16 +
1/32 + 1/64 = 1+63/64. Not 3. This means it’s 39, not 42.

The total index tree is only 440 gigabytes, sizable but less than half
as big as the original file.

For lower-selectivity hashtags, a filter probing sequence of the same
length will yield not the sole matching line but the first of many
matching lines.

An interesting thing to note is that queries for arbitrary monotonict
Boolean combinations of hashtags still require visiting only the same
number of nodes to reach the first record of results, but probing more
hash buckets in each node, in proportion to the number of hashtags
that need to be inspected. This makes ordering by selectivity much
less important than with traditional database index
structures — although it still helps to check the most selective hashtags

first, the speedup for a query testing N hashtags is at most only a
factor of N.

Like ordinary Bloom filters, this filter tree can be readily updated
for insertions but not for deletions or updates.

T “Monotonic” here is equivalent to “can be expressed with only
AND and OR”, excluding connectives like negation, abjunction (set
subtraction), and material implication.

Synthetic tags

A difficulty with the naive approach is that intersections of
common tags will be extremely common at the higher levels of the
tree, but can still be rare in the leaves. The #250-most-popular tag,
for example, will be present in 0.1% of lines, as is the #251 most
popular, but (given our hypothesis that tags are uncorrelated) the
combination is present in only one line in a million, some 268 lines in
all. Yet the vast majority of tree nodes will have at least one
descendant line containing each of these tags; even at the last level,
almost half of them will. The solution is to generate another few
million “synthetic tags” consisting of such combinations: all the pairs
of the most popular few hundred tags, triplets in cases where the pairs
are insufficiently rare, a few quadruplets, perhaps a quintuplet or two.

Considering different branching factors

What if we change the branching factor? We will start to run into
efficiency problems once we are beyond a few machine-word-sizes of
branching: 1024-way branching might be feasible, but 4096-way
branching requires operations on vectors of 4096 bits and, thus,
suffering. Let’s consider branching factors of 256, 16, 8, and s12.

With a branching factor of 256, we need 4 levels of tree instead of
s, but 9 hashes instead of 7 (for a 1/512 false-positive rate), so each
level takes 9/7 as much space for the same load factor, and we must
probe each node in 9 places instead of 7. This works out to be very
nearly equal to the 64-way branching case: a factor of 36/35 on size
and slowness.

With a branching factor of 16, we need 7 levels of tree instead of s,
but only 5 hashes instead of 7 (for a 1/32 false-positive rate), so each
level is only about 5/7 the size, and we only have to probe each node
in s places instead of 7, so returning the first record from a query still
requires about 44 block reads. This is exactly equal to the 64-way
branching case.

With a branching factor of 8, we need 10 levels of tree instead of s,
but 4 hashes instead of 7, so each level is 4/7 the size and requires 4/7
the probing. This is slightly worse: 40/35 on both size and slowness.

With a branching factor of 512, we still need 4 levels of tree, except
that the first level only has a branching factor of 2, which is silly; and
we need 10 hashes instead of 7, so each level is 10/7 the size and
requires 10/7 the probing, for a total factor of 40/35 on both size and
slowness. This is a little worse than the factor-256 case, but only
because it’s 4 levels instead of 3. If the file were half as big, it would
be 30/35, which is still almost equal.

This null result for varying branching factor by a factor of 64 is not
what I expected! What if we consider far more extreme cases?

How about using a single Bloom filter with a branching factor of
268'435'456? Well, we probably need to crank up its precision a bit
(from the 272 the above would suggest, using 29 hashes), or it will
return us half the blocks in the file as false positives. (Above I was
assuming that 50% false positives would be fine.) And each probe will
be reading a vector of 256 mebibits (32 mebibytes) out of the filter, to
be rotated and ANDed with the other probe results. So we need to
do, say, 58 probes with 58 hash functions, doing §8 random reads of 32
mebibytes each, a total of 1.8 gibibytes, sucking up a few seconds of
memory bandwidth. But then we have a giant bitvector that tells us
exactly which couple of lines we need to look at to find the one we’re
interested in.

(XXX how much space does this use? Maybe it's less?)

This is worse than the more reasonable cases, but only because of
the lower false-positive rate demanded and the larger bitvectors being
transferred — the raw number of probes is still almost the same! It’s
within a factor of 2.

How about the other extreme — a branching factor of 2,
false-positive probability of 1/4, thus probing each filter twice? Here
each level of the filter needs to be about 200 gigabits or 25 gigabytes,
about 2/7 of the size previously needed, but we need 28 levels instead
of 7, so 56 probes. This is also slightly worse than the
middle-of-the-road sizes mentioned above, but, again, by less than a
factor of 2. This extreme, unlike the other one, is actually practical,
just slightly suboptimal.

Blocked Bloom filters

“Cache-, Hash-, and Space-Efficient Bloom Filters” proposes
“blocked Bloom filters”, a slight variation on a normal Bloom filter
that improves locality of reference. (This is also the paper that
proposed Golomb-coded sets.) The idea is that, instead of scattering
the bits for the k different hash functions for a single key all over a
huge Bloom filter, you use the first few bits of hash output to pick a
block of, say, 64 bytes, and then use the k different hash functions to
index bits within that block. In theory, as long as k is small compared
to the number of bits in the block, the performance difference is tiny
between an ordinary Bloom filter and this variant.

This analysis mostly survives the adaptations to the Bloom-filter
algorithm described above, and it has even greater advantages in the
SSD or spinning-rust milieu. It has no trouble with folding large
sparse filters into small dense filters. However, it does suffer
somewhat from rotating and combining multiple filters. In all but the
bottommost tree nodes, all the bits related to a high-frequency
hashtag will be set, forming a (say) 64-bit word of all ones. If you
have, say, 7 such words within a single 512-bit block, they will by
themselves push that block’s load factor above 60%, before any other
keys are inserted. So it is not k that must be small compared to the
block size, but 64_k_, or whatever the branching factor is.

The obvious thing to try is to use blocks of 4096 bytes, the disk’s
transfer size, rather than 64 bytes.

http://algo2.iti.kit.edu/documents/cacheefficientbloomfilters-jea.pdf

Using blocked Bloom filters means that probing for a single key in
a single tree node requires only a single disk access, no matter how
large k or the branching factor are, so, for example, our s-level tree
from before can be traversed in § random accesses rather than 39.
This might ease the pressure towards smaller branching factors,
perhaps favoring §12-way branching — wider branching factors don’t
save you any space but they do reduce access time!

Multiattribute queries and range queries

The above is all formulated in terms of “hashtags”: each “line” has
some set of hashtags. But what happens if we’re considering records
in a more traditional database? You might have a record like { "lat":
-34.5384, "lon": -58.4636, "name": "Escuela Superior de Mec4nica
de la Armada", "neighborhood": "Nuifiez", "city": "Buenos Aires",
"country": "Argentina", "category": ["Internment camp",
"Museum"] }, and you might want to query, for example, a list of

museums in Argentina.

It's straightforward to transform each name-value pair into a
“hashtag” such as “#country:Argentina” and “#category:Museum”,
generating multiple hashtags for multivalued attributes like
“category” (which would be represented as a join table in an
RDBMS). This combination of hashtags could then be used to walk
the index tree to find the records; I think this is likely to be a little
faster than doing the equivalent with ordinary database indices,
because parts of the tree that have museums but nothing in Argentina,
or things in Argentina but no museums, can be skipped over
completely, while traditional database query plans can only skip over
one or the other, (unless a multicolumn index happens to exist
beginning with that pair of columns), and must heuristically guess
which index will be more selective. But, for reasonably common
hashtags, you’ll still have to visit most of the nodes in the tree, unless
the file happens to be sorted in a way that brings them close together.

The latitude and longitude fields, though, pose more of a problem,
because it’s unlikely that someone would query for “#lat:-34.5384”
exactly. A much more likely scenario is retrieving latitudes in the
range of -34.52 to -34.55 and some similar range of longitudes — the
neighborhood including ESMA, Ciudad Universitaria, and the River
Plate stadium.

One way to deal with this problem is to shatter the tag into
“Hlat:-oxx”, “#lat:-3x”7, “Hlat:-34.x", “Hlat:-34.5x”, “Hlat:-34.53x”,
“Hlat:-34.538x”, “Hlat:-34.5384x”, and “#lat:-34.5384”. This
converts a single attribute value into 8 separate hashtags, a number
which grows logarithmically with the number of distinct values in the
file. Then, any contiguous range query on that field can be expanded
into a query of one to eight of these tags with, at most, only about a
20% loss of precision.

Topics

* Performance (p. 794) (25 notes)
* Algorithms (p. 803) (17 notes)

* Programming (p. 808) (13 notes)
* Databases (p. 901) (3 notes)
* Bloom filters

Static hypertext on CCN

Kragen Javier Sitaker, 02020-05-16 (2 minutes)

Implementing a static hypertext system on top of a service like the
retrieve-by-hash service described in Feeds or streams on CCNs (p.
52) is straightforward.

Static hypertext

Each hypertext page is a file stored in the system, consisting of a
short metadata header followed by the page itself in a format such as
HTML or PDF, and it is identified by its hash. Links to another page
include the hash H of the file it’s stored in. In this way, you can be
certain that the linked page is precisely the version of the page that
the author intended; no attacker can redirect you to a different page,
not even the author herself at a later date, perhaps while being
tortured by Mossad agents.

Of course, if the attacker can trick you into looking at a page of
theirs instead, they can make a copy of an authentic page with all the
links redirected to more pages they wrote. So all the security comes
from the security of the initial link.

This secure linking mechanism is also applicable to things like
stylesheets, image liabilities, software libraries, software configuration
files, and text transclusions. In combination with a deterministic
archival virtual machine with immutable semantics, this guarantees
the interpretability of XXX

A single file can easily contain multiple different “pages”, as
TiddlyWiki does; the fragment-identifier mechanism of the XXX

A manifest mechanism XXX
Cache timing side channels XXX
Threat model

Topics

* Security (p. 811) (11 notes)

* Protocols (p. 813) (10 notes)

* Hypertext (p. 892) (3 notes)

» Content-centric networking/named-data networking (p. 977) (2
notes)

Feeds or streams on CCNs

Kragen Javier Sitaker, 02020-05-16 (15 minutes)

Suppose we take a Kafka approach with Merkle trees to publishing
activity streams. If we presuppose an existing decentralized reliable
retrieve-by-hash service that returns stored files when presented with
a hash of their contents, we nearly have a workable decentralized
publishing system. All that’s needed is an unreliable publish-subscribe
system to provide updates, and coupled with an aggregation system, it
can work even at very low bandwidth.

The retrieve-by-hash service

The retrieve-by-hash service provides a single function, get; given
some hash H, get(H) returns a blob (a file, a byte string) of some
arbitrary size that hashes to H using some secure hash function. To be
concrete, let’s say it uses SHA-256 with the high bit set to o, so the
hash is fixed at 32 bytes.}

The interpretation of application blobs is outside the scope of this
note, except to note that they can contain the hashes of other blobs
and may also contain things of interest such as text, computer
software, historical stock prices, or pleas for help; and they can be
encrypted. In Static hypertext on CCN (p. s1) are some thoughts on
building a hypermedia and software archival layer on top of this
simple service. The implementation of the service is also outside the
scope of this note.

However, since the hash is computed over the contents of the blob,
it is (conjectured) infeasible to compute the hash for a blob whose
contents are to be chosen in the future. So no blob can contain the
hash of a blob that was created later; hash references can refer only to
past information, not future information. So this service does not
provide any way to find out whether something has happened, such as
whether the Bitcoin price has exceeded US$10000 again yet, or to
send or receive messages, or to update any information.

But a small notification message delivered over a publish-subscribe
channel — the size of a single hash, or even a bit less — is sufficient to
link to an arbitrarily large quantity of data stored in the service up to
the time when the message was sent. The notification need not itself
contain a signature, since it can link to a signature stored in the blob
store, but it may be convenient to include a signature so that
subscribers need not sort through spam or malicious notifications.

T The high bit is set to o to preserve the option of upgrading to
other algorithms in a possible future where SHA-256 is broken; new
kinds of hashes can be added in a backward-compatible fashion by
setting their high bits to 1, and a successful attack on SHA-256 then
cannot replicate those hashes. Security against Kardashev Type 3
adversaries probably requires a longer hash, but 255 bits should be
enough for a Kardashev Type 2 adversary with quantum computers.

The Kafka architecture

Kafka pretends to be a publish-subscribe system, but it’s really an

https://kafka.apache.org/documentation.html#design

append-only fileserver. In a publish-subscribe system, subscribers
(“clients” or more specifically “consumers” in Kafka lingo) subscribe
to channels (“topics”) and are notified immediately of new events
published (“produced”) on those channels. The way this works in
Kafka is that a consumer makes a TCP connection to the server
(“broker”) that is the “leader” for a channelt and “fetches” new
events on that channel, which is described as an “ordered ‘commit
log[]’”. Each message added to this log is assigned a sequence number
called an “offset”; the message’s payload is an opaque byte array with
a small amount of header metadata.

There are some 46 request types in the Kafka protocol, but we are
only concerned with the requests Fetch and ListOffset.
Fetch(replica id=-1, max wait time, min bytes, topic name, partition,
fetch offset, max bytes) returns all the messages on (topic name, partition)
starting from fetch_offset, waiting up to max_wait_time to finish
responding if min bytes bytes are not initially available, with a response
size limit of max_bytes. ListOffset(replica id=-1, topic name, partition,
time=-1) fetches the “log end offset” that will be assigned to the next
message posted to the channel (topic_name, partition), or optionally
returns the offset of the oldest retained message (time=-2) or the oldest
message before a given timestamp (given as the value of tine.)

So, when you first connect to a Kafka broker, you can ask it what
messages are retained on a channel with ListOffset, and then you can
fetch some or all of those messages with Fetch, and you can send a
Fetch request to get any future messages. It’s up to you to remember
what offset you have gotten messages up to; the broker doesn’t know
and doesn’t care. If you lose a connection and reconnect, you can
send another Fetch with the offset of the next message you haven’t
gotten yet, and it may return immediately, or it may block for up to
max_wait_time — and its unblocking is the form of asynchronous
notification provided by Kafka.

A benefit of not storing your session state on the server is that
server failures can’t lose it, and server security problems can’t corrupt
it; when the new server comes up, you can just continue reading
messages where you left off. As long as the assignment of offsets to
messages remains consistent, there is no risk that a message will be

duplicated.

By waiting for consumers to fetch messages in this way, Katka has
less overload conditions — consumers that begin falling behind do not
consume excessive network buffers or other memory on the server,
nor do their TCP connections time out.

Kafka unfortunately does have problems in which messages can be
duplicated because of flaky connections between brokers and
publishers (“producers”). The problem is that the offset is assigned by
the broker, not the publisher, because multiple publishers can publish
to the same channel. Jay Kreps felt that this was a reasonable tradeoff
given that the alternative would be potentially the assignment of
conflicting offsets every time any of thousands of disks across
LinkedIn’s server farm failed. But recent versions of Kafka have
added an additional set of producer IDs and sequence numbers to
support message deduplication in this case.

A big issue in some environments would be that, since the Kafka

https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol

broker doesn’t know what consumers might exist, it can’t safely
delete messages once they’ve been delivered. Kafka mostly tries to
solve this problem by encouraging you to store your messages on
cheap multi-terabyte spinning rust, and reducing the cost of that as
much as possible, so you can delete your messages a week or two out
instead of after a few hundred milliseconds.

Due largely to this design, Katka has been historically the fastest
message queue system out there. RabbitMQ can handle 100,000
messages per second on a normal PC, @MQ can handle about 2.5
million (without persisting them to disk), and Kafka is just as fast
while persisting to disk and replicating, and can scale up from there,
for example to 7 million messages per second across a cluster at Criteo
. Apache Pulsar is a new alternative designed to be faster.

And, fundamentally, all Kafka is doing is allowing producers to
append batches of messages to a logfile, and allowing all the
consumers to read that logfile and get notified when it gets extended.
Is there a way we can provide that service with a decentralized
system?

T The broker is actually the leader for, in Kafka terminology, a
“partition” of a “topic”, in order to support load balancing of a single
topic both among brokers and among subscribers, but this is a useless
epicycle; since it’s transparent neither to publishers nor subscribers,
it’s equivalent to just using multiple topics. As for leaders, partitions
have leaders because Kafka is a clustered system that automatically
replicates data across a cluster of Kafka servers, but it is essential to
avoid the assignment of the same offset in the same channel to two
different messages.

Reading a logfile with a Merkle tree

A Merkle tree node is either an “internal” blob containing just the
word “tree” followed by zero or more hashes, or a “leat” blob
containing just the word “leaf” followed by some data. The value of
the second one is the data after the word “leaf”; the value of the first
one is the concatenation of the values of the blobs to which the hashes
refer. Given a long string, we can compute a Merkle tree for that
string made of blobs of about 4 kibibytes by first dividing it into
4-kibibyte chunks, prepending “leat” to each of them, then creating a
first level of internal blobs representing concatenations of up to 128 of
these leaf blobs (up to 512 kibibytes per first-tier internal blob), and if
there’s more than one of those, then creating a second tier of internal
blobs of up to 128 of the first-tier internal blobs (up to 64 mebibytes
per second-tier internal blob), and so on until you have a tier that
consists of just one root node.

Suppose you have the hash of a Merkle tree node that you
somehow know that is the root node of some version of Barbara’s
event log. So you get the corresponding blob from the
retrieve-by-hash service and look at it. If'it’s a leaf node, you already
have the whole event log, but if it’s an internal node, you have to get
the blobs it refer to from the retrieve-by-hash service if you want to
read the log contents.

Suppose Barbara wants to publish another event. She appends the
event to the end of her event log, perhaps just appended onto the last

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://www.slideshare.net/RicardoPaiva17/how-is-kafka-so-fast
https://www.slideshare.net/RicardoPaiva17/how-is-kafka-so-fast

leafblob or perhaps broken into many leafblobs, and then makes a new
version of its parent internal node, and if any, its parent, and so on.
Then somehow she publishes the hash of this new node.

Now, suppose you get another hash that you somehow know
represents the root of this new version of Barbara’s event log. You
get it; both this one and the other one are internal blobs. You can
look at the hashes to see which ones are new, and fetch just those. As
long as Barbara has published less than 64 mebibytes so far, you only
need to fetch two levels of internal blobs (an overhead of 8 KiB, plus
1/128 of the weight of Barbara’s new data), plus Barbara’s new data.

We can augment the Merkle tree internal blobs with size
information for each subtree so that it becomes easy to navigate to a
particular offset. We can augment the root blob with a cryptographic
signature so that, if you somehow get hold of the root blob hash, you
can verify that Barbara did indeed publish that version of her event
log, with no further information. We can make a long string of such
signed root blob hashes for different people, each labeled with that
person’s public key hash, and make a Merkle tree of that, and publish
its root blob hash. But how do we get that root blob hash out to the
masses? The retrieve-by-hash service can’t do it.

The paging channel

Traditional phone networks work by setting up a “call”, a reserved
tixed-bandwidth channel between a pair of conversants, who can then
exchange data over it. Different phone systems have different kinds
of channels to allocate to a call: a copper pair, a frequency on an
FDM coax cable, a SONET timeslot, an ISDN channel, or an AMPS
FM channel pair, for example. Once the call is set up, it is free from
interference; except in the case of equipment failure, it offers
guaranteed bandwidth and reliability, and there is no need to resend
data due to collisions with other senders as there is with Ethernet.

However, before the call is set up, some sort of communication
channel needs to exist to bootstrap it. This is the so-called “control”
or “signaling” or “paging” channel, and typically it provides a
best-effort kind of service, with no guarantees of bandwidth or
reliability, because the channel is shared among many uncoordinated
users. (USB demonstrates that this is not the only possibility.)

Even a low-bandwidth paging channel can distribute the hashes of
new root blob hashes pretty easily; you only need to transmit 256
bits, and if you only need to be secure against current attacks, you
only need to transmit about 8o bits. There are several ways to
implement such a channel: burning Bitcoin, shortwave radio,
classified ads in the New York Times, gossip among locally connected
nodes, IRC channels, comment threads on long-ignored news articles,
timing channels in DNS TTL countdowns from shared caching DNS
servers, shining lights on tall buildings at night, and so on.

If you are somehow in a position to broadcast such a hash, how do
you choose which one to broadcast? Maybe you’d broadcast the hash
of the index that was most up-to-date and had the largest number of
publishers, perhaps creating your own by piecing together other
indices you had access to. Or maybe you’d create your own by
removing all the publishers you suspect of anti-Islamic views or

publishing misinformation about the covid pandemic. Maybe you’d
include thousands of “publishers” selling penis pills, or maybe you’d
copy someone else’s index and remove the penis-pill sellers. It all
depends on your desires.

But what about the people who retrieve that hash? What do they
want to do? What kinds of paging channels will be responsive to
their needs instead of the needs of whoever has the most money or the
brightest arc lights?

Topics

* Systems architecture (p. 807) (13 notes)

* Security (p. 811) (11 notes)

* Protocols (p. 813) (10 notes)

* Publish/subscribe feeds (p. 867) (4 notes)

* Merkle graphs (p. 890) (3 notes)

* Kafka (p. 953) (2 notes)

» Content-centric networking/named-data networking (p. 977) (2
notes)

* Economics

Commit log transfer

Kragen Javier Sitaker, 02020-05-16 (1 minute)

In a Kafka-like system running on a kernel where memory is
transferred rather than shared, the “commit log” for a channel could
physically consist of the uncopied message buffers the producers had
transferred to the broker. With copy-on-write functionality, these
message buffers could be directly exposed to subscribers without ever
copying them, although at the risk of exposing subscribers to
information about the message bundle boundaries they are not
supposed to depend on (this risk is already present in Katka). With
FlatBuffers and similar techniques, publish-and-subscribe within a
single CPU could proceed at tens of gigabytes per second — billions of
messages, hundreds of times faster than @MQ or Katka, which are
about equally fast.

Although, in such a high-bandwidth system, how do you limit
retention?

Topics

* Performance (p. 794) (25 notes)

* Systems architecture (p. 807) (13 notes)

* Protocols (p. 813) (10 notes)

* Publish/subscribe feeds (p. 867) (4 notes)
* Kafka (p. 953) (2 notes)

* Flatbuffers

One pass sort

Kragen Javier Sitaker, 02020-05-16 (15 minutes)

External sorting on modern general-purpose computers is almost
invariably two-pass. What if we could make it one-pass? We kind of
can, if we cheat. Especially with an SSD.

You might have up to so terabytes or so of disk attached to a
modern computer; typical performance characteristics of each disk
might be 10 milliseconds random access time and 200 megabytes per
second of transfer bandwidth, and you might have a dozen or so such
disks on your machine. Tapes have been relegated to niche
applications. So you might reasonably want to sort up to about 20
terabytes. But you surely won’t have less than 4 gibibytes of RAM,
probably more like 64 gibibytes.

Generally the disk bandwidth is an unavoidable bottleneck, but the
random access time of the disk (seek plus rotational latency) can
dominate it if you’re not careful. To keep the disk bandwidth lost to
random access time below 10%, you need to transfer a sequential
stream of 9 or more bandwidth-delay products every time you access
the disk. With the figures given above, the bandwidth-delay product
of each disk is about 20 megabytes, so you need to read a chunk of 180
megabytes after each random seek. If you read in chunks of only 40
megabytes, you’ll be at only %3 of what the disk bandwidth could
hypothetically handle; you don’t start to see big performance losses
until you’re well below that. But if the chunks are only 2 megabytes,
you’re only able to use 9% of the disk’s potential bandwidth, and your
sorting will take 11 times longer than it should.

The standard mergesort approach is to fill RAM with input data,
sort it, and write it back out to a temporary file. Ideally, you continue
to read in data to add to the in-memory sorted data, replacing the
data you’ve already written out, which in the worst case of the data
being backwards gains you nothing, gains you a factor of 2 in the
average case of the data being unsorted, and converts the procedure
into a single pass in the best case of the data being presorted. Let’s
take the worst case, though: 20 terabytes of data in 16-gibibyte
chunks gives us 1165 chunks.

So now we have 1165 individually-sorted temporary files of mostly
16 gibibytes each, and we want to merge them into a single output
file. So if we divide our 16 gibibytes of RAM into 1166 buffers — one
for output, the others for input — we have 14 mebibytes of buffer per
file on average. If we wait to refill or flush each buffer until less than
a mebibyte of slack is left in it, then we can read 26 mebibytes into
the buffer, growing it from 1 mebibyte to 27 mebibytes. This gives us
57% 1/0 bandwidth usage, which is not great but possibly acceptable.
If instead we have the expected §82 temporary files, we can read
55 mebibytes on each such occasion, which is 73% I/O bandwidth
usage.

If we only have 4 gibibytes, though, our capability for efficient
two-pass sorting is limited to just a terabyte or two. Two terabytes
gets divided into 466 temporary files, and so we can only allocate 9

megabytes of buffer to each file, only getting 16 megabytes per
transfer, slightly worse than the scenario above but still the right order
of magnitude. Sorting files any larger will start to require three-pass
sorting.

What’s going on with this 20-terabyte output file, though? We
can distribute our temporary files freely across half'a dozen disks, so
our aggregate input bandwidth from those disks may exceed a
gigabyte per second, which we can then merge and write back out.
But we can’t write a gigabyte per second to any of our disks! We can
only write at speeds like those if we’re writing across all the disks at
once. We have to use RAID or some kind of clever virtual filesystem
that stores a virtual file in segments on many different filesystems.
And then we may have lost, because if those segments are large and
sequential, we may only be able to write or read them at 200
megabytes per second!

Cheat 1: merge on read

So suddenly we are faced with weird existential questions like,
what is a file, anyway? It’s not really a physical thing, but some set of
operations and behaviors that work to store our data. What kinds of
operations does it need to support, and what kind of behaviors does it
have? Once the sorting process’s output “file” has been created and
closed, it probably doesn’t need to support further writes; it just needs
to support reading. What kind of reading? Is it enough to be able to
open the “file” and get records from it one at a time in sorted order?
Or do we also need to be able to tell where we are in it, and seek to
previously told positions in it? Do we need to be able to find the size
of the file and seek to arbitrary byte offsets?

If it is adequate to read sequentially, telling where we are, and seek
to previously-told offsets, then we can skip the whole stage of
merging the temporary files into an output file. Instead we can
merely decree that this collection of hundreds or thousands of
“temporary files” now constitutes the output file, which is now
divided into these parallel “chunks”. When you go to open the
results for reading, we open all of the chunks, and when you read
records, we do the merge right then, on demand, in RAM.

This has some advantages! After a single pass over the input, you
can start processing the output, doing whatever it is you want to do
with it. And you can save bookmarks in that output and seek to them
again. But it has some disadvantages, too. A bookmark is the current
read position in all the chunks at once! So representing it might take
8 kilobytes.

As an alternative to seeking to a byte offset, you could seek to a key,
which would require adding extra crap to disambiguate any possible
duplicate keys. Note that you can’t detect duplicate keys during
sorted dataset creation, only during reading, so you may need the key
to include a chunk identifier that tells which of the thousands of
chunks your desired record is in, along with a consistent ordering
across the chunks.

Seeking to a key in this way would require doing a binary search in
each chunk; if your records average 128 bytes, each
expectedly-32-GiB chunk contains 128 mebirecords, so you need to

examine 27 keys in each of (expected) §82 chunks, about 16000
operations; of these, only the first ten in each chunk would involve
random seeks, but we’re still talking about potentially tens of seconds
of waiting on spinning rust.

However, you can add a Lucene-like skip file to the dataset,
containing 512 KiB of keys sampled from each chunk and their
associated byte offsets in the chunks; if the keys are 16 bytes, you can
fit 32768 keys per chunk into the skip file, so the skip file gets you
within 1 MiB of the right place in the chunk. The whole skip file is
only 32 MiB. This cuts the number of seeks needed by an order of
magnitude, to only one per chunk.

Given a consistent ordering across chunks as mentioned above, it’s
possible to get all the way back to raw unidimensional byte offsets.
Say your positions in the various chunks are {3532, 832, 483, ...}. So
your byte offset in the entire dataset is the sum 3532 + 832 + 483 +
.... But seeking to such a byte offset is nontrivial: you need to guess
the right byte offset in each chunk, find the nearest record start, read
the key, take the median key, find the nearest corresponding keys in
all the other chunks (jumping some of them backwards and others
forwards), and then iterate forward or backward as necessary — or
possibly binary-search for the correct key, adding another factor of 4
or 5 to the seek-to-a-key procedures in the previous paragraphs.

This approach is pretty similar to LSM-trees.

A problem bigger than the seeking problem: opening the file
requires 16 gibibytes of RAM for input buffer space! That doesn’t
leave a lot for your application.

Cheat 2: partition on read

So I was thinking there might be a better idea, but this turns out to
not work very well.

Let’s consider the case of sorting a 2-terabyte file in 16 gibibytes of
RAM. First, we take a random sample of 32768 records from the
input file to find out what the distribution of its keys is, and we pick
1023 key values that partition the inferred distribution more or less
evenly, into 1024 partitions. We preallocate a temporary file for each
of these partitions, a little bit bigger than we expect to need, say 3
gigabytes, we open them all at once, and we initialize a RAM write
bufter for each temporary file.

Now, we start reading in the input file; as we read each input
record, we determine which partition it goes into, and we append it
to that partition’s buffer. Whenever we run out of memory, we flush
to disk whichever output buffer is fullest, which has an expected size
of 32 megabytes.

When we are done with this partitioning process, we have 1024
“temporary files” of 2 gigabytes each. Each of them is unsorted
internally, but has a known size, and each of them covers a disjoint
part of the keyspace, and, importantly, is contiguous on disk — we
aren’t relying on the filesystem to magically defragment a bunch of
badly fragmented writes.

So now, to open this “output file” and start reading it sequentially
by key, our user program opens up the first partition file, reads 2

gigabytes into RAM, sorts them, closes the file, and begins iterating.
When it gets to the end of the first partition, it opens the second
partition and repeats the process.

This permits seeking to an arbitrary byte offset in the combined
output file: you subtract the sizes of partitions until subtracting the
next one would go negative, and that tells you which partition file
you need to open. But it still takes a few seconds per seek.

So, when it works, this is an improvement over the previous
technique: you only need 2 gibibytes of input buffer memory to
“read” the output “file” instead of 16 gibibytes, and you can seek and
tell with regular byte offsets. But seeking is still ridiculously
expensive.

This approach also still requires some kind of RAID under the
covers to stripe each file across disks.

Cheat 3: square-root hybrid

What if we combine both of these approaches? When “sorting”
the data, partition it into 64 equal-weight keyspace partitions, as in
cheat 2. When RAM is full, take the in-memory partition with the
largest amount of data in it — in 16 gibibytes, the average in-memory
partition will be 256 mebibytes, while the most bloated one should
usually be around s12 mebibytes — and sort it, as in cheat 1, before
writing it out to a “temporary file”, let’s call it a “chunk”. If the total
dataset is 2 tebibytes, similar to the cheat-2 example, then in the end
there will be around 4096 such chunks, 64 per partition.

Now, to start reading the data “sequentially”, you open the 64 files
from the first partition and start merging them. Doing this efficiently
requires enough buffer space for 64 files — say, 1.28 gigabytes on
average to do 40-megabyte reads, but 2.56 gigabytes at startup.

But wait! Have we won anything? If we didn’t partition the 2
tebibytes, we’d be writing out (in the expected case) 32-gibibyte
sorted chunks rather than %-gibibyte chunks. There would still only
be 64 of them if we only had 2 tebibyte of data. So this partitioning
doesn’t buy the reader anything!

A bookmark to seek to might be represented as a partition number
plus 64 32-bit file offsets. Or, as said previously, a key plus a chunk
number.

So I think this doesn’t really help. In fact, it hurts a little.

SSDs

Modern SSDs, as I understand it, can deliver 2.5 gigabytes per
second of 4-kilobyte reads, but are limited to sequential writes due to
the necessity of block erase. This suggests that a different organization
of data in storage could work better — you can read 4-kilobyte blocks
in whatever order you want, you just want to make sure that each
such block is relatively coherent. Between blocks, they could form a
linked list, no problem. But of course you still have the problem that
it’s going to be pretty difficult to form a block with all the record
with keys in a given range of the keyspace before you’ve seen all the
input — the last record in the input might be in that range.

On the machine I have here, it’s more like 32 kilobytes per

transaction and only 120 megabytes per second.

So what happens if, instead of 32 megabytes per input stream, we
only need 32 kilobytes? Generating output doesn’t get any
easier — and the trick in Cheat 2 of generating lots of output files in
parallel gets a lot harder — but reading from 1000 files to merge them,
as in Cheat 1, stops being a problem. Suddenly you only need 16
megabytes of RAM for your input buffers, 32 to start, rather than
multiple gigabytes.

Topics

* Performance (p. 794) (25 notes)

* Algorithms (p. 803) (17 notes)

* Systems architecture (p. 807) (13 notes)

* Sorting (p. 923) (2 notes)

* Merging (p. 947) (2 notes)

* LSM-trees (log-structured merge trees) (p. 949) (2 notes)
* SSDs

Optimized finger joints

Kragen Javier Sitaker, 02020-05-16 (4 minutes)

Laser-cut finger joints are a popular way of joining MDF into
boxes. The fingers on each side of the joint are cut slightly wider than
the spaces on the other side, because otherwise there would be slop
around them twice the width of the kerf, which is on the order of
100 wm, and the joints would not join without glue.

This means that you cannot cut both sides of the shape from the
same piece of fiberboard with a single zig-zag-zug sort of cut; you’d
have that slop. So you apparently need to cut the two sides of the
joint separately, doubling the cut time and the cost.

But do you? Suppose each finger and each space along the joint is
250 um narrower than the preceding finger or space on that side, and
you use a single zig-zag-zug. Then the pieces won’t join together at
the position they were cut out — but if you shift them by a single
finger—space cycle, they will join firmly, with 25 um of interference
on each side. So if you shift the two pieces by a short distance relative
to each other in the to-be-cut layout, and shift them back to assemble
them, they will fit together snugly.

So, for example, you might have a 150-mm-long finger joint made
of ten 15-mm-wide fingers, and you can overlap 9o mm of it in this
way: 30 mm at the bottom (two fingers, one on each side) is just the
left piece, 9o mm (six fingers) in the middle is overlapped, and 30 mm
at the top is just the right piece. The finger widths vary from 31.25
mm at the bottom to 28.75 mm at the top. This results in 180 mm of
cutting, plus 11x, where x is the thickness of the material — 33 mm if
it’s 3-mm MDF.

This offset or stagger might make efficient nesting more difficult,
and thus increase material costs, or it might not. But, with MDF,
cutting costs greatly exceed material costs.

An alternative to edge finger joints is mortise-and-tenon joints.
These can be tight, like finger joints, but they can also be loose, with
an extra 100 um or so of slop deliberately left to ensure that pieces can
slot together easily. A series of such mortise-and-tenon joints
substitutes for a dado or groove joint, which cannot be themselves
made by sheet-cutting technologies like laser-cutting. Using a
sequence of such loose mortise-and-tenon joints rather than a finger
joint both eases assembly and also reduces the chance that an
out-of-tolerance cut will convert a tight fit into an impossible fit. A
few SIGGRAPH papers have shown ways of designing arbitrary
assemblies so that all the pieces slide into place with such joints,
locking previous pieces into place; a final piece with an interference
fit is adequate to hold the whole assembly together.

A different way to get finger joints to have interference fits,
without staggering them, is to angle the edges of the fingers rather
than using right angles, so the finger tips are narrower than the finger
bases, and the spaces between the fingers are narrowest at their base.
A difference of 120 um over a 3 mm finger length works out to about
a 92.3° angle rather than the 9o° usually used. I haven'’t tried this, but

I suspect that the resulting joints will not be as strong as regular finger
joints, because only about one fourth as much area is in contact, but
they should be easier to assemble and fairly robust to process variation.

Topics

* Contrivances (p. 790) (44 notes)

* Mechanical things (p. 795) (19 notes)
* Digital fabrication (p. 802) (17 notes)
* Sheet cutting

Solar furnace CPC

Kragen Javier Sitaker, 02020-05-16 (12 minutes)

I was thinking about how to reach high temperatures inexpensively
and safely during this quarantine. Not, like, really high temperatures,
but hotter than the oven.

Carbon foam made by carbonizing bread is probably the easiest and
most accessible insulating refractory material for this kind of thing; it
doesn’t tolerate oxidizing conditions (it slowly burns above 700°), but
in reducing conditions it gradually converts to graphite, which
sublimes at 3642°.

Stefan—Boltzmann temperatures

“One sun”, the solar constant, is standardly approximated as
1000 W/m?, which is the Stefan—Boltzmann emissivity of a black
body at 91.3°. So a perfectly insulated object in full sunlight will
eventually heat up to 91.3°. Because at that temperature all the
thermal radiation it emits is in the infrared, you can get it to heat up
to higher temperatures by painting it with paint that is highly
reflective in the infrared, or by putting infrared-reflecting glass in
front of it, but for simplicity I'm going to be considering the
blackbody case for now.

The 1368 W/m? on orbit corresponds to 121°. “T'wo suns”,
2000 W/m?, only corresponds to 160°, which is enough to cook,
barely; you can reach this level of illuminance with a single flat
mirror. Reaching 260° like this gas oven requires 4600 W/m?, 4.6
suns, which is enough for soldering electronics. 600°, enough to fire
some red clays and almost cast aluminum, emits 33 kW/m?, 33 suns.
1000° is 150 suns, 1100° is 202 suns, 1600° (to melt quartz or pure
iron) is 698 suns, and 2072° (to melt sapphire) is 1715 suns. Subliming
graphite (3642°) would probably be impractical at 13300 suns.
Quartic growth is a bitch. §500° (63000 suns) is the absolute limit.

Cavity absorbers

A small hole leading into a large cavity, sometimes called a cavity
absorber, behaves as a very good approximation of a blackbody, one
you can’t paint. At low temperatures, convection of air is a significant
way to lose heat, but at the higher temperatures I'm interested in,
almost all the heat loss is through radiation.

Probably the smallest hole it’s practical to make in carbon foam and
concentrate sunlight through is about 10 microns in diameter.
Reaching 256 suns (1184°) then requires concentrating the sunlight
from a 256-times greater area on this hole: a circle of 0.16 mm in
diameter, for example, gathering about 20 microwatts.

The material inside the cavity mostly “sees” other material inside
the cavity; nothing short of a cat’s eye will send a significant fraction
of the light coming in the hole the hole directly back out the hole.
Almost all light that gets in needs to bounce around many times,
losing energy each time, before it can get back out. So even the hole
in the top of an opened empty beer can looks black, even though the

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Stefan�Boltzmann_law

beer can is 9§%-reflective aluminum on the inside.

Unless the cavity is meter-scale or larger, parts of the cavity that
aren’t the hole need to be well insulated to prevent the loss of more
heat through conduction through the walls than from radiation
through the hole.

Optics of concentration

So if you can concentrate 256 suns on a 10-micron hole into a
sufficiently-well-insulated cavity, you should in theory be able to
heat it up to 1184° with those 20 microwatts. This suggests that solar
furnaces can perhaps be made fairly small, though see below about
insulation thickness scaling.

It isn’t sufficient to focus the sunlight from an 0.16-mm-diameter
lens of any focal length whatsoever, though. If the focal length of the
lens is too long, then the focused image of the sun will be too large
and therefore diffuse. From the point of view of an ant passing
through the projected image, the whole lens is as bright as the sun,
but the lens is only a few times bigger than the sun from her point of
view, so the power density is not that high. The f-stop of the lens
needs to be wide enough to get to 256 suns — specifically the lens
needs to look 16 times as wide as the sun, which is 0.§3° (about 32’),
so the lens needs to subtend 8.53°, which means any lens with 256
suns needs to have an aperture of £/6.72. So if its focal length is 10
mm, the lens needs to be at least 1.49 mm in diameter, at which point
it (like any other lens with a 10-mm focal length) will project an
image of the sun some 93 microns in diameter. You can only get 256
suns with an 0.16 mm diameter lens if its focal length is about 1.1 mm.

If you use a lens that’s bigger and further away — for example, the
1o-mm-focal-length, 1.5-mm lens suggested above — then most of
the energy gathered by the lens will not enter the cavity. A
93-micron-diameter sun image with a 10-micron hole in the middle
of it will gather about 100X as much energy as is actually put into the
cavity. You might think that, in exchange, you don’t have to
constantly track the sun. No such luck! The Earth turns 360° per 24
hours, which is 0.25° per clock minute, so your sun image gets
displaced by a sun diameter every 2.1 minutes, whether that’s 10
microns or 9o microns. (It’s slightly less when the sun is further from
the equator, but what’s important here is that it’s 2 minutes, not 20
minutes or 2 hours.)

For lower concentrations, you can use a one-dimensional
concentrator like a solar trough (or a glass rod), running parallel to the
sun’s path in the sky, but reaching hundreds of suns that way is not
practical, though in theory it’s possible.

Non-imaging optics such as a compound parabolic concentrator are
said to improve the situation dramatically, permitting much wider
input angles. You can use two developable compound parabolic
concentrators made of aluminum foil (reflectivity 95%) on cardboard,
at right angles to each other, to funnel light into the hole over a wider
range of sun angles; the disadvantage over using a CPC that is a solid
of revolution is that most of the light will be reflected from the
aluminum twice instead of once before going in the hole, thus
reducing efficiency.

The overall principle limiting the performance of NIO is
conservation of étendue: the intensity of illuminance times the angle
it’s coming from. The thermodynamic limit is that you can’t use the
sunlight to heat things hotter than the sun’s surface (5500°); you
would reach that limit by arranging optics so that the poor ant sees
solar surface in every direction, 47 steradians of nuclear flaming
death, 63000 sunst. Conservation of étendue says that the reflection
the ant sees is only as bright as the sun, and you can only do that if all
those optics would direct any light the ant emits into some part of the
sun’s disc, which means that such optics necessarily have a very
narrow angle of acceptance: 2.1 minutes later, the ant’s remains will
see only cool blue sky.

So it seems like you ought to be able to shape the optics such that
you get 256 suns for 1/256 of the day before you have to reorient
them; any light emitted from the hole would be redirected onto the
sun’s daytime path. Unfortunately, 1/256 of the day is only 5.625
minutes. So this doesn’t help as much as you’d hope for these
ceramic-firing applications; you need to use feedback control.

s suns, 271°, enough for soldering or baking, can be achieved by
optically coupling the hole to 4.8 hours of the sun’s path. A
one-dimensional trough CPC focused on a slit might be adequate;
four flat mirrors spaced at angles around a hole might also work.

I’'m not sure if I'm thinking this through correctly. Sunlight on the
ground gives varying amounts of illuminance depending on the sun’s
angle; it’s only a whole sun at noon (and only twice a year at that,
and only if you’re in the tropics). Sunlight reflected in a mirror surely
does look just as bright as the regular sun when you’re looking at the
mirror (from an angle where you can see the sun in the mirror,
anyway), but the mirror can be angled to spread it across a lot of
ground.

1 this 63000 ought to be 47 steradians divided by however many
steradians the sun subtends, but I haven’t calculated that.

Insulation thickness scaling

Above I said that you can get your cavity to 1000° with 20
microwatts of sunlight focused through a 10-micron hole if the cavity
is well enough insulated and you have good feedback control
orienting the reflector. But it turns out to be impractical to insulate
the cavity well enough.

If your insulation material conducts heat at 0.3 W/m/K (typical
for refractory bricks), your cavity’s surface area is 6 cm?, and you have
a 1000 K temperature difference, then at 1 mm of insulation thickness
you would lose 180 watts. Not microwatts or milliwatts, but entire
watts. So you’re seven orders of magnitude away from being able to
reach 1000° with a millimeter of insulation. Exotic vacuum panels
might be able to gain you some of those orders of magnitude back,
but charred bread won’t.

You can get maybe two or three of them back by making the
cavity smaller and the insulation thicker, but I think that at some
point it’s sort of a lost cause because once the heat diffuses a few
millimeters through the insulation it’s diffusing through a much
larger surface area again. So microwatt-scale kilns would need

https://www.traditionaloven.com/articles/81/insulating-fire-bricks

building-sized insulation.

A more practical approach is to scale up to, say, 100 watts, which is
about 320 mm X 320 mm of sunlight. If you concentrate that down
to 20 mm X 20 mm (or a 23-mm-diameter hole), you have your 256
suns. The hole can be at the end of a bit of a bottleneck leading into a
chamber of, say, so mm diameter, which is 65 m¢ and has a surface
area of 7900 mm?, 0.0079 m2. This would require 24 mm of
insulation thickness to lose the 100 W through conduction, so
100 mm or so should be adequate to get it most of the way up to that
temperature. This ends up being 250 mm in total diameter, which is

probably about as big as I can bake a loaf of bread.

So a solar furnace of subcentimeter total size probably isn’t practical
without vacuum multilayer insulation, but submeter is totally feasible.

Insulation stops being a difficult problem with large cavities.
Consider scaling up by a factor of 200: a 10-meter-diameter cavity.
Let’s scale the hole up only by a factor of 50: it’sa
1.15-meter-diameter circle, swallowing 256 kilowatts fed to it by
hundreds of square meters of mirrors. It holds 524'000 liters, and its
surface area is 314.15927 m2. To keep its conduction losses down to
256 kilowatts, it only needs 400 mm of insulation! Now the chamber
dwarfs the insulation; if you can dig it into the ground, you don’t
need any further insulation, although you might need to line it with a
sturdy refractory in case it turns the ground into lava.

Topics

* Contrivances (p. 790) (44 notes)

* Physics (p. 796) (18 notes)

* Thermodynamics (p. 806) (13 notes)
* Energy (p. 812) (11 notes)

* Solar (p. 843) (s notes)

* Optics (p. 845) (s notes)

* Pocket furnaces (p. 934) (2 notes)

« Etendue (p. 961) (2 notes)

* Non-imaging optics

Pandemic collapse

Kragen Javier Sitaker, 02020-05-17 (updated 02020-12-16)
(22 minutes)

I was looking at a thread on the orange website and I was surprised
by people’s shortsightedness. They’re talking about how the stock
market remains high despite the pandemic’s damage to the economy,
but their spectrum of possible outcomes seems to stop at the Great
Depression.

I see a lot of people in the US trying to understand the current
disaster through the lens of the last big disasters that happened in the
US: the US involvement in the Vietnam War, the US involvement
in WWII, the Great Depression, the 1918 flu. Of course I don’t
know what is going to happen — and if I did, I wouldn’t want to
attract the resulting attention — but I think you should take a wider
perspective. This might be an OCP, more like when Sherman
marched to the sea or Cortés rode into Tenochtitldn. It might be
more like Cambodia’s experience of the Vietnam War than the US’s.
Things may change more than you expect. The US may not survive.

As Annalee Newitz writes in the New York Times of the Bronze
Age Collapse:

When their cities were swallowed by fire, the Bronze Age ruling classes lost
everything, including the subjects they once controlled. Greece’s population
dropped by roughly so percent during this time, probably because of a combination
of war, drought and migration, according to Sarah Murray, a classics professor at
the University of Toronto and author of “The Collapse of the Mycenaean
Economy.” Mr. Cline believes that plagues may have driven people into the
hinterlands, too.

It’s hard to estimate the probability of such a country-destroying
disaster, so it’s tempting to just dismiss the possibility out of hand as
outlandish — nothing like that could possibly happen, since the US
has remained stable and indeed grown in power in our lifetimes, in
our parents’ lifetimes, in our grandparents’ lifetimes, even in our
great-grandparents’ lifetimes. It’s tempting to assume that an edifice
that has thus stood the test of time will endure forever. Moreover,
since the United Nations won World War II, the world has
experienced a historically unusual period of relative peace, the Pax
Americana, sometimes called the American Century.

Country collapse base rate estimation: on
the order of 1% per year

But periods of peace and countries do not endure forever; they are
wracked by invasions, revolutions, military coups, and simple collapse.
‘What’s the base rate of such events?

Let’s consider specifically the kind of events that upend the
established order in a country and consign the rich and powerful to
poverty and death. Again, it’s hard to measure precisely, but we can
get within an order of magnitude. In recent centuries, most countries
experience such a major upheaval about once every century or two.
Once a decade is clearly too often, and once a millennium is too rare.

https://news.ycombinator.com/item?id=23200830
https://www.nytimes.com/2020/05/11/opinion/sunday/coronavirus-inequality-history.html
https://www.nytimes.com/2020/05/11/opinion/sunday/coronavirus-inequality-history.html
https://en.wikipedia.org/wiki/Pax_Americana
https://en.wikipedia.org/wiki/Pax_Americana
https://en.wikipedia.org/wiki/American_Century

A cross-section across countries in the last few years
Let’s consider recent events worldwide.

At the beginning of 2020, most countries still had the same way of
life they had in 2010 and indeed in 2000, and investments made in
2000 were still secure in 2020. We can enumerate the exceptions:
Egypt, Tunis, Iraq, Congo, Liberia, Syria, Afghanistan, Sudan (if you
live in Darfur), the Rohingya regions of Myanmar and India, parts of
the Niger delta, Yemen, the Crimea, Venezuela, Libya, and arguably
Hungary, Mexico, Bolivia, Ukraine, Mali, Honduras, Kyrgyzstan,
Ecuador, and Turkey. That’s somewhere around 10 to 30 countries,
although at the border, it’s pretty fuzzy.

That’s out of about 200 countries (again, pretty fuzzy), so we’re
looking at a rate of around 0.5% to 1% per year.

But is that really fair? Afghanistan has been a mess for generations,
and the Crimea for centuries. Perhaps some polities, like Switzerland
and the Roman Republic and Empire, are very stable, while others,
like Afghanistan, are very unstable. (Note, though, that Rome

suffered its share of disastrous revolutions and sackings before it
finally fell.)

That’s as may be, but for now we’re just trying to establish the base
rate. Later we can work out how large and frequent to expect local
deviations to be, and in which direction.

A longitudinal survey of the recent histories of some
random countries

Let’s take a longitudinal survey looking at the histories of particular
countries. If you look back in the history of any given country, you
mostly only have to look back a few decades to the last such event,
maybe a century or two. Let’s look at every 17th country from
Wikipedia’s list of countries by water use.

e India? Partition, in 1947.

* Italy?T Following the Holocaust (killing some 15% of its Jewish
population), in 1943 they were defeated in World War II, their prime
minister hung upside down from a gas station, their king forced to
abdicate, and much of their territory given to Yugoslavia and the
United Nations; over the next 40 years they had successive economic
crises and terrorist massacres.

* Syria? Currently on fire.

* Kyrgyzstan? The Soviet Union collapsed there in 1991, ushering in
decades of poverty (22% of the population is still below the poverty
line), the capital was looted during a popular uprising in 2005, the
mafia keeps assassinating parliamentarians, the president fled in 2010,
and the interim president requested an invasion from Russia to put
down an incipient civil war.

» Cambodia? The Khmer Rouge killed all the intellectuals and a
quarter of the population in 1975—8.

* The United Arab Emirates? The current state there was established
when the British blew up Ras al-Khaimah in 1819, conquering the
country.

* Oman? In the 18th century it was the preeminent power in the
Indian ocean. After centuries of decline, Britain bombed the shit out

https://en.wikipedia.org/wiki/List_of_countries_by_freshwater_withdrawal
https://en.wikipedia.org/wiki/List_of_countries_by_freshwater_withdrawal
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/Italy
https://en.wikipedia.org/wiki/Syria
https://en.wikipedia.org/wiki/Kyrgyzstan
https://en.wikipedia.org/wiki/Cambodia
https://en.wikipedia.org/wiki/Khmer_Rouge
https://en.wikipedia.org/wiki/United_Arab_Emirates
https://en.wikipedia.org/wiki/Oman

of it from 1957 to 1959 in order to bring the Imamate of Oman
(incidentally, one of those thousand-plus-year-long states like Rome)
under the power of its ally the Sultanate of Oman.

* Suriname?¥ It had a civil war in 1986—9 in the wake of the bloody
1980 coup (whose winner is the current president, though recently
sentenced to 20 years in prison), and although the genocide of the
Americans during the colonial era was far less complete there than
elsewhere in America, only 4% of Suriname’s people today speak an
American language and less than 2% practice an American religion.

* Qatar? Doha and al-Wakra were sacked and looted by forces from
Bahrain and Abu Dhabi in 1867, following which point Qatari
sovereignty was established.

* Papua New Guinea? They were a major battleground of World
War Il in 1942—5.

So in sorted order the last time there was a country-destroying
catastrophe in these countries were 1819, 1867, 1943, 1945, 1947, 1959,
1978, 1989, 2010, and 2020, with a mean date of 1947. We can see
some clustering there: two of the countries were destroyed in World
War II, and India’s destruction (and subsequent glorious rebirth) as
part of the collapse of the British Empire was surely related to World
War IT as well. Whatever the distribution and clustering of these
catastrophes within any given country, we should expect that the
distribution of intervals since the most recent catastrophe is the same
as the distribution of intervals until the next one.

In particular, this controls for the problem of instability clumpiness:
like unstable servers, unstable countries tend to remain unstable for
decades, with one crisis or collapse rapidly following another, so if we
just count the collapse events in the world over some period of time,
we will get an unrealistically high number. Today, for example,
Oman has been stable since 1959, but its previous century was riven
with intrigues, secessions, civil wars, truces, invasions, and gradual
subjugation by colonialist British boots.

This suggests an average time-since-violent-collapse (and thus also
time-until-violent-collapse) of some 73 years, with a fairly smooth
distribution containing a significant number of countries going out to
200 years of stability or so.

What about the USA? Does it not have 240 years of stability?
Only from the point of view of the Northerners; the catastrophic
depredations of the Civil War in 1861—5 reduced the Southern states,
which previously included the richest part of the country, to a
poverty from which they have not recovered 155 years later, although
of course the poorest people in the South were thus immeasurably
enriched. (Please note, I am not arguing that the Civil War should
not have happened; I am merely saying that if you were a wealthy
investor in the Confederacy, you would likely be ruined by the war.)
It was no picnic for the North, who suffered some 800'000 casualties,
some 10% of its fighting-age men.

Even so, 155 years of stability puts the US in the tail of our
empirical distribution, bested only by the UAE in my sample above.
Still, it should give us some pause that the US spent four of its 240
years at war with itself. Stability is not to be taken for granted.

T Oops, now I realize Italy is one country early. I guess I'll go with

https://en.wikipedia.org/wiki/Suriname
https://en.wikipedia.org/wiki/Qatar
https://en.wikipedia.org/wiki/Papua_New_Guinea

it.
1 Oops, now I realize Suriname is one country early.

What direction should we correct these
order-of-magnitude estimates?

These figures give especial weight to the 20th and early 21st
centuries. To some extent, this is justifiable: there are secular trends
that change what is possible and what is probable, so events in the
16th century perhaps have less bearing on what could happen in the
21st century than events in the 20th do. On the other hand, we
should be alert to the possibility that a short recent period, like 2000
to present, 1980 to present, or 1940 to present, is really representative
of what is to come — it might happen to be anomalously stable or
anomalously unstable, in a way that might not continue to hold true
in the next decades.

Do we have strong reasons for believing this to be the case?

I don’t think we do. On one hand the Pax Americana reduced the
number of large wars, but the Cold War also destabilized
countries — this was a factor in the Suriname coup mentioned above
and the destruction of the Imamate of Oman, for example, and
Cambodia was of course only able to get away with its abuses because
so many saw them as needed measures that only affected those with
privilege, anyway. Kyrgyzstan’s collapse was a result of the Cold
War’s end, although it’s done worse than many former Soviet
republics — would it have been stabler and safer without the Pax
Americana and consequent Cold War? Perhaps. Or perhaps it would
have been more unstable and more dangerous.

A different objection, which I hadn’t thought of until berndj raised
it, is that the weightings above are biased toward small countries. Any
particular country on the sampled list had an 0.5% chance of being
Cambodia and an 0.5% chance of being the UAE, but their
populations are only 15 million and 10 million, respectively, so a
randomly chosen living person only has a chance of 0.2% or 0.1%
chance, respectively, of happening to live there. But failure rate
probably is not independent of country size! It could easily be that
large countries tend to collapse much more often than small countries,
or much less often. If you carried out my survey on a planet
consisting of 199 tiny countries that each collapse every year on
average, and one giant country containing 99% of the world’s
population that only collapses every ten thousand years, you’d
incorrectly conclude that people’s mean time to living through a
collapse was a year. So we should take another look at large countries,
even though we can’t take a large sample of them.

The fact that India, the largest country on the list, with 18% of the
world population, happens to have most recently collapsed (with
genocidal massacres with and masses of refugees) precisely at the mean
date of the survey, 1947, might be a coincidence.

The other largest countries are China, with 1.4 billion humans (also
18% of the world population); USA, with 331 million (4.2%);
Indonesia, with 270 million (3.4%); Pakistan, with 221 million (2.8%);
Brazil, with 212 million (2.7%); and Nigeria, which at 206 million
(2.6%) pushes us over the 50% mark. I think these countries’ most

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population

recent country-destroying disasters, where times were harder than the
US’s Great Depression, the ruling classes lost everything, the rich and
powerful were reduced to poverty, there was widespread violence,
and mass emigration ensued, were, respectively: 1949, or 1958, if you
count the Great Leap Forward; 1865; 1975—1999, if you count the
invasion of East Timor, or 1965—6 otherwise; 1947 again, same
disaster as India; arguably the military dictatorship and guerilla
warfare following the coup against Goulart in 1964, though the
resulting countrywide impoverishment was slow and prolonged, but
otherwise the tumultuous 1889—1930 First Brazilian Republic, or the
1864—1870 War of the Triple Alliance, or the 18th-century invasion
by Portugal; and one of the 1993—8 Abacha dictatorship, the 1976
coup, or the 1967—70 civil war.

So, based on tentative dates of 1865, 1930, 1947, 1947, 1949,
1965—6, and 1976 for the most recent country-destroying collapses in
the seven largest countries that house the majority of Earth's human
population, there doesn't seems to be strong evidence that large
countries are either especially stable or especially unstable. Of course,
after a collapse a country might break into smaller pieces, as the
USSR did, so perhaps we care more about countries that used to be
part of big countries — but we've already covered those by sampling
small countries. The USA's recent stability just looks like an outlier.

How about USAmerican exceptionalism? Do we have strong
reasons for thinking that the US is far more stable than other
countries? I don’t know that we have strong evidence either way.
The US is still the world hegemon, and hegemons tend not to be
invaded by the countries they dominate. But their economy
frequently depends on their hegemonic status, which is fairly fragile,
and its loss can precipitate major upheaval — even when internal
power struggles don’t.

So I don’t think there’s a strong justification for thinking that the
US’s risk of collapse in average years is significantly different from the
1% or so from the above.

But this is not an average year; we have
covid — thus a 20% chance of collapse

This is an unusual time. An economist at the Federal Reserve has
projected 34% unemployment in the second quarter of 2020, which is
higher than the peak of the Great Depression — and that’s six months
into the covid pandemic, not three years in. Unemployment
insurance claims are orders of magnitude above past records. Last
month New York City started digging mass graves for the overload
of coffins as its covid infection rate peaked. Also, the US elected a
reality TV host as President, and he fired its pandemic preparedness
team before the pandemic. Last month, the Yugoslavian he appointed
chairwoman of the FDIC he appointed published a video begging the
public to “please, keep your money in a...bank.” The Michigan
legislature just shut down this week to avoid getting shot by
protestors armed with military rifles, encouraged by the President.

Some wag quipped that it’s like having the 1918 flu, the 1929 stock
market crash, and Warren G. Harding’s presidential incompetence all
at once.

This is not normal.

It’s hard to predict what will happen. Right now, the chance of
any kind of rare event is significantly increased because of the covid
pandemic, even — perhaps especially — in the US. Moreover, events
involving chaos and discord are especially favored.

So the chance of a US collapse is higher this year than its average
1%. Let’s say it’s 20%.

I don’t venture to guess what a US collapse looks like. Typically
things like famines and plagues don’t directly topple governments or
end cultures; they undermine their economic strength and political
legitimacy, making it easier for other forces to assert themselves.

Forces? What other forces might assert
themselves?

But what groups might be players? Recent new mass movements
within the US include the Tea Party and Occupy, but the military
(3.2 million employees of the US DoD) is in a better position to take
over if the civil state fails. (The US police force is deliberately
fragmented to reduce the chance of this; so is the military, but much
less so.) Both the Tea Party and Occupy support positions with
broad-based popular support.

The Mormons number some 6.6 million in the US, far more than
the military, and have always planned to take over government in the
US if given the opportunity, in order to build a utopian society they
call “Zion”. Economically and organizationally, they are
well-prepared for hard times, and if there is a famine, the Mormons
may be especially well prepared, because each family is required to
store a three months’ supply of food, water, and other essentials, a
practice known as Family Home Storage. Mormon communities in
Mexico have resisted the incursions of drug gangs with some success.
I think it’s unlikely that the Mormons’ dormant plans to assume
temporal power will be put into motion unless society is in frank
collapse, because I don’t think they have either the firepower or the
moral force to effectively maintain control.

Drug gangs in the US already have functional apparatus for
projection of force and have geographically widespread networks and
functional countermeasures against the police, and over the border in
Mexico have achieved substantial, though incomplete, independence
from the Mexican state. However, drug gangs generally lack
broad-based support in the population in the US, unlike in Mexico,
and suffer from serious prejudice, much of which is racist in nature
and thus not easily overcome by a change of circumstances.

Many large companies in the US have substantial material
resources, well-exercised command hierarchies, committed
workforces, and in many cases continuity-of-business plans for
disasters. A few even have existing security forces. It’s plausible to
think that Walmart (2.2 million employees), Amazon (647k
employees), CVS (29sk employees), AT&T (254k employees), Ford
(199k employees), or Alphabet (99k employees) might be able to take
on the burden of protecting their assets and employees without a
functioning government. Walmart might have a hard time due to its

https://en.wikipedia.org/wiki/List_of_largest_companies_in_the_United_States_by_revenue

low profit margins (US$3k/employee), but Amazon (US$15k),
AT&T (US$76k), or Ford (US$18k) might be able to take the hit
without collapsing; Alphabet (US$311k profit per employee) easily
could, and indeed Alphabet has often come under fire for providing
public services like food, laundry, and transportation to its employees.
(CVS is currently losing money.)

Alphabet is in a unique position to defend itself from security
threats, since no potential foe can operate without its services at
present, leaving them exposed to intelligence gathering.

There are another several dozen companies in the US with over
100k employees: Accenture (515k), Kroger (453k), Home Depot
(413k), Berkshire (though that’s a conglomerate) (389k), IBM (381k),
UPS (365k), FedEx (359k), the USPS (soo+k), and so on. Large
defense contractors include GE (283k), Boeing (153k), Honeywell
(115k), Lockheed (102k), General Dynamics (101k), and Northrop
(83k). Other telecoms include Comcast (184k), Verizon (145k), and
Charter (99k); I mention these because availability of
telecommunication is crucial to viability of any geographically
distributed organization.

It’s easy to imagine a consortium of these big companies entering
into a security cooperation arrangement with one another in order to
be able to continue operating, and big defense contractors can
probably count on support from any such consortium.

Topics

* History (p. 800) (17 notes)

* Facepalm (p. 820) (9 notes)

* The future (p. 825) (7 notes)
* Regrettable (p. 883) (3 notes)
* Covid (p. 903) (3 notes)

* Politics (p. 933) (2 notes)

* Collapse (p. 973) (2 notes)

https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue
https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue

Font rendering with all-pass filters

Kragen Javier Sitaker, 02020-05-18 (7 minutes)

You can use all-pass FIR filters to efficiently do subpixel letterform
positioning of pixel fonts as well as obviate hinting. Pre-emphasis
filtering can mitigate the readability loss from nonzero-size pixels and
eye defocus. This can improve text rasterization. As far as I know,
nobody is doing this, so I don’t know it will work.

Fractional-delay all-pass FIR filters for
spatial translation

There are a variety of fractional-delay filters commonly used in
music for, e.g., Karplus—Strong delay lines. The optimal filter is a
sampled sinc; with a delay of o or some integer number of samples,
this has an impulse response of 1 in sample o or some other sample and
o on all other samples, but when its delay is some noninteger number,
all the samples are nonzero. Sinc itself dies off annoyingly slowly, but
you can window the sinc to get a faster die-off (Linczos resampling
being one implementation of this), and uniform basis splines are
another less explicit way to get an approximately windowed sinc with

a limited basis. As de Boor’s “B(asic)-Spline Basics” explains, these
splines form a partition of unity, unlike the Ldnczos kernel.

The same approach can be used to translate a sampled pixel image
by some fractional number of pixels. If the source and target have the
same resolution, this is just a convolution, with a kernel depending on
the fractional part of the shift; if the original image is bilevel (black
and white, so every pixel is either 1 or 0) doing this convolution in the
spatial domain amounts to selectively adding up some of the weights
in the convolution kernel to generate each output pixel, those that
happen to land on white pixels. This therefore requires no
multiplications.

If the source image has resolution higher than the target by some
integer factor #, such as 2, 3, or 4, then I think this approach is still
mostly valid, but now instead of a single convolution kernel you have
n? of them, such as 4, 9, or 16 kernels, each a sampled sinc whose
frequency is at the destination resolution. In particular, you can use
an outline letterform rasterized to a high-resolution bilevel image to
compute a grayscale image rasterized with perfect resampling (limited
only by rounding), or very good resampling (limited by rounding and
windowing). And the high-resolution bilevel image can be quite
compact.

In particular, I think this gets rid of hinting. Hinting is a set of
hacks which, among other things, deforms letterforms so that their
stems and curves align more often with pixel centers and their borders
run, as much as possible, halfway between pixel centers; this is
important because, without that alignment, you lose spatial
information about where they are to the sampling operation. This
works very poorly with animation and with subpixel glyph
positioning. But sinc filtering spreads that lost spatial information out
to the surrounding pixels in the form of ringing, and as it happens,

https://freddie.witherden.org/pages/font-rasterisation/

your eyes can pick up on that. So you shouldn’t need hinting.

Of course, on an LCD, you should sample at the LCD subpixels,
usually R, G, and B from left to right, not to the square pixels
containing them.

Efficient low-precision implementation
with a multiplier

This operation of convolving a bilevel image with a convolution
kernel has something of the flavor of binary long multiplication by an
element of the kernel; each bit determines whether or not to add that
weight at a particular spatial position in the output. And indeed you
can carry it out with a multiplier under appropriate circumstances.
Take the row of pixels 0011100111100001. Suppose 4 bits of grayscale
in the output is enough; let’s space out that number into a 64-bit
word by inserting zero bits, so it becomes oxoo11100111100001. If we
multiply this by a 4-bit weight such as 3, it becomes
0X0033300333300003. Suppose the next weight to the right is 4, and
the next pixel to the right is 1, so we shift in that 1 on the right and
get 0x0111001111000011, then multiply by 4 and get
0X0444004444000044, which we can add to the previous result to get
0X477304777300047, as well as the results from doing the same thing
with the corresponding weights in the next row of the convolution
kernel and the corresponding input pixels in the next (previous) row.
Proceeding in this way I think we can get perhaps an 8X to 16X
speedup over the straightforward convolution algorithm, at the
expense of really miserable overflow behavior. The speedup is
probably only 2X or 4X against a straightforward SIMD algorithm if
you have SIMD instructions.

Because of the overflow behavior, you can’t use 2’s-complement
for negative weights, which of course are everywhere in sampled sinc
kernels. Two possibilities occur to me: represent the weights in
sign-magnitude form, using the sign bit to determine whether to
subtract or add the product from the running sum, or use an excess-N
representation for the weights and the running sum, subtracting N
from each pixel after each multiply-add.

Low-rank approximations

Low-rank approximations of the relevant sinc kernels may be
useful in reducing the windowing error at a given computational
load, and the SVD provides an easy way to find them; see
notes/svd-convolution.html in Dercuano for details.

Nonzero-area pixels and pre-emphasis

Above I said that sinc resampling can produce a perfectly resampled
image, but there are a couple of complications. First, conceptually the
sampling comb is made of Dirac deltas, which concentrate a nonzero
amount of energy into a point in space. But we live in a universe
where doing that would require creating a black hole, which is both
practically difficult and highly radioactive, so instead we approximate
it by illuminating or darkening pixels of finite, nonzero size.

This amounts to convolving this ideal sampled signal with the

shape of a pixel, which acts as a zero-phase low-pass box filter with a
sinc frequency response. The blurring of pixels by CRT beam
dispersion or old-person eye defocus adds an additional low-pass
characteristic, but one that’s harder to measure. Since the pixel shape
is smaller than the pixel spacing, its first null is well above the Nyquist
frequency, so this low-pass characteristic can be corrected by
“pre-emphasis”: zero-phase linear time-invariant filtering of the
original signal to attenuate the strongest frequencies and amplify the
weaker ones, giving a perfectly flat frequency response. You may be
able to fold this into the resampling filter described earlier, or you
may want to do four high-pass IIR-filter passes in the four cardinal
directions.

One-dimensional translation

An important special case of subpixel text spatial translation is
horizontal translation. I think it’s possible to use just a fractional delay
filter in the X-axis in this case, dramatically reducing the
computational cost.

Topics

* Performance (p. 794) (25 notes)

* Algorithms (p. 803) (17 notes)

* Graphics (p. 815) (10 notes)

* Digital signal processing (p. 8s1) (5 notes)
* Fonts

* Convolution

o All pass filters

Single output build

Kragen Javier Sitaker, 02020-05-19 (4 minutes)

Some build systems and dependency systems support build steps
that produce multiple outputs. Make, on the other hand, identifies
each build step with a single build artifact produced by that build step.
This is a better approach.

An apparent benefit of multiple-output build steps is efficiency:
perhaps the same compilation that produces an object file also
produces, for example, a listing file, and producing them separately
requires essentially running the compilation twice, with the same
optimization settings (and all potential sources of nondeterminism
removed.) The solution for this problem is to make an output directory
be the resulting build artifact, containing both files.

The dependencies (inputs) of a build step can be determined by
interposition, for example watching the system calls performed in
order to find out what files are being opened. If the build step
succeeds or fails at some point, then as long as it is deterministic, we
can be sure that it will succeed or fail again with precisely the same
results as long as none of the environment it observed while running
has changed. In particular, this means that it is okay if it would have
read some other potential input file if it had not encountered an
earlier error — changes in that other potential input file will not
change the error. And it is perfectly okay to read references from one
input file, such as foo.c, to another, such as foo.h; as long as foo.c does
not change, the resulting dependency set remains static.

Multiple outputs of a build step are, by contrast, messier. What
happens if two separate possible build steps can create the same file?
What happens if a build step creates a file on one occasion, but due to
a change in its inputs, not on another? It’s better to steer clear of such
messy issues.

Although it may be most convenient to support a traditional
filesystem API for producing build artifacts, it isn’t necessary.
Suppose we are constrained to produce one file per rule, as the
standard output of a build script, but the build step runs inside an
isolated filesystem bubble whose contents are discarded once it
finishes. Then we can handle the above listing+object case as follows,
using Make syntax but for convenience with inputs inferred as
described above:

foo.tar:
gee -g -Wa,-adhlns=foo.1st -c foo.c
tar cf - foo.lst foo.o

foo.1lst:
tar xf foo.tar foo.lst
cat foo.lst

foo.0:
tar xf foo.tar foo.o
cat foo.o

You can do the same thing within a single process, but it generally
takes more than two short lines of code to express it. And you could
imagine a memory-centric version of this where the “foo.tar” output
was in the format of a segment of (sharable, read-only) memory, and
foo.Ist and foo.o were “subsegments” of it. So this approach doesn’t
depend on the use of the filesystem.

Why might you want to split out a build artifact into multiple
pieces this way? After all, any computation you can do on the basis of
f00.0 above can also be done on the basis of foo.tar. I think there are
two reasons: decoupling and caching.

The linker should not be coupled to the fact that the compiler is
generating a listing file. Rather, it should be insulated from that
information. It should not have to fish the object code it’s interested
in out of a larger file containing mostly things it’s not interested in.
That’s decoupling.

Moreover, if you make a change to the source code or the build
script that doesn’t change the object file, only the listing file, it would
be nice to avoid rerunning the linker. If the linker doesn’t even open
the listing, we know it can’t depend on its contents. So we can use
the linker’s cached output.

Topics

* Caching (p. 832) (7 notes)
* Incremental computation (p. 847) (s notes)
* Build systems (p. 907) (3 notes)

Electronics kit

Kragen Javier Sitaker, 02020-05-23 (updated 02020-12-20)
(14 minutes)

When I was a kid I had a Radio Shack “Science Fair 200-in-1
electronic project kit”, similar to the 150-in-1 kit Fran Blanche
recently talked about on her show. It was designed in 1981. I don’t
know if I built 10 circuits with it or 100, but probably somewhere in
that range.

According to the manual, it contained:

* 3 bunch of wires, about 80 in all;

* 20 resistors (one 10002, two 330Q, three 470Q, four 1kQ, one 2.2kQ,
two 4.7kQ, and one each 10kQ, 22kQ, 33kQ, 47kQ, 100kQ, 220kQ,
and 470kQ);

* 3 diodes (one germanium 1N60, the others 1N4143);

* 4 transistors (two 25SC945 NPN, two 2SA733 PNP, all Si);

* 10 capacitors (one each 100pF, 0.001uF, 0.005uF, 0.01uF, 0.05uF,
0.1uF, 3.3uF, 10uF, and two of 100uF; mostly ceramic but with the
four largest electrolytic);

*a 9V 500Q relay;

* a 265pF variable capacitor for radio tuning;

* a 250UA 65082 galvanometer;

* a “control and power switch” (a s0kQ pot with a switch at one end);

¢ six standalone LEDs;

* a 3-volt incandescent lamp;

» a single-digit 7-segment LED display with cathode resistors already
connected;

* a 350 WH ferrite loopstick antenna with two coils on it, one
center-tapped;

e an SPDT switch;

» an 8Q dynamic speaker;

» 2 small transformers, one suitable for driving the speaker from a
signal in the neighborhood of sV (“900CT: 8 ohm”), the other
“input” (“4K CT: 2K”), both with a center-tap on the high-voltage
side;

* a piezo earphone;

* a 7400 quad-NAND chip;

* 2 7476 dual J-K flip-flop;

* a KC-4SA cadmium-sulfide light-dependent resistor;

» an enclosure for six AA batteries (and no plug-in power supply);

* a momentary-contact button “key”;

* two screw post terminals; and, perhaps most importantly,

* the instruction manual, including instructions for 200 circuits you

could build.

Not counting the wires, that’s 62 components, most of which cost a
cent or so nowadays, although I think at the time the kit was more
like US$100. The components were mounted on brightly printed
cardboard with some extension springs mounted around them; these
served to grab the stranded copper wire when you fingered them

sideways. I don’t know what the advantage of this method was over
jumper wires in a standard breadboard, except that I guess each
component terminal has a unique identifying number, so the wiring
instructions in the manual could say things like “1-81-84,
2-41-49-55-176, 26-44-46,...”, and you could be reasonably sure
you’d hooked it up correctly.

The designs of the circuits are pretty interesting in that they are
adapted to the very minimal resources and poor tolerances available in
the kit; they include a few different single-transistor oscillators, for
example. (I think they’re Hartley oscillators, often using the center
tap on the audio output transformer for their tapped coil, but I'm not
sure I understand them.)

The circuits include various kinds of AM radio transmitters and
receivers, various kinds of audio oscillators, games that control audio
oscillators etc. with light, a “strobe light” with an LED, push-pull
amplifiers, RTL and DTL logic gates, a “door alarm”, random
number generators, a divide-by-4 counter with decoded output, a
VCO, a voltmeter, an ohmmeter, and so on. Many of the circuits use
the speaker or piezo earphone as microphones.

It’s been 39 years since it was designed, and a few of the
components are obsolete (T'TL logic, germanium diodes, and variable
capacitors) while others are harder to find (CdS cells, piezo earphones,
galvos, relays, incandescent bulbs). And nowadays, if you were
designing something similar to build out of new parts, you might take
advantage of some of the parts that are cheaper and more robust than
they were then: power MOSFETS, op-amps (maybe LM324s,
TLC272s, and as Viper-7 suggests (see file notes/jellybeans.htnl in
Dercuano), TLo84s for JFET input), Schottky diodes, Darlington
arrays like the ULN2003, zeners, colored LEDs, some 555,
phototransistors, but especially and above all else, microcontrollers. If
you’re going to have discrete logic circuits, make them CMOS.

Toward a ghettobotics version

If we’re limited to parts we can salvage from discarded equipment,
what could we patch together?

The easiest way to get wire is from discarded wire, especially power
cords, but sometimes also things like telephone line and coax.

Batteries are right out, but there are lots of perfectly capable AC
power supplies out there. Surprisingly, the power supply often is not
the first thing that breaks; sometimes it’s the supply chain.

LED:s, silicon signal diodes, resistors, capacitors, buttons, and
switches are abundant, and optointerruptors are found at times; most
power supplies also contain transformers, inductors, silicon PN power
diodes, and Schottky diodes. Speakers are reasonably common.
Crystal resonators are also quite common (this VCR has nine of
them), potentially permitting very high precision timing
measurements. Potentiometers with knobs attached do occur
occasionally, but trimpots are enormously more common.

Even this 12-watt LED lightbulb that burned out the other day in
the bathroom has a little power-supply board in it containing two
resistors, an MLCC capacitor, a diode, two electrolytic capacitors,

and a transformer (a center-tapped coil, really), plus a couple of chips
(one of which may be a bridge rectifier), plus 14 bright LEDs in series,
two of which are burned out. Perhaps the power supply works fine
and it was just the LEDs that overheated, in which case I have a
non-isolated power supply the size of my fingertip designed to supply
some 56 volts, 300 mA, from 240VAC. Or perhaps it would be more
useful in pieces.

Transistors are a little messier. The VCR, from 1996, has
apparently several hundred of them, but apart from half a dozen
power transistors in its power supply, they’re mostly tiny
surface-mount components. I more often find BJT's than MOSFETS,
but in this case I haven’t looked them up yet.

Inductors are a sufficiently expensive component that the 200-in-1
kit didn’t have any except as part of its transformers and antenna. But
they are straightforward to make by hand from wire, especially for
low inductances, or to salvage from discarded equipment.

Connectors are another tricky question. The 200-in-1 kit had only
62 electronic components — including post lugs to attach wires
to — but some 80 wires and 176 springs. The dude from Espacio de
César demonstrated rigging up a solderless breadboard out of DIP
sockets from old circuit boards — snip the two sides off and you have
two rows of 2.54-mm-spaced socket holes you can plug pins into.
Other connectors, such as DIMM slots or CPU sockets, may also
work for this. Through-hole components are easy to slot into those,
as long as the leads aren’t too short, but surface-mount components
need to have pins added to them.

Consumer electronics are by and large full of single-sided PCBs,
which are full of jumper wires, which can be pressed into service as
pins in a pinch, but a better alternative when possible is to rip apart
male Molex-style connectos.

Connectors are also very valuable for a different reason: they
permit modularity, and if you’re generating, say, an audio or video
signal, you can use them to connect it to something external.

7-segment LED displays can still be found in things like discarded
clock radios or microwaves, but a better option may be to build them
out of now-abundant LEDs and commonplace non-electronic
materials like paper and aluminum foil.

CdS cells are virtually unheard of in the last decades, but
phototransistors are ubiquitous, though most often infrared, often
with shielding. LEDs can sometimes serve as photodiodes, too,
although they are poorly characterized for this use.

A soldering iron and soldering flux may be difficult to improvise.

The circuit cookbook probably can’t be as cut-and-dried as the
Radio Shack cookbook was, because the available components will be
more variable.

Bootstrapping sequence

You need to start from basic tools. First you need a power supply
with voltage in a reasonable range. But you need to be able to detect
that its voltage is in a reasonable range. How do you do that without

a multimeter?

See also the note on multimeter metrology (p. 502).

A voltage detector from four LEDs and two resistors

A white illumination LED from a lightbulb can probably dissipate a
whole watt, no problem, which is 300 mA or so, and it will probably
light up visibly with any current above 0.1 mA. You probably want a
couple of separate measuring instruments here, made of two such
LEDs in antiparallel in series with a resistor: one to ensure that the
voltage is not outrageously high, one to verify that there is some
useful voltage.

The not-outrageously-high detector uses a resistor in the
100kQ—-1MQ range, which should illuminate the LED and heat up
the resistor noticeably, but probably not burn up, if placed across a
circuit carrying hundreds of volts. Still, you want to make sure
you’re using a through-hole kind of resistor for this to handle the
heat, not a surface-mount. At 100V and 1MQ you get 100uA, which
should be visible on the LED, if barely. If both LEDs light up, you
know it’s AC.

The some-useful-voltage detector is used after you’ve established
that the circuit doesn’t have 100V or more on it, so it uses a resistor in
the 330Q—3.3kQ range. So those same 100puA will appear, and the
LED will start to light up, at 0.033—0.33 volts above the LED’s
torward voltage drop (typically 3V). At 100V the LED will have
30—300mA running through it and will illuminate brightly. XXX the
resistor will explode

XXX Hmm, I need to rethink this a bit. Even at 3.3kQ the resistor
dissipates 3 W at 100V.

The resistors can be pulled from broken or surplus power supplies,
which commonly have large resistors in them, and identified using the
resistor color code, without a need for a multimeter. It will need to
be verified that they do conduct electricity.

By attaching the some-useful-voltage detector to one side of the
output of a known-good power supply, you also get a diode and
continuity tester.

A variable-voltage linear power supply from a power transistor
and a potentiometer

Once you know a given regulated DC power supply works, you
need to be able to derive other DC voltages from it. Suppose it’s 12V,
the highest-voltage rail on an ATX power supply (and typically
provided with a lot of current). You can rig a 10kQ potentiometer
across it to get a variable voltage reference, then feed that into the
emitter (or gate) of a power transistor whose collector (or drain) is
connected to the appropriate power-supply rail, thus giving you an
emitter (or source) follower.

This allows you to get whatever regulated output voltage you
want, up to a diode drop below the input voltage. But how do you
know what voltage you're getting if you don’t have a multimeter?

A string of LEDs with parallel resistors to measure power
supply output voltage

Three or four LEDs in series to ground, ideally a 1.5-volt indicator
type rather than a 3V illumination type, can provide some kind of
indication of how high the input voltage is. At below 1.5 V, no LEDs
will light. At 1.5 V, the bottom one will light, fed by a string of
resistors to it from the voltage input. Successive resistors in parallel
with the other LEDs will develop enough voltage to light those LEDs
as the current rises; this requires them to have lower and lower
resistances.

A Wheatstone bridge to measure unknown resistances and
compare voltages

On one side of the bridge we use a potentiometer (presumed linear)
with a knob glued to it; the other side pits the unknown resistance
against a known resistance. Rather than Wheatstone’s galvanometer
across the middle, we use a pair of antiparallel LEDs in series with a
small protective resistance. This may require that the input voltage be
rather high, tens of volts, to get good precision.

With an AC source, I think this setup also works to measure ratios
of capacitances or inductances.

Then, it should be possible to replace the crude LED pair with a
delicate differential pair of NPN transistors.

These detectors of voltage differences can also be used to directly
compare voltages, for example to calibrate positions on the
potentiometer knob on the linear power supply against known
regulated voltages, either from a multi-voltage power supply or from
a 7805 or something.

A VCO to measure voltages and resistances more quickly and
precisely

There are lots of circuits for this but I don’t know which ones are
simple, free of soakage, thermal coefficients, and whatnot. But if you
build one you can hook it up to a speaker to listen to your signals;
one of the 200-in-1 projects does this.

Topics

* Electronics (p. 792) (42 notes)
* Ghettobotics (p. 797) (18 notes)
* Metrology (p. 798) (17 notes)

* Radio (p. 834) (6 notes)

* Nostalgia (p. 835) (6 notes)

* LEDs (p. 836) (6 notes)

Sodium silicate

Kragen Javier Sitaker, 02020-06-04 (32 minutes)
Some notes on sodium silicate.

Nowadays sodium silicate, or waterglass, is principally employed in
foundries as a glue for sand-casting of metals, as a concrete sealant
against water, and as a grouting agent to solidify soft soils prior to
construction projects. Such composites can, at best, be several times
stronger than ordinary concrete made with portland cement, and they
don’t suffer from the grey discoloration of portland cement or,
possibly, its carbon dioxide emissions. I'm interested in its possible
uses for digital fabrication.

On Mercado Libre nowadays, companies like Geese Quimica are
selling it for AR$140 per kg of “Silige” solution, which is US$1.13 at
the current AR$124/US$1 price, and is probably about 400 g of
sodium silicate, thus working out to about US$2.80/kg. This
compares to AR$630 for so kg of portland cement, US$s.10, or
10.2¢/kg. Pure white portland goes for about s0% more, and
hydraulic slaked lime is AR$220 for 20 kg, 3.5¢/kg. Portland cement
is about 20% of the weight of the final concrete, and lime cement is
about 25% of the weight of the final mortar, while for a similar
strength sodium silicate can be 5% or less of the weight of the final
solid; these numbers work out to 0.88¢/kg for lime concrete,
2.04¢/kg for portland concrete, and 14¢/kg for
sodium-silicate-bonded concrete. The price of the aggregate closes
the gap a little bit: construction sand costs about s¢/kg and gravel
costs about 3¢/kg, though both are usually sold by volume rather than
weight. So the total materials cost might be s¢/kg for lime concrete,
6¢/kg for portland concrete, or 20¢/kg for sodium-silicate concrete.

So, sodium-silicate-bonded concrete is about three or four times
pricier than portland-cement-bonded concrete when they are the
same strength. This probably explains why portland is widely used as
a binder and waterglass is not. But I think waterglass may have some
interesting advantages that can come into play with digital fabrication.

If simply allowed to dry, sodium silicate takes a substantial amount
of time, and so it’s common to cure it with curing agents — in
foundry practice typically CO, gas, which can harden it within a few
seconds, but in other cases by mixing it with a curing agent, such as
calcium chloride or calcium hydroxide.

A lot of the existing literature on using waterglass as a binder
focuses on how to slow down the curing to minutes or hours, in order
to give it a long “pot life”. But for digital fabrication, I think it might
be more interesting to explore how to speed up the curing, ideally into
the milliseconds to hundreds-of-milliseconds range. Then you could
use it to “print” structures rapidly and with great freedom, without
having to wait hours for each part of the structure to solidify before
putting the next part in place. But is this feasible? How do we know
the structures would be strong? Would it be resistant to weathering?
What would it look like — would it suffer from the brutal, grim, gray

https://articulo.mercadolibre.com.ar/MLA-850465717-silige-silicato-de-sodio-para-moldeo-de-fundicion-_JM?quantity=1
https://www.cronista.com/MercadosOnline/dolar.html
https://www.cronista.com/MercadosOnline/dolar.html
https://articulo.mercadolibre.com.ar/MLA-658949193-cemento-avellaneda-bolsa-x-50-kg-portland-en-oferta-_JM?quantity=1
https://articulo.mercadolibre.com.ar/MLA-765654828-cal-comun-cacique-plus-o-extra-zona-norte-gba-_JM?quantity=1
https://articulo.mercadolibre.com.ar/MLA-765654828-cal-comun-cacique-plus-o-extra-zona-norte-gba-_JM?quantity=1
http://matse1.matse.illinois.edu/concrete/bm.html
http://matse1.matse.illinois.edu/concrete/bm.html
https://en.wikipedia.org/wiki/Lime_mortar
https://en.wikipedia.org/wiki/Lime_mortar

appearance of typical portland concrete? Can you stick it to regular
glass?

It turns out that they probably would be strong and resistant to
weathering, and they can have a wide variety of appearances, from
glass to sandstone and a variety of matte or glossy colors. The
waterglass itself is transparent, although commonly a bit greenish due
to iron contamination. And the possibility of structuring it at the
millimeter scale under digital control should make it possible to
achieve both stiffness and resilience dramatically better than that of
traditional concrete.

Other interesting attributes of waterglass

High-water-content waterglass is used as an intumescent
firestop — when heated above about 450°, the glass softens and its
water expands to steam, converting the solid, transparent, glassy
waterglass into a solid glassy opaque white foam.

Waterglass is commonly used in pottery as a deflocculant, reducing
the viscosity of clay slips.

The tensile strength of waterglass-cemented composites can
significantly exceed that of ordinary portland concrete, and it has been
used as a binder for demanding applications like grinding wheels.

Chemical gardens grow in a waterglass medium; this suggests the
speed with which waterglass can be solidified if exposed to the right
reagents.

KEIM and mineral paints

One crucial question here for construction purposes is whether
waterglass can survive weathering — it’s no

The Keim company in Germany, founded by Adolf Wilhelm
Keim, has sold a line of silicate-based “mineral paints” for over a
century, and the Bleeck company in the UK has recently begun
selling a similar line in the UK. Keim has expanded to the UK and
USA. These paints are principally based on potassium silicate as a
binder, which is very similar to sodium silicate, the principal
difference being that solid potassium silicate can be conveniently
redissolved in water at room temperature, while sodium silicate
requires strong heating. (Some Keim paints instead use sodium
aluminum silicate.) These paints are notable for their durability — 15
years is a common lifespan, but Keim claims that they have lasted
over 130 years on the Stein Am Rhein building, and that, although
“they will normally give 20—30 years satisfactory performance before
redecoration is required,” it is also the case that “There are many
examples of Keim Mineral Paints performing satisfactorily on lime
render substrates for periods in excess of 100 years.”. I’'m not sure
whether these examples are interior or exterior.

Their Soldalit brochure claims, “Color shades will not change for
decades,” and even recommends painting on top of acrylic or latex
paint to protect it from weathering “for decades”; Soldalit, unlike
their other paints, incorporates silica nanoparticles.

Wikipedia says, “The city hall in Schwyz and “Gasthaus WeiBer
Adler” in Stein am Rhein (both in Switzerland) received their coats of

https://digitalfire.com/article/deflocculants:+a+detailed+overview
https://www.keim.com/en-gb/keim-library/longevity/
https://www.keim.com/en-gb/keim-library/longevity/
https://www.keim.com.au/comparison-of-keim-mineral-paints-and-limewash.html
https://www.keim.com.au/comparison-of-keim-mineral-paints-and-limewash.html
https://www.keim.com.au/comparison-of-keim-mineral-paints-and-limewash.html
https://www.keim.com.au/comparison-of-keim-mineral-paints-and-limewash.html
https://www.keim.com.au/comparison-of-keim-mineral-paints-and-limewash.html
https://www.keim-usa.com/portals/0/app/clientresources/documents/BROCHURESOLDALIT USApdf.pdf
https://en.wikipedia.org/wiki/Silicate_mineral_paint

mineral paint in 1891, and facades in Oslo from 1895 or in Traunstein,
Germany from 1891.”

Although sodium silicate itself is water-soluble and will thus
redissolve in water, these paints “silicify” in contact with concrete or
masonry, forming covalently-bonded water-insoluble hydrophobic
products.

So all of this suggests that, in contact with calcite and quartz, these
soluble silicates form insoluble materials that will weather at the rate
of about the thickness of a coat of paint every 20 to 130 years. This
compares favorably to portland cement.

Curing by displacement

Some sources talk about how calcium (hydr)oxide reacts slowly
with waterglass because of its low solubility in water (1.7 g/¢), and
magnesia (6.4 mg/{), litharge (17 mg/¢), and minium (undetectably
low) do not excel it in this, though Vail (see below) reports that they
all cause “immediate precipitation”. If we want to speed it further,
since the cations are apparently the active element here, more highly
soluble salts might be preferred — calcium chloride (750 g/¢) is
evidently standard, but other possibilities include magnesium chloride
(s40 g/{); Epsom salts, magnesium sulfate (270 g/{); Norwegian
saltpeter, calcium nitrate (1200 g/{); magnesium nitrate (710 g/¢);
aluminum hydroxide (100 mg/¢); aluminum acetate (soluble); alums
such as potassium aluminum sulfate (140 g/¢) or sodium aluminum
sulfate (210 g/¢); and neat aluminum sulfate (360 g/¢). I'd rather not
deal with salts of lead, barium, strontium, cobalt, and so on, although
iron might be okay.

I guess these polyvalent cations displace the sodium cations,
increasing the degree of connectedness of the waterglass and thus
rapidly precipitating it. It took me an embarrassingly long time to
figure this out. (I'm preeetty sure aluminum will work for this too.)

What would be super awesome for this would be getting boron to
form soluble divalent or trivalent cations, but borate is of course an
anion; boron really likes to make covalent bonds, and most of the
compounds you’d hope would be soluble salts are instead found in
List of highly toxic gases.

The various mineral species that ought to be formed include the
tollowing. The Mohs hardness of the minerals can be taken as some
kind of indication of the strength of bonding in the material, but since
the materials being formed here are actually amorphous, it is
technically incorrect to refer to them as being these minerals; the
amorphous glass will have different characteristics, including
hardness, density, thermal behavior, and perhaps even color.

* Calcium silicates: in the 2:1 Ca:Si ratio, this is the “belite” giving
Portland cement its late strength, or “larnite” (Mohs hardness 6) in
the wild. This is also called “lime olivine”, although properly
speaking olivine varies from forsterite (Mg;SiO4, Mohs 7, including
peridot, a refractory melting around 1900°) to fayalite (Fe,SiOs,
Mohs 6.5—7). Halfway-lime olivine is the rare monticellite
(CaMgSiOy4, Mohs 5.5). [Tricalcium silicate], with a 3:1 Ca:Si ratio, is
alite, which I think is weaker and tends to revert to belite and lime;

https://en.wikipedia.org/wiki/List_of_highly_toxic_gases
https://en.wikipedia.org/wiki/List_of_highly_toxic_gases
https://en.wikipedia.org/wiki/Calcium_silicate
https://en.wikipedia.org/wiki/Belite
https://en.wikipedia.org/wiki/Larnite
https://en.wikipedia.org/wiki/Forsterite
https://en.wikipedia.org/wiki/Peridot
https://en.wikipedia.org/wiki/Peridot
https://en.wikipedia.org/wiki/Fayalite
https://en.wikipedia.org/wiki/Monticellite
https://en.wikipedia.org/wiki/Alite

in the 1:1 Ca:Si ratio we have wollastonite (CaSiO3, Mohs 4.5—5,
melting at 1540°), noted for its whiteness and used as a filler in
plastics, paint, and ceramics; it tends to form long acicular crystals
when allowed to crystallize.

* Magnesium silicate: as mentioned above, in the 2:1 Mg:Si ratio, this
is forsterite olivine.

I worry somewhat about olivines’ vulnerability to weathering, since
in an amorphous gel they will be even more exposed to reactions. But
the way olivines weather is by incorporating water, as with iddingsite
(Mohs 3). If hydroxyls are just incorporated into the olivine
structure, you may get humite (Mohs 6—6.5), norbergite (Mohs
6—6.5), chondrodite (Mohs 6—6.5), and clinohumite (Mobhs 6).

» Manganese silicate: this is the heavy mineral tephroite, Mohs
hardness 6, which exists in a continuum with forsterite and fayalite.

* Aluminum silicate: this occurs naturally as topaz, Mohs hardness 8,
although I’'m not sure whether you can make topaz without fluorine,
but also as several other minerals.

Topaz (ALSiO4(OH,F)y)has a 2:1 Al:Si ratio; other aluminum
silicate minerals with the same ratio include andalusite, kyanite, and
sillimanite, which are polymorphs of Al,SiOs. Kyanite, commonly
used as a refractory, is the thermodynamically favored form at STP,
and it's highly anisotropic, with Mohs hardness of 4.5—5 along one
crystal axis and 6.5—7 perpendicular to it; it can be cooked into
mullite and vitreous silica at 1100°. Sillimanite is Mohs 7 and
andalusite, also commonly used as a refractory, is 6.5—7.5.

Kaolinite (Al,Si;O5(OH)4) has a 1:1 Al:Si ratio; it is a phyllosilicate
clay, with almost negligible strength. Heating it above §50° converts
it to metakaolin, a tranformation that is complete at 9oo®: AlSi,O7;
this is used as an excellent pozzolan for pozzolanic cement, but it is
still fragile. Further heating converts it into Si3Al4O1, + SiO,, quartz
and a sort of spinel, above 950°; to platelet mullite 2(3 ALO3; + 2
SiO,) and cristobalite; at to acicular mullite (contaminated with the
cristobalite) above 1400°, which remains solid up to 1840°.

Mullite itself — the key to the alchemists' famous Hessian
crucibles — can also form at 3:2 or 2:1 ratios, but I suspect that isn’t
what you’ll get by treating sodium silicate with aluminum salts.

Notes on existing research

Sodium silicate is a bit of a tricky beast to find good engineering
data about, because it exists as a continuous spectrum between pure
lye and pure fused silica, with a highly variable amount of water, and
additionally can react with gases from the air as it hardens.

Gonzalez 2007

“Behavior of a sodium silicate grouted sand” by Gonzalez and
Vipulanandan, 2007. Mixed “N-Sodium Silicate”
(“NaSiO”(!1)-3H,0) with “dimethyl ester” (which ester?
“Ci1oH1004” — clearly these are not organic chemists — “a byproduct
of the nylon industry” — oh, apparently it’s a random mixture of
succinate, “gluterate” (glutarate?), and adipate?) and injected it into
“medium dense sand” to grout it in a mold. Compressive strength of
the sand was 300—1900 kPa, Young’s modulus 200—500 MPa, but it

https://en.wikipedia.org/wiki/Wollastonite
https://en.wikipedia.org/wiki/Magnesium_silicate
https://en.wikipedia.org/wiki/Iddingsite
https://en.wikipedia.org/wiki/Humite
https://en.wikipedia.org/wiki/Norbergite
https://en.wikipedia.org/wiki/Chondrodite
https://en.wikipedia.org/wiki/Clinohumite
https://en.wikipedia.org/wiki/Manganese_silicate
https://en.wikipedia.org/wiki/!tephroite
https://en.wikipedia.org/wiki/Aluminum_silicate
https://en.wikipedia.org/wiki/Topaz
https://en.wikipedia.org/wiki/Andalusite
https://en.wikipedia.org/wiki/Kyanite
https://en.wikipedia.org/wiki/Sillimanite
https://en.wikipedia.org/wiki/Sillimanite
https://en.wikipedia.org/wiki/Kaolinite
https://en.wikipedia.org/wiki/Metakaolin
https://en.wikipedia.org/wiki/Mullite
https://en.wikipedia.org/wiki/Cristobalite

had creep. No explanation is given as to why they thought adding
dimethyl esters would be interesting, but apparently they sped up the
gelling, maybe as a source of CO,, but weakened the final product.
Strain at failure was 0.4%—2%. No samples without DME were
included. No tensile or flexural strengths were recorded, I guess
because they were interested in grouting sands for civil engineering
purposes.

I have zero faith in Gonzalez and Vipulanandan; the formula they
give for “sodium silicate” would actually be a metallic silicon-sodium
alloy which would be at the very least violently reactive with water
and possibly pyrophoric. The absence of a DME-free control is
particularly glaring (for my purposes) and they don’t talk at all about
their CO,-control measures.

Zhao 2011

“Nanoindentation and Brillouin light scattering studies of elastic
moduli of sodium silicate glasses” by Zhao et al., 2011. Talks about a
“large discrepancy” in Young’s modulus measured by different
methods (and offers an explanation). They prepared their sodium
silicate with varying amounts of sodium (8, 20, 30, and 40 mol%)
from Na,COj3 and SiO, (presumably crystalline) mixed in an agate
pestle and then melted at 1500° or, for the 8mol%-Na glass, 1700°,
and compared to fused silica. The idea is, I guess, that the sodium
carbonate converts to Na,O when you heat it up.

A thing I'm not clear about with these mole percentages is whether
the metals are 8 mol% Na — thus, two sodium atoms per 23 silicon
atoms — or whether the oxides are 8 mol% Na,O — thus, two Na,O
units per 23 SiO; units, and therefore four sodium atoms per 23 silicon
atoms. I'm pretty sure it isn’t two sodium atoms per 23 silicon or
oxygen atoms.

Astonishingly, they got plastic deformation out of the glasses by
indenting it with a diamond-tipped “Hysitron TI 9oo
TriboIndenter”, which they then measured with an AFM. The
whole methods section of the paper is equipment porno.

They got a 72 GPa Young’s modulus for fused quartz with all four
measurement methods, down to 67 GPa at 8%, 61 GPa at 20%, 61
GPa at 30%, and about §9 GPa at 40%. There’s a bunch of stuff in
there about correcting the figures because at the higher sodium
contents they give significantly different results, up to 64 GPa for
nanoindentation for the 40%.

They also give a “hardness” value in GPa, ranging from 8 GPa for
fused quartz down to 4—4.5 GPa for the 40% sodium glass. I'm
guessing that this is the compressive yield stress, although I am
surprised to learn that these glasses have a yield stress; I thought they
would just deform elastically until they broke. But I guess in a small
enough area you wouldn’t have enough energy to propagate a crack,
and so even if the glass there powdered, you’d squish it back into the
glass surface (“indentation-induced densification”, although it’s not
clear that there was any powdering going on). I don’t know. The
AFM images make it look pretty fucking rough, and in the glasses
with larger amounts of sodium, there’s a “pile-up” of plastically
deformed material around the outside of the four-micron-wide

triangular craters. But in the lower-sodium glasses, the surface is
totally flat outside the craters.

No tensile strength figures are given.

Redwine 1967

“The Effect of Microstructure on the Physical Properties of Glasses
in the Sodium Silicate System”, by Redwine and Field 1967. It’s not
a survey paper — it focuses on changes in physical properties that can
be obtained by heat-treating glasses within a metastably-miscible
concentration range — but it still gives a broader overview of the field.
It gives values of Young’s modulus E from 8.38—9.36 million psi
(57.8—64.5 GPa in non-medieval units) depending on temperature,
composition, and heat treatment, as well as measured values of shear
modulus G (25—27 GPa), bulk modulus B (33—36 GPa), and Poisson’s
ratio u (0.18—0.20). Linear TCE ranged from 4.64 ppm/° to 10.15
ppm/°. No strength of any kind is measured. Most of the paper is
concerned with how these vary by temperature.

They don’t seem to say how they made the glasses.

It suggests that at low temperatures Na,O and SiO; are miscible at
below about 77 mol% Si,O and above about 97 mol% SiO,, but
between these limits there is a regime where the two materials
spontaneously separate into different phases, presumably a
sodium-rich phase and a silicon-rich phase. This immiscibility persists
up to about 825°, above which they are miscible in all proportions.
(The plot only goes down to 500°, though, perhaps because below
that temperature the separation processes are too slow to observe.)

Mostly they focus on glasses of 7.2 mol% to 18.4 mol% Na,O,
which is to say, between 92.8 mol% SiO; and 81.6 mol% Si,O, thus
covering much of the range where this immiscibility occurs. Within
the “unstable” region, they report that heat treatment resulted in
phase separation into “two independently interconnected phases”,
while in the “metastable” region it resulted in “classical nucleation
and growth of particles”.

(Interestingly, the miscibility limit in this paper seems close to the
“pile-up” limit displayed in Zhao 2011 above. This might be a
coincidence.)

It might be interesting to see if laser heat treatment could induce
this “heat treatment” effect in very small areas very quickly, as a way
of writing data; for compositions right in the middle of the
“unstable” region, say around 11 mol% Na,O, the separation might be
fastest. However, in the paper, they heat-treated for 1% hours at 770°
to get phase separation at 12.6 mol% NayO, so that might be very
challenging. However, they noted that they were not able to obtain
homogeneous glasses for some compositions, presumably because they
could not cool them fast enough.

They measured the “dilatometric softening point” of the glasses
from 500° for the highest-sodium variants (18.4 mol%) up to 735° for
a heat-treated high-silica glass (7.2 mol% Na); this is the temperature
at which heating the glasses does not dilate your dilatometer any
further because the viscosity is low enough that it flows instead,
which is of course dependent on how much force the dilatometer is
clamping with.

The linear coefficients of thermal expansion (“R7-350)ranged from
4.64 ppm/° for heat-treated 7.2-mol% Na glass up to 10.15 ppm/° for
18.4-mol% Na without heat treatment, varying linearly. These
numbers barely changed with heat treatment.

Ito 1982

“Dynamic Fatigue of Sodium-Silicate Glasses With High Water
Content”, by Ito and Tomozawa, 1982. These guys were also at RPI.
They measured 40—70 GPa Young’s modulus for dry sodium silicate
and 3—s0 GPa for glasses including a lot of water. They also
measured its tensile strength but I can’t understand their results.

They slowly (over several days) dried out some commercial sodium
silicate solution (8.9 wt% NayO, 28.7 wt% SiO,, Na,0-3.3510;,
which I guess is 23.2 mol% Na,O) to various water contents around
25%, at which point it was solid; they sliced it into 1.7-mm-thick slips
and and used four-point bending to measure its flexural strength,
finding a strong dependence on speed of loading especially for
higher-water-content glasses, which also had the highest Young’s
modulus, which was, insanely, viscoelastic.

Unfortunately the Y-axis labels on the fracture strength plots are
very difficult to understand: it says “Log Fracture Strength
(kg/mm?)”, which is already ambiguous (is that a base-10 log or base-
e?) but to worsen the situation, a legend helpfully explains: “log o =
(1/(n+1)) log 6 + log C”, only without the parentheses. Is that an
empirical approximation formula or does it explain how the plotted
numbers were derived? The numbers plotted, at any rate, range from
about -o0.1 to about 1.2, with the strongest glass typically being the one
with 15.9% water, which is slightly stronger than the dry glass. If we
suppose that this is a base-10 logarithm of the flexural strength, then
we have a tensile strength of about 0.8—16 kg/mm?, or 8—160 MPa in
modern units. But I am not confident in that interpretation.

The Young’s-modulus plot in Fig. 4 is, by contrast, decently
labeled — it uses a logarithmic Y-axis but with ticks labeled in real
units. It gives 4—7 thousand kg/mm? (40—70 GPa) for the dry glass,
with numbers ranging from 0.3—5 (3—so GPa) for the wet glasses.

Their figure 5 also plots Young’s modulus, a theoretical Young’s
modulus limit at infinite stress rate, which is some three orders of
magnitude lower, ranging from 1 kg/mm? to 5.5 kg/mm?. I suspect
they have mislabeled their plot.

They also plotted the Knoop hardness of the samples, in the range
50—400 kg/mm? (s00—4000 MPa), decreasing with higher water
content.

They cite “McMillan (1982)” as giving flexural strengths for
soda-lime silica glass, which looks like a paper in “Non-Crystalline
Solids” by McMillan and Chelebik, 1980, I think volume 38/39, p.
509. I think that’s actually Chlebik, and the paper is perhaps “The
effect of hydroxyl ion content on the mechanical and other properties
of soda-lime-silica glass”. But it seems like probably that paper
doesn’t cover soda-silica glass. (And they didn’t say it did, after all.)

Medina 2009
This article has the deeply misleading title, “Water Glass as

Hydrophobic and Flame Retardant Additive for Natural Fibre
Reinforced Composites,” by Medina and Schledjewski, 2009. I say
“deeply misleading” because waterglass is preeettty faaar from being
hydrophobic! As noted above, drying the stuff out is really tough.

The article has a lot of problems like that. It describes a Si(OH)4
moiety as “silane”, talks about "natural fibers" as if they're all
equivalent of (I was assuming cellulose because the descriptions they
give don’t fit chitin, keratin, asbestos, etc., but even if it’s cellulose not
all cellulose is the same — finally on page 3 we find out that the fiber
they tested is 70% kenaf, 30% hemp, with no source given), never
describes which acrylic resin it’s using (I think, although sometimes it
mentions “polyester”, so maybe it’s a polyester acrylic — although on
page 8 they finally slip up and admit that it’s one of the Acrodurs,
whose composition is apparently secret), never describes how much
sodium is in the waterglass it’s using, uses a very crude flammability
test, etc., etc.

But it’s pretty interesting. Apparently they glued together some
cellulose fiber mats with various mixtures of sodium-silicate
waterglass and the unspecified acrylic resin, and got some decent
boards out of it, and of course the waterglass made them flame
retardant.

Because of the amount of crucial data omitted, apparently
intentionally (“a new water glass type specially developed as
hydrophobic additive for acrylic systems”), the paper falls far short of

basic reproducibility criteria.

Fused quartz properties

The low-sodium endmember of the sodium silicate continuum is
fused quartz, and that’s the most highly polymerized part, so we
would expect all sodium silicates to have tensile strength and hardness
at most that of fused quartz.

http://www.quartz.com/gedata.html agrees with

https://technicalglass.com/technical _properties/ on the curiously

precise tensile-strength number of 48 MPa. Marijuana paraphernalia

merchant

https://highlyeducatedti.com/blogs/information/thermal-shock-vs-to
oensile-strength gives 67 MPa for flexural strength and s0 MPa for

ultimate tensile strength, apparently quoting makeitfrom. It also

gives 0.5 ppm/° linear TCE.

Stachowicz 2010

“Studies on the Possibility of More Effective Use of Water Glass
Thanks to Application of Selected Methods of Hardening”, by
Stachowicz, Granat, and Nowak, 2010. They say that
waterglass-bound foundry casting sand commonly has tensile
strengths (Rm") in the 0.3—0.5 MPa range; with §% waterglass in
their sand they got tensile strengths as high as 3.6 MPa, with
higher-sodium waterglasses generally giving stronger bonds.

They’re concerned with binding foundry sand with small amounts
(1.5—5.0%) of waterglass, and in particular with whether microwave
heating can make it stronger and maybe allow you to use less than the
usual minimum of 2.5%, which it apparently does. Also they were

http://www.quartz.com/gedata.html
https://technicalglass.com/technical_properties/
https://technicalglass.com/technical_properties/
https://highlyeducatedti.com/blogs/information/thermal-shock-vs-tensile-strength
https://highlyeducatedti.com/blogs/information/thermal-shock-vs-tensile-strength
https://highlyeducatedti.com/blogs/information/thermal-shock-vs-tensile-strength

able to microwave their samples for four minutes instead of
oven-drying them for two hours.

It has a helpful table of waterglass grades used in foundries, with
molar ratios of SiO; to Na,O anging from 3.2:3.4 (grade 137) to 1.9:2.1
(grade 150).

I’'m not sure whether their 1.5% and $% etc. refer to the weight of
the dried waterglass or to its wet weight. (Grade 137 is 35% solids,
with the rest being water, while the very viscous grade 140 is 42.5%
solids.) Anyway, the strength continues to increase quite linearly up to
the 5% they tested, which makes me optimistic that strengths several
times higher are feasible with higher binder content.

The linear extrapolation of the 1.5%—s% suggests a tensile strength
of something like s0—70 MPa for solid 100% waterglass, which is
consonant with my tentative 8—160 MPa interpretation of Ito 1982
and the s0—70 MPa numbers given above for fused quartz.

Carbon dioxide is not mentioned.

All nine entries in their bibliography are Polish.

MacKenzie 1991

“Silicate Bonding of Inorganic Materials, Part I”, by MacKenzie et
al., 1991.

XXX

Vail 1952

“Soluble Silicates: Their Properties and Uses”, Vail, 1952. Thisisa
thousand-page two-volume set full of valuable information.

It mentions that a major use of waterglass in the mid-1800s was
“the hardening of stone to increase its weather resistance”, further
allaying my concerns about weathering, and it has a whole section on
using it to bond grinding wheels. It mentions that Feuchtwanger
claims to have introduced the use of waterglass in the US, using it to
prevent rusting of naval weaponry.

It seems that when Vail wrote his book, sodium silicate was
considerably more widely used than it is today: “There are few
manufacturing plants which do not make some use of [soluble
silicates].” Today I think it’s kind of a niche product, despite the
growing importance of avoiding phosphate runoft (silicates can
substitute for phosphates as detergents). This consideration does not
appear in the introductory section, although it does talk about how
conservation may stimulate the use of silicates in the future.

With respect to the prospect of precipitating or “curing”
waterglass, Chapter 2 (“Present Practices”) begins wih the promising
note: “Most of the impurities likely to be found in sand form
insoluble silicates, and even small quantities, less than one per cent,
can create serious difficulties.” It has the appealing note that the old
way of making it was “dissolving diatomaceous earth in caustic
liquors”, which does sound much easier than the standard approach of
heating sulfate or carbonate of soda to some 700° to 800° in contact
with sand. On the other hand, the standard approach is considerably
more legal in Argentina.

It explains that the “so-called neutral glass”, usually “pale bluish or

greenish”, is 1:3.3 Na,O:SiO,, although IIRC the pH of the solution
is still above 11, while the “alkaline” is 1:2.1. This probably explains
why the pale greenish bottle I have doesn't burn my skin and was sold
as “neutral”.

Astoundingly, at this time it was still not known that solid
waterglass, or indeed any solid, was amorphous! Vail says the
question “might be of more academic than practical value”, though
he also said, “A sodium silicate is as nearly devoid of ordered structure
as any known material.”

It explains that finely divided dry waterglass sometimes does get
dissolved in water at atmospheric pressure 100°, but to dissolve lumps
of glass, go—100 “pounds gage” steam pressure is used (psig I guess, so
700—800 kPa absolute).

It explains that the reason sodium silicate has eclipsed potassium
silicate is just that sodium is cheaper than potassium.

I find this unjustifiably amusing: “Immediately after use,
hydrometers should be washed thoroughly with warm water until
alkali cannot be tasted on the glass...” — clearly a pre-OSHA book.

He points out that you can blow waterglasses just like you can blow
other glasses, but that it can contain varying amounts of water
“without substantially altering their appearance”. This makes me
wonder if they might be a particularly suitable material to attempt to
3-D print graded-index optics in.

It explains that alcohol precipitates waterglass just by removing
water, which I had suspected but was not sure of. Also, he mentions
doing the same with alkali metal salts or ammonia.

It includes the oldest citation I've seen: “A sodium silicate glaze is
described in cuneiform records of the reign of Ashurbanipal, 668—626
B.C.: 10 mana of sand, 10 mana of alkali ash, and 1.67 mana of styrax
gum were heated to white heat, cooled, crushed, and placed in a clean
melting pot in a cold furnace.”

A surprising thing mentioned a couple of times in the book is that
potassium silicate does not effloresce, while sodium silicate does, a fact
particularly relevant for production of fake stone; this afflicted
Ransome’s fake stone in 1861.

A technique frequently mentioned both in this book and in Keim's
paint brochures is the inclusion of amorphous silica particles in the
liquid — a sol of precipitated silica gel particles, for example, although
diatomaceous earth should also work. This reduces the amount of the
waterglass that must be gelled to form a solid gel, since the particles
form part of the gel network. Other effects include thickening the
liquid and making it colloidal and possibly thixotropic.

In Chapter s, Vail refers to “immediate precipitation which occurs
when calcium, magnesium, or lead oxides are mixed with
concentrated silicate solutions”, although it's not clear what timescale
he’s talking about.

Topics

* Materials (p. 788) (51 notes)

* Pricing (p. 804) (14 notes)

* Minerals (p. 814) (10 notes)

* Strength of materials (p. 823) (8 notes)
* Foaming (p. 824) (8 notes)

* Waterglass (p. 842) (s notes)

* Ceramic (p. 871) (4 notes)

* Book notes (p. 873) (4 notes)

* Concrete (p. 906) (3 notes)

* Paint

One big text file

Kragen Javier Sitaker, 02020-06-04 (updated 02020-06-06)
(20 minutes)

Here’s an interesting idea for how to do Derctuo: a giant
WYSIWYG document whose source format is a plain text file
including data, code, text, and formatting in a single document,
potentially of 128 mebibytes or more; but with computational output
rigidly segregated to a cache management system.

Precedents
Danny O’Brien’s Life Hacks

The immediate inspiration for this is Danny O’Brien’s “Life
Hacks” ethnographic research finding the widespread use of One
Huge Text File. He found that many of his interviewees maintained
all their notes in a single humongous text file, which they navigated
by text search. On a modern computer, Emacs incremental-search is
capable of searching through hundreds of megabytes per second, so
it’s rare to even need any indexing.

Volks-Hypertext

Eric Raymond’s “Volks-Hypertext” browser for the Jargon File
demonstrated how to improvise a fairly instantaneous hypertext
system atop a large text file: the text file was rendered in more or less
the usual way, but keywords in curly braces like “{grok}” were
treated as links to a line beginning with “:grok:”, and the file was
preprocessed to generate an index of all such lines after the fashion of
ctags, with byte offsets stored. Searching the index file and jumping
to a given byte offset was reliably fast, even in MS-DOS on a 386.

askSam

The cult semistructured database askSam has barely more structure:
an askSam file is a collection of records, which are just free text strings
up to a few kilobytes in size, with fields defined by searching for the
field name followed by square brackets — everything on top of that is
added by the askSam query language. A full-text index makes
relatively powerful queries acceptably fast.

Alph and Halp

Darius Bacon’s Alph (A literate programming hack) and Halp
systems automatically re-evaluate all the specially-marked code in a
document upon demand, placing the resuls of each snippet after the
snippet itself.

Org-mode

Org-mode adds a little bit of lubrication to text-file viewing: the
Emacs outline-mode ability to collapse and expand sections of the
file, but with more pleasant keybindings. And it also has magic syntax
for inserting hyperlinks: [[http://example.com/|[example URL]]
displays just as an underlined “example URL”, but links to the given

URL, and it also supports links to places within the file. Org-mode’s
“src blocks” offer the possibility to display textual or graphical output
inline in the editing buffer.

Cassowary and TeX

Cassowary is a constraint-based layout system that offers perhaps a
bit less power than CSS, but has extremely efficient algorithms to
execute it. (I haven’t actually tried it.) TeX, too, has extremely
efficient layout algorithms which also produce somewhat nicer results
than CSS.

WordPerfect Reveal Codes

Before Microsoft Windows, WordPerfect was the most popular
word processing software, and its users’ favorite feature was a thing
called “Reveal Codes”, which split the screen into one half with the
WYSIWYGish text you were editing at the top and a complete
representation of the word processor’s underlying representation at
the bottom, with formatting markup displayed in between bits of
text. This made it easy to see why your document was formatting
incorrectly and fix it.

Lotus 1-2-3

Lotus 1-2-3 displays the tabular output of a program written by the
user by defining formulas in cells. It analyzes the dependencies
between the cells to discover as safe dependency order to recalculate
them in when there is a change, and it only displays the source code of
the cell you are editing at a given moment. It imitated VisiCalc, the
“killer app”, but its dependency-order recalculation was new.

Jupyter notebooks

Jupyter’s “notebook interface” is an enhanced REPL which permits
the inline display of graphics, text formatted with LaTeX or HTML,
etc., as results of the REPL commands (“cells”). It is accessible via
HTTP or HTTPS, allowing people to share code easily. Also, it
stores the output in the same text file as the code in the cells, even
when it is graphical or irreproducible.

Jupyter has become the standard interface to programming for an
enormous number of people nowadays. But it has some serious
drawbacks: the output displayed may not be up to date with the code
in the file, re-evaluating the whole file may not be safe (it’s common
for people to put utility scripts in notebooks that do things like wipe a
database), the output being interpolated into the source code makes
the notebook files bulky and difficult to version-control with systems
like Git, it’s awkward to reuse code, and normally you have to start
out the notebook with a bunch of preliminary noise like module
imports.

Explorable explanations

“Explorable explanations” are, mostly, web pages containing
interactive visualizations of algorithms; the best ones I've seen are
Amit Patel’s, for example his visualization of A* pathfinding or of
generating terrain with Perlin noise. Mike Bostock, the author of
d3js, has written many excellent explorable explanations as well. The

https://orgmode.org/manual/Results-of-Evaluation.html#Results-of-Evaluation
https://orgmode.org/manual/Results-of-Evaluation.html#Results-of-Evaluation
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/maps/terrain-from-noise/
https://www.redblobgames.com/maps/terrain-from-noise/
https://bl.ocks.org/mbostock

objective is to explain how a given algorithm works by means of
exhibiting its internal functioning on example data. Bret Victor has
explored much of this territory as well, for example with his
visualization of Nile, and articulated guiding principles for the field:
that people engaging in creativity should be able to get instant
feedback on the implications and results of their ideas.

ObservableHQ

ObservableHQ is Mike Bostock’s exploration of how the notebook
interface could be improved. It uses a slight extension of JS as its
language, its cells each define a single value, and like Lotus 1-2-3, they
are evaluated in dependency order.

R-Markdown and R Notebooks

Yihui Xie’s R-Markdown is a system (included in the
free-software R Studio, but also invocable from the command line)
which extends Markdown with embedded chunks of code in the R
statistical programming language and textual and graphical output
produced by that code; the code is optionally not visible in the output
(echo=FALSE). By default, this “knitting” of the source
R-Markdown document into a PDF or HTML output with the
graphics is a batch process, but for some time R Studio has also had
the option to evaluate these embedded code blocks interactively with
control-shift-enter, sending its output to the R Studio console pane.
Because the chunks are normally run in order, it is up to the author to
track the dependencies between them and topologically sort them in
the file and to re-execute dependent chunks when changing a thing
they depend on.

However, recent version of R Studio have added an “R Notebook”
mode which displays the outputs of code blocks inline in an
R-Markdown document (whether textual or graphical), instead of in
a separate pane. Rerunning the code and thus updating these outputs
after changing the code continues to require an explicit
run-current-chunk command, so the author is still responsible for
keeping track of the dependencies.

Unlike Jupyter, R Studio stores the output from the embedded
code in a separate file: an “R notebook” named foo.Rmd will have an
accompanying foo.nb.html which includes the text and graphics
generated from it, while foo.Rmd itself contains only the
human-authored source code. Xie’s explicit ambition is to improve
the reproducibility of computational research.

nake and other build systems

Stu Feldman’s make program, included with the UNIX operating
system for the PDP-11, is directed at accelerating the feedback
programmers need to improve their programs: by caching the results
of compiling parts of the program, automatically determining which
parts of the program have been edited since they were last compiled,
make can greatly accelerate the process of rebuilding the program after
a small change. It does this in an almost wholly compiler-agnostic
fashion: like ObservableHQ, it only knows how to produce each of
the intermediate results in the build process by invoking some opaque
code, and what the inputs to that code are. make does this at the

granularity of files and batch program invocations, while
ObservableHQ does it at the granularity of variables and snippets of
code, but modern software like Lucet can reduce the overhead of
starting and stopping a program to under 100ps, while modern
software like FlatBuffers or HDF can reduce the overhead of a
program consulting serialized input data structures to a minimum.

A limitation of make is that its knowledge of dependencies is not
reliable --- it relies on the programmer to describe the dependencies
in a “Makefile”, but usually the Makefile fails to capture the full
dependency graph. For example, it is common for make to be unaware
that an object-code file depends on header files within a project
describing the ABI of other object-code files, a case for which various
“makedepend” systems have been devised; also, though, the
object-code files depend on system header files external to the project
and on the version of the compiler used, in the sense that different
object code would be emitted if the compiler or system header files
had been a different version. The fallback response to all of these
problems is make clean, a conventional phony build target whose “build
rule” deletes all the files created by the whole build process so that a
subsequent execution of make will regenerate everything from the
virgin source code.

Other build systems, such as Apollo DSEE, its imitation Vesta,
their imitation ClearCase, Nix/Guix, Gitlab-CI, Urbit, and the
popular Docker, instead run the build steps in an environment more
or less isolated from anything that isn’t explicitly provided to that
build step as an input. Because of the limitations of determinism in
conventional computing systems, these systems do still sometimes fail
to deliver full bitwise reproducibility, but they do aspire to it, except
possibly for Gitlab-CI.

SPARK
Apache SPARK XXX

ActivePapers
Konrad Hinsen’s ActivePapers research effort XXX

The Java Virtual Machine
The JVM’s WORA aspirations XXX

Geometer’s Sketchpad, KSEG, and GeoGebra

Falstad’s Circuit.js

Design

So suppose we have a thing that is “really” just a huge text file, but
formatted in a WYSIWYG format like a book, and structured
hierarchically into sections and subsections in an org-mode-like way.
It uses a layout algorithm with good efficiency and adequate power.
You can include snippets of code into the file, easily toggling whether
the WYSIWYG view displays the code, its output, or both; output
can even be easily interpolated into the middle of a paragraph, with a
construct something like ${foo}. The code can easily run various
kinds of ad-hoc queries on the file’s own contents. Bits of code

defined in one section of the file can be invoked from other sections,
although a hierarchical namespacing mechanism limits visibility and
makes it easy to track dependencies. It’s easy to define data tables and
add computed columns to them, and use the data in those columns in
other computations. The file can define user interfaces for things like
drawing geometrical compass-and-straightedge constructions, RPN
calculations, or schematic capture, and the data thus created becomes
part of the text file — and then it can be used as input to other code.

The output of code is strictly segregated from the “source” text
file, which contains only things the author explicitly chose to put into
it, but the code is deterministic and the outputs are cached in a file off
to the side so that they can be redisplayed without recalculating them.

You can toggle between a “source” view, which shows the full
contents of the file, and the WYSIWYG view, or have both
displayed at once.

The idea is that it should scale to 8 mebibytes or more of text
written by a single author and perhaps 128 mebibytes of other data
imported into the file from elsewhere: a personal memex, but taking
advantage of the computer’s power to augment human intellect
through more than just copying and retrieval of information. A
smooth path allows ideas to gradually be solidified and explored:
from back-of-the-envelope calculations through sketches and simple
simulations through to refactoring into reusable parameterized
models.

A crucial question for navigation is how interactive searching of
outputs works. If you stick to searching only the source-code form of
the file, searching can be very fast, but in many cases you will be
missing the most interesting data. On the other hand, that data can be
immense and full of things that are essentially random noise.

Interactivity and persistence

Above I said that computational output is rigidly segregated to a
cache management system — the code within the document cannot
mutate the document. Only the user can do that. How can this be
reconciled with the need to add sketches, photographs, geometrical
constructions, circuits, DAGs, cellular automaton configurations, and
the like? Surely the user cannot always be expected to type in text
from which they can be computed!

Ephemeral explorable explanations like Amit Patel’s A* examples
mentioned earlier pose no problem for this model at all. A code
chunk can evaluate to a function from (x, y) pairs to (r, g, b) colors,
for example, to produce an infinitely zoomable, pannable image; that
function (call it a “paint method”) can run in an environment where
it has no authority to access any state other than (x, y) coordinates of
requested pixels or to mutate anything outside of its own local state.
Mouse coordinates and time can be provided to a paint method in a
similarly stateless fashion, as they are on Shadertoy.

Fragments

The movable blob position requires at least some state to persist
from one call to the next; this can be handled by an object consisting

https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html

of a pair of pure functions: one that maps a (current state, user input
event) pair to a new state (call this the “react method”), and another
that maps the current state to an image or animation (the paint
method from before).

This kind of state turns out to be sufficient to implement things
like Falstad’s Circuitjs! (However, such simulations additionally
benefit from some kind of way to maintain their simulation state from
frame to frame, even when there is no user interaction to react to; for
the time being I will ignore this.)

Suppose we call this new persistent state, which can change in
response to things like clicks and keystrokes, the “fragment”; it’s
analogous to the #fragment in an URL on the WWW. Accordingly,
it provides the surrounding framework with the freedom to measure
its persistent memory consumption, pause it, save a fragment, go back
in time by reverting changes to the fragment (undo), explore
alternatives from an earlier fragment (nonlinear undo), and copy and
paste the fragment to somewhere else in the document. This is
sufficient for things like sketching illustrations, self-contained circuit
modeling, or doing geometrical constructions. Indeed, given camera
access, it could even be sufficient for taking photos. (There’s no
reason the fragment needs to be limited in size like URL fragments
traditionally are.)

The fragment itself is part of the source format document, just a
part that can be edited by the widget’s embedded code, subject to the
restrictions above about undo and the like.

Methods other than “paint” and “react” could provide requested
layout sizes or render the “widget” as a series of boxes rather than a
single window onto a canvas.

However, so far all of this focuses on applet-like content: a
calculator, compass-and-straightedge interaction, or circuit simulator,
displayed in a window with text flowed around it, or perhaps
overlapping part of it. It doesn’t cover the kind of interaction you’d
want for data visualization, much less a general computing platform:
you want that calculated result to be accessible for further calculations
elsewhere in the document! And you want to be able to feed the
circuit you've modeled to other analysis functions that you write on
the fly. You want the data to be open and accessible, not sealed inside
an opaque Actor.

Darius Bacon points out that if the “fragment” state is some more
structured thing, such as a state of, say, a relational database, it might
be easier to deal with the opacity problem. Maybe it would be easy
enough to say something like drawing2.points[3].x elsewhere in the
document. (Formats other than relational data might be usable too,
such as JSON structures, but they tend to vary more over time as
navigational data is included.)

Blossoming forms

XXX rewrite

Interactive blocks, HTML forms, BASIC with line numbers, and
HP 3000 terminals suggest a somewhat unrelated approach. I tried to

write a FORTRAN program on the HP 3000 that the local computer
museum got up and running. An interesting thing about the HP 3000

terminals is that they can do local editing, and apparently text files in
their system have line numbers, like in old BASICs. So, the editor on
the host is a pretty dopey line-mode thing similar to ed, but it
includes the line numbers before the lines it prints out. So, locally to
the terminal you can go up with the arrow keys into the scrollback
buffer and edit one of those lines, interactively, inserting and deleting
ina WYSIWYG way, and hit enter to send it back to the host.
When you send it back to the host it has the line number still
attached, and the editor interprets that as a command to replace the
contents of that line number.

GW-BASIC did this too. Maybe Applesoft BASIC too?

HTML forms are kind of the same thing except that the line
numbers are words and they're hidden. You could imagine an
interactive block that's sort of similar to an HTML form but maybe
without the submission delay to run code to see results, and you could
imagine it having buttons in it that, when clicked, blossom out into
new nested formlets there in place. As long as all the code can do is
display its results, or blossom out into more little bomblets, the degree
of danger is pretty limited.

However, can this approach really handle things like sketching with
the mouse or a stylus, or schematic capture?

Naked objects
XXX

Thanks

To Darius Bacon for discussion of these ideas.

Topics

* History (p. 800) (17 notes)

* HCI (human-computer interaction) (p. 801) (17 notes)
» Systems architecture (p. 807) (13 notes)

* Derctuo (p. 822) (9 notes)

» Falstad’s circuit simulator (p. 829) (7 notes)
* Caching (p. 832) (7 notes)

* Reproducibility (p. 844) (s notes)

* End-user programming (p. 850) (s notes)

* Text editors (p. 857) (4 notes)

* Layout (p. 865) (4 notes)

* Urbit (p. 877) (3 notes)

* R (p. 884) (3 notes)

* Programming by example (p. 887) (3 notes)
* Hypertext (p. 892) (3 notes)

* Constraint satisfaction (p. 9o4) (3 notes)

* Build systems (p. 907) (3 notes)

* Basic (p. 908) (3 notes)

* TeX (p. 920) (2 notes)

* Docker (p. 967) (2 notes)

* Spreadsheets

* Org-mode

* ObservableHQ
* Notebooks

* Nix

* Lucet

* Jupyter

* Guix

* Explorables

Monoid prefix sum

Kragen Javier Sitaker, 02020-06-05 (13 minutes)

The parallel prefix-sum or scan algorithm makes it possible to
calculate a prefix sum on N elements in O(log N) time on an
unbounded number of processors. As Stepanov may have been the
first to point out, this algorithm is applicable to general monoids,
although its performance only remains O(log N) if the monoid
operation can be computed in constant time.

Like unto many other parallel algorithms, parallel prefix sum can
be easily converted into an incremental algorithm through a tricky
time-space switcheroo: we can cache all the values computed during
the algorithm, and upon a small change to the input, we can treat the
values computed from unchanged parts of the input as if they were
values computed on other processors, receiving them from the cache
as if they were received over the network. This gives us a
logarithmic-time way to incrementally update the reduction of an
arbitrary (constant-time) monoid over an input sequence, since that is
the final element of the scan — for example, the sum is the final
element of the prefix sum. (Integer sum in particular admits more
efficient implementations, because it is not just a monoid but an
abelian group — in constant time, you can simply add the inverse of
an element that is being removed. But, for example, semilattice
operations are not so forgiving.)

In a sense any algorithm that produces a result from input data is a
reduction followed by some kind of final postprocessing; the input
data comes in some sequence, and in the degenerate case, the
reduction is just in the free monad, concatenation — the reduction is
just the concatenation, and then the final postprocessing is the
algorithm itself. But of course that doesn’t give us any parallelism or
incrementality advantages.

Testing associativity in O(IN?®) time

Suppose we do have some kind of interesting iterative processing
going on over the input data, though, formulated in a monoidal way:
we have a lifting operation that maps an input element into a “lifted
element”, a composition operation that maps a sequence of two lifted
elements into a single equivalent lifted element, and perhaps a
postprocessing operation that maps a lifted element representing the
whole sequence into the result we wanted. But to be able to use it
correctly with the prefix-sum algorithm, we need to be sure the
composition operation is really monoidal, which is to say, associative.
How can we verify this?

It may not be possible to verify rigorously in all possible cases, but it
is at least reasonably efficient to verify that it is associative over a
given input string of N elements, requiring O(IN®) time, using a
dynamic-programming-like algorithm. The input string contains
N(N+1)/2 nonempty substrings, each of which can be divided into
two nonempty substrings in less than N ways. So we create an array
of lifted elements for these N(N+1)/2 nonempty substrings, and we

calculate the reduction value for each of these substrings in all possible
ways. For substrings of a single element, we simply use the lifting
operation. For each substring of M > 1 elements, we test all of the
possible M - 1 divisions into nonempty substrings by applying the
composition operation M - 1 times; they should all produce the same
value, which we then store into the array.

For “reasonable” composition operations, it should be possible to
do this test for sequences up to lengths of a few hundred in under a
second, perhaps a few thousand. This does not of course amount to a
proof that the operation is monoidal, but it may be a fairly convincing
test.

A trivial example: canonicalization of a binary
carry-save sum

So, for example, the string ABCD, of length 4, has the 10
nonempty substrings A B C D AB BC CD ABC BCD ABCD.
Suppose that, for some inexplicable reason, we want to reduce this
string with the function As ¢ . s X 2 + ord(c), which takes the
previous state, multiplies it by two, and adds the ASCII value of the
input letter to it, starting with an initial state of 0. Our “lifted
elements” are an ordered pair of integers (n, k), representing the
function As.s X n + k. The lifting function maps a letter c to the pair
(2, ord(c)). The composition function maps two pairs (n1, k1), (n2,
k2) to the equivalent function (n1 X n2, k1 X n2 +k2). So A
becomes (2, 65), B becomes (2, 66), etc.; AB becomes (4, 196), BC
becomes (4, 199), CD becomes (4, 202); ABC can be computed
eitheras A+ BC = (2 X 4, 65 X 4 + 199) oras AB + C = (4 X 2, 196
X 2 + 67), giving in either case (8, 459); and ABCD can be computed
either as A + BCD, AB + CD, or ABC + D, giving the same result
(16, 986) in all three cases.

(In this case, the postprocessing operation amounts to simply taking
the second item of the tuple.)

Ropes

Thus if we annotate rope nodes with lifted elements, we can
incrementally update the monoidal reduction of the whole rope even
after insertion and deletion operations; it isn’t necessary for the lifted

elements to correspond to elements whose counts are powers of two.
I think Raph Levien has done this for his Xi editor.

CRDTs

By applying this incremental monoidal reduction approach to logs
of historical events with a well-defined total sorting order, we can
derive a wide variety of efficient CRDTs. We use the standard union
CRDT on a set of historical events, merging newly-received events
into a rope of already-received events and recomputing the lifted
elements on the updated nodes. This allows us to efficiently
recompute the monoidal reduction over the updated dataset.

In particular, we can derive common CRDTs in this way, such as a
dictionary updated by upserting and deleting key-value pairs;
Okasaki’s FP-persistent data structures are likely useful here. (I
suspect this is actually how Datomic works.)

Further efficiency issues

Of course, if the lifted elements contain some arbitrarily large data
structure, or if the composition operation or postprocessing is
arbitrarily expensive, then you can lose the efficiencies. Running the
above example composition function over the input string
“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrsto

ouvwxyz” gives the lifted value (4503599627370496,
297237575809105796), each value growing by one bit per additional
input character.

If memory is sufficiently expensive, or recomputation from scratch
is sufficiently cheap, it may not be worthwhile to cache these lifted
values for every element of the input sequence; it might be sufficient
to cache one out of every 32—2048 values, thus saving 97-99.95% of
the cache space while still limiting the work to recompute a value at a
given location to the redundant reprocessing of 31—2047 input
elements.

I think some of these ideas originated in discussions with Darius
Bacon, but I can’t remember.

Two text-editor-oriented examples

Columns

Text editors commonly want to know what column of the screen
to display a character in, which depends on how many characters
precede it on the same line. (And, possibly, how wide the screen
currently is, and how wide those preceding characters are.) In the
simple case we can compute this from the beginning of the editor
buffer with a simple loop:

size t col = 0;
for (int i =0; i < point; i++) {
col+t;
if (buf(i] == "\n' [l col == screen width) col = 0;

The state of col after an iteration of the loop depends on its state
before that iteration and on buf[i]; it is either 1 + old col or o.
Arbitrary compositions of such iterations give us either (n + old col) %
screen_width or n % screen width, so those are our monoidal “lifted
values”. It’s reasonable to store only one out of every 1024 or so such
values, and we could probably use the sign bit to distinguish between
them (at the expense of not being able to handle a single buffer
occupying more than half of your address space), so we can probably
use a single pointer-sized word for a lifted value.

In C we probably have to manually compile that into fiddly integer
manipulation, so here is the composition function in OCaml, for
clarity:

type lifted = Absolute of int | Relative of int
let compose left right = match (left, right) with
|, Absolute n -> Absolute n

| Absolute m, Relative n -> Absolute (m + n)

| Relative m, Relative n -> Relative (m + n)

compose (Absolute 8) (Absolute 5) ;;
. lifted = Absolute 5
compose (Absolute 8) (Relative 5) ;;
- . lifted = Absolute 13
compose (Relative 8) (Relative 5) ;;
- : lifted = Relative 13
compose (Relative 8) (Absolute 5) ;;
- . lifted = Absolute 5

You can fire off a background thread upon opening a file to
precalculate these values for the whole file, and then incrementally
maintain them thereafter in the face of insertions and deletions.
Moreover, since one of the cases of the composition function doesn’t
even depend on the left side, you can calculate it lazily backwards from
a given position in the file — you need only search backwards until
you find the beginning of a line.

Syntax highlighting

Text editors commonly do syntax highlighting based on data like
which identifiers are in scope at a given point, and what their types
are, and at least a tokenization of the source code, though sometimes
not a full parse (since, after all, we don’t want our syntax highlighting
to entirely disappear if the input has a parsing error somewhere off the
screen). Lexical scanning of the input is usually done with a DFA, or
a slight extension of a DFA, for example to accommodate shell-script
here-documents (the input for <wibble ends at the first line that says
wibble) or Lua fat parentheses (a string starting with [=======[continues
to the next]=======], where 7 has any value).

Considering purely the DFA case, we can consider the “lifted
value” of a string to be the mapping from the state the DFA is in at
the beginning of the string to the state that it’s in at the end of the
string. If the DFA has 16 states or less, we can represent such a
mapping in a 64-bit register, since it contains 16 nybbles.

In this case the mapping tends to pretty quickly converge on a
function that ignores its input, although there are exceptions. C
doesn’t have nested comments or multiline strings, so as soon as you
see a newline you know you’re not in a string, and as soon as you see a
*/ outside of a string you know you’re not in a comment, so in C
typically you can calculate the precise DFA state before going back
too far. OCaml, by contrast, does have nested comments, so, in
theory, to highlight any position in the file, you have to go back to
the beginning of the file to ensure you’re not inside of one. You can’t
tokenize it with a strict DFA.

The identifiers that are in scope at a given point can similarly be
adduced, typically, by calculating a “lifted value” that is either a stack
of identifiers that are in scope at various levels of scope stacked on top
of whatever was in scope at the beginning of the substring, or a count
of scopes to pop. So, for example, in a C-like language, this string

{
int x = 3;

{

int y = 4;
int z = 5;

might lift to the stack effect [{}, {x: var}, {y: var, z: var}],
augmented with a bit of scanner information; meanwhile the string

}

might lift to an instruction to pop three stack levels of declarations.

Languages like JS that have entities without forward declarations
cannot be handled in this fashion; they need a preliminary pass over
the whole file first to index the declarations.

Topics

* Performance (p. 794) (25 notes)

* Algorithms (p. 803) (17 notes)

* Programming (p. 808) (13 notes)

* Math (p. 809) (13 notes)

* Text editors (p. 857) (4 notes)

* Parsing (p. 863) (4 notes)

* Ropes (the data structure) (p. 882) (3 notes)
* Prefix sums (p. 932) (2 notes)

* Monoids (p. 943) (2 notes)

* The JS language (p. 954) (2 notes)

* FP-persistent data structures (p. 958) (2 notes)
* Automata theory (p. 98s) (2 notes)

» Conflict-free replicated data types (CRDTS)

Writing a shopping list in TeX

Kragen Javier Sitaker, 02020-06-05 (4 minutes)

I was watching Luke Smith on YouTube touting R-Markdown as
a better alternative to LaTeX, and I was struck by his declaration,
Now, the thing about LaTeX, and it's always the elephant in the room when
you're talking about LaTeX, is that a lot of the basics, it, well, let's put it this way,
LaTeX is great for making research papers and term papers and doin' advanced
projects 'n' stuff like that, but LaTeX syntax is very cumbersome. So if I just wanna
make a shopping list in LaTeX or something, I mean, I wouldn't make a shop, I
make shopping lists on this [holding up a pad of paper], but, if I wanted to make a
really simple document to give to my students or uh, you know, to give, you
know, just a memorandum or something like that, uh, LaTeX is a pain because you
can't just open it up and start writing, you have to \docunentclass{article}
\begin{docunent} \end{document}, all this kind of stuff, uh, to do thangs like bold, italics,
you have to literally go in and write /textbf{bla bla bla}, and you know the backslash,
it's like the most annoying key on the computer to actually, like, hit.

I thought I'd check to see if he was right, so I ran emacs
shoppinglist.tex and typed

C-c C-e <return> <return> <return> C-c C-e <return>
carneCcCjhuevosCcCjpollocCc
C-b <return> <return> C-c¢ C-b <return> C-c C-b <return>
<return>

which produced this shopping list, rendered and on the screen in an
xdvi window:

\documentclass{article}

\begin{document}
\begin{itemize}
\iten carne
\item huevos
\item pollo

\end{itemize}
\end{document}

It took about 30 seconds, but 10 of those were starting up a new
Emacs so that I could time the process more easily.

The initial "C"E prompted me for the environment name (default
docunent) and documentclass (default article) and options (default
none). The second *C”E prompted me for another environment
name; as it happened the default was itenize because the last thing I'd
done in LaTeX was also to make a list, so I just hit <return> again. The
AC”J is the sequence to separate list items. Then the “"C"B sequences
run latex and xdvi to see the rendered document.

Unsurprisingly he's also wrong about "things like bold, italics";
although you can \textbf if you want, it's probably easier to say

PUAs are {\bf losers}.

Which renders as, "PUAs are losers." It's two characters longer
than the Markdown version, admittedly, and I do like Markdown a
lot, but I think LaTeX is getting a bad rap here. You can totally write
your shopping lists in LaTeX --- it's not quite as easy as writing them
in Markdown but the difference is very small. Maybe 10 seconds of
overhead.

Where LaTeX becomes difficult is when you're trying to do more
complex things in it. Markdown saves you time there because you
know you can't do complex things at all in Markdown, so you don't
try.

The major advantage of R-Markdown from my point of view is
that you can embed your R code in it.

Topics

* HCI (human-computer interaction) (p. 801) (17 notes)
* Practical (p. 810) (12 notes)

* R (p. 884) (3 notes)

* Emacs (p. 895) (3 notes)

* TeX (p. 920) (2 notes)

A 6-bit “variac casero”

Kragen Javier Sitaker, 02020-06-06 (22 minutes)

Watching the YouTube channel of Espacio de César, I was amused
to see him describe a “homemade 8-bit variac” (“variac casero de 8
bits”). He suggests winding 8 secondaries of different sizes on a single
transformer whose primary is connected to 240 VAC: one that
produces 1 VAC, one that produces 2 VAC, and so on up to 128
VAC. (He’s using a microwave-oven transformer, but recommends
using a smaller one instead.) By connecting these to 8 pairs of
banana-plug terminals in a metal box, you get a sort of variac; for
example, if you want 42 volts, you can put in series the 2-VAC, the
8-VAC, and the 32-VAC winding with two jumper wires.

But there are other ways you can get 42 volts; for example, you
can use the 32-VAC winding in series with the 16-VAC winding,
then wire up the 4~-VAC and 2-VAC windings backwards in series
with that.

Balanced ternary gets you to 364 VAC in
1-volt increments in only 6 secondary
windings

This suggests instead using balanced ternary. With a1 VAC
winding and a 3 VAC winding, you can get 1 VAC, 2 VAC (by
wiring the two windings in series in opposition), 3 VAC, or 4 VAC
(by wiring them in series). By adding 9 VAC, 27 VAC, 81 VAC, and
243 VAC windings, you can reach any voltage up to 364 VAC in

1-VAC steps, and this is the minimal number of windings you need to
reach it.

Multitap secondary windings can deliver
even more voltages with less terminals

That requires 12 banana-plug terminals, though. If you want to
minimize the number of terminals rather than the number of
windings, you might be able to do better with center-tapped
windings.

For example, if you have one winding with three terminals whose
two segments are 1 V and 2 V, you get 1, 2, and 3 VAC with three
terminals; a second winding with three terminals whose two
segments are 7 and 14 volts gives you all voltages from 1 to 24 volts
AC; a third winding of 49 and 98 volts gives you all voltages from 1
to 171 VAC. That’s 9 terminals; a fourth center-tapped winding,
with 343 and 686 volts in its segments, bringing us to 12 terminals as
before, might then bring us from 1 to 1200 volts AC in one-volt steps.
Or we could use a fourth 343-volt winding with no center-tap and
get up to 514 volts with only 11 terminals rather than the 12 required
by the balanced-ternary scheme to reach 364.

But what if we have four terminals on a winding? You could have,
for example, a winding with a 1-VAC segment, a 3-VAC segment,

and a 2-VAC segment, in that order; this gives you 1, 2, 3, 4, 5, and 6
volts between its six different pairs of terminals. A second
four-terminal winding with 13, 39, and 26 volts on its segments gets
us 1-84 volts. A third winding with 169, 507, and 338 volts on its
segments gets us 1-1098 volts, with the same 12 terminals that would
give us 1-64 volts with César’s binary scheme, 1-364 volts with the
balanced-ternary scheme, or 1-1200 volts with the
single-center-tapped scheme.

So it seems like the single-center-tapped scheme is optimal, at least
to minimize the number of voltages you can get for a given number
of terminals. The double-center-tapped scheme is very nearly as
good, though, and it uses less jumper wires: you can reach any
voltage up to 1098 volts with only two jumpers instead of the three
you might need with the single center-tap.

One-volt precision is maybe more important when you’re at 2 or 3
volts than when you’re at 950 volts, so it would be nice if we could
separate the voltage levels a bit more at higher voltages;
unfortunately, the voltages on the various secondary windings do sum
linearly, so you can’t avoid this completely. But if you have one
winding with segments of 1, 3, and 2 V and a second one with
segments of 15 and 30 V, then you can do any one-volt voltage from
1-6 volts, 9-21 volts, 24-36 volts, and 39-51 volts, with just seven
terminals and a single jumper.

subs = lambda items: set(sum(items[i:j])
for j in range(len(items)+1)
for i in range(j))
combos = lambda subses: {0} if not subses else set(a+b
for ¢ in subses[0] for a in [c, 0, -c] for b in combos(subses[1:]))
combos ([subs([1]), subs([3]), subs([9]), subs([27]), subs([81]), subs([243])]
) == set(range(-364, 365))
combos ([subs([1, 2]), subs([7, 14]), subs([49, 98]), subs([343, 686])]
) == set(range(-1200, 1201))
combos ([subs([1, 3, 2]), subs([13, 39, 26]), subs([169, 507, 338])]
) == set(range(-1098, 1099))

I don’t think we can do better by connecting triples of windings
together in a Y configuration, like some BLDC motors, because the
1-3-2 setup already gives us six distinct voltages for the six distinct
pairs of terminals, and they cover a contiguous range of integers.

A practical configuration

I think that, if you were going to do this in real life, the most
practical configuration would use a single high-voltage winding with
two terminals and two low-voltage windings with four terminals
each, with a first winding of segments of 15, 1%, and 1 volt and a
second winding of segments of 8, 24, and 16 volts. This gives you
0.5-volt resolution for 0-3 volts, §-11 volts, and 13-19 volts, and
2-volt-or-better resolution up to s1 volts, all configured with a single
jumper. This is not enough to kill you unless you are astonishingly
fortunate.

The high-voltage winding might be 120 volts, which in
combination with the low-voltage windings gives you voltages up to

171 volts, with an 18-volt gap between s1 and 69 volts; all of this for
ten terminals and three secondary windings (plus the primary).

Ganging up two transformers

Now, if transistor cores are abundant and you just want to keep
windings to a minimum, you could get a more favorable spread of high
and low voltages by putting two separate transformers in the box, one
fed from the power line with two to four terminals on its secondary
brought out to the front panel, and a second transformer connected
only to front-panel terminals, perhaps with two windings with three
or four terminals each, either of which can be connected as a
“primary” to the secondary of the first transformer. One reasonable
winding configuration for the second transformer might be turns
numbers of 1n-3n-2n on one winding and 10n-18n on the other. This
affords 18 different stepups as low as 3:5 and as high as 1:28, including
2,2%,3,5,6,7,9, 10, 14, 18, and 28; and of course their reciprocals as
stepdowns.

import fractions
' ' join(str(x) for x in sorted(f for n in subs([1, 3, 2])
for d in subs([10, 18])
for f in [fractions.Fraction(n, d),
fractions.Fraction(d, n)]))

So if you had a center-tapped winding on the primary transformer
with a 14-volt segment and a 134-volt segment, you could get 111
different voltages out of the combination of the two transformers,
ranging from % VAC up to 4144 VAC. The full list is:

1/27/9 1 7/5 3/2 14/9 2 7/3 5/2 14/5 3 28/9 35/9 21/5 14/3 67/14
37/7 28/5 7 67/9 74/9 42/5 67/7 T4/7 67/5 14 201/14 T4/5 134/9 111/7
148/9 134/7 148/7 67/3 70/3 335/14 74/3 185/7 134/5 28 201/7 148/5
268/9 222/7 296/9 35 335/9 201/5 370/9 42 222/5 134/3 140/3 148/3
262/5 268/5 296/5 63 196/3 67 70 74 392/5 402/5 84 444/5 98 126 392/3
134 140 148 196 670/3 740/3 252 268 296 335 370 392 402 444 1340/3
2412/5 1480/3 2664/5 603 1876/3 666 670 2072/3 740 3752/5 804 4144/5
888 938 1036 1206 3752/3 1332 1340 4144/3 1480 1876 2072 2412 2664
3752 4144

' ' join(str(x) for x in sorted(set(f*v for n in subs([1, 3, 2])
for d in subs([10, 18])
for v in subs([14, 134])

for f in [fractions.Fraction(n, d),

fractions.Fraction(d, n),

1))

Or, as decimal approximations:

0.50 0.78 1.00 1.40 1.50 1.56 2.00 2.33 2.50 2.80 3.00 3.11 3.89
4.20 4.67 4.79 5.29 5.60 7.00 7.44 8.22 8.40 9.57 10.57 13.40
14.00 14.36 14.80 14.89 15.86 16.44 19.14 21.14 22.33 23.33 23.93
24.67 26.43 26.80 28.00 28.71 29.60 29.78 31.71 32.89 35.00 37.22
40.20 41.11 42.00 44.40 44.67 46.67 49.33 50.40 53.60 59.20 63.00
65.33 67.00 70.00 74.00 78.40 80.40 84.00 86.80 98.00 126.00

130.67 134.00 140.00 148.00 196.00 223.33 246.67 252.00 268.00
296.00 335.00 370.00 392.00 402.00 444.00 446.67 432.40 493.33
532.80 603.00 625.33 666.00 670.00 690.67 740.00 750.40 804.00
828.80 883.00 938.00 1036.00 1206.00 1250.67 1332.00 1340.00

1381.33 1480.00 1876.00 2072.00 2412.00 2664.00 3752.00 4144.00

' join(Mh.2f" U float(x)
for x in sorted(set(f*v for n in subs([1, 3, 2])
for d in subs([10, 18])
for v in subs([14, 134])
for f in [fractions.Fraction(n, d),
fractions.Fraction(d, n),

1))

Note that this still requires only 10 terminals: three on the main
transformer’s secondary winding, four on the auxiliary transformer’s
low-turns winding, and three on the auxiliary transformer’s
high-turns winding. Like the single-transformer “practical”
configuration described above, it also requires four windings and at
most two jumpers; it can produce fewer distinct voltages (only 111
instead of 153) but they are spaced out in a much more useful fashion:
no more than 0.5 volts apart up to 3.1 volts, no more than 1 V apart up
to 5.6 volts, no more than 2 V apart up to 10.6 volts, no more than 4
volts apart up to 46 volts, and so on.

It should be straightforward to come up with a better set of
numbers for the windings, too, that give even more evenly spaced
voltages, and perhaps at rounder numbers, although that aim seems to
be in conflict with the aim of increasing the number of distinct
voltages.

The above ignores the possibility of using the windings on the
second transformer in autotransformer mode, so a larger number of
configurations is actually possible; for example, you could hook up 14
volts to the 1on-turn winding segment and get 25.2 volts off the
18n-turn winding segment, a number which isn’t in the above list.
This relies on the primary transformer to provide galvanic isolation,
which ought to be fine.

It’s somewhat dubious whether you’d really want to use the higher
voltages on such a gadget; they might need to be insulated to a degree
that would make them impractical for the high currents encountered
at low voltages.

Lightswitch reconfiguration

A lower-hassle way to get such flexibility, with only a single
transformer, would be to mechanically switch the mains power
between different primary windings. Two everyday single-pole
double-throw lightswitches of the type commonly used to wire up
hallway lights --- so that you can turn them on or oft from either end
of the hallway --- suffice to select among four of the six possibilities
offered by a primary winding with two center taps, without any
possibility of a short circuit. If the segments have a winding
configuration 1n-1n-2n, then the four possibilities are 1n, 2n, 3n, and
4n; if instead they are 7n-1n-56n, then the four possibilities are 1n,
8n, §7n, and 64n.

This possibility of 1n, 8n, s7n, and 64n turns on the primary could
be seen as a selectable multiplier of the secondary voltage:
respectively 64, 8, 64/57 (about 1.12), and 1. Suppose that when the
primary side is set to 8x, the medium voltage, the secondary side is
like the low-voltage setup described above under “A practical
configuration”: a first winding of segments of %, 115, and 1 volts and
a second winding of segments of 8, 24, and 16 volts. This gives you
Y-volt resolution for 0-3 volts, 5-11 volts, and 13-19 volts, and
2-volt-or-better resolution up to s1 volts, all configured with a single
jumper. Setting the primary side to 64/57 gets you roughly the same
set of low voltages boosted by about 10%. But setting the primary
side to 1x, the same secondary-side configurations give you
62.5-millivolt resolution from 0-375 mV, 625 mV-1.375 V, and
1.625-2.375 V, and Y-volt-or-better resolution up to 6.375 volts.

Or, if you set the primary side to 64x — connecting only the
middle segment of the primary winding — you get 4-volt resolution
for 0-24 volts, 40-88 volts, and 104-152 volts, and 16-volt-or-better
resolution up to 408 VAC. Ideally this 64x setting would be
protected somehow so you didn’t do it by accident. There’s probably
a reason they don’t make power variacs with two sliders...

Since 63 millivolts to 408 volts is an unreasonably large range for a
single apparatus — 100 watts at 408 volts is only 250 mA, while at 63
millivolts it would be sixteen hundred amps — maybe a better choice
is to use a single four-terminal winding on the secondary side. It
could be wired, say, 2-5-4, which can produce multipliers |2, 4, s, 7,
9, 11], and windings on the primary side could be configured, say,
sn-2n-11n, providing divisors of 2n, 7n, 13n, and 18n, since 11n and sn
are inaccessible with the two-lightswitch configuration. This design
is amusingly analogous to a trucker’s 4X6 gearshift, except that
truckers’ gear ratios are a lot closer together.

If we set the lowest available voltage here to 1 VAC (2 on the
secondary, 18n on the primary), then our 23 available voltages are 1.0,
138, 2.0, 2.5, 2.57, 2.77, 3.40, 3.5, 4.5, 4.85, 5.14, 5.5, 6.23, 6.43, 7.62,
9.0 (two ways), 11.57, 14.14, 18.0, 22.5, 31.5, 40.5, 49.5.

sorted([round(9*v/d, 2) for v in subs([2, 5, 4]) for d in [2, 7, 13, 18]])

This is an entirely reasonable set of voltages for a ghettobotics lab
benchtop power supply, except that they’re AC voltages. If you
rectify these voltages and charge capacitors with them, they get
higher by a factor of 27 1.41, 1.96, 2.83, 3.54, 3.64, 3.92, 4.9, 4.95,
6.36, 6.85, 7.27, 7.78, 8.81, 9.09, 10.77, 12.73, 12.73, 16.36, 20.0, 25.40,
31.82, 44.55, §7.28, 70.0.

This approach is also a lot more windings-efficient than the
approach of varying only the secondary windings: it never uses less
than 11% of the primary windings nor less than 18% of the secondary
windings, so the transformer never needs to be more than about six
times bigger than the minimal soHz transformer for whatever you’re
doing at the moment. By contrast, with windings of 1V, 3V, 9V, and
27V, the balanced ternary approach is using 2.5% of its secondary
windings when it’s outputting 1V. Normally the primary and
secondary windings need to be about the same size because their
cross-sectional areas per turn vary in nearly exact proportion to their

numbers of turns, so at 1 V it can only carry 1/40 of its maximum
power.

What’s the actual turns ratio n? If our input is 240VAC, it’s about
26.67: say, 133 turns, §3 turns, and 293 turns in the three segments of
the primary, if the secondary is actually wired with 2 turns, s turns,
and 4 turns. If you’re winding the transformers by hand, using an
additional stepdown transformer (or two!) would be a great idea, just
so you don’t have to thread a wire through your transformer core
over 9oo times. This, though, suggests a return to the approach of the
previous section, wherein each winding gives you an opportunity to
reconfigure.

An 8-lightswitch reconfigurable design
with two transformers but only two jacks

So, suppose we have a primary transformer with two center-taps
on its primary hooked to the wall current through two SPDT
switches, and the two center-taps on its secondary allow you to use
two more SPDT switches to select one of four possible parts of the
secondary, and those are connected to the primary of a second
transformer via two more SPDT switches to select one of four possible
parts of its primary, and on its output we have two more SPDT
switches which hook up the output socket to it. No jumper wires and
no possibility of shorting a winding with them. What does that look
like? What kind of turns ratios can it give us?

I’m tired of designing, so I generated the random configuration
([2s, 9, 32], [5, 2, 11], [25, 24, 28], [7, 2, 12]). That is, the first
transformer has a primary winding with a 25-turn segment, an 9-turn
segment, and a 32-turn segment, and a secondary winding with a
s-turn segment, a 2-turn segment, and an 11-turn segment; the
second transformer has a 25-24-28 primary and a 7-2-12 secondary.
(Maybe all the turns numbers are multiplied by some constant such as
1.5 or 2, since 2 turns might not be enough to couple well to the
magnetic core.) What possibilities does this offer?

import random

def config(m):
x = range(2, m)
randon. shuffle(x)
x = sorted(x[:3])
x[0], x[1] = x[1], x[0]

return x

config(20), config(10), config(20), config(10)

I’m tired of calculating too, so I wrote code to calculate.

spdt = lambda (a, b, c): sorted([b, atb, btc, atbc])

ratios = lambda p, s: sorted(set(fractions.Fraction(n, d)
for d in p for n in s))
".join(str(f) for f in ratios(spdt([25, 9, 32]), spdt([5, 2, 11])))
".join(str(f) for f in ratios(spdt([25, 24, 28]), spdt([7, 2, 12])))

This gives us the possible voltage ratios for the first transformer
1/33 2/411/17 7/66 7/4113/66 7/34 2/9 3/11 13/41 13/34 18/41 9/17
7/9 13/9 2 and for the second transformer 2/77 1/26 2/49 1/12 9/77
9/52 2/119/49 7/26 3/11 2/7 3/8 21/52 3/7 7/12 7/8. These do
indeed result in 256 different voltages, which range from about 0.2
volts up to 420 volts:

rs = sorted(set(240xt1xt2 for t1 in ratios(spdt([25, 9, 32]),
spdt([5, 2, 11]))
for t2 in ratios(spdt([25, 24, 28]),
spdt([7, 2, 121))))
min(rs), max(rs), len(rs)

Specifically, the output voltages are 0.189 0.280 0.297 0.304 0.367
0.450 0.478 0.543 0.576 0.606 0.661 0.850 0.976 0.979 1.039 1.064 1.176
1.228 1.259 1.283 1.322 1.336 1.368 1.385 1.576 1.650 1.672 1.700 1.818
1.900 1.929 1.958 1.977 1.983 2.017 2.026 2.051 2.078 2.121 2.129 2.150
2.177 2.383 2.443 2.517 2.567 2.593 2.672 2.727 2.737 2.927 2.937 2.975
3.106 3.117 3.152 3.193 3.300 3.345 3.415 3.529 3.745 3.801 3.850 3.939
4.034 4.053 4.118 4.242 4.301 4.390 4.406 4.444 4.628 4.675 4.728 4.789
4.848 4.887 5.017 §.186 §.294 $.455 5.525 $.701 §5.775 6.050 6.234 6.341
6.364 6.829 6.853 6.942 7.092 7.179 7.273 7.450 7.526 7.619 7.647
7.651 8.182 8.235 8.552 8.59¢ 8.683 8.780 8.895 8.984 9.004 9.076 9.231
9.545 9.697 9.796 10.244 10.280 10.588 10.726 10.909 11.032 11.175
11.329 11.707 11.901 12.022 12.315 12.353 12.468 12.727 12.893 13.171
13.303 13.333 13.476 13.506 13.836 13.977 14.118 14.150 14.359 14.545
14.848 14.851 15.238 15.366 15.556 15.882 16.548 16.684 16.855 17.561
17.622 17.727 17.851 18.236 18.462 18.529 18.701 19.091 19.157 19.353
19.592 19.955 20.000 20.260 20.488 20.754 21.176 21.538 21.742 21.818
21.991 22.273 22.857 23.102 23.337 23.902 24.545 24.706 25.027 26.218
26.434 27.576 28.052 28.368 28.537 28.736 28.824 28.889 30.105 30.732
31.111 32.308 32.613 33.939 34.208 34.286 34.412 34.652 35.854 36.303
37.059 38.182 39.328 39.512 40.000 40.519 41.364 42.552 43.235 44.390
45157 46.667 47.647 50.256 $0.909 §1.312 §3.333 §3.529 54.454 56.104
§7.273 60.000 61.463 63.030 63.673 66.585 70.000 74.118 75.385 80.000
80.294 83.077 87.273 88.163 92.195 93.333 94.545 99.048 108.889
111.176 129.231 130.000 130.909 137.143 140.000 148.571 163.333
180.000 193.846 202.222 205.714 280.000 303.333 420.000.

"' join("%.3f" % float(f) for f in rs)

This randomly generated configuration is maybe not a super great
design but it’s in some sense reasonable. Half the values are below 12
volts, there are 256 distinct values, the values are mostly only a couple
percent apart in the middle of the range, and the range covers over
three orders of magnitude. Over most of the range the design has
considerably more precision in the turns ratio than the margin of error
on the mains voltage.

This is kind of overkill, although the transformers are much more
manageable. Maybe a single SPDT per winding with a single center
tap on each winding and two center taps on the final output would be
adequate: three lightswitches to “select a range” and then four output

terminals to give you six voltages simultaneously, 48 settings in all.

Topics

* Electronics (p. 792) (42 notes)

* Ghettobotics (p. 797) (18 notes)

* Espacio de César (p. 896) (3 notes)
* Ternary (p. 921) (2 notes)

Tentative outline of a body of
knowledge

Kragen Javier Sitaker, 02020-06-06 (updated 02020-10-28)
(10 minutes)

A possible ambition for Derctuo is to include all the background
information needed to understand it, if I can find freely-licensed
sources. So, for example, Pandemic Collapse (p. 69) talks about
geography (the US, Tenochtitlin, Cambodia), historical events (the
Vietnam War, the 1918 flu, the Bronze Age Collapse), economic
concepts (unemployment, insurance, banks), and other institutions
(the US DoD, the Mormon church, major corporations). Solar
furnace CPC (p. 65) talks about physical properties of common
materials, the Stefan—Boltzmann law, manufacturing processes of
ceramics, thermodynamics, units of measurement, basic optics, and
the structure of the solar system. CCN Streams (p. 52) talks about
networked systems architecture, hashing, SHA-256, TCP/IP, disks,
telephone networks, and all kinds of programming stuff.

What is the body of knowledge that would be needed to make
sense of all this stuff? Consider the Stefan—Boltzmann law. To make
any sense of the statement j = ¢T* you need to know algebraic
notation and what energy and temperature are, including the concept
of absolute temperature. And you need to understand how solid
objects have surface areas.

Geographic and historical knowledge in particular is sort of endless.
Tenochtitldn is Mexico City today, with 8.8 million people, 0.11% of
the world’s population; Mexico City’s Wikipedia page is 213kB,
33000 words; the destruction of Tenochtitlin (what is referenced in
Pandemic Collapse) is mentioned briefly after 9% of the page. If you
divided the world into, say, 2048 regions of equal population (4
million or so), and included 4096 words or so on each of these
regions, you'd probably cover most of the geographic facts of
importance comparable to the ruin of Tenochtitldn, in about 8.3
million words, about 30,000 pages; you could read it all, once, in
three to six months.

Vital Articles

Wikipedia’s “Vital Articles” constitutes an attempt to codify such a
general-purpose body of knowledge. There are ten Level 1 Vital
Articles, including “Human History” (21000 words, 137kB, mentions
Mexico and the Aztecs, and has a couple of sentences on the
European conquest of the Americas); 100 Level 2 Vital Articles,
including 10 articles on history (the “early modern period” article has
a couple of sentences on the European conquest out of 18000 words
and 120k B and mentions the Aztecs, and so does “civilization”) and 11
on geography (the “North America” article’s 18000 words in 123kB
does explain, “The Mayan culture was still present in southern
Mexico and Guatemala when the Spanish conquistadors arrived, but
political dominance in the area had shifted to the Aztec Empire,
whose capital city Tenochtitlan was located further north in the

https://en.wikipedia.org/wiki/Early_modern_period
https://en.wikipedia.org/wiki/Civilization
https://en.wikipedia.org/wiki/North_America

Valley of Mexico. The Aztecs were conquered in 1521 by Herndn
Cortés.”); and 999 Level 3 Vital Articles, including 80 on history and
99 on geography.

How about the killing fields of Cambodia under the Khmer
Rouge, also mentioned in the same note? Among the Level 2 Vital
Articles we find “Late Modern Period” (19000 words, 123kB) which
mentions the Cambodian genocide, but no more; and “Asia” (15000
words, 104kB) which mentions “the Cambodian Killing Fields”, but
no more. We don’t find enough detail to understand the allusions in
Pandemic collapse (p. 69) until Level 3, which sketches the history of
the Khmer Rouge in Cambodia in its articles “Vietnam”, “Cold
War” (36000 words, 233kB) including multiple paragraphs and a
photo of a shelf full of skulls, “Mao Zedong”, “Theravada”,
“Dictatorship”, and especially “Genocide” (17000 words, 109kB).

So we can infer that probably, at least when it comes to
understanding my historical references, having read all of Wikipedia’s
Level 3 Vital Articles are probably sufficient. This is not true for
scientific knowledge; “Temperature”, “Fire”, “Electric light”, and
“Electromagnetic radiation” mention black body radiation briefly but

do not mention the Stefan—Boltzmann law.

Unfortunately the Level 3 Vital Articles are some 20 million words
and would blow out the 20-megabyte download budget for Derctuo,
even without any pictures. The thought above of having about 4096
words for every 4 million people would be more than adequate for
Cambodia, though, since in the 16384 words on Cambodia, we could
surely find space to mention the Khmer Rouge.

Reading Level 3 might take a year at a reasonable level of reading
speed, a bit over 1000 hours if you read it like a novel.

Possible plethoras of sources

Possible sources include MIT OpenCourseware, Wikipedia,
Wikibooks, cnx.org (before it shuts down), OpenStreetMap, Project
Gutenberg, the Internet Archive etexts collections, and for recent
things, PLoS and arXiv.org. Boundless used to have some
open-content textbooks but they seem to have mostly been lost,
though fragments like their definition of limits survive in part.
OERCommons has a search engine over thousands of freely licensed
educational resources, of which nearly a thousand few are textbooks,
such as Jim Hefferon’s linear algebra book (CC-BY-SA, 7.sMB,
so7pp.)- (See also the section on “particular textbooks” below about
Hefferon’s work.) They also link to OpenStax (which I'd forgotten
about), Delft OCW, CMU OLI, and another dozen or so similar
initiatives.

GWU has a guide to open textbooks which links to most of the
above.

Wikipedia has a list of notable CC works, including Connexions
(which I guess is cnx.org), Khan Academy (cc-by-nc-sa), OpenLearn,
OCW, something called “The Saylor Foundation”, WikiEducator,
375000 CCo artworks from the Metropolitan Museum of Art,
deviantART, Flickr, Open Game Art, Openclipart, etc.

Many public-domain books, including some nonfiction, are in

https://en.wikipedia.org/wiki/Late_Modern_Period
https://www.oercommons.org/courses/linear-algebra-4
http://web.archive.org/web/20150711143053/www.boundless.com/textbooks/
https://hefferon.net/source.html
https://www.oercommons.org/
https://www.oercommons.org/
https://www.oercommons.org/courses/world-civilizations-i-open-course/view
https://www.oercommons.org/courses/linear-algebra-4
https://libguides.gwu.edu/opentextbooks/findingopentextbooks
https://en.wikipedia.org/wiki/List_of_major_Creative_Commons_licensed_works

Project Gutenberg and Wikisource, as well as the Internet Archive’s
books collection. Everything up to 1924 is PD in the US now,
including Rhapsody in Blue. Parker Higgins collated many striking
1923 works in a zine last year, though I think a more striking work
still is Kahlil Gibran’s The Prophet. Also, perhaps, the Russells’ The
Prospects of Industrial Civilization. The Hathi Trust catalogues §3940
works published in 1923, of which 33105 are books.

A dismal assessment of OERCommons

The OERCommons textbooks mentioned earlier include 17 history
textbooks, but most are too specific to include either of the events I
was using as test points above. World Civilizations I (CC-BY) was
the only one that seemed broad enough to mention Cambodia, but
unfortunately has been lost. Western Civilization: A Concise
History, Volume 3 (CC-BY-NC, 105k words, 10MB as .odt, 274 pp.)
starts with Napoleon, too late to cover Cortés, but its volume 2
(CC-BY-NC, 87k words, 229 pp.) does devote a few paragraphs to
the events.

Particular textbooks to check out

Jim Hefferon’s Linear Algebra, Theory of Computation, and
Introduction to Proofs are cc-by-sa 3.0 disjunction GFDL, with LaTeX
source. He says the linear algebra text is “a popular text”. I haven’t
reviewed the books yet, but some people seem to like them, though
others tar them as unrigorous. And they come with exercise solutions
and video lectures.

SICP is under cc-by-sa 4.0. I think Structure and Interpretation of
Classical Mechanics is under cc-nc-by-sa 4.0. It’s using MathJax.

Mathematics for Computer Science is a cc-by-sa 987-page PDF
covering things like graphs, satisfiability, and linear recurrences.

I am greatly enjoying Reuleaux (p. 444)’s presentation of
kinematics, which is in the public domain due to its age. However,
the idea of reducing it to files of a manageable size seems daunting.

I really liked MacKay’s [Sustainable Energy Without the Hot Air].
Disappointingly, his book on information theory is not available
under a free license, and neither is Without the Hot Air/SEWTHA as it
turns out.

PLOS ONE has a systematic reviews category, but most of the
1507 reviews therein are pretty narrow: “Healthcare-associated
infection and its determinants in Ethiopia: A systematic review and
meta-analysis” and the like, although “Fecal microbiota
transplantation in inflammatory bowel disease patients: A systematic
review and meta-analysis” sounds pretty interesting.

On the topic of formal logic, Sean Palmer recommends forall x,
Tree Proof Generator (usable online at https://www.umsu.de/trees/
), and the whole Metamath website, which is in the public domain,
including things like the proof that V2 is irrational.

Gwern licensed his entire site under CCo. It mostly discusses IQ,
epistemology, pharmacology, IQ, deep learning, other aspects of Al,
statistics, genetics, 1Q, politics, psychology, biology, programming,
economics, and IQ, but occasionally strays from that focus. Uses

https://web.law.duke.edu/cspd/publicdomainday/2020/
https://web.law.duke.edu/cspd/publicdomainday/2020/
https://web.law.duke.edu/cspd/publicdomainday/2020/
https://1923.press/
https://1923.press/
https://web.law.duke.edu/cspd/publicdomainday/2019/
https://web.law.duke.edu/cspd/publicdomainday/2019/
https://web.law.duke.edu/cspd/publicdomainday/2019/
https://babel.hathitrust.org/cgi/ls?a=srchls;c=149827760;q1=*
https://babel.hathitrust.org/cgi/ls?a=srchls;c=149827760;q1=*
https://www.oercommons.org/courses/world-civilizations-i-open-course/view
https://www.oercommons.org/courses/western-civilization-a-concise-history-volume-3?__hub_id=19
https://www.oercommons.org/courses/western-civilization-a-concise-history-volume-3?__hub_id=19
https://www.oercommons.org/courses/western-civilization-a-concise-history-volume-2/view
https://hefferon.net/source.html
https://hefferon.net/source.html
https://hefferon.net/source.html
https://hefferon.net/source.html
https://hefferon.net/source.html
https://hefferon.net/source.html
https://hefferon.net/source.html
https://news.ycombinator.com/item?id=24905486
https://news.ycombinator.com/item?id=24905486
https://www.gwern.net/About#license
https://tgvaughan.github.io/sicm/toc.html
https://tgvaughan.github.io/sicm/toc.html
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
https://journals.plos.org/plosone/browse/systematic_reviews
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238910
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238910
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238910
http://forallx.openlogicproject.org/forallxyyc.pdf
https://github.com/wo/tpg
https://github.com/wo/tpg
https://www.umsu.de/trees/
http://us.metamath.org/mpeuni/sqrt2irr.html
https://www.gwern.net/About#license

Mathjax. He explains his motivation:

The goal of these pages is not to be a model of concision, maximizing
entertainment value per word, or to preach to a choir by elegantly repeating a
conclusion. Rather, I am attempting to explain things to my future self, who is
intelligent and interested, but has forgotten. What I am doing is explaining why I
decided what I did to myself and noting down everything I found interesting about
it for future reference. I hope my other readers, whomever they may be, might
find the topic as interesting as I found it, and the essay useful or at least
entertaining—but the intended audience is my future self.

The source code of his pages (in a Pandoc-implemented language
derived from Markdown) is accessible by appending .page to the

URL. He says the whole thing is kept in Git, but I don’t know
where.

Topics

* Derctuo (p. 822) (9 notes)
* Archival (p. 8s5) (5 notes)
» Wikipedia

» Textbooks

* Public domain

* Creative commons

Ghettobotics soldering iron

Kragen Javier Sitaker, 02020-06-17 (4 minutes)

Espacio de César posted a video demonstrating how to make a
usable 40-watt soldering gun out of a heavy mains transformer
(rewound with a low-voltage secondary) and some heavy steel wire,
saying he was looking for about % volt on the secondary. This seems
like a very reasonable strategy to me but I can’t salvage
transformers — invariably they are already recycled before I encounter
a discarded electronic item. Probably even something like an ATX
power supply would be easier to find.

1%V and 40W is about 80 amps, though, which is a bit more than
ATX power supplies can usually provide.

That also implies about 0.006Q. Is that about the right resistance?
Iron’s resistivity at room temperature is about 100 nQm; guessing
that César’s heating element is about 100 mm long and 1 mm?, we get
0.01€2, so yeah, that’s about right. 1010 carbon steel is about 143 nQm,
while stainless is several times higher at some 700 nQm. Nichrome
would be much better, at 1100 nQm, and I’ll probably find some
sooner or later, since people constantly throw out broken hair dryers
and space heaters.

We could get the same power out of a thinner wire at a higher
voltage and lower current, but at more risk of burning the wire out.
The wire fusing current estimates from Powerstream that I used in
file balcony-battery in Dercuano suggest that 86 A is already enough to
melt 11-gauge iron wire (2.3 mm), 43 A is enough to melt 15-gauge
iron wire (1.5 mm), 21 A is enough to melt 19-gauge iron wire (0.9
mm), and 10.7 A is enough to melt 23-gauge iron wire (0.7 mm). So
really César is already past the edge of safety and will melt his
soldering tip if he holds the trigger down long enough.

Can you do it with simple electronics instead of a transformer?

You can’t just PWM the AC line current through a 6-milliohm
heating element; you’ll trip the house’s circuit breaker, and even if
you don't, you're dropping the line voltage to zero temporarily, and
other nearby appliances won't like that. But you ought to be able to
PWM it into a hefty inductor with a hefty freewheel diode or ten, at
least if they have enough ballast to prevent thermal runaway. Very
crudely guessing, if you have a duty cycle of 0.01% or more and a
PWM frequency of 10kHz, then your inductor just needs to prevent
the current from rising to too much more than 80 amps in 10 ns, or 8
billion amps per second, at less than 340 V (the peak voltage). That
only requires 43 nanohenries, which you might get without asking for
it. But it also requires subnanosecond switching times for that
current. Also, you need an input capacitor bank that can handle 80
amps of ripple current, which is doable but nontrivial.

You probably could PWM the AC line current into a
high-frequency stepdown transformer, which could handle the 40
watts or whatever in a much smaller core. This is basically a flyback
supply I think, just with a stepdown instead of a stepup? I don’t
know, I have to think about this stuff later.

https://en.wikipedia.org/wiki/Electrical_resistivities_of_the_elements_(data_page)
https://en.wikipedia.org/wiki/Electrical_resistivities_of_the_elements_(data_page)
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://www.powerstream.com/wire-fusing-currents.htm

Topics

* Electronics (p. 792) (42 notes)
* Ghettobotics (p. 797) (18 notes)
* Espacio de César (p. 896) (3 notes)

An outline of the design process
leading up to the Veskeno virtual
machine

Kragen Javier Sitaker, 02020-06-17 (updated 02020-07-10)
(88 minutes)

¢Ves que no?

The primary goal of Derctuo is to present some calculations and
computational simulations in a reproducible fashion, so that it is
possible for other people to build on them. Unfortunately, and quite
surprisingly, no suitable medium for such things currently
exists — except in the limited sense that bytes and computers are
potentially such a medium. But a raw sequence of bytes is
meaningless without some kind of interpretation, a “file format”, and
as far as I can tell, no suitable file format currently exists.

“Veskeno” is the name I have adopted for such a file format, which
unfortunately requires the development of a new virtual machine for
reproducible computations. The reasons for this require some
explanation.

The determinism of mathematics

Consider the polynomial x* - ® - 52 - x - 6. We can reasonably
make assertions about it; for example:

* “As you can see, this polynomial has two real and two imaginary
roots.”

* “At x = o, this polynomial’s derivative is -1, and at x = 1, the
derivative is -5.”

* “For real x, this polynomial is bounded below by a constant, but not
bounded above.”

Moreover, you can compute that, for example, one of the
polynomial’s zeroes is at x = -3, while another is at x = 2.

Or are they? Either way, you can calculate what the zeroes are,
although it may not be easy — it’s a matter of objective truth or
falsity. If I've made an error, you can find it, and if I'm correct, you
can verify that. And you can be sure that anyone else who does the
calculations will get the same answer — regardless of their cultural
background, ethical beliefs, or latitude, regardless of whether they’re
in 02020 CE, 02120 CE, or 12020 CE. Indeed, any rational being in
any possible universe would get the same results. Unless they failed to
understand or made a mistake. (Did I make a mistake above?)

As David Hume says:

Algebra and arithmetic [are] the only sciences in which we can carry on a chain of
reasoning to any degree of intricacy, and yet preserve a perfect exactness and
certainty. We are possessed of a precise standard, by which we can judge of the
equality and proportion of numbers; and according as they correspond or not to
that standard, we determine their relations, without any possibility of error. When
two numbers are so combined, as that the one has always a unit answering to every
unit of the other, we pronounce them equal.

There are a variety of things for which we can make such objective
assertions: which side won a chess game, given all the moves, for
example, or that the word “fire” occurs 559 times in the King James
Version of the Bible, at least if we can agree on which version that is,
and what counts as an occurrence of the word — I omitted
occurrences of “fiery”, but counted words containing “fire”, such as
“firepans” and “firebrands”.

The objective of Veskeno: make software,
specifically Derctuo, run as reproducibly as
other mathematics

[Clomputer science is about formalizing imperative knowledge. The essence of
programming is about imperative knowledge. It’s about how to do things. ... But
it’s no different than what we say in the SICP lectures: Mathematics is about how
you think about what’s true, following from various axioms. Computing is how
you think about how to do things.

— Hal Abelson, 2011

Since at least Church, Turing, and G&del, we have a rigorous
mathematical formalization of the notion of an algorithm, which is
how we have managed to build digital computers that can be
programmed to execute any algorithm in the first place. So we know
that we can, in theory, come to the same kind of consensus about the
behavior of an algorithm — in theory any algorithm whatever can be
executed on any computer in the universe, on the same input data,
and compute exactly the same results. And, again in theory, it does
not matter whether the computation happens in 02020 CE or 02184
CE; the results will be exactly the same, precisely the same sequence
of bits. In theory, programs are incapable of nondeterminism, unless
the computer malfunctions.t

In practice, however, we have a very different situation, one prone
to what Konrad Hinsen calls “software collapse”, colloquially known
as “bitrot”: software that works perfectly on one machine or at one
time, but fails to run correctly or even to compile on another machine
or at another time; or it may run but be unusable in practice for one
or another reason. Occasionally this happens because of changes in
the universe of inputs and outputs — many IBM PC games ran too
fast to be playable on the IBM PC AT, for example, and a user
interface designed for mice may require too much precision to be
usable in practice on a multitouch hand computer — but much more
often software collapse happens because software or hardware
dependencies changed their behavior, so the same program computes
different results from the same inputs. Often a large body of tacit
knowledge, concerning what changes have happened, must be drawn
upon to repair software collapse; if the maintainers of the codebase
are dead or uninterested, repairing it may be infeasible.

Veskeno’s objective is to put the theory into practice, so that the
algorithmic results in Derctuo are as reproducible as algebraic results.
This way, it is hoped, the written record of algorithmic knowledge
can engage the kind of ratchet of progress that has propelled
mathematics and the natural sciences forward, so that each generation
of researchers can build on the results of the previous generation,
rather than — as normally happens with software — reinventing those

http://www.gigamonkeys.com/code-quarterly/2011/hal-abelson/

results from scratch. And it need not be dependent on the
maintenance of a living tradition, since Veskeno can be
reimplemented from its specification.

We want to have a high degree of assurance that, if a computation
has occurred under Veskeno and the program and input data are
available, we can reproduce the same computational results with a
new implementation of Veskeno, although perhaps more slowly, or,
with luck, more quickly; we want to minimize the chance that a bug
in either the new or especially the old implementation breaks this
reproducibility.

We adopt the following priorities in order to achieve this:

* The Veskeno specification should be sufficiently strict and detailed
that, given any Veskeno program and its input data, any two correct
implementations of Veskeno should produce bitwise identical results,
unless one or both of them unpredictably fails. (See below about
predictable and unpredictable failure.)

* The Veskeno specification should be sufficiently simple that a
programmer should be able to implement it in an afternoon, given
only the spec — without having access to running implementations to
test against. Moreover, the implementation should be more likely
correct, as defined above, than incorrect, once it passes all the tests in
the spec — even if implemented on hardware that would be extremely
unusual in 02020 CE, such as a decimal or ternary computer.

* A straightforward one-afternoon Veskeno implementation should
be efficient and full-featured enough to run practical

computations — for example, to run 1980s video-games at playable
speeds, on mainstream 02020 CE personal computing hardware such
as a Samsung Galaxy A1o.

» It should be practical to generate working code for Veskeno without
unreasonable space overheads, compilation-time costs, or headaches.
However, since the objective is to spend hundreds or thousands of
hours writing Derctuo so that someone can write a Veskeno virtual
machine on which to run it in six hours or so, it’s worth trading off
100 hours of effort programming for Veskeno to save even a single
hour of effort writing a Veskeno implementation.

* The damned thing needs to get done in a month or two and have
working software on it at that point.

A consequence of priorities #1 and #2 is that it should usually be
impossible for a malicious attacker, upon examining two simple
implementations of Veskeno that pass the tests in the spec, to
construct a Veskeno program and input dataset that runs successfully
on both implementations but produces different results.

This set of priorities leads to a very unusual set of design tradeoffs,
one so alien to modern mainstream virtual machine design that the
comment was heard, “I feel like this is designing a weapon or
something.”

There are varying levels of abstraction at which we could such
reproducibility could be guaranteed; Veskeno takes the simplest
approach, of prescribing reproducibility at the level of individual
CPU instructions, which compose into reproducible macroscopic
computations.

T Conventionally these results are stated for batch-mode algorithms
which run for some finite period of time and then halt with a result,
but it’s straightforward to extend them to interactive processes — the
batch-mode algorithm takes as input a previous state and an input
event (which may be simply that there is no input of interest to
report) and eventually produces a new state and perhaps some output.
(Extending this statement to multithreaded programs and
interrupt-driven I/0 is less straightforward but in principle possible
by treating these new sources of nondeterminism as more kinds of
input events.)

A note about hardware performance

A Galaxy A10 (30 million sold in 02019) has 2 GiB of RAM and
eight Cortex-A cores running at 1.35 to 1.6 GHz, capable in all of
perhaps 20 billion 64-bit multiply-accumulate operations per second,
plus a Mali-G71 MP2 GPU, which I think is about 50 gigatlops on
two cores. A 1980s video-game might have 1 MiB of RAM and
execute a million 16-bit multiply-accumulates per second.

So the throughput performance overhead budget here is about a
factor of 2048 in space and a factor of some 131072 in time, though of
course greater speed and less overhead would be desirable, since it
would make much more elaborate computations reproducible.
Typical straightforward low-level virtual machines can achieve time
overhead factors of 3—20 and space overhead of 1.1—4, but we don’t
have to come close to that; moreover Veskeno is serial, imposing
another factor of 16—64 of overhead on the throughput (p. 20) unless
some kind of parallelism is possible. This leaves us some 128X of
performance headroom.

A typical 1980s video-game might run on a 6502 like the 1.70MHz
one in a Nintendo; a multiply routine for the 6502 takes 130 CPU
clock cycles to multiply 8 bits by 8 bits and get a 16-bit result, while a
version using a table of squares takes 79—83 cycles. At the 6502’s max
of 3 MHz this might give us 38000 8-bit multiplies per second, or
only about 22000 on the Nintendo, working out to about 5000 16-bit
multiplies per second; typically, though, 6502-based video-games
paired the CPU with sprite hardware to do compositing of
video-game characters onto a background, thus reducing the load on
the CPU. By the end of the 1980s, though, some video-games ran on
CPUs that were some 256 times faster, obviating the need for sprite
hardware.

On the other hand, for faithfully reproducing the “feel” of human
interactions with existing computer systems, simulating the analog
behavior of computer hardware often demands significant
computational work. XXX at masswerk.at has reproduced
“Spacewar!”, perhaps the first video-game done on a computer; he
reports that the most difficult and time-consuming part was
accurately reproducing the color change and exponential decay
behavior of the PDP-1’s display. Accurately simulating analog video
artifacts like chroma subsampling, NTSC artifact colors, ghosting,
blur, ringing, noise, and pincushioning, as the Apple2 XScreenSaver
module does, can use an unboundedly large amount of digital
computation.

https://www.lysator.liu.se/~nisse/misc/6502-mul.html

Predictable and unpredictable failure

Above, I said, “any two correct implementations of Veskeno
should produce bitwise identical results, unless one or both of them
fails.” Why is failure an option, and what kinds of failure handling
can we have?

The simplest and most unavoidable kind of unpredictable failure is
that an implementation, although correct, runs too slowly to be worth
waiting until it finishes. Perhaps a given computation requires an
hour of CPU time on an efficient implementation of Veskeno; an
inefficient implementation might be 1000 times slower and run on a
CPU that is 8 times slower, thus requiring 8ooo hours, about 11
months. Such a computation is almost certain to be aborted before
completion unless its results are of great interest and using the
computer for other tasks is of little interest.

Dynamic memory allocation failure is another kind of
unpredictable failure which, although it is not unavoidable, may be
preferable to the cost of avoiding it. It is straightforward to write a
program such that it can handle any amount of data that would fit
into virtual memory — 4 gibibytes in the case of a 32-bit
machine — while being able to handle smaller amounts of data, such
as 100 kibibytes, in much smaller amounts of memory. We could
avoid the possibility of runtime dynamic memory allocation failure by
preallocating 4 gibibytes, so that the program will entirely fail to run
on machines with only, for example, a gibibyte of RAM, even if
given only 100 kibibytes of input. This would prevent it from
running on, for example, the Samsung Galaxy A1o mentioned above,
since it has only 2 gibibytes. (Kernel memory overcommit would
have to be turned off to achieve this under Linux, since otherwise the
Veskeno virtual machine process can be OOM-killed at any time.)

In many environments, it is very difficult to ensure that dynamic
memory allocation failures cannot happen during execution, because
many basic operations of the language can invoke dynamic allocation.
In CPython, for example, even integer arithmetic can invoke
dynamic memory allocation, and it is common even for languages like
C to dynamically allocate function activation records on a stack,
although perhaps this can be avoided during execution of Veskeno.
Attempting to outlaw Veskeno implementations in such
environments would be futile and probably counterproductive. Also,
Veskeno itself is probably such an environment: a Veskeno virtual
machine interpreter written in Veskeno can be useful for many
things, but unavoidably will have less memory space available for the
program it interprets than it has itself.

However, for some applications of Veskeno — not those in
Derctuo — it would be desirable to ensure that no such unpredictable
failures will arise, so that a Veskeno-implemented algorithm can be
used to, for example, safely control an antilock braking system, a jet
engine, a milling machine, or a self-balancing scooter. Typically in
these cases a worst-case execution time is also demanded. For these
cases, we would need to preallocate all the needed resources.

A third kind of possible failure arises from correctness checks on
operations such as arithmetic, memory access, and /0.
Conventionally, for example, dividing by zero or dereferencing a null

pointer will raise an exception that can terminate a program or reset a
computer. On some systems, arithmetic overflows may also raise such
exceptions, the Ariane § maiden flight being one notorious example.
For debugging, these exceptions are highly desirable, since they often
point quite directly to the problem in the program, while incorrect
results might easily be overlooked. They are different from the above
kinds of failures, though, because they are not unpredictable: running
the same program on the same input data will always produce the
same failure — although in many systems the exception happens some
time after the actual failure.

What would happen if a Veskeno program had the option to
handle unpredictable failures? For example, if dynamic memory
allocation sometimes reported failure to the program, or invoked an
exception handler in the program. Then some executions of the
program on the same input data would see a reported failure, while
others would get success, so their executions would
diverge — Veskeno could no longer guarantee that the results were
equivalent. Even if the results were marked as “error output” rather
than “algorithm results”, since a failure had happened during the run,
people would start relying on that error output.

So, because unpredictable failure is not deterministic (in terms of
the supposed inputs) recovery from unpredictable failure must be
impossible. This reasoning does not apply to predictable failures, and
s0 it is reasonable to include predictable-failure cases in the Veskeno
test suite.

However, even predictable failure cases pose some real difficulty in
reproducibility, because they tend to be very poorly tested. Ordinary
computations, outside the test suite, will not normally depend on the
behavior of failure cases, so it is easy for a case to slip through where
the virtual machine is supposed to detect a certain failure, but it fails
to do so — a failure to fail, you might say. Then users will write
programs that depend on the virtual machine’s failure in that case,
probably without knowing it, and their behavior will not be
reproducible on other implementation of Veskeno.

A binary, rather than textual, file format

It’s reasonable to consider, for example, core Lisp as the canonical
representation for algorithms, by which is meant the usual definitions
of S-expressions, CAR, CDR, CONS, QUOTE, NULL, ATOM,
EQUAL, LAMBDA, some kind of conditional such as COND or IF,
and some kind of recursive construct such as LABELS, LETREC, or
global DEFUN; and, indeed, these constructs have a perfectly well
defined deterministic semantics sufficient to express any computable
function. Moreover, in any modern high-level language with garbage
collection, you can write an interpreter for it in 30 to 120 lines of
code, including the reader and the printer.

However, when we turn to thinking of testing and failures, many
subtle considerations appear. LAMBDA and LABELS involve the
introduction of symbols; what is the maximum acceptable length of
these symbols? How many characters of them are significant — all of
them? Are characters counted as bytes (in UTF-8?), as Unicode code
points, or as UTF-16 code units? Which characters are allowed? Is

comparison case-insensitive, or, if case-sensitive, is it done in, for
example, Normalization Form D? Is there a maximum nesting depth
to lists, and what is it? How about a maximum length? Is the symbol
NIL, or some other symbol, EQUAL to an empty list, or treated as
falsehood in conditionals? Is the ASCII tab character treated as
whitespace? How about vertical tab (*K)? How does EQUAL
handle lists — does it treat them as always inequivalent, almost like
EQ, or does it compare their contents, and if so does it have a
recursion limit? Must the input file end with a linefeed character?
What will the parser do if an extra right parenthesis is added to the
end of the file? How about an extra left parenthesis? If an unused
argument is specified as a nonterminating computation, will the
computation succeed or not — that is, is evaluation lazy or eager?
Does the answer depend on circumstances?

If mutable state is added — as it was immediately to Lisp,
historically speaking — additional questions become relevant. What is
the order of evaluation of arguments?

These problems are amplified by the fact that the answers may be
dependent on the invocation context in a poorly specified way. As an
example, CPython’s default recursion limit is 1000 stack levels, which
may give rise to a nesting limit of 333, 500, or 1000 for lists in a
straightforwardly-written recursive-descent parser — but if that parser
is invoked from a context already nested ten stack levels deep, these
limits instead become 330, 495, or 990. CPython is unusual in that it
handles stack overflow explicitly by raising an exception; most
current and past language environments instead produce
unpredictable incorrect results or crash at the operating-system level.

Since most of the Lisp primitives draw their arguments from
potentially infinite domains, such as lists and symbols, which are at
least exponentially large, running exhaustive tests for them is out of
the question.

The depth and richness of these likely sources of implementation
bugs would seem to make the following scenario almost inevitable:
Alice implements Veskeno and builds and tests a program as a
Veskeno virtual machine image in her implementation.
Unbeknownst to Alice, her program depends on symbols with equal
Normalization Form D being treated as EQUAL. Bob, perhaps three
centuries later, implements Veskeno and attempts to run Alice’s
virtual machine image. It produces different results than it did for
Alice. Bob concludes that Alice (RIP) was a superstitious fool whose
reported results cannot be trusted, or perhaps a fraud.

This is precisely the scenario Veskeno is intended to prevent.
Veskeno priority #2 says:

... the implementation should be more likely correct, as defined above, than
incorrect, once it passes all the tests in the spec ...

Some of these problems are specific to Lisp and would not be
present with, for example, a textual assembly-language format, but
others are generic problems of most or all textual formats. And the
advantages of textual formats seem to primarily redound to the
benefit of the person writing a file in them, not to the implementor of
a complete, correct interpreter of the file format. As the priorities say,
“it’s worth trading off 100 hours of effort programming for Veskeno

to save even a single hour of effort writing a Veskeno
implementation.” Consequently, a binary file format seems far more
likely to be able to achieve Veskeno’s aims.

An untyped 32-bit register machine with

mod-2%2 wraparound

The Veskeno virtual machine has 16 CPU registers and a RAM
array; programs using a stack store the stack in the RAM. To ease
compiling existing C code for Veskeno, the registers are 32 bits,
despite the hassles that entails in languages like Java or on 16-bit
hardware; it poses no difficulty for Veskeno implementations in
languages like C.

The only arithmetic operations it offers are addition and
subtraction, which behave mod 232 as you would expect.

One great drawback of 32-bit arithmetic is that its input space is of
size 2% as a result, exhaustive testing of an arithmetic operation
would take half a million CPU years at Veskeno’s 1-MIPS
performance target. Most programmers today cannot spend half a
million CPU years on an afternoon project because they do not have
hundreds of millions of CPUs available, nor even hundreds of CPUs;
it is plausible that this parlous situation of poverty will continue for
some time.

The fibterp spike

As a simple experiment to get a handle on software complexity and
interpretive slowdown, I hacked together the following minimal
simulator for such a machine, together with a dumb Fibonacci
program for it; this took 96 minutes and 119 lines of C, 21 of which
are the dumb Fibonacci program in a sort of assembly language. This
virtual machine has 11 instructions and word-addressed memory, but
I think Veskeno itself will have more like 16 instructions and
byte-addressed memory.

/* XIS: simple little RISCy bytecode interpreter as a sort of quick spike
* to see how fast or slow it goes. Answer: about 20x slower than
* GCC on the same machine.

*/

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

typedef uint32 t u32;

typedef struct {
u32 reg[16];
u32 *menm;

} machine;

enun opcode { insn push = 0x21, insn pop, insn 1it16, insn lowl6, insn add, insn ©
ogub,

insn jl, insn halt, insn call, insn ret, insn mov };

static inline int
src_reg(u32 insn)

{

return (insn >> 20) & 0xf;

}

static inline int
dst_reg(u32 insn)

{

return (insn >> 16) & 0xf;

}

#define IF break; case
#define ELSE break; default

#define r3P 15

#idefine SP reg[rSP]

#define rPC 14

#define PC reg[rPC]

int interpret(machine *m, int a, int b, int c, int d)

{

for (;;) {

u32 dest, insn = m->mem[m->PC++];
enun opcode op = (insn & 0xff000000u) >> 24;

switch(op) {
IF insn push:
n->SP--;

n->men[m->SP] = m->reg[src_reg(insn)];

IF 1insn_pop:

n->reg[dst_reg(insn)] = m->mem[m->SP];

m->SP++;
IF insn 1it16:

n->regldst reg(insn)] = (insn & Oxffff) | (insn & 0x8000 7 Oxffff0000u :

IF insn lowl6:

n->reg[dst_reg(insn)] <<= 16;
n->reg[dst_reg(insn)] |= insn & Oxffff;
abort(); // untested code

IF insn add:

n->reg[dst reg(insn)] += m->reg[src reg(insn)];

IF insn sub:

n->reg[dst _reg(insn)] -= m->reg[src reg(insn)];

IF insn jl:

if (m->reglsrc_reg(insn)] & (1 << 31)) {
n->PC += (insn & Oxffff) | (insn & 0x8000 ? Oxffff0000u :

}
IF insn halt:

return n->reg[0];

0)o

IF insn call:
dest = m->PC + ((insn & Oxffff) | (insn & 0x8000 ? 0xffff0000 : 0));
m->SP--;
n->men[m->SP] = m->PC;
n->PC = dest;
IF insn ret:
n->PC = m->mem [m->SP] ;
m->SP++;
IF insn mov:
n->regldst _reg(insn)] = n->reg[src reg(insn)];
ELSE:
abort(); /* invalid instruction */
}
}
}

/* assemble register-register instruction */

#define a rr(n, s, d) ((insn #n << 24) | ((s) << 20) | ((d) << 16))
/* assemble register-dest instruction */

tdefine a rd(n, d) a rr(n, 0, (d))

/* assemble register-source instruction */

tdefine a rs(n, s) a_rr(n, (s), 0)

#define a k16(n, r, k) ((insn ##n << 24) | ((r) << 16) | ((k) & OxFfFf))
#define a_jl(s, off) ((insn_jl << 24) | ((s) << 20) | ((off) & OxFfFf))
tdefine a call(off) ((insn call << 24) | ((off) & OxFfFf))

tdefine a ret insn ret << 24)

tdefine a halt insn_halt << 24)

—~ o~ —~

/* dumb fibonacci: if r0 < 2 then 1 else fib(r0 - 1) + fib(x0 - 2) */
u32 program[] = {

a_call(1), /* call fib */
a halt,
a_rr(mov, 0, 1), [x fib: rl := 10 */
a k16(1it16, 2, 2), [* 12 1= 2 %/
a rr(sub, 2, 1), [x 11 =12 %/
a jld1, 13), /* if r1 <0, go forward 13 insns */
a_rs(push, 0), /* push 10 */
a k16(1it16, 3, 1), [x 13 =1 %/
a_rr(sub, 3, 0), /¥ 10 -= 13 %/
a_call(-8), /* call fib */
a_rd(pop, 1), /* pop input r0 into rl */
a_rs(push, 0), /* save return value from recursive call ¥/
a k16(1it16, 3, 2), [x 13 =2 %/
a_rr(mov, 1, 0), /¥ 10 := 1l */
a_rr(sub, 3, 0), /¥ 10 —= 13 */
a_call(-14), /* call fib */
a_rd(pop, 1), /* pop saved return value into rl */
a rr(add, 1, 0), [x 10 += 11 %/
a _ret,
a k16(1it16, 0, 1), /%10 := 1%/
a ret,
H

int main(int arge, char x*argv)

int n = argc > 1 7 atoi(argv[l]) : 6;

u32 mem[1024] ;

for (int i = 0; 1 < 1024; i++) mem[i] = Oxdeafbeadu;
mencpy (4men[128] , program, sizeof (program));

machine m = { .mem = men };

for (int i = 0; 1 < 16; i++) m.regli] = Oxbadfadu;
n.PC = 128;

m.SP = 1024;

int result = interpret(ém, n, Oxfeedbead, Oxfeedbead, Oxfeedbead);
printf("%d\n", result);

return 0;

Disassembly shows that GCC compiles the switch with a jump
table. (I admit I spent another half hour after those 96 minutes
looking to see why it was so slow...)

However, an important caveat here: because this virtual machine
implementation does not bounds-check memory accesses, it fails to be
deterministic.

This program is about 20X slower than native code on my amd64
O00 laptop and about 40X slower on my 1386 Atom in-order
netbook.

In theory, someone implementing Veskeno will not have to write
and debug the Fibonacci program and other test programs as they are
writing their virtual machine, much less revise the definitions of the
instructions as they go; instead they can, hopefully, assume that the
instruction set is adequate, the test cases are correct, and any bugs are
in their interpreter. This should speed up their programming. In the
past when I’ve implemented simple virtual machines such as Chifir
and Brainfuck, it’s taken me under an hour. (But, well, my Chifir
implementation had a bug I didn’t notice for months, and it might
still have others.)

Fixed- or variable-length instructions

Variable-length instructions are more space-efficient — the usual
reason for them, irrelevant here — and make it easy to include
immediate constants of the full width of a register, thus avoiding the
lit16/low16 hack in XIS, the RISCy spike above.

Fixed-length instructions have other advantages. They can make it
impossible to represent invalid program-counter values, which would
otherwise be a potential source of divergent behavior among
implementations. They facilitate conditional-skip instructions, which
permit the decoupling of conditional types (equality versus ordering)
from jump types (direct or indirect). By making them extremely
wide, as Chifir does, they too can contain register-sized immediate
contents. And they facilitate having an opcode field of less than a full
byte, which reduces the number of tests needed for invalid opcodes.

As with variable-length instructions, the most important advantage
of fixed-length instructions in hardware is irrelevant for Veskeno:
that they enormously simplify pipelined instruction decoding.

No floating point

The Veskeno virtual machine provides no floating-point
operations, despite the importance of floating-point math for
numerical algorithms and the importance of reproducibility for these
algorithms. Instead, floating-point operations are provided by
libraries written in Veskeno’s instruction set, despite the heavy
performance cost, so that they will have the same behavior on all
Veskeno implementations. Three reasons for this are Gen gradual
underflow, -ffloat-store, and FMA.

IEEE 754 standardizes the behavior of the basic floating-point
operations — addition, subtraction, multiplication, division, and
square root — to provide bit-exact results. Given this, it would be
reasonable to expect that all modern machines would produce
identical results when executing a floating-point algorithm consisting
of only these operations. However, although it would be reasonable,
it would be wrong.

One aspect of IEEE 754 is the handling of underflow — when
numbers become too small to represent in normalized form, it is
specified that they start losing bits of precision, which continues down
to the smallest nonzero float. Currently, Intel’s “Gen” GPUs do not
implement this, because it is slow. Therefore it is not reasonable to
assume that all future hardware will implement gradual underflow
correctly.

GCC has a -ffloat-store flag for use with math coprocessor
instructions for the 80387, 68881, and similar chips. The 80387 and its
compatible descendents, included in every 386-compatible processor
since the Pentium, always internally use 80-bit extended precision.
This means that the results of a sequence of floating-point operations
depends on whether intermediate results are rounded to 32 or 64 bits
to be stored in memory or remain entirely inside the 8o-bit register
set, which in turn depends on how effective the optimizer is at
register allocation. This can, for example, cause some successive
approximation algorithms to loop infinitely. -ffloat-store requires
them to always be stored in memory, despite the ensuing dramatic loss
of performance, in order to guarantee deterministic behavior.

Even with the above caveats, some might wonder if the problem is
limited only to hardware that is sort of sketchy, like Gen, or obsolete,
like 32-bit Intel processors. But in fact a similar, though subtler, issue
arose just in the last few years, with a new “fused multiply-add” or
“FMA” instruction on 64-bit processors, which can often preserve an
extra bit of precision. This means that the results of an operation can
differ in the least significant bit depending on whether the compiler’s
optimizer was successful at employing FMA on a given program.

It must be anticipated that Veskeno virtual machine
implementations will be compiled by such compilers. For Veskeno,
the above-described level of nondeterminism is absolutely intolerable,
even merely FMA, so taking advantage of hardware floating point is
not an option.

Exhaustive testing is desirable but probably
too slow in the target scenario

Single-operand arithmetic instructions are feasible to test
exhaustively; dual-operand instructions less so. Consider this Python
program:

#! /usr/bin/python3
import hashlib

def addi6(a, b):
return (a + b) & OxFfFf

def test add16():
h = hashlib.sha256()
for a in range(1<<16):
for b in range(1<<16):
s = add16(a, b)
h.update(bytes([s & 0xff, s >> 8]))
if not ((atl) & 0xf):
print(a)

return h.hexdigest()
if name =="' main ':
print(test_add16())

This eventually produces the output:

€a284820199ced0d15¢967098£ 811 c59eb83a8b4120375b09ef 1dad366786cal

This amounts to a compact summary of the overall behavior of the
add16 function; if a different function produced the same hash, we
could be reasonably confident that its behavior on 16-bit unsigned
numbers was the same as add16’s. And by using Merkle trees we
could detect deviations without finishing the whole test, and, more
important, localize them in particular parts of the input. (A
cross-cutting Hamming-code-like hashing strategy would permit
pinpoint localization: with 33 hashes for different subsets of these 2%
test cases — one for odd-numbered test cases, one for test cases whose
ordinal number is odd when divided by 2 rounding downward, and so
on — we can easily determine which case is failing if only one is.)

But this test takes 13 hours and 49 minutes of CPU time to
produce this output on this netbook, thus testing only some 86000
addition operations per second. CPython3 on this netbook is pretty
close to Veskeno’s target performance of a million
multiply-accumulates per second, although they are 32-bit rather
than 16-bit.

It’s conceivable that this test could be optimized by up to about an
order of magnitude, but not by two orders of magnitude; and it’s
more likely that a similar test in Veskeno would be much slower,
because SHA-256 isn’t a basic operation like addition. The
corresponding exhaustive test for a two-operand 32-bit math
operation would require ten orders of magnitude more computation;
as mentioned before, 2% microseconds is some 585 millennia.

So exhaustive testing of, say, 32-bit addition, is probably not

teasible at the target performance level within the target six-hour
timeframe. Even exhaustive testing of 32-bit negation would take
hours. Instead, randomized tests are probably a better fit.

This is not to say that exhaustive testing has no role, just that faster
kinds of testing are needed.

No vector-valued registers

Numpy can typically easily achieve about 20% of C performance
on mainstream hardware today, despite the slowness of the CPython
interpreter, because the inner loops are in C. One design considered
for Veskeno (p. 20) used vector-valued registers and RAM — each
register or memory cell could hold a vector of very large size, and
Veskeno would provide SIMD instructions like Numpy’s operations.
Thus the interpretive overhead of a simple bytecode interpreter loop
would be amortized over larger numbers of fundamental operations,
increasing the speed of Veskeno programs.

The plan is currently not to take this direction, for three reasons:

* This would create the possibility of thus allocating unpredictable
amounts of memory in a way hidden from the Veskeno program
itself, making it impossible to guarantee failure-free execution.

* The number of distinct SIMD instructions required seems like it is
probably too large to implement — and, especially, debug — in an
afternoon.

* Crude estimation suggests that a straightforward interpreter without
any such tricks will be more than fast enough to satisty the priorities
as described above: 8—32X is a typical interpretive slowdown, and
Veskeno is aimed at an interpretive slowdown of 131072 X or less.

Not counted here is the serial-computation slowdown, which is
estimated (p. 20) at 32X. Above it is estimated that a Samsung
Galaxy A1o, for example, can do about 70 billion
multiply-accumulate operations per second, but single-threaded
unvectorized code on it won’t get more than about 1.6 billion, 44
times slower; out-of-order processors with more execution units
close the gap a little. It would not be surprising for a virtual machine
that exploits such data parallelism to exceed the speed of optimized
single-threaded unvectorized C.

Possible coarse-grained parallelism

There is nothing in principle that prevents Veskeno from providing
a “spawn” facility to run a “child” Veskeno computation, given a
program and input data, and such a facility would be very useful for
writing an automatic Veskeno test suite. If several such concurrent
computations can be run, this might make it possible to gain back a
parallelism factor of some 8 or so on most current hardware, and
probably much larger factors in the future. Such a facility is
potentially risky, though; it would need to be subject to a number of
restrictions:

» Although it could report predictable failures in the child to the
parent — out-of-bounds memory accesses, for example — it could not
be allowed to report unpredictable failures such as running out of

memory. Unpredictable failures could be handled by automatically
retrying or by propagating the failure to the parent, killing it as well.
» It probably needs to be impossible to interact with an incomplete
child computation in order to ensure determinism. For example, the
ability to inquire whether a child computation was still running, or
had already completed, would probably violate determinism. Any
attempt to access the results of the child computation before the
child’s completion must transparently block until the child is
complete.

* The interface must be simple enough to

implement — correctly! — as part of the same afternoon as the rest of
Veskeno.

More elaborate kinds of interaction could in principle be specified;
for example, the parent computation could be provided with facilities
to single-step the child, examine its memory space while
single-stepping, and so on, as long as this did not provide it with any
information about unpredictable failures, machine load, and so on.
But such a facility would probably be more complex both to specity
and to implement than all of the rest of Veskeno, and at any rate it
can be provided less efficiently within Veskeno, without any special
effort from the virtual machine implementor, by a metacircular
Veskeno interpreter.

Multiplication and division?

Perhaps Veskeno should have a multiplication instruction or
instructions. Most modern processors have a single-cycle multiplier,
and replacing that with a subroutine call is a heavy performance
penalty for programs that do a lot of multiplication, on the order of
32X to 64X.

However, multiplication can and often does overflow (a whole
word’s worth of bits rather than just one), requiring separate
instructions for the low and high word of the results, and signed and
unsigned multiplication are different; so supporting multiplication is
not as low-risk as supporting addition or subtraction.

Veskeno probably should not have a division instruction for several
reasons: signed and unsigned integer division are not the same, it’s
ambiguous which way the correct result of negative signed division
should round (quotient toward negative infinity or toward zero?),
division by zero is potentially a predictable failure, and division is
typically slow anyway, so the impact of not using the hardware
integer division instruction is less severe — both because the gap in
performance will be smaller than for multiplication and because
programs are already written to avoid division in hot loops whenever

possible.

I think probably the right choice is to omit multiplication from an
initial Protoveskeno and see how far we get, then possibly add
multiplication instructions if the lack is a sufficiently large
performance loss.

Instruction-set translation

Rather than writing a C compiler backend to target Veskeno, it
seems that binary translation from an existing instruction set which

already has good compiler support may be the best approach.
Supporting 64—128 distinct instructions may be enough, perhaps even
using very simple techniques that in effect simulate the registers and
tlags of the target processor.

I/0 operations and determinism

PGP and GnuPG have historically used I/O operations to generate
cryptographically random key bits: for example, by measuring the
latency of electromechanical disk requests, which are influenced by
turbulence inside the disk drive, they can produce a reliably different
set of numbers on every execution; another approach is by measuring
the timing of the user’s keystrokes. The objective is that, if you ask
PGP to generate keypairs on two occasions and type the same input at
it to the best of your human ability, you will still generate two
different and unpredictable private keys. (Modern operating systems
provide this facility at a systemwide level using /dev/urandom, so
that randomness gathered before GnuPG or OpenSSH starts can still
provide them with unpredictable secret bits.)

So we can conclude that providing a program with the ability to
read the current time, or to measure the time between inputs, can
allow it to defeat any efforts at guaranteeing reproducible behavior.
On the other hand, interactive applications like video-games
generally must have time-dependent behavior: the Space Invaders
and their bombs must continue moving at a consistent speed even if
the player is not providing any new input; and when they do provide
input, the results are in general dependent on when that input is
provided. Moving Pac-Man to the left for one second does not have
the same results as moving Pac-Man to the left for two seconds, and
SO on.

How can these requirements be reconciled?

As explained above about how programs are incapable of
nondeterminism in theory:
Conventionally these results are stated for batch-mode algorithms which run for
some finite period of time and then halt with a result, but it’s straightforward to
extend them to interactive processes — the batch-mode algorithm takes as input a
previous state and an input event (which may be simply that there is no input of
interest to report) and eventually produces a new state and perhaps some output.

We could take this approach in Veskeno: run a noninteractive
computation in Veskeno, starting from a snapshot of some previous
state, and ending with a new state snapshot, part of which might be,
for example, a screen image and some samples of audio to output, and
another part of which might specify handlers to run for future input
events, maybe including timeout events. To reproduce a
deterministic sequence of such deterministic computations or explore
alternative histories, it would be sufficient to record the initial state
and the sequence of input events that were delivered, although it
might be a useful accelerant to save snapshots of some intermediate
checkpoint states.

User interaction isn’t the only kind of 170, though. It’s common
for programs to read from and write to a filesystem, for a variety of
reasons. Doing this synchronously isn’t in itself a source of
nondeterminism — given a frozen filesystem snapshot that is part of

the initial state from which the Veskeno computation proceeds,
presumably the program will always read the same data in response to
the same seek() and read() calls, unless it alters it in between with a
write(). But it is potentially a source of implementation complexity
and bug-proneness.

Some filesystem access happens because programs are handling data
that doesn’t fit in their virtual memory. This might be reading a
100-kilobyte file on a 16-bit machine or writing a s-gigabyte file on a
32-bit machine. For Derctuo, I can avoid this problem by making
Veskeno not 16 bits, and not managing multi-gigabyte datasets. If
Veskeno is at some point to be pressed into service wrangling
multi-gigabyte datasets, it could be wedged into the model as if it
were user input: instead of terminating the computation with event
handlers for keystrokes and timeouts, a computation could terminate
with an event handler for a block of data becoming available. (Or
you could add I/0 instructions for doing this to Veskeno; this would
make it no longer compatible with the Veskeno specification, but
arguably so would adding these new kinds of event handlers.)

Input and output data that does fit into virtual memory can simply
be put in virtual memory; when a computation terminates, it can do
so with an indication of where its results are to be found in memory.
A straightforward Veskeno implementation can simply copy such
data into a large byte array, while perhaps a trickier one can take
advantage of mmap() and similar facilities.

Some filesystem access happens to decouple the environment in
which a program runs from what the program does. For example, I
have the file /ust/lib/python3.4/encodings/mac_greek.py on this
netbook. If a program does not access this file, or enumerate the
contents of the directory /usr/lib/python3.4/encodings, or look at
how much space is left on the disk, its execution will not be affected
by this file; but if I run CPython 3.4 and type b'\xce'.decode('nac_greek')
, that file will be loaded and used to map that byte to U+0388. It’sa
resource available upon request, but otherwise unobtrusive.

Usually you can add new files to a Unix filesystem or new
environment variables to a Unix environment without breaking any
existing programs. This contrasts to, for example, adding new
positional arguments to a function call. (Adding new fields toa C
struct is a kind of middle ground: it breaks existing compiled
programs, but not existing source code, because it’s an incompatible
change to the ABI but not the APIL.) This kind of decoupling via
name-value pairs is a pervasive pattern for permitting the independent
evolution of different software components.

To a great extent, such decoupling can be provided within a
Veskeno image without any special support from the Veskeno virtual
machine: a “filesystem”, a tree of string-indexed blobs, can be built
in memory and accessed via a filesystem-emulation library. This
collapses if multiple gigabytes of data are needed, but my intent with
Derctuo is to keep the total size of all the data in the image to
double-digit megabytes.

It’s common for physical computers to use “memory-mapped
I/0”: magical memory addresses which cause things to happen in the
physical world when they are written or even read. This is costly to

provide in virtual machines in general, because nearly every time
memory is read or written, a check must be made for these magical
addresses. For Veskeno, it seems like a particularly bad idea, since it
would be easy to omit the necessary replay functionality. If I/O
operations are to be added to Veskeno computations, they should be
added with explicit IN and OUT instructions.

Instruction counting and metacircular

instrumenting compilers

Derctuo talks fairly often about the efficiency of possible algorithms.
Nowadays this is a difficult thing to nail down: different algorithms
may use different amounts of memory, different numbers of CPU
instructions, differently-predictable memory access patterns, and
afford different degrees of vectorization, out-of-order
instruction-level parallelism, SIMT parallelism, and coarse-grained
(multicore) parallelism, as well as having different patterns of
communication between different cores. As hardware heterogeneity
increases further into the dark-silicon era we are entering, this already
gnarly efficiency landscape is likely to become more complex rather
than simplifying.

But a simple first-order approximation to computational cost is to
count the number of CPU instructions executed by a single-threaded
version of the algorithm. Given a nailed-down instruction set like
Veskeno’s, this number should be as perfectly reproducible as
everything else about a Veskeno computation, and it would probably
only increase Veskeno’s complexity by 2—s lines of code, a simplicity
loss of perhaps 1—5%. This may be a worthwhile cost to pay.

However, as with single-stepping, this is a facility that can be
provided by a metacircular Veskeno interpreter: a Veskeno program
that executes Veskeno programs. Veskeno’s simple instruction set
suggests that the binary-translation approach used by Valgrind would
be an especially suitable approach.

Memory maps and relocatability

As long as Veskeno programs can access the raw bits of Veskeno
memory addresses, reproducibility requires that those bits not change
between executions and implementations. Environments like the
JVM avoid this problem by not providing programs with access to
those bits, relying on a relatively elaborate static type system that
reliably distinguishes memory pointers from other data such as
characters and integers. A less elaborate hybrid system is possible, in
which pointers are loaded into special registers for pointers (or
“segments” or “descriptors”) and stored in special memory for
pointers, like KeyKOS’s “nodes”; but even such a scheme seems
likely to be far more complex than Veskeno’s complexity budget
permits. (Still, see Segments and Blocks (p. 166).)

This means, in particular, that if there’s a way to change the
Veskeno memory map after startup, for example by mapping in the
contents of a file (or part thereof) or the results of a child
computation, it must happen at a deterministically chosen,
well-specified address. It need not be insensitive to the previous
execution of the computation — for example, it could happen at the

end of the current data segment — but it cannot happen at an address
not specified in the Veskeno specification.

Self-moditying code

Veskeno does not need to permit self-modifying code; it could use
a Harvard architecture, for example, like an AVR, and use a
child-spawning facility like that described earlier if it wants to
generate Veskeno code dynamically. But, if it does permit
self-modifying code, it is essential for its effects to be deterministic,
well-specified, and well-tested; it would not be acceptable for
different Veskeno implementations to handle the same
self-modifications differently. The simplest solution is to require that
all modifications take effect immediately, even if to the immediately
following instruction.

Related work
Preservation through emulation, e.g., SIMH
van der Hoeven and Lorie’s UVM

Chifir

In The Cuneiform Tablets of 2015, Long Tien Nguyen and Alan
Kay described their design for a simple archival virtual machine called
Chifir, for which they report having successtully preserved
Smalltalk-72.

They describe their requirements as follows:

o It can be described in a single Letter or A4-sized page using English and diagrams.
A “one-pager” has a nice psychological quality of compactness and elegance to it;
we were inspired by the half-page Lisp metacircular evaluator in the Lisp 1.5

manual 27.
o It can be implemented in a single afternoon by a reasonably competent

programmer .
Implicitly, they also require that it be sufficiently powerful to run
the system they want to preserve.

My implementation of Chifir took me an hour of programming
and 111 lines of C, but because Nguyen and Kay have not published
their Smalltalk-72 virtual machine image or any other test data for
Chifir, my implementation may very well have bugs; it might take
another hour or more to find and fix all of its bugs.

Chifir is a word-oriented 32-bit three-operand
memory-to-memory machine with very flufty instruction encoding.
Its 15 instructions are roughly JMP, JZ, save-return-address, MOV,
LD, ST, +, -, *, /, %, <, NAND, refresh-screen, and read-keyboard;
the half-duplex nature of the read-keyboard instruction makes it
impossible to emulate full-duplex systems like video-games on Chifir.
But Nguyen and Kay did not intend for Chifir to be universal in the
same way that Veskeno is; they say:

We think that trying to design a “universal” virtual machine to serve as the simple
virtual machine is a bad idea, because trying to ensure compatibility with the entire
design space of computer architectures will make the resulting “universal virtual

machine” very complicated. In our opinion, this is the mistake of van der Hoeven
et al.’s Universal Virtual Computer for software preservation [15]. They tried to

http://www.vpri.org/pdf/tr2015004_cuneiform.pdf
http://web.cse.ohio-state.edu/~rountev.1/6341/pdf/Manual.pdf
https://gitlab.com/kragen/bubbleos/blob/master/yeso/chifir.c

make the most general virtual machine they could think of, one that could easily
emulate all known real computer architectures easily. The resulting design [25] has
a segmented memory model, bit-addressable memory, and an unlimited number of
registers of unlimited bit length. This Universal Virtual Computer requires several
dozen pages to be completely specified and explained, and requires far more than
an afternoon (probably several weeks) to be completely implemented.

Lisp

Lisp has a simple core — not quite as simple as SK-combinators or
the A-calculus, but still pretty simple. The basic forms are COND,
LABELS (now normally called letrec), LAMBDA, and QUOTE,
which are “special forms”, and the regular functions CAR, CDR,
CONS, ATOM, EQUAL, and NULL; these suffice to write a

metacircular interpreter for Lisp or, for example, a normal-order
h-calculus reducer.

Because both CONS and function application implicitly allocate
memory, as does LAMBDA in modern interpretations (where it
produces a closure), it’s difficult for Lisp programs to be
failure-free — when run on a finite machine they can run out of
memory and crash. But, at least initially, eliminating unpredictable
failures is beyond the scope of Veskeno.

A binary format like various Lisps’ FASL formats could both
permit rapid startup and eliminate text-related parsing bugs.

However, the history of Lisp is littered with subtle bugs.
McCarthy’s 1959 paper published a Lisp metacircular interpreter that
inadvertently defined Lisp with dynamic scope — a bug that remained
ossified in Lisp for nearly a quarter century, with workarounds like
FUNARGS — and contained a few other subtle bugs; an erratum is
prepended to AIM-008 saying:

The definition of eval given on page 15 has two errors, one of which is

typographical and the other conceptual. The typographical error is in the
definition of evcon where “1-” and “T—" should be interchanged.

The second error is in evlen. The program as it stands will not work if a quoted
expression contains a symbol which also acts as a variable bound by the lambda.
This can be corrected by using instead of subst in evlen a function subsq defined by

Note that at this point McCarthy had been working on Lisp for a
few years and had a more or less working implementation due to Slug
Russell, and yet his QUOTE did not work properly inside a
LAMBDA.

Writing the following one-pager in Python took an hour for a
programmer who has implemented Lisps more than once before,
running into several minor bugs on the way; bugs may still remain.

def Eval(sexp, env):
return (env[sexp] if type(sexp) is str else
specials[sexp[0]] (sexp[1:], env) if type(sexp[0]) is str
and sexp[0] in specials else
Eval(sexp[0], env)([Eval(arg, env) for arg in sexp[1:]]))

def evcon(branches, env):
for g, a in branches:
if Eval(q, env): return Eval(a, env)

http://web.cse.ohio-state.edu/~rountev.1/6341/pdf/Manual.pdf

def evletrec(args, env):
assignments, body = args[0], args[1]
env = env.copy()
for name, a, b in assignments: env[name] = closure(a, b, env)
return Eval(body, env)

def closure(args, body, env):
return lambda vals: Eval(body, augment(env, list(zip(args, vals))))

def augment(env, nvpairs):
env = env.copy()
for n, v in nvpairs: env[n] = v
return env

specials = {
"cond': evcon,
'letrec': evletrec,
'lambda': lambda args, env: closure(args[0], args[l], env),
'quote': lambda args, env: args[0],

base env = {

ar': lambda args: args[0][0],
'cdr': lambda args: args[0][1:],
'cons': lambda args: [args[0]] + args[1],
'aton': lambda args: type(args[0]) is str,
'mull': lambda args: not args[0],
'equal': lambda args: args[0] == args[1],
't': True,

produces ['b']
example prog = ['letrec', [['assoc', ['k', 'kvs'],
['cond', [['equal', 'k', ['car', ['car', 'kvs']]],
["cdr', ['car', 'kvs']]],
[(['mull', ['cdr', 'kvs']],
['quote', [11],
['t', ['assoc', 'k', ['cdr', 'kvs']]111],
['assoc', ['quote', 'y'], ['quote',

[[IXI, |a|:|’
[|y|, 'b‘],
('z', 'c']1]1]

produces [['X', 'a'], [['X', 'small'], ['X', 'dog'l], ['X', 'sat']]
example2 = ['letrec',
[['subst',

['cond',

't d'],

[‘atom', 'd'], ['f', 'd']],

['mull', 'd'], ['quote', [117,

't', ['cons', ['subst', 'f', ['car', 'd ']],
['subst', 'f', [' cdr d'1111,

['x', [J, ['quote', 'X']]],
['subst', ['lambda', ['de'], ['cons', ['x'], ['cons', 'de',
['quote', (11111,

[
[
[
['t

['quote', ['a', ['small', 'dog'], 'sat']]]]

if name ==' main ":
import cgitb
cgitb.enable(format="text')

print (Eval (example2, base env))

Running Lisp efficiently requires some kind of garbage collection;
the above implementation inherits from Python not only GC but also
its lists, recursive function calls, equality comparison, closures, I/0,
error reporting, and truthiness, and it takes advantage of Python’s
dictionaries. Its behavior on argument-count mismatch is inherited
from Python’s zip. It constructs circular data structures, which old
versions of Python would be unable to garbage-collect. Probably an
implementation in a lower-level language like C would be
considerably more efficient, but would also require implementing
from scratch these Python bequests. In my experience this tends to
take as long or longer than implementing the semantic core above
expressed in Python.

Abadi and Cardelli’s g-calculus of objects
The JVM

ActivePapers

Nix and Guix

The Cult of the Bound Variable

32-bit unsigned

Darius suggests it’s worth looking at the Sandmark contestants’
bugs.

Corewar Redcode

Corewar is a game in which a multithreaded processor “MARS”
runs two programs that try to kill each other, alternating instructions.
Like the Burroughs sooo, MARS tags memory words as instructions
or data; a program that attempts to execute a data word dies.

The textual Redcode assembly language is the standard format for
specifying these programs; there is no binary program format. The
determinism of MARS is intentionally limited: programs are loaded
at random starting addresses. (Absent this measure, whichever
program started running first could win by using its first instruction to
store a data word in the other program’s first-executed location.)

Wirth-the-RISC

In the 1990s, Wirth became interested in the potential of FPGAs
for realizing processor designs, especially designs simplified so as to be
easy to teach, without losing practicality. He produced a series of
progressively more complex designs in Verilog, unfortunately called
RISCo, RISC1, RISC2, RISC3, RISC4, and RISCs, and ported the
Oberon system to run on them. Lacking a better name, I will just call
them “Wirth-the-RISC”.

Wirth-the-RISC is admirably simple, with four condition-code
flags for conditional jumps; 16 conditions for jumps (including
“always”), which can optionally be indirect and/or save a return

address; 16 register-to-register ALU instructions, some of which have
two variants — signed versus unsigned MUL, for example, and ADD
with or without carry; load and store instructions with offsets; and,
tor the RISCs processor’s interrupts, an instruction to enable or
disable interrupts, and an instruction to return from them. Four of
the ALU instructions are floating-point, though my impression is that
the processor does not rise to the level of being practical for
floating-point work — it has no double-precision and no square-root
instruction.

The fact that Wirth-the-RISC successfully runs the Oberon GUI
is a testament to the practicality of this design.

SODj32
Brainfuck

Brainfuck is a virtual machine of Urban Miiller’s design; it was not
the first of the “esoteric programming languages” (that would be
INTERCAL) — or even, I think, the second — but it was in a sense
the one that established esoteric programming languages as a genre,
inspiring the current profusion. The Brainfuck virtual machine is,
like INTERCAL, deliberately difficult to program in, but unlike
INTERCAL, implementing it is extremely easy. One day in 2014 I
sat down to implement it from the spec, which I think took about an
hour:

/x
* Brainfuck interpreter.

%/

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *xargv) {
char program[10000];
int fd = open(argv[t], 0 RDONLY);
if (fd < 0) {
perror (argv[1]);
return 1;

}

int progsize = read(fd, program, sizeof (program));
close(fd);

unsigned char memory[30001];
int pc =0, mp = 0;
while (pc < progsize) {
/¥ printf("[kd]", pc); */
/x fflush(stdout); */
switch (program[pc]) {
case '>': mptt; pctt; break;
case '<': mp--; pctt; break;

case '+': memory[mp]+t; pctt; break;
case '-': memory[mp]--; pctt; break;

case ',': read(0, &memory[mp], 1); pctt; break;
case '.': write(1, &memory[mp], 1); pctt; break;

case '[':
if (memory[mp]) {
pctt;
break;
}
int bc = 0;
do {
if (program(pc] == '[') bet+;
if (program[pc] == ']') bc—-;
pctt;
if (pc >= progsize) {
fprintf(stderr, "unmatched [\n");
return 1;
}
} while (bc);
break;
case ']":
if ('memory[mp]) {
pc++;
break;
}
int bbc = 0;
do {
if (program[pc] == ']') bbctt;
if (program[pc] == '[') bbc—-;
pe-;
if (pc < 0) {
fprintf(stderr, "unmatched J\n");
return 1;
}
} while (bbc);
pctt;
pctt;
break;
default: /* comment! */
pctt;
break;
}
}
return 0;

}

After testing some simple examples, I downloaded Linus Akesson’s
implementation of Conway’s Game of Life (pbuh, QEPD):

Linus Akesson presents:

The Game Of Life implemented in Brainfuck

IO HHH [CH=] [<HHHHD=]H [DOPDHLLL] OODD [KLLAPIIIP> L] <+
H DA] L[] DA DY A<D [F] L [KHD-]<L D>+
CLLL]OOO [LLLDIIIIIHL=T L [DO0D 4Lt [DIA] 0D [KIII Dt

HHHL=T DA D [KAPDIDHLL=] D0D [DOOODOO 050045 4K
OS> [= DIPI4LLL] D OOD>4LL-TO >
M-I <>

<< [-]
ST []H+++

S=IOOIPII4LLKLK <
LGLLKLKLKLKLL=D00S >

LA OO KK
HC] LKLY

MW >

CLLLLLLLLLL=]ooooo o000
] >4H<KL] > [[(<K

>>>-]KC K HHHH H + D] [>-]
<LLLLLKKK < LLLKK < S, [] <]
D HH< - - [, - [<+
<[SRS K o [[-]
OO [KLLLADID>=] LKL [Do>>+ PHLLL=]OOOD P === [«

OO0 [KLLLAPIIII>H<L-
SHLLL=] OO [KLLLHOOD>>

1> D-<=]otHHHHHH+ D+
SHL]OIOD [KL-D>-] Kt +++++++

D<o o>>>> PIOI>>HLKK LK KL= > SOOI [-[D>>
SHLLL]D o>y HLKLL&> > 1> > [k« < -]+ >
M= [->[K <LLO>>-] [< << <O
g, [1D [+ + + H[DHHH
HH>HHH 0 KDY +LL- P < «+ SIOIIO>EH
KL [-D > &P MM K> P >>[LLAP>>-
T > 4K - P[> [+ »>-] < [<K < >>-]<<] K
LKL O < e PO RO SIS+ MK K KL=JL > +<K
=I5 [K<o>»> D>+ »E[> 2+« KL= o<
KL= o< KPP [- Kb+ - K[- [<LLLHPPP>-]KK
<] <] K L + [D+ + [DODHE]DOD [t
SISO HHHHH 4 HKKL -] < [>+<-] SIKE > OIDHLKL]OO [KLLH>>-]
L2 > KK <« K> o»d» OO [DOHL=] D> [K<H<H>>
>-]<KL~=—==- - [> MK - P» [<K<H> > DIO>+>4<KKK
I[Py > dR«& -] > D>+ K- >>] 5 [K&vd>-
KKLPrH < =]o» > > > [<c<+ SO>-]KKL D>
+HLLLLAD>- I > o> [K> [>
>PHLLLLLL K+ > MO>-]< CLLLLL [0 [+
OI>>=] [KLLAPIPI- KL D [KKKLLK <> PIIITREL KL [

D] OPD [KLLAPPIIIIPHHLLLL= OO [- [P
ADOD>=J L DI H<LL=] OO0 0> [(LL40>>-] <K [
[DO>4<LLLLLLLLADIIID>=] KK [-D [< <
EOIIIIOP-KLLLLLLL L+ D> >

1> DOO>>+LL=]OOP] OO [(Ld>>- 1L [
CLLAPD=]OOO0P0) [<LLHD>>=] LKL [Po>+<

OI>HLLL=]D POP>HLLL=]OP>] OO> [(KK
SOPHLLLLADD=] OOOOO [(LLAP>>-] KKK
IO [KLLLAPPIP=] KLLL] > [KKLLLKK
OOPEHCLLLLLLL=]OOOOOO> [~ [DOP 04K
SPEIHLL=]OOOOODD [KLLAPD>-] KL [D>>4<K
CLLLLLLLAD PP OP=] KLLLLLL [-D [LLLADD >
TP >>-] <LLLT D [KLLLLLLHPOID> P> KLLLLLL==== [DIOOOO>HLLLLLLH [DOO>
D>=KLLLLLL [F] JRLLLLLL [OOOOOOIOIOID DKL) [1ft@df . 1th.se]o>>>»>
SOOOOO> [= [DIPI4LLL=] D [DOD>4LLL] D OO0 4L DD 0> [] DA<= [[«
>>=] K<LL] KLLLLL [-] T KRLLLLL [T KL= K=] 00000000000 [-] K<] KLLLLLKKL]

Type for instance "fg" to toggle the cell at row f and column g
Hit enter to calculate the next generation
Type q to quit

As with INTERCAL, Brainfuck ignores anything it does not
understand, so the textual comments do not interfere with the
execution of the program.

This was a delightful experience, because by virtue of writing 68
lines of C, I had implemented a virtual machine capable of running
any Brainfuck program, and had transformed the ASCII-art textphile
above into a running implementation of the Game of Life! In
principle, the C program above could compute any computable
function, as long as it didn’t require more than 30001 bytes of
memory.

Brainfuck itself, though, is a finger pointing at the moon; it is not

the moon. It has no subroutine-call mechanism, it cannot run code
generated at runtime, a straightforward implementation of it is
absurdly inefficient, the encoding of its programs is also absurdly
inefficient, and there have been several different incompatible
semantics (for example, for the overflow of a memory location, and
of course for the size of memory), so some Brainfuck programs are
incompatible with some Brainfuck implementations.

Also, the issue of I70 is swept under the rug. The above Life
implementation is interactive on a terminal; it draws the gameboard
using ASCII art. You can correct your input errors with backspace
only thanks to the line-editing capabilities provided by default by the
kernel or the C library; by the same token, Brainfuck programs
running in the above C implementation in the same way as Life
cannot provide so much as tab-completion and overstrikes, much less
mouse, key-release, and graphics handling. To emulate video-games,
even with a sufficiently powerful implementation, Brainfuck would
need a mapping between streams of input and output bytes and the
input and output events of interest; this mapping, too, would need to
be standardized for such an emulation to be portable among
implementations.

Here’s a sample dialogue with the Life program, using this
implementation of Brainfuck:

abcdefghi

g----------

j__________
>fe

abcdefghi

q-———m————-

b__________

e
i__________

h-—---—-—---—-

e
—

e

>ee

abcdefghi

i__________
j__________
>ed

d--——%k----
e
g------—-

R
gt

q-———-———-
b__________

abcdefghi

gq-————————-

h__________

d---—%k----
g---——--m

e-——kk-———-

abcdefghij

d-—-xkk-——-

q-—-——————-
b__________
C-————————-

T
fo——kk—m—-

g__________
i__________

abcdefghi

Y ———

Gk
d--—%k-----
R .
f-——kk————-
g----------

j__________

abcdefghi

q-———m————-

h__________
i__________

R
g---———-mm-

o
d--—kkx———-
e

b__________

abcdefghi

i__________
j__________

fo——kk—mm-
g------—-

g-—k-—%--—-

o
S ——

q-———-———=
b__________

abcdefghi

gq-————————-

Gk
d-—*k—kk---

h__________

f-——k————-
g-—m-m-m-

e-—k——k-——-

abcdefghij

C-——¥kk-——-
g-—¥-—kk-—-
fo——kk—m—-

d-—*kx—kx——-
e

q-—-——————-
b__________

C-—¥¥—kk-—=
d-—*-------
R et
f-——kkk———-

b-——kkk-——-
C-—¥Kkk———=
d-*k-—kk-—-
&
f-——kkk———-

These 8 generations of 10X10 Life required 98 CPU seconds on this
netbook (with the Brainfuck implementation compiled with cc -05
-fonit-frame-pointer -Wall -std=gnu99 using GCC 4.8.4), illustrating the
efficiency problems of Brainfuck. I took a couple of hours to write
the following C version of Akesson’s awesome program, which,
compiled the same way, was able to do 80000 generations in 1.424
CPU seconds, an efficiency difference of some 700k X, suggesting that
the Brainfuck slowdown in this case is about § or 6 orders of
magnitude.

#include <stdio.h>
enun { ww = 10, hh = 10 };
int board[3] [hh] [ww] ;

/* From the cells in “from™, compute a parallel array with the sum of
cells above and to the left of that cell, including that cell
itself. For example:

> X
array([[1, 0, 1],
[0, 2, 11,
[1, 1, 1)
>>> x.cunsun(axis=0) . cumsum(axis=1)
array([[1, 1, 2],
(1, 3, 5],

(2, 5, 8]])
X/
void sum(int from[hh] [ww], int to[hh] [w])
{
for (int x = 0; x < ww; x++) {
to[0] [x] = from[0] [x];
for (int y = 1; y < hh; y++) toly][x] = toly-1]1[x] + from[y][x];
}
for (int y = 0; y < hh; y+) {
int total = to[y] [0];
for (int x = 1; x <ww; x+) tolyl [x] = total += toly][x];

/* Return total neighbors in the neighborhood that includes (xmintl,
ymintl), (xmint2, ymintl), ... (xmax, ymintl), (xmintl, ymint2),

. (xmax, ymax). xmin and/or ymin will be negative if the
neighborhood is intended to encompass the leftmost and/or topmost
cells; xmax may be >=ww-1 and/or ymax may be >=hh-1 if it is intended
to encompass the rightmost and/or bottommost cells.

x/
static inline int rect(int sums[hh][ww], int xmin, int xmax, int ymin, int ymax)
{

if (xmax > ww-1) xmax = ww-1;

if (ymax > wi-1) ymax = hh-1;

int ul = xmin < 0 ? 0 : ymin < 0 ? 0 : sums[ymin] [xmin];

int ur = ymin < 0 ? 0 : sums[ymin] [xmax];

int 11 = xmin < 0 7 0 : suns[ymax] [xnin];

int 1r = sums[ymax] [xmax];

return 1r - ur - 11 + ul;

/* Return total cells in the 3x3 neighborhood centered on (x, y). */
static inline int neighborhood(int sums[hh] [ww], int x, int y)
{

return rect(sums, x-2, x+1, y-2, y+1);

static inline int should live(int cells[hh] [ww], int sums[hh][ww], int x, int y)
{

int n = neighborhood(sums, x, y);

return cells[y][x] 7?3 <ndkn<=4:n=3;

void generation(int from[hh] [ww], int to[hh] [ww], int scratch[hh] [ww])
{
sun(from, scratch);
for (int y = 0; y < hh; y+) {
for (int x = 0; x < ww; x++) {
toly] [x] = should live(from, scratch, x, y);

void print board(int cells[hh] [ww])

putchar(' ');
for (int x = 0; x < ww; x++) putchar('a' + x);
putchar('\n');

for (int y = 0; y < hh; y+) {
putchar('a' +y);
for (int x = 0; x < ww; x++) putchar(cells[y][x] ? "*' : '-');
putchar('\n');

/* Returns 1 if we should do another generation, 0 to quit */
int prompt(int cells[hh] [ww])

{
for (;;) {
print_board(cells);
putchar('>');
fflush(stdout);
int ¢l = getchar();
if (c1 =="'q" [l cl == EQF) return 0;
if (¢t == "\n') return 1;
int ¢2 = getchar();
int newline = getchar();
if (c2 == EOF || newline == EOF) return 0;
int *cell = §cells[ci-'a'][c2-'a'];
xcell = Ixcell;
}
}
int main()
{
int which = 0;
for (;;) {
if (!prompt(board[which])) return 0;
generation(board[which], board[!which], board([2]);
which = !which;
}
}
Urbit’s Nock

Urbit is Mencius Moldbug’s effort to establish an internet with a
feudal, authoritarian structure, which he believes to be the ideal
structure for a society. The basic foundation of Urbit is a
deterministic, reproducible virtual machine called Nock, named after
a political propagandist Moldbug admires despite Nock’s private
contempt for Jewish people. Nock implements a
combinator-graph-reduction instruction set encoded as integers. The
rest of the Urbit distributed computation system is built atop Nock.

Nock’s basic instruction repertoire is too limited to be usably
efficient for many of the tasks required for a distributed-computing
system like Urbit; this is partly compensated using a mechanism
called “jets”. The Nock implementation recognizes certain pieces of
Nock code at runtime and, rather than evaluating them instruction by
instruction, instead invokes a “jet” — a subroutine written in C that is
hoped to produce an equivalent result. Perhaps the most egregious
example is an implementation of the Markdown document markup
language, where a C implementation of Markdown is shamelessly
substituted when a particular Nock implementation of Markdown is
encountered.

Jets offer an apparent escape from the tradeoff between simplicity
of specification and usable levels of efficiency. And, in theory, they
provide an unambiguous behavior specification for the native code to
adhere to. However, they aren’t a viable option for Veskeno, both
because they means that a practically usable implementation requires
an enormous amount of code whose contents must be guessed at by
the implementor, and because in practice that code will be buggy in
all modern implementations, since we don’t yet have sufficiently
powerful formal methods for people to use them routinely, so if
Veskeno used jets, no Veskeno results would be reproducible in
practice.

Consequently Nock is less suitable than even Brainfuck as a basis
for Veskeno.

Simplicity

Simplicity is Russell O’Connor’s verifiable smart-contract
language, designed for Ethereum. It is a very interesting project, but
like Nock, it relies on jets to reach usable efficiency. It’s capable of
expressing only finitary computations — those that could in principle
be expressed by a finite table of input-to-output mappings, although
Simplicity is designed to be able to practically express finitary
computations whose tables, though finite, would be too large to
construct explicitly. Simplicity programs are guaranteed to terminate
because, like Bitcoin Script, it lacks an iteration construct, relying on
code repetition to achieve finite iteration.

For these reasons, Simplicity is even less suitable as a basis for
Veskeno than Nock.

Wasm
Smalltalk-78
The Lua]IT “bytecode” format

Lua’s register-based “bytecode” format — really a wordcode — is
famous for its efficiency. Considering this program in C:

fib(n) { return n < 2 7 1 : fib(n-1) + fib(n-2); }
main(int c, char *xv) { printf("}d\n", fib(atoi(v[1]))); }

And its Lua equivalent:

function fib(n) if n < 2 then return 1 else return fib(n-1)+fib(n-2) end end
print (£ib(tonumber (arg[1])))

Compiling with gcc -0 -fomit-frame-pointer fib.c -o fib with GCC
4.8.4, on this Atom netbook, it takes 101-116 ms to compute 3524578
with ./fib 32 and 399-406 ms to compute 14930352 with ./fib 35.
Under PUC Lua §.2.3, fib.1ua 32 takes 2.809-2.839 s and fib.lua 35
takes 11.856-12.211 s, both with the same results. Under LuaJIT 2.0.2,
fib.lua 32 takes 196-212 ms and fib.lua 35 takes 1.132-1.133 s.

So we can say that, on this crude microbenchmark, PUC Lua is
29-31 times slower than C, while LuaJIT is 1.6-2.9 times slower than
C. Reputedly LuaJIT 2’s “bytecode” interpreter, which Mike Pall
wrote in assembly, is faster than many high-level languages’ compiled
code; unfortunately there does not seem to be an option to disable the
JIT compiler for easy microbenchmarking.

It’s somewhat to be expected that the extra type checks Lua must
do will slow down the process, especially in software, especially on an
in-order processor like this Atom. Perhaps that accounts for the speed
difference between XIS, the RISCy spike above (1/20 native), and
PUC Lua (1/30).

CPython is the usual contrast here. In CPython 2.7.6, this program
takes 4.963-5.176 s to compute fib(32), 42-51 times slower than C:

#!/usr/bin/python

import sys

fib = lambda n: 1 if n < 2 else fib(n-1) + fib(n-2)
print(fib(int(sys.argv[1])))

Lua]IT uses its own slightly different “bytecode” format. As
explained in the LuaJIT Wiki, the LuaJIT bytecode, like the PUC
Lua bytecode, has a fixed 32-bit-wide format with 8-bit fields. The
opcode is the least significant 8 bits; the 2-operand instructions have a
16-bit field as the second operand, which is usually an index into a
constant table. There are 16 comparison ops (which conditionally skip
the following instruction, which is always a JMP), 4 unary ops, 17
“binary” ops (one of which, string concatenation, is actually variadic),
6 constant ops, 7 “upvalue” and function ops, 11 ops for manipulating
Lua tables (like the GSET, GGET, and TGETB operations above), 8
calling and iteration ops (like CALL and CALLM above), 4 return
ops (like RET1 and RETo0), 12 loop and branch ops, and 9
function-header pseudo-ops, for a total of 94 ops.

luajit -bl fib.lua dumps the bytecode:

-- BYTECODE -- fib.lua:2-2
0001 KSHORT 1 2
0002 ISGE 0 1
0003 JMP 1 => 0007

0004 KSHORT 1 1

0005 RET1 1 2

0006 JMP 1 => 0015

0007 => GGET 10 ; "fib"
0008 SUBWN 2 0 ;1
0009 CALL 12

0010 GGET 2 0 ; "Tib"
0011 SUBWW 3 0 1 ;2

http://wiki.luajit.org/Bytecode-2.0
http://wiki.luajit.org/Bytecode-2.0

0012 CALL 2 2
0013 ADDW 1 1
0014 RET1 1 2
0015 => RETO 0 1

-- BYTECODE —- fib.lua:0-4

0001 FNEW 0 0 ; fib.1lua:2
0002 GSET 0 1 ; "fib"
0003 GGET 0 2 ; "print"
0004 GGET 11 ; "fib"
0005 GGET 2 3 ; "tonumber"
0006 GGET 3 4 ; Marg"
0007 TGETB 3 3 1

0008 CALL 2 0 2

0009 CALIM 1 0 0

0010 CALLM 0 1 0

0011 RETO 0 1

Many of these ops are specialized versions of basic operations; there
are, for example, three SUB instructions, two of which are specialized
to the case where one of the operands is a constant. Some of the
operations are duplicated to provide the JIT compiler a place to
record its success or failure at JIT-compiling the loop body.

b

There is no specialized version of the “>=" operation for
comparing against a constant, so the “< 2” test in fib is compiled to
KSHORT (load immediate) followed by ISGE; similarly, there is no
specialized version of the return operation, so return 1 is compiled to
KSHORT followed by RET1.

As on the SPARC or in Smalltalk-80, each function evidently has
its own set of registers; the main-program code at the bottom of the
listing above begins by getting some variables fro the global
namespace in registers o, 1, 2, and 3, and then after calling tonumber (in
register 2) and fib (in register 1) it expects to still find print in register
o, even though within fib the argument n is evidently in register o.
Thus no bytecode need be emitted to save and restore context upon
function call or return.

The three-operand nature of LuaJIT’s bytecode saves some
operations, and thus some opcode dispatches, compared to the
two-operand XIS code above, which has 19 instructions in the fib
subroutine rather than 15. Where XIS has

a_rr(mov, 0, 1), [x fib: 1 := 10 */

a_k16(lit16, 2, 2), [x 12 =2 %/

a_rr(sub, 2, 1), [x 11 -= 12 %/

a jl(t, 13), /% if 11 <0, go forward 13 insns */
LuaJIT has

0001 KSHORT 1 2
0002 ISGE 0 1
0003 JMp 1 => 0007

although perhaps this has as much to do with LuaJIT discarding the

subtraction result rather than storing it in a destination register. A
recursive call fib(n-2) in Lua]IT is three instructions, and would be
two if not for the possibility of something having rebound the name
fib:

0010 GGET 2 0 ; "fib"
0011 SuBWW 3 0 1 ;2
0012 CALL 2 2 2

while XIS requires six, due to explicit saving and restoring of
argument registers:

a rs(push, 0), /* save return value from recursive call */
a k16(1it16, 3, 2), /% 13 1= 2 %/

a_rr(mov, 1, 0), [x 10 =11 %/

a_rr(sub, 3, 0), /% 10 -= 13 %/

a_call(-14), /* call fib */

a_rd(pop, 1), /* pop saved return value into rl ¥/

I don’t know if there’s a way to get such implicit save/restore into
a Veskeno-sized spec; maybe make some of the “registers” index off
a stack pointer in memory that increments or decrements by some
constant after a call, like a lobotomized SPARC? Where would you
store the return address — would it eat a general-purpose register?
If I remember correctly, the SPARC has 64 general-purpose registers: 8 for global
variables, and 48 in a “register window”, of which 8 are shared with the caller, 8
are local, and 8 are shared with callees — so the window shifts by 16 on every call
and return. The idea is that a simple, slow implementation can store all of these
windows in RAM; a slightly less simple one can use 48 registers and save 16 to
RAM on every call and restore them on every return; and a more sophisticated

implementation can maintain a circular buffer that only “spills” to RAM when it
gets full. Thus the “S” for “Scalable” in “SPARC”.

Part of CPython’s slowness is because CPython’s bytecode is
stack-based rather than register-based, commonly requiring about
twice as many opcode dispatches as Lua. The above function is 18
CPython bytecode ops, rather than LuaJIT’s 15; its leaf path is 7 ops
rather than s, and its non-leaf path is 16 ops rather than 11, so for this
microbenchmark the dispatch penalty of stack-machine code is
smaller than that typical factor of 2.

3 0 LOAD_FAST 0 (n)
3 LOAD_CONST 1(2)
6 COMPARE_OP 0 (<)
9 POP_JUMP_IF FALSE 16
12 LOAD_CONST 2 (1)
15 RETURN VALUE
>> 16 LOAD GLOBAL 0 (fib)
19 LOAD FAST 0 (n)
22 LOAD CONST 2 (1)

25 BINARY SUBTRACT

26 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
29 LOAD GLOBAL 0 (fib)

32 LOAD FAST 0 (n)

35 LOAD CONST 1 (2)

38 BINARY SUBTRACT

39 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
42 BINARY ADD
43 RETURN VALUE

As one specific example, this three-op sequence corresponds to a
single LuaJIT op:

19 LOAD FAST 0 (n)
22 LOAD CONST 2 (1)
25 BINARY SUBTRACT

0008 SUBWN 2 0 0 ;1

Both LuaJIT and CPython separate the comparison and the jump
into two separate instructions; in LuaJIT the comparison is effectively
a conditional-skip instruction as on HP calculators. Conditional skip
is very easy to implement in software for a fixed instruction length,
but very easy to implement incorrectly otherwise.

To complete the comparisons, the 1386 code emitted by GCC in
the tests above was as follows:

804844d: 56 push Jesi

804844e: 53 push Jebx

804844f : 83 ec 14 sub $0x14,)esp ; useless waste
8048452 8b 5c 24 20 mov 0x20(%iesp) ,%ebx ; n

8048456 b8 01 00 00 00 mov $0x1,%eax ; return 1
804845b: 83 fb 01 cop $0x1,ebx s <= 17
80484be: Te la jle 804847a <fib+0x2d>

8048460 8d 43 ff lea -0x1()jebx),%eax ; n-1
8048463: 89 04 24 mov jeax, (fesp) ; pass arg
8048466 e8 e2 ff ff ff call 804844d <fib>

804846D: 89 c6 mov jeax,hesi ; save result
8048464 83 eb 02 sub $0x2,%ebx ; n-2
8048470: 89 1c 24 mov jebx, (fesp) ; pass arg
8048473: e8 db ff ff ff call 804844d <fib>

8048478: 01 £0 add Yesi,leax ; sum results
804847a: 83 c4 14 add $0x14,%esp

804847d: 5b pop Ylebx

804847e: be pop Jesi

8048471 : cd ret

This is 11 operations in the leaf-call base case and 19 operations in
the non-leaf recursive case. To avoid redundant saves and restores
around the recursive calls, it keeps its local variables (n and the return
value from the first recursive call) in callee-saved registers %esi and
%ebx; this reduces the code size but has no real effect on
performance. (If it had used caller-saved registers, as I did in the XIS
code, the initial root call to fib would have avoided the cost to save
and restore them, but that is not significant.)

It suffers from the shitty i386 C iBCS calling convention where
everything goes on the stack. Revising it to

__attribute ((fastcall)) int fib(int n)
{

return n < 2 ? 1 : fib(n-1) + fib(n-2);

yields about 17% shorter runtimes with gcc -0 ~fomit-frame-pointer
fib.c -o fib, of 334-336 ms with ./fib 35, and the following improved
code, with only 17 instructions (12% less):

804844d: 56 push Jesi

804844e: 53 push Jebx

804844f : 83 ec 04 sub $0x4,Jesp ; still useless
8048452 89 cb mov jecx,hebx i n

8048454 : b8 01 00 00 00 mov $0x1,%eax ; return 1
8048459 83 £9 01 cop $0x1,Jecx s <1?
804845¢: Te 14 jle 8048472 <fib+0x2b>

804845¢: 8d 49 ff lea -0x1(fecx),kecx ; n-1, arg
8048461 : e8 e7 ff ff ff call 804844d <fib>

8048466 89 c6 mov eax,hesi ; save result
8048468: 8d 4b fe lea -0x2(febx),lecx ; n-2, arg
804846b: e8 dd ff ff ff call 804844d <fib>

8048470: 01 £0 add Jesi,leax ; sum results
8048472 83 ¢4 04 add $0x4,%esp

8048475: 5b pop hebx

8048476: be pop lesi

8048477 c3 ret

(Adding static inline induces GCC to inline it into itself five levels
deep, resulting in 242 instructions that include 32 recursive calls, and
more than doubling the execution speed, to 157 ms runtime for ./fib
35.)

This is getting pretty deep into optimization hacks; the justification
is just that it illuminates some of the tradeoffs between different
instruction-set choices.

SWEET-16

As I wrote in “bytecode interpreters for tiny computers” in 2008:

Steve Wozniak’s SWEET16 16-bit virtual machine, included as part of Integer
BASIC, supposedly doubled the code density of the 6502. The virtual machine
itself was 300 bytes of 6502 assembly, implementing these instructions; here “#”
means “[o-F]”.

Ox1# SET: load immediate 0x2# LD: copy register to accumulator
0x3# ST: copy accumulator to register Ox4# LD: load byte indirect w/ increment
0xb# ST: store byte indirect w/incr 0x6# LDD: load two bytes ind w/incr
0x7# STD: store two bytes ind w/incr 0x8# POP: load byte indirect w/predecr
0x9# STP: store byte ind w/predecr OxA# ADD: add register to accum

0xB# SUB: subtract register from acc 0xC# POPD: load 2 bytes ind w/predecr
0xD# CPR: compare register w/acc OxE# INR: increment register

OxF# DCR: decrement register 0x00 RTN to 6502 mode

0x01 BR unconditional branch 0x02 BNC branch if no carry

0x03 BC branch if carry 0x04 BP branch if positive

0x05 BM branch if minus 0x06 BZ branch if zero

0x07 BNZ branch if nonzero
0x09 BNM1 branch if not -1

0x0B RS return from sub (R12 is SP)

0x08 BM1 branch if -1
0x0A BK break (software interrupt)
0x0C BS branch to sub (R12 is SP)

ox01-0x09 and 0xoC have a second byte which is a signed 8-bit displacement. If
you want a 16-bit jump, you can push it on the stack and RS.

That’s it, 28 instructions, 300 bytes of machine code to implement them. And I
thought the 6502 was already reasonable on code density, so this was apparently
quite a win.

It’s notable to me that his only ALU operations here are ADD,
SUB, CPR, INR, and DCR; there are no bitwise operations, not
even a shift-right. I'm guessing that SET was followed by a 16-bit
immediate to load into R#, though that isn’t mentioned in my notes.

This is about the right level of complexity for Veskeno, although
Id go 32-bit and trade some of the condition codes and branching
options for some bitwise operations.

Darius Bacon suggested that one of the reasons XIS was so slow
was that it didn’t have a distinguished accumulator, so every binary
operation had to index an array three times: once to read each input
and once to write the output. (It also had to extract the relevant fields
from the instruction word.) As with stack machines, a
single-accumulator machine like the SWEET-16 reduces the number
of operands that need to be decoded and indexed, at the expense of
requiring a larger number of opcodes to be decoded for a given task.

Chip-8
Thanks

Discussions with Darius Bacon, John Cowan, and Sean B. Palmer
greatly contributed to the Veskeno design, although undoubtedly any
of them would be horrified at its deficiencies.

Topics

* Performance (p. 794) (25 notes)

* Systems architecture (p. 807) (13 notes)
* Derctuo (p. 822) (9 notes)

* File formats (p. 828) (7 notes)

* Calculation (p. 838) (6 notes)

* Reproducibility (p. 844) (5 notes)

* Instruction sets (p. 846) (s notes)

* Archival (p. 8s5) (5 notes)

* Urbit (p. 877) (3 notes)

* Veskeno (p. 916) (2 notes)

* FPGAs (p. 957) (2 notes)

* Errors (p. 962) (2 notes)

* Corewar (p. 968) (2 notes)

* Compilers (p. 972) (2 notes)

* Chifir (p. 975) (2 notes)

* Assembly language (p. 986) (2 notes)
* Testing

*Lua

* Lisp

* Brainfuck

Convincingness

Kragen Javier Sitaker, 02020-06-20 (1 minute)

Dijkstra said that it was essential to get your knowledge out of your
own head so that it wouldn’t die with you: to transmit it to other
people. But I'm selfish enough to find that less compelling than
several other reasons.

One is that, when your knowledge is only in your own head, it’s
easy to fool yourself into thinking you know things that you don’t
really know. If you try to tell other people about it, sometimes they
will be harder to convince. They may need to see more convincing
evidence than the evidence you had gathered previously. By
organizing the evidence and gathering more of it, you may discover
that you were mistaken, in whole or in part; objectively observable
evidence is generally higher-quality evidence. Sabine Hossenfelder
wrote a very interesting article about her time listening to physics
crackpots expound their theories, and in many cases they didn’t have
a clear idea of what kind of thing would count as evidence, or even as
a physical theory.

Another is that they may offer contributions: they may suggest
that the technique you have devised would be useful for something
you hadn’t thought of, or point out a weakness you hadn’t seen,
either because they know something you don’t or just because their
perspective is different from yours.

Topics

* Crackpots (p. 902) (3 notes)
* Epistemology (p. 963) (2 notes)
* Dijkstra

Lantern gears

Kragen Javier Sitaker, 02020-06-20 (updated 02020-06-28)
(1 minute)

“Lantern gears” is a term, apparently originating from Matthias
Wandel, for a kind of gear that was ubiquitous in medieval clocks:
two parallel discs joined by a circle of round bars around their
perimeters. It would be a lantern if you put a candle in the middle. If
it weren’t for the discovery of the Hellenistic-era
triangular-tooth-profile Antikythera Mechanism, I would have
thought they predated meshing spur gears.

While it’s tricky to get involute-profile gears to mesh without
binding if they have fewer than seven teeth, lantern gears can work
well with as few as three teeth, because the mating gear’s teeth can
sweep around the interior of the lantern gear. Medieval clocks, with
their more primitive toothforms, did not come close to this level of
optimization, but I think they did get substantially better gear ratios
than they could have managed with triangular teeth.

Topics

* Mechanical things (p. 795) (19 notes)
* History (p. 800) (17 notes)
* Gearing (p. 894) (3 notes)

https://woodgears.ca/
https://woodgears.ca/

Segments and blocks

Kragen Javier Sitaker, 02020-06-20 (updated 02020-12-16)
(51 minutes)

Consider the problem of efficiently implementing some kind of
virtual machine, like Veskeno (p. 126) or the JVM. Often it’s
desirable for the virtual machine to be able to provide bounds
checking and garbage collection, thus preventing indexing, type, and
memory-management errors from provoking entirely unpredictable
behavior.

Run-time bounds checking is expensive, though, so it would be
nice to avoid it most of the time. The current standard approach to
this is to hope your optimizing compiler will be able to hoist your
bounds checks out of your inner loops. But I think there is a simpler
and more orthogonal approach.

Exploring this, I think I found a way to write a featureful and
adequately fast multitasking system with memory protection on
microcontrollers, perhaps similar to Liedtke’s pre-L4 designs, L3 and
Eumel; it ought to straightforwardly support paradigms like
transactional shared memory, ACID transactions, and access to
filesystem snapshots, and even helps to support clustering.

Safe indexing without bounds checks

The 8086 and its descendants index the general-purpose register file
in almost every instruction. The general-purpose register file consists
of 8 registers (16-bit registers in the 8086, 32-bit in the 1386, 64-bit in
amd64), but no bounds-checking is required, because the index field
in the instruction is only 3 bits, so indexing errors are impossible.
(Amd64 adds additional instruction formats that can index a larger
16-register general-purpose register file, using 4-bit fields.)

Similarly, every memory reference on the 1386 in protected mode
indexes into some 4096-byte page with the last 12 bits of the effective
address. This indexing, too, avoids any bounds checking — although
the more significant 20 bits of the memory address are looked up in
the processor’s TLB, and if they are not found, a tree traversal is
performed, with the possibility of a protection fault if no page is
mapped.

So suppose our virtual machine provides access to pointer-free
“string memory” in, say, 1024-byte blocks, and a virtual-machine
instruction to index into the current block with an 10-bit index. A
bytecode loop running in the virtual machine can freely generate such
indices and read and write the current block without incurring any
expense of bounds-checking. Of course, that the array or record
being indexed by the virtual machine may be smaller than 1024 bytes,
and wrapping around to the beginning may not be an acceptable
handling of overflowing those bounds, so this may not provide
bounds-checking from the point of view of the high-level language
implemented — but it prevents the bytecode from corrupting the
virtual machine’s data structures.

Multiple block keys

Suppose we want to access more than 1024 bytes in our program?
We can have multiple block pointers in “segment descriptor” or
“block descriptor” or “block key” registers in the virtual machine. 4,
8, or 16 might be a reasonable number. How do we specify which
segment to use? There are many possibilities. The
read-string-memory and write-string-memory instructions could
contain a segment field indicating which register to use; the virtual
machine could provide an instruction that sets the current segment to
one of the segment registers; different modes of accessing memory
could use different current-segment registers (for example,
instruction fetch, data read, and data write); you could use the 8086
“Instruction prefix” mechanism where non-default segment registers
are selected for a single instruction by a special instruction before it;
or some combination.

Implicitly using a current-segment register avoids indexing into the
array of registers in the virtual-machine implementation. Using a
separate current-write-segment register for write access potentially
permits enforcing read-only access to data. Even if no read-only
restrictions are desired, in a virtual-memory system with no MMU,
this would allow the block to be efficiently marked dirty so that it
could be flushed back to stable storage; perhaps transactional
memory, copy-on-write sharing, and checkpoint and rollback could
be supported in this way as well. Similarly, explicitly selecting blocks
for reading would efficiently give an LRU eviction system the data it
needs to work, as well as permitting them to be faulted in from slower
storage if needed.

Nodes

But suppose we want to access more than 8192 bytes of data in our
program? We need some way to store the referents of block keys, but
we cannot store them in blocks themselves — the program could
overwrite them. Instead let us store block keys in a different kind of
structure, which following KeyKOS terminology we will call a
“node”. A node contains, say, 64 block key slots. The virtual
machine contains a “current node register” analogous to the “current
block register”, and a set of 4—16 node registers analogous to the 4—16
block or segment registers. A “read block key” instruction takes a
6-bit index and loads the corresponding block key into the current
segment register; the analogous “write block key” stores the block
key from the current segment register into the specified block key slot
of the current node.

All the block-key slots of a node and all the block-key registers of
the virtual machine are guaranteed to contain valid block keys at all
times, so these virtual-machine instructions need do no validation.

64 block keys in a node give us access to 65536 bytes of data, and
we can keep keys to another, say, 7168 bytes in the, say, 7 non-current
block-key registers.

But suppose we want access to more than 72704 bytes of data? For
that we use multiple nodes.

Node keys

In addition to the 64 block keys, a node also contains (say) 64 node
key slots, and there are analogous “read node key” and “write node
key” instructions which permit traversing and mutating the graph of
nodes. Like the block-key instructions, these instructions require no
validity checking; there is no way to copy a block key into a
node-key slot or vice versa, and there is no way to copy either kind of
key into a block or to copy data from a block into a key slot.

The read-key and write-key instructions have indirect versions that
take the indices of a slot within a node from a virtual-machine
register rather than the instruction itself. This permits programmatic
indexing of the node graph without unwieldy 64-way conditionals or
self-modifying or dynamically-generated code.

There is nothing to prevent the node graph from being arbitrarily
cyclic or to prevent nodes from becoming unreferenced, but a garbage
collector can safely traverse this node graph. Because the nodes are so
large, 256-1024 bytes, this should be a relatively short process — a
machine with 16 gibibytes of RAM and 64-bit pointers cannot
accommodate even 16'777'216 nodes, and if the nodes are being used
to index a tree of blocks in RAM, there can’t be even 262'144 nodes.
So a full garbage collection should normally be submillisecond. The
corollary, of course, is that these nodes are not going to be a
reasonable way to implement small data structures like a Lisp “cons”
or “pair”, costing at least some 64 times as much as a reasonable cons.
Still, compared to CPython or Perl, that’s still not that much.

The repertoire

So, the full inventory of operations is something like the following:

» read-string-memory(bk, u10) — u8 or u32 or something via the
given block key, which may be implicit for efficiency;

* write-string-memory(bk, uto, u8 or u32 or something),
analogously — these two operations might come in multiple widths;
* allocate-block() — bk, allocates a fresh block (with the destination
location perhaps implicit);

» allocate-node(bk) — nk, allocates a fresh node all of whose block
keys initially refer to the block given by bk;

» read-block-key(nk, u6) — bk, reads a block key from the node
given by nk in the slot given by us6;

» write-block-key(nk, u6, bk), analogously;

* read-node-key(nk, u6) — nk, analogously to read a node key;

» write-node-key(nk, u6, nk), analogously.

Also, possibly one or more of the following:

* select-write-block-key(ug4), start using the block key in the
identified block key register for write operations;

» select-block-key(u4), analogously but either for data read operations
or for all operations;

» far—call(ug4, offset), transfer control to the code at the given offset in
the block whose key is in the identified block key register; this is not
applicable if the virtual machine’s code is not itself stored in blocks;

* select-node-key(u4), start using the node key in the identified node
key register;

* block-key-prefix(u4), use the block key in the identified block key
register for the next operation only.

To index a larger memory area than a single block, you could use
an operation sequence something like the following:

* 12 := r1; supposing r1 has the index
* r2 >>= constant 10
* select-block-key(r2); supposing the current node is an index of a
64KiB memory area
» read-string-memory(r1); supposing read-string-memory only pays
attention to the low 10 bits.

In the case of accessing a multi-word chunk of data from a block,
the first three operations can be amortized over many accesses to the
same block.

Matrices

The once and future king of computer applications is numerical
matrices, with applications such as matrix-vector multiply xGEMV,
matrix-matrix multiply xGEMM, and eigenvalue computation
xSYTRD/xGEBRD/xSTERF/XSTEDC accounting for a good deal
of the usage of many computers — historically due to physics models,
now due to artificial neural networks.

The obvious way to organize a matrix for access locality in a
blocks-and-nodes system is to divide it into rectangular or square
blocks; if it’s 32-bit single-precision, an 8X8 block fits into a 256-byte
storage block, and in 64-bit double-precision, two 4X4 blocks do. In
SGEMYV matrix-vector multiply, multiplying an 8 X8 matrix block
by an 8-element vector segment yields an 8-element partial-sum
vector segment in 64 multiply-accumulates; in SGEMM
matrix-matrix multiply, multiplying two 8 X8 matrix blocks yields an
88 partial-sum matrix block in §12 multiply-accumulates.

These seem likely to be sufficiently large amounts of computation
that the cost of faulting in a block will not be overwhelming,
particularly if any I/O latency can be hidden with multitasking.

The other king of computer applications is slinging around pixels to
put on the screen, and a similar 8X8 block of 32-bit BGRA pixels
seems like a good fundamental unit to use there.

Related systems

As mentioned above, Jochen Liedtke wrote some systems
somewhat similar to this design before writing L4, providing memory
protection and process isolation on Z80o-based systems with what I
understand to be a trusted compiler.

The Burroughs Bsooo

The Burroughs Bsooo is probably where this kind of structure
derives from originally, but I still need to read THE DESCRIPTOR
to learn about it.

The Bsooo tagged every 48-bit memory word with a code/data
bit, thus providing “W"X” functionality at a memory-word level
rather than a page level; its descendants added two more tag bits,

providing dynamic typing at the hardware level, so that for example
only a single ADD instruction was needed, dynamically dispatching
to single- or double-precision addition; its “descriptors” indicated
whether an array contained words or bytes (and, if bytes, bytes of
which of the three supported sizes.)

The relation to KeyKOS

As I mentioned above, this is in some sense copied from KeyKOS,
although there are some differences. KeyKOS didn’t statically
segregate block keys (“page keys”) from other kinds of keys, and it
didn’t have “block key registers” or “node key registers” or any key
registers other than the ones in the nodes.

KeyKOS had various other abilities.

It used the IBM 370 virtual-memory mechanism, and later the
SPARC virtual-memory mechanism, to let the “virtual machine
bytecode” be the regular CPU instructions, mapping many-page
segments with the MMU so that the four-instruction sequence above
was just a regular memory access.

Space and time were divided up hierarchically with “space banks”
and “clocks” — you needed access to a non-exhausted space bank to
allocate space and a non-exhausted clock in order to consume CPU
time. The owner of a space bank could revoke all the storage
allocated from it.

It had kinds of keys other than page keys and node keys — it had
invocation keys and resumption keys supporting efficient remote
procedure call between separate processes (“domains”), as well as keys
granting access to other kinds of kernel objects such as space banks
and clocks.

There was a “weaken” operation that could convert a normal node
key or page key into a “sense key” which only permitted read
operations — transitively, so that if a page key was fetched from a
node via a sense key, that page key would also be returned as a
read-only sense key.

There was a closely-held KEYBITS key to obtain the raw bits of a
key, so that efficient lookups by key value were possible, though I
think all processes were able to compare two keys for equality.

KeyKOS was transparently persistent: periodically it would stream
out to disk all the dirty pages and nodes, then commit a checkpoint.

But I think even the minimal nodes-and-blocks structure described
above is enough to be useful.

The relation to Forth

Forth systems traditionally used a very simple manual
virtual-memory system instead of a filesystem. 2303 BLOCK would
ensure that 1024-byte block number 2303 from the disk was loaded
into a block buffer, and return the address of that buffer; UPDATE would
mark as dirty the last block thus referenced and ensure that it would
be written to disk when necessary. Block eviction was guaranteed
LRU, there were always at least two block bufters (GForth uses 20),
and multithreading was cooperative, so you could be sure that the
addresses of the two most recently referenced blocks would remain
valid until you referenced another block or yielded control.

Forth does not make any attempt to separate pointers from other
data or to check bounds on array indexing.

The relation to Smalltalk

A Smalltalk method normally runs with access to some local
variables, including its arguments; a vector of instance variables in its
receiver; and a pool of constants associated with, I think, the method.
Different bytecodes are assigned to load and store from each of these
“segments”, except that the constant pool is not writable. There are
no indirections there; the offsets are all hardcoded into the
instructions. Arrays are instead treated as a separate class of object
whose #at: and #at:put: methods are “primitives”, handled by native
code linked into the virtual machine.

Smalltalk does not have a notion of “pointer-free data”; its
SmallIntegers, characters, booleans, and symbols (“selectors”) are
treated as full-fledged objects and nominally accessed by sending
them messages, although some of them normally are implemented by
storing all their (immutable) data in a tagged pointer rather than
boxed in memory like CPython. Some selectors like #ifTrue:ifFalse:
are special-cased by the virtual machine.

(Hmm, actually maybe Smalltalk does have such a notion: “bits”

fields.)

So in a sense this is a simplification of the Smalltalk model, with
just one uniform kind of node for instance variables, local variables,
etc., but with storage for pointer-free bytes slapped onto the side.

Kaehler & Krasner’s 1982 LOOM paper describes an approach that
is very similar in many ways, although unfortunately they had not yet
finished the system at the time they published their paper, saying,
“Our LOOM virtual memory system is in its infancy. We are only
beginning to make measurements on its performance.” Other authors
of the LOOM system included Althoff, Weyer, Deutsch, Ingalls, and
Merry, with input from Bobrow and Tesler.

LOOM maintains an in-RAM cache of up to 2 “resident” objects
linked together with 16-bit short Oops, out of a possible total of 2**
objects on disk (occupying a maximum of 2* bytes, since it was 1982),
linked together with 32-bit long Oops. Nonresident objects’
ambassadors in RAM are called “leaves”. They mention that the
average object in their system consumes 13 words in memory (26
bytes), plus perhaps a couple more words in the Resident Object
Table. To save RAM, some short-Oop fields are just o (“lambda”)
instead of pointing at leaf objects, requiring LOOM to refetch the
on-disk object to find the long Oop they’re supposed to refer to.

LOOM de-lambda-izes the entire receiver, fleshing out lambdas
into full leaves, before invoking a method. Thus it avoids null checks
on every field access. This is reminiscent of the
microcontroller-focused mechanism described above which brings
blocks or nodes into memory when their keys are brought into a
virtual-machine register.

Their short-Oop mechanism is table-based, unlike HotSpot’s
compressed-Oop mechanism, which represents a 64-bit object pointer
as a 36-bit (?) offset from a global heap base address, shifted right by 4
(?) bits and thus stored in a 32-bit word. Being table-based permits

relocation of objects when their 4-word leaves are replaced by
full-fledged resident objects after being brought in from disk. They
do suggest using precisely HotSpot’s compressed-Oop approach to
support 236 bytes of on-disk objects, though, and their RAM is
16-bit-word-oriented, so they can support 131072 bytes of objects in
RAM, like the original Macintosh 128K, not merely 65536.

LOOM used reference counting for garbage collection, both on
disk and in RAM.

Running on microcontrollers

This block-and-node system solves a lot of the problems that make
bunches of microcontrollers a pain to program with even the kind of
general-purpose software we had on 1970s home computers, despite
nominally having tens or hundreds of times as much computational
power.

Virtual memory with 256-byte blocks as pages

Using the loading of block key registers to drive a
non-hardware-supported virtual-memory system should permit, for
example, implementing a reasonably featureful and performant
virtual-memory system on an AVR with an SPI Flash chip, perhaps
with a somewhat smaller block size, like 256 bytes, and a somewhat
smaller node size. At s megabits per second, a reasonable SPI speed,
256 bytes should take 409.6 microseconds to load or store, plus
whatever overheads exist (I think about 25% on SPI itself? Plus erase
time for Flash?)

Nodes should probably have 32 node keys and 32 block keys.
Block keys of 32 bits in stable storage could address up to a terabyte,
which is not too limiting; 128 bytes of such block keys would be 32
block keys, and it’s probably reasonable to use a similar number of
node keys. In RAM, such a node might shrink to 64 bytes; it
probably isn’t necessary to keep the 32-bit identifiers of nonresident
nodes and blocks, because the extra latency to read 4 bytes from an
arbitrary location in Flash is small, unlike spinning rust. (This of
course suggests that the whole program of using virtual memory for
such a system may be bad...)

No barrel shifters

Hardware without fast bit-shifting abilities, such as an AVR, might
benefit in another way from 256-byte blocks: they could eliminate
the need for a shift operation to compute the block-slot index from a
flat address into an 8192-byte tree.

Multiprocessing and concurrency

A potentially interesting approach to the problem of personal
computing on microcontrollers would be to share access to “disk”
blocks using a MESI or similar cache-coherency protocol, with these
“blocks” of 256—1024 bytes playing the role of cache lines. Then
runnable processes can be migrated to whatever processor is idle, like
on SMP. (You could presumably do the same thing on a Linux-like
system with a SAN, running MESI at page granularity; has anybody
tried this? Maybe Amoeba?)

Normally, in MESI, if a cache line is in Modified or Exclusive

state, a request from another cache to read it immediately transitions
it to Shared state, guaranteeing forward progress. But there are
possible alternatives; for example, you could “lock” a block or node
for writing, so that attempts by other processes (on the same processor
or not) to access that block or node will have to wait until you unlock
it. Or, all blocks and nodes might be “copy-on-write” in the sense
that each process writing to them has its own private copy, and all
shared data might be immutable, with keys to new data transmitted
explicitly via some kind of IPC mechanism, or some small safety
valve for mutable data. Or, writes might use compare-and-swap
semantics: multiple processes might be writing to the same page or
node at the same time, but when the first of them commits its write,
the others are aborted, either immediately or when they attempt to
commit. (Presumably they can then be automatically retried.)

It’s tempting to suggest that these mechanisms would make it easy
to build highly concurrent shared mutable data structures, but history
has not been kind to such optimistic statements.

Memory buses and hardware

The AVR itself supports SPI with I think an 8 MHz clock, but
slower signals are less demanding on PCB layout. Also, some
common SPI memories don’t support such high speeds; according to
file jellybeans-2016, the US$2.78 two-megabit STMicroelectronics
MogsMo2-DRMN6TP EEPROM is only s MHz. Others do; the
US$1.09 256-kilobit Microchip 23K256-1/SN SRAM claims 20MHz
according to file low-power-micros, and the US$0.36 4-mebibit Winbond
W25X40CLSNIG claims 104MHz. Memories cheaper than that
tend to be only 400kHz I2C. I don’t know how fast SD cards’ SPI
interfaces are, but they’re also required.

If the SPI interface or whatever supports DMA, it might be feasible
to run a second process for a couple thousand cycles while the first
one was blocked on loading a block from external storage.

I’'m not sure what the connectivity between multiple processors
and the “disk” should look like; I2C tends to be only 400kbps, which
would push block access times up to a spinning-rust-like millisecond
level, and SPI is inherently single-master, so you couldn’t connect
multiple microcontrollers directly to a single memory chip. The
CAN bus might work, but of course memory chips don’t support it
directly.

Probably you’d end up either connecting the processors into a ring,
each with locally attached SPI memory, or dedicating one or two
“kernel” processors to I/O arbitration, with a direct link to the
memory and another direct link to each application processor.

Dynamically loading code blocks on a microcontroller

There are a few different ways a microcontroller like the AVR
could handle dynamically loading code. First, it could just not do it at
all, just using all this segments and nodes stuff to make it reasonably
easy to run a little code with a lot of data. Second, it could
dynamically load bytecode blocks into RAM and run them in an
interpreter — the AVR is slow enough that this would be somewhat
limiting, and it’s certainly power-hungry, but this would allow
relatively quick task switching. Third, it could dynamically load

machine-code blocks (whether somewhat dynamically created from
bytecode or compiled ahead of time) and burn them into a “transient
program area” in its Flash so it could run them, although this will
limit its lifespan. Fourth, if it’s a microcontroller that can run from
RAM, which the AVR can’t, it could just load blocks of machine
code into RAM and run that.

STM32

Nowadays, as described in file stu32, it probably doesn’t make sense
to use an AVR; you should use at least a Cortex-M processor like the
STM32; a 48MHz STM32Fo031x4 with 16 kibibytes of RAM costs
US$1.30, and I think some STM32s are even cheaper than that. As
bonuses, you get much lower power consumption and the ability to
run code in RAM.

Copy-on-write

Copy-on-write is a little bit tricky, in that, if the same process or
transaction refers to the same block via two different access
paths — such as via block key register 3 and block slot 5 in some
node — you probably want it to get the same version of the block. So
it isn’t sufficient to do the pure-functional-tree thing of “modifying”
a pointer to the block by creating a new version of the node, and its
parent node, and so on up to the root of the tree, because there is
perhaps no tree. Instead, every time you go to load a block register,
you must do a table lookup to see if the current process/transaction
has a modified copy of that block, and, if not, conditionally create
one. (And analogously for modifying nodes.)

The J1A

A potentially more interesting kind of microcontroller to use for
this is the J1A Forth-like processor. It might be reasonable to extend
it to do many of the block and node operations “in hardware”, run
several processors concurrently inside a single FPGA, and perhaps
reconfigure other parts of the FPGA dynamically to assist with other
computations.

Incremental, differentiable, and concurrent
computation

(This is explored in more detail in the note on transaction-per-call
systems (p. 722).)

Above I mentioned transactional memory for concurrency control
as one possible application of this kind of virtual machine. The idea is
that, to access the memory, you run some code inside a transaction,
giving it some inputs when you start it, and buffer all its memory
writes in a copy-on-write fashion; if the transaction runs to
completion successfully, it tries to commit, at which point we check to
see whether any block or node it read had been modified by some
other transaction in the mean time. If so, we abort the transaction,
discarding all of the buffered written data, and transparently restart it
from the beginning; if not, it successfully commits, and its versions of
that modified data become the active versions. It’s a very simple idea,
and it is commonly used to permit high levels of parallelism with very

straightforward, non-bug-prone, semantics.

As one example, you might have a piece of code that scans for an
occurrence of the word “fuck” in a file, and sends an alert email if it
appears, and another piece of code that modifies the contents of the
file. If the scanning code happens to be reading through the file when
the word “full” is overwritten with the word “sick”, it might
incorrectly conclude that the word “fuck” occurred, and send a
spurious email, possibly getting someone fired. But if both pieces of
code must run within transactions, which must commit for any
externally-observable thing to happen, then any modification to the
blocks read by the scanner will abort the scanner’s transaction — unless
it doesn’t commit until after the scanner commits, in which case the
scanner will see a consistent post-modification version of the file.

Thus this simple optimistic-synchronization rule makes the
transactions perfectly serializable — the results are exactly the same as
if all the transaction code had run in a single thread, in the order in
which the transactions committed — and it guarantees forward
progress. There are various kinds of optimizations that can be made
to improve such a system’s performance.

Long transactions

Consider, though, the situation of this scanner running on a large
disk partition on which files are frequently being created and
destroyed. Although the system never blocks, the scanner will never
finish! By the time it comes to the end of the disk, certainly some
other program will have modified some blocks it had already scanned,
thus invalidating its results, and so it will be automatically restarted.

There are many ways to handle this “long transaction” problem;
among them, pessimistic synchronization, nested transaction
memoization, relaxed consistency, clever reordering, and spheres of
influence.

Pessimistic synchronization

Pessimistic synchronization was historically the most common way
to solve the problem. Instead of allowing all transactions to proceed,
the scanner acquires “read locks” on every block or node it reads; if
any other transaction attempts to write to such a block or node, it is
paused until the scanner’s transaction completes and then acquires a
write lock; and if the scanner tries to acquire a read lock on a block
that some other transaction already has a write lock on, the scanner
blocks until the other transaction commits or aborts. The great
benefits of pessimistic synchronization are that no work is ever wasted
(so worst-case execution times can be computed) and no block ever
need be copied. Its drawbacks include that it’s easy to deadlock; it’s
difficult to get good scalability, since things block all the time; and, in
real-time systems, it suffers from “priority inversion” where a
low-priority task can hold a lock blocking a high-priority task, and a
medium-priority task can then starve the low-priority and the
high-priority task.

Nested transaction memoization

Nested transaction memoization is probably not something I just
made up, but it works as follows. The scanner scans as follows, in a

made-up programming language with block arguments:

scan(word, file, start, end) = {
return child transaction {
assert(word.len < blocksize)
if (end - start < blocksize) {
return contains(word, file, start, end)

mid = start + (end - start) // 2
return (scan(word, file, start, mid + len(word) - 1) or
scan(word, file, mid, end))

scan starts by spawning a nested child transaction which can commit
or abort before its parent does — by default, its abort will just retry it
without affecting its parent, but once it commits, the blocks and
nodes it read and wrote are added to the read and write sets of its
parent, so any later changes to the blocks it read will then abort the
parent; but there are some significant fillips we will see below.

If the area to scan is smaller than blocksize, then the scan is done
directly, using a naive string search or Boyer-Moore or whatever.
We presume that this can be done quickly enough that, much of the
time, we will finish before something else overwrites any of the data
in that range, so our chance of being aborted is small.

Otherwise, scan proceeds by making two recursive calls to itself,
which of course spawn their own nested transactions. If, during a
commit, some read block is found to have been overwritten by a
concurrent transaction, that transaction is then retried; but its earlier
siblings remain committed.

So far, this seems to have ameliorated our problem only slightly: if
something writes to the third quarter of the file while the fourth
quarter is being scanned, then the transaction scanning the second half
of the file will be aborted and retried. So our tiny chances of success,
assuming a uniform distribution of write traffic, would seem to have
improved only by a factor of 4, or less.

This is where memoization comes in and saves the day! Suppose
that, instead of only remembering a flat list of blocks and nodes read
and written by each active transaction in the stack, we also remember
those read and written by committed transactions that are children or
descendants of some active transaction, as well as the code and
environment state needed to re-execute those transactions. Now,
when we retry scanning the second half of the file, we can revalidate
these read sets, and if they are still valid, we can “wink in” the write
set without actually running any of the transaction code.

To be concrete, suppose the file consists of eight blocks (o, 1, 2, 3, 4,
s, 6, and 7), and we are retrying scanning the last four blocks because
block s has changed. (I will disregard overlaps here.) The transaction
to scan blocks 4, s, 6, and 7 is invalid, so it begins re-executing, and
the first thing it does is to spawn a child transaction to scan blocks 4
and 5. This child transaction is invalid, since block § has changed, so
it spawns a child transaction to scan block 4. So far, memoization has

changed nothing.

But then a miracle occurs! Block 4 hasn’t changed, so it doesn’t
need to be scanned; the False return value and (empty) write set of the
block-4 transaction are instantly retrieved from the memo table. We
proceed to spawn a child transaction to scan block s, which has
changed, so we rescan it byte by byte. It also returns False, and so the
blocks-4-and-s transaction returns False, and its parent transaction
spawns a new transaction to scan blocks 6 and 7. But that transaction
is also found in the memo table! So no code need execute; its
(empty) write set is committed to its parent, and its False return value
is returned.

So now our scan is complete, having scanned only the single block
that actually changed and done additional O(log N) transaction
revalidation work, through the beautiful gift of memoized nested
transactions!

Like I said, I probably didn’t just make this up. I just can’t

remember where I've seen it. Maybe Umut Acar’s “self-adjusting
computation”.

Transactions that return immutable data — inevitably, newly
created — poses no problem for this approach, and neither does
mutating existing data. But allocating and returning new blocks and
nodes does pose a difficulty for memoization, because memoization
introduces aliasing! Without memoization, running the same
transaction twice with the same inputs (including the state of the
store) will allocate and return two separate sets of objects, but a
naively implemented memo system would return two aliases to the
same mutable objects. I think this can be solved by marking the
blocks and nodes as copy-on-write, by having the memo system
actually copy them before returning them, or by making them
read-only.

Relaxed consistency

A common solution to the long-transaction problem is to use more
relaxed isolation levels, at the risk of incorrect results. No more
details will be given of this shameful practice.

Clever reordering, or MVCC

A different approach to the problem is to hope that the scanner’s
results can be retroactively inserted into the transaction history instead
of being appended to it. This works surprisingly often; in the
example code above, for instance, the scanner doesn’t write any
blocks — its only effect is to return a Boolean value — so it can
trivially be run on any previous snapshot, and it is guaranteed that
none of the transactions that committed in the interim would have
had different results had the scanner transaction committed long ago.

This approach requires examining the write-set of the long
transaction when it goes to commit to ensure that it’s not overwriting
any blocks or nodes that any transaction committed after its snapshot
had read. If so, such a cyclic dependency violates serializability and
thus cannot be tolerated; the long transaction must be retried anyway.

This poses the question of exactly where in history to
(conceptually) insert the long transaction. But unless we are making

up a transaction log, there’s no need to actually compute the serializable
order to respect transaction isolation; it’s sufficient that one exists. So
it’s sufficient to ensure that committing the transaction would not
create a cycle in the bipartite graph of transactions and block/node
versions.

Spheres of Influence

Retrying the long transaction, however, isn’t the only possible
solution! You could, instead, commit the long transaction and roll
back and retry the already-committed later transactions, as long as no
effects from them have escaped your rollback grasp. This is the idea
of the “spheres of influence” idea from the ancient transaction
processing literature, which I found in Gray & Reuter, and it’s fairly
similar to how the US banking system works: all numbers are
provisional, subject to revision, until a few months have passed.

Incremental recomputation

Above, the use of memoized nested transactions was suggested to
permit long transactions to complete successfully despite concurrent
writes. But it should be apparent that this is a form of incremental
computation: by memoizing results from previous partial
computations, incremental changes can be accommodated efficiently,
even when they’re happening too fast for a batch-mode computation
to run to completion successtully.

If the memo table is retained rather than being discarded as soon as
the root transaction commits, it can be used to incrementalize future
computations of similar transactions as well. In a database system, for
example, this approach could largely transparently provide the
performance functionality of standard indices, materialized views, and
precomputed OLAP rollups, though perhaps not query optimization,
since its very transparency complicates its use by a query optimizer.

What policy should be used to manage memo-table entries?
Retaining too little will waste CPU cycles and perhaps miss real-time
deadlines; retaining too much will waste RAM and perhaps also slow
the system down. A unified memo-table-management system might
be able to use robust heuristics to come to a reasonable global
optimization solution, taking into account the observed
computational cost of each transaction; but, lacking that, you
probably need some way to manually specify the policy.

This memo table will suffer “false misses” under some
circumstances that a smarter incremental computation mechanism
might be able to take advantage of: computations that would be
equivalent but end up reading the same data from different locations,
for example, and in ABA cases where a location changes twice,
ending with the same value it started with (a counter being
incremented and then decremented, for instance).

Parallel computation with nested transactions

In the example code above, the child transaction results were used
immediately; the parent transaction blocked until the child
transaction was finished executing. But in many cases, including the
above, it would be semantically acceptable to spawn multiple
potentially concurrent child transactions, returning only a future for

the transaction’s output from the initial spawn call, which is later
blocked on — perhaps after spawning additional child transactions.

Differentiable computation with transactions

To compute a Jacobian of a computation with a small number of
outputs and many inputs — the gradient, in the case that the number
of outputs is one — reverse-mode automatic differentiation is much
more efficient. But reverse-mode automatic differentiation requires
propagating the gradient backward through the dataflow. For a short
or highly regular computation, it’s reasonable to materialize the
whole dataflow graph in RAM at once, but not for long, iterative,
and irregular computations, since the dataflow graph can contain
trillions of nodes — in the limit, a node for every machine instruction
executed on thousands of machines over a period of hours to months.

So the usual way to do this — if T understand correctly, which I
may not — is to run the computation forward from the beginning to
the end, saving its entire state on a “tape” of periodic checkpoints. If
you have enough space, you can take the checkpoints close enough
together that the full dataflow graph between any two adjacent
checkpoints fits in RAM; then you can iterate backward through the
checkpoints, building that dataflow graph in memory so as to
propagate the Jacobian backward to the previous checkpoint. For the
gradient case, this is theoretically about as fast as the original
computation.

If that’s too much space — perhaps a terabyte for 10 minutes of
computation — you can thin out the tape to a logarithmically-small
number of checkpoints, in exchange for a logarithmically-small (or
log-squared?) slowdown. Perhaps instead of 1024 checkpoints, one
per second, you might have 11 checkpoints: one from 1 second ago,
one from 2 seconds ago, one from 4 seconds ago, and so on up to 1024
seconds ago. When the time comes to propagate the Jacobian from
the checkpoint from 4 seconds from the end to the checkpoint from 8
seconds to the end, you first replay from the 8-seconds-from-the-end
checkpoint to recreate the 6-seconds-from-the-end and
s-seconds-from-the-end checkpoints.

It should be apparent that, with manual control over the memo
table, the memoized-nested-transaction mechanism described earlier
can provide an efficient, space-sharing way to periodically checkpoint
a computation — once we roll back everything that happened later,
the end of each memoized transaction is a point to which we can
quickly “fast-forward” from its beginning. Actually constructing the
in-memory dataflow graphs and back-propagating the Jacobians,
however, cannot be done by the mechanisms described earlier; they
require more profound interfacing. XXX

Streams and reactive Ul updates

Some of the transactions described above write their output to the
block and node store. Others, though, are merely queries that return
a value without mutating anything, at least not anything externally
visible. By recording which blocks and nodes are read by a query
transaction, as the transaction system does, we can automatically
determine when query results have become out of date; the
memoization mechanism described above provides a reasonably

efficient way to support polling, for example for screen updates, but if
writing to a block or node can trigger an asynchronous invalidation
notification (which can be responded to by repeating the query if
desired), that may have lower latency, have higher throughput, or use
less energy under some circumstances.

Nothing in the system design limits these approaches to read-only
queries; they can apply equally well to “queries” that mutate the
block and node store in a persistent way (as opposed to using nodes
and blocks they allocate ephemerally as temporary storage, or allocate
and then return). Indeed, if those queries write to no nodes and
blocks that they also read and did not allocate, they can be
mechanically guaranteed to be idempotent. (But see above about
memoization introducing aliasing.)

Progress bars on such transactions probably cannot be provided
through transactional mechanisms, since they have dataflow from
uncommitted transactions. So, as with differentiable programming,
metatransactional mechanisms are needed.

Modular blocking and composable memory
transactions

The Composable Memory Transactions paper, which I need to reread,
explains how to use an optimistic transactional memory with nested
transactions, like the above, to support blocking patterns of
communication by adding two more functions, retry and orElse.

retry conceptually simply aborts the current transaction, causing it
to be automatically retried. But if the system responds by beginning
to run the same transaction code again with the same inputs and the
same state of the store, it would simply deterministically reach retry a
second time, and so on, busy-waiting. So a more reasonable system,
like the one they actually implemented, waits to retry the transaction
until the store has changed — specifically, until some transactional
variable that it had read before invoking retry has changed.

The orElse operator provides a way to recover from such failures, by
composing two alternative child transactions into a larger child
transaction. If the child transaction that is its left argument fails
because of invoking retry (though not because of a conflicting write
by a concurrent transaction), then control flows to the alternative
transaction that is its right argument. If that transaction also fails,
then the transaction resulting from orElse fails.

Thus retry provides a way to convert a polling interface, such as
reading a transaction variable to see if something is ready, into a
blocking interface, while orElse provides a way to either combine two
sources of blocking into an alternative source that only blocks while
both sources are blocking, like Unix select(2), or to convert a blocking
interface into a polling interface (by providing a second alternative
that does not block).

Precisely the same interface would work on top of nodes and

blocks.

The requirements of transactional systems limit the applicability of
familiar interprocess communication.

For example, you could try to implement a byte pipe between two

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf

transactions by a memory block whose first two words contain
beginning and end pointers into a ring buffer that is the rest of the
block. A transaction could attempt to add bytes to the ring buffer and
return the number successfully written, blocking with retry if there is
not room, or to remove bytes from it and return them, blocking with
retry if there are no bytes to remove. If a pipe-reader and a
pipe-writer try to mutate the block at the same time, one will succeed
and the other will fail at first, then retry and succeed. So, at first, this
sounds like a standard Unix pipe.

But, if the pipe-reader’s parent transaction is aborted, the
pipe-reader’s modifications to the pipe block will be rolled back. As
long as the two share a parent transaction, then all the pipe-writer’s
modifications will, too; and, until they do share a parent transaction
(that is, until any levels of transactions separating them from their
lowest common ancestor transaction have committed), their
communications won’t be visible to one another — the writer can’t
unblock the reader or provide it bytes, and the reader can't unblock
the writer.

Snapshot debugging
Debuggers don't.

What debuggers do is provide programmers visibility into a
program's internal state in order to can formulate and test hypotheses
until they diagnose a bug. Traditionally debuggers do this by
providing three fundamental services: memory and register
inspection --- letting programmers go inside the program "spatially";
breakpoints and single-stepping --- letting them "go inside" the
program temporally; and mutation --- letting them change the
program's state while it's stopped. Essentially by scripting these, more
sophisticated facilities are commonly built, like "stepping over" a
subroutine call, disassembly, source-code display, displaying the call
stack and local variables, injecting code into the program, and so on.

(Single-stepping can be implemented by scripting breakpoints,
simply by repeatedly placing and removing breakpoints, and this is a
common way to support single-stepping on platforms with no native
single-stepping support. Implementing breakpoints by scripting
single-stepping is also possible but generally impractically inefficient.)

However, with imperative programming languages, these three
basic facilities are frustratingly inadequate, because very commonly by
the time the programmer sees that some memory location has a
wrong value in it, the code that placed that value there is long gone.
With sufficient patience and meticulosity, repeated re-executions of a
program can eventually find how the location was changed by using
inspection and breakpoints, but this is an extreme measure, and often
it must be repeated more than once. So there are a couple more basic
facilities commonly provided by modern debuggers: watchpoints and
reverse execution.

Breakpoints stop the execution of the program when it executes a
particular instruction; Watchpoints, by contrast, stop its execution
when it modifies a particular memory location. This can be provided
inefficiently by scripting single-stepping and inspection --- after each
single step of the program, the debugger's script inspects the memory

location to see if its value has changed --- but on many platforms
there are more efficient ways to solve that problem, either using
virtual-memory hardware or using special CPU registers devoted to
implementing watchpoints.

Watchpoints allow a single re-execution to find how a given
memory location was changed, but reverse execution improves on
this. OCaml's debugger was the first debugger I know of to provide
reverse debugging, which it did by exploiting Unix's fork(2) to make
copy-on-write snapshots of the program state; XXX

Topics

* Performance (p. 794) (25 notes)

* History (p. 800) (17 notes)

* Microcontrollers (p. 805) (14 notes)

* Systems architecture (p. 807) (13 notes)

* Security (p. 811) (11 notes)

* The STM32 microcontroller family (p. 826) (7 notes)
* Caching (p. 832) (7 notes)

* The AVR microcontroller (p. 839) (6 notes)
* Instruction sets (p. 846) (s notes)

* Incremental computation (p. 847) (s notes)
* Debugging (p. 852) (5 notes)

* Virtual machines (p. 876) (3 notes)

* Distributed systems (p. 898) (3 notes)

* Concurrency (p. 905) (3 notes)

* Automatic differentiation (p. 909) (3 notes)
* Arrays (p. 912) (3 notes)

* Veskeno (p. 916) (2 notes)

* Transactions (p. 918) (2 notes)

* Copy on write (p. 969) (2 notes)

* Clusters (p. 974) (2 notes)

* Smalltalk

e Ly

* KeyKOS

* Java Virtual Machine

* Forth

Slide rule addition

Kragen Javier Sitaker, 02020-06-22 (3 minutes)
Slide rules can’t add and subtract. Could they?

If a#o,thena+ b= (1+ b/a)a. Suppose our slide rule reads with
a precision of £0.2%; then if b/a < 0.002, we can just round this to a,
and if b/a > 500, we can just round it to b. But in between, when
they’re of roughly similar magnitudes, we might want to use this to
calculate a decent approximation of the sum.

In Logarithm Land, we have:
log(a + b) = log(1 + 1olosb-log ey log(a),a# 0

We can add the ability to evaluate this to a slide rule as follows.
Define j(c) = log(1 + 10°). Add three j scales to the body of the slide
rule: one with marks at log(1 + 10) for 1 < ¢ < 10, one with marks for
10 < ¢ < 100, and one with marks for 100 < ¢ < 1000.

To add two numbers of the same sign, then, take the larger one as b
. Use the C and D scales to compute log b - log a as a position on the
D scale; move the cursor to it. Look on the appropriate j scale to read
the numerical value of (1 + b/a). Now use the C and D scales to
multiply that numerical value by a, which perhaps you still have
encoded in the position of the slide.

Working backwards from there, we want the slide to be in a
position that encodes multiplying by a, which means that the D-scale
index should be aligned with a on the C scale. This means that b
needed to be on C originally.

So the procedure is: choose b to be the larger of the two
summands, exchanging them if necessary. Align the slide to a on the
C scale. Move the cursor to b on the C scale; its position on the body
is now log b - log 4, so the cursor on the D scale now indicates b/a.
Look up the numerical value of 1 - b/a on the appropriate j scale with
the cursor. Move the cursor to that numerical value on the D scale.
Now read a + b on the C scale with the cursor.

I’'m not sure if there’s a similarly convenient approach using the CI
and DI scales, or if there’s a way to use that same j scale for
subtraction, or if it works better to use b < a (could that give you
tewer j scales?).

Peter Alfeld reports that Jeff Weiner reports that the Pickett
Microline 115 and the Pickett 9o1 rules can add and subtract, but it
turns out that those just have linearly-ruled X and Y scales; they
can’t add and subtract numbers found on the standard scales like C,
D, A, and B, nor do their sums and differences appear there.

Now, of course this is not very useful if your precision is £0.2%:
you only have three sig figs, and adding two three-digit numbers in
your head isn’t that hard. You could imagine a higher-precision slide
rule using verniers, finer details, and/or larger dimensions, perhaps
folded helically. This approach might then be more useful.

Topics

https://www.math.utah.edu/~alfeld/sliderules/

* Contrivances (p. 790) (44 notes)
* Math (p. 809) (13 notes)

* Nostalgia (p. 835) (6 notes)

* Calculation (p. 838) (6 notes)

* Slide rules

Hacker calendar

Kragen Javier Sitaker, 02020-06-28 (updated 02020-12-03)
(15 minutes)

The humans like to memorialize dates by holding annual
celebrations. What kinds of dates would a hacker culture
memorialize?

I'm putting together a date table here in a sort of cuckoo-hash
fashion: most dates commemorate individual hackers, and for most of
the hackers the relevant known dates are their birthdate and their
death date. When there is a collision, I can usually move the person
in question to a different relevant date: their death date if they’re
listed at their birthdate, or vice versa.

So, for example, to insert Laplace, Hao Wang moved from May 20
to May 13, allowing Jean Sammet to move from March 23 to May 20,
freeing up March 23 for Laplace. Laplace’s death date, March s, was
occupied by William Oughtred, who died June 30, which is already
quite full with two difficult-to-move events: the feast of Ramon
Llull and the release of OpenGL.

* January 1, 1992: Grace Hopper died (born December 9, 1906)

* January 4, 1643 (O.S. December 25, 1642): Newton born; died
March 31, 1727 (O.S. March 20, 1726), published Principia July s,
1687°

* January 8, 1642: Galileo Galilei died after 8.5 years of house arrest
(born February 15, 1564, sentenced by the Inquisition June 22, 1633(?))

* January 11, 2013: Aaron Hillel Swartz committed suicide to escape
government persecution (born November 8, 1986)

* January 14, 1901: Tarski born (died October 26, 1983)

* January 15, 2001: the founding of Wikipedia

* January 19, 1912: Leonid Vitaliyevich Kantorovich (Jleonrin
ButdnbseBna Kanroposuu) born (died April 7, 1986). Published
“MaremMaTHYeCKre METO/IBI OpPraHU3alMi ¥ TUIAHUPOBAHMS
MPOU3BOJICTBA” in 1939.

* February 7, 1990: Alan Perlis died (born April 1, 1922)

* Feburary 8, 1920: Bob Bemer born (died June 22, 2004)

* February 11, 1897: Emil Post born (died April 21, 1954)

* February 13, 1258: the destruction of the House of Wisdom (s
|Jz3es) by Mongol soldiers in the Siege of Baghdad (though that was
only the first day of a week of destruction)

* February 17, 1600: Giordano Bruno, who first proposed that the
stars were distant suns, burned at the stake for, among other things,
teaching reincarnation and possessing the writings of Erasmus.

* February 23, 1855: Gauss died (born April 30, 1777)

* February 24, 1709: Jacques de Vaucanson born (died November 2,
1782)

* March 1, 1990: the Secret Service raided Steve Jackson Games for
publishing GURPS Cyberpunk

* March 1, 86 BCE: Sulla sacked Athens, having burned Plato’s
Academy. (However, this needs to be corrected for calendar

https://en.wikipedia.org/wiki/Siege_of_Athens_and_Piraeus_(87�86_BC)

alignment.)

* March 4, 1959: John McCarthy (born September 4, 1927; died
October 24, 2011) published Artificial Intelligence Project Memo 8,
“Recursive functions of symbolic expressions and their computation
by machine”, describing the LISP language he and Steve “Slug”
Russell (born 1937, still alive) had developed on the 704.

* March s, 1574: William Oughtred born (died June 30, 1660)

* March 7, 1917: Betty Holberton born (died December 8, 2001)

* March 11, 1890: Vannevar Bush born (died June 28, 1974)

* March 18, 1905: Einstein sends his paper on the photoelectric effect,
for which he received the Nobel Prize, to Annalen der Physik, which
published it on June 9. Einstein was born on March 14, 1879, and
died on April 18, 1955. In his annus mirabilis 1905, he published
relativity and some other stuff, including his thesis (April 30).
Annalen der Physik received the relativity paper on June 30 and
published it September 26.

* March 20, 1956: Kurt Gédel (born April 28, 1906, died January 14,
1978) wrote to John von Neumann, posing essentially the P vs. NP
problem

* March 21, 1768: Fourier born (or, alternatively, December 21, 1807,
he presented his paper “on the propagation of heat in solid bodies”)

* March 23, 1749: Laplace born (died March s, 1827); published
Bayesian probability theory in 1812

* March 25, 1914: Norman Borlaug born, who saved a billion lives
with dwarf wheat (died September 12, 2009)

* March 31, 1596: Descartes’ birth (died February 11, 1650)

* April 7, 1761: Thomas Bayes died (birthdate unknown)

* April 9, 1806: Isambard Kingdom Brunel born (died September 15,
1859)

* April 14, 1935: Emmy Noether died (born March 23, 1882)

* April 15, 1707: Euler born (died September 18, 1783)

* April 25, 1903: Kolmogorov born (died October 20, 1987)

* April 26, 1920: the death of Srinivasa Ramanujan (born December
22, 1887)

* April 29, 1911: founding of Tsinghua University (then 0 0 O O,
now [J [0 0O 0)

* April 30, 1995: the NSFNet backbone shut down, ending the
NSFNet Acceptable Use Policy which prohibited most for-profit
activity on most of the internet.

* April 30, 1916: Claude Shannon born (died February 24, 2001)
(Shannon Day was celebrated April 30, 2016)

* May 2, 1519: Leonardo da Vinci died (born April 14 or 15, 1452)

* May 7, 1711 (O.S. April 26): David Hume born. (Died August 25,
1776)

* May 10, 1933: nationwide book burning by Nazis, following the
German “Law for the Restoration of the Professional Civil Service”,
which on April 7, 1933 eliminated all Jewish and Communist public
employees, including professors, with some exceptions;

* May 11, 1918: Richard Feynman born (died February 15, 1988)

* May 13, 1995: Hao Wang (O] O) died (born May 20, 1921)

* May 17, 1902: the discovery that the Antikythera Mechanism had
gears (probably brought up July 1901)

* May 20, 2017: Jean E. Sammet died (born March 23, 1928)

« May 31, 1832: Evariste Galois killed in a duel (born October 25,

https://en.wikipedia.org/wiki/Annus_Mirabilis_papers

1811)

* June 7, 1954: Alan Turing committed suicide (born June 23, 1912)
* June 9, 597: St. Columba died (born December 7, 521). Legend has
it he fought the battle of Ctl Dreimhne in 561 to defend his right to
copy St. Finnian’s psalter.

* June 16, 1915: John Tukey born (died July 26, 2000)

* June 22, 1910: Konrad Zuse born (died December 18, 1995)

* June 27, 1831: Sophie Germain (Monsieur Antoine-Auguste
Leblanc) died

* June 28: Tau Day

* June 30, 1992: OpenGL released

* June 30, feast day of Ramon Llull, whose works were prohibited by
the Spanish Inquisition (traditional death date June 29)

* July 1, 1646: Leibniz’s birth in Leipzig (O.S. June 21) (died
November 14, 1716)

* July 10, 1856: Nikola Tesla (Hukona Tecna) born (died January 7,
1943)

* July 16, 1945: the Trinity event

* July 17, 1912: Poincaré died (born April 29, 1854)

* July 20, 1969: Apollo 11 lands humans on the moon for the first
time at 20:17 UTC

* July 25, 1926: Ray Solomonoff born (died December 7, 2009)

* August 6, 2002: Dijkstra died (born May 11, 1930)

* August 8, 1900: David Hilbert (born January 23, 1862; died
February 14, 1943) presents ten of his 23 famous problems at the
International Congress of Mathematicians in Paris.

* August 9, 1927: Marvin Minsky born (died January 24, 2016)

* August 12, 2013: Warren Teitelman died (born 1941)

* August 17, 2004: Xiaoyun Wang (U O 00), Dengguo Feng, Xuejia
Lai, and Hongbo Yu of Shandong University published their break of
MDs.

* September s, 1977: launch of Voyager 1, omitting “Here Comes
the Sun” for copyright reasons

* September 9, 1941: Dennis Ritchie born (died October 12, 2011)

* September 17, 1826: Riemann born

* September 26, 1983: Stanislav Yefgravovich Petrov (born
September 7, 1939; died May 19, 2017) refused to nuke the US when
a radar system malfunctioned, thus saving human civilization

* September 27, 1983: The inauguration of the GNU Project

* September 30, 1993: WSMR-SIMTEL20, one of the greatest
libraries of software in the world, was shut down at 1600 hours
Mountain Daylight Time and its 165,000 files destroyed, following a
copyright lawsuit from the Louis E. Wheeler Co., as reported in
Network World, January 16, 1995 (“Army gets caught in software
piracy firestorm”).

* October 4, 1957: launch of Sputnik 1

* October 18, 1931: Thomas Edison died (born February 11, 1847)

* October 29, 1998: the sale of the Archimedes Palimpsest

* the fourth month of the inundation season: when Ahmose wrote
the Rhind Papyrus

» October 30, 1961: Tsar Bomba test

» October 31: octal Newtonmas — oct 31 = dec 25

* November 2, 1988: the helminthiasis of the internet with the
Morris worm

https://groups.google.com/forum/#!original/alt.folklore.computers/OF5LQn2aZUU/zRu4O11K1okJa
https://groups.google.com/forum/#!original/alt.folklore.computers/OF5LQn2aZUU/zRu4O11K1okJa

* November 6, 1717: J. S. Bach imprisoned (or March 31, 168s: J. S.
Bach born, or July 28, 1750, Bach died (Episcopal feast day))

* November 8, 1848: Gottlob Frege born (died July 26, 1925;
published the Begriffsschrift in 1879) although he was an anti-Semite
» November 11, 1918: 11:00: Armistice Day

* November 19, 2020: USA's National Science Foundation decides to
demolish the Arecibo Observatory, the largest single-reflector
telescope until 2016, and crucial to predicting asteroid impacts; it was
irreparable and collapsing after being damaged in hurricanes over
previous years, following decades of decay. It was built 1960—63.

* November 26, 1894: Norbert Wiener born (died March 18, 1964)

* November 30, 1858: Jagadish Chandra Bose, who invented
semiconductor diodes and submillimeter light, born (died November
23,1937)

* December 1, 1975: the publication of the first version of Scheme as
the paper “Scheme: an interpreter for Extended Lambda Calculus”,
1975, AIM-349

* December 7, 1873: Cantor sends Dedekind his proof of the
uncountability of the reals

* December 8, 1864: George Boole died (born November 2, 1815)

* December 9, 1968: Doug Engelbart’s Mother of All Demos (born
January 30, 1925; died July 2, 2013)

* December 10, 1815: Augusta Ada Byron (later Lovelace) born (died
November 27, 1852). In September 1843 her translation of Luigi
Menabrea’s 1842 French notes on Babbage (born 1791)’s Analytical
Engine were published in Scientific Memoirs, including the first
computer program in Note G of its “notes by the translator”;
translated into C by Sinclair Target in 2018

¢ December 17, 1706: Gabrielle Emilie Le Tonnelier de Breteuil,
Marquise du Chatelet, who arguably discovered energy, was born
(died September 10, 1749)

* December 23, 1790: Jean-Francois Champollion born (died March
4, 1832), deciphered the Egyptian demotic script in 1806 and, while
awaiting trial for treason, the hieroglyphs in 1822.

* December 28, 1903: John von Neumann born (died February 8,

1957)
Things I don’t know dates of:

* Lu Ban (OJ O) (dates unknown)

* Shandong University U U [0 U founded (dates unknown)

» Zhang Heng ([0 U) (dates unknown)

* Su Song ([) (dates unknown)

* Guo Shoujing (I O) (dates unknown)

* Sunshu Ao (0 O 00) (dates unknown)

* Shen Kuo (O [0) (dates unknown)

* Y1 Xing (0) (dates unknown)

* Liu Hui (O O) (dates unknown)

* Mozi (J) (dates unknown)

* Zu Chongzhi (0 O [0) (dates unknown)

* Heron of Alexandria (dates unknown)

* Eudoxus of Cnidus (dates unknown) (when was his eclipse?)
* Daksiputra Panini (dates unknown)

* Aksapada Gautama (dates unknown)

* Ahmad, Muhammad and Hasan bin Musa ibn Shakir, the Banu

https://dspace.mit.edu/handle/1721.1/5794
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html
https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html

Musa who wrote the Al |z J Kitab al-Hiyal (dates unknown)

in the House of Wisdom

* the first solar power plant entered production in Egypt (Frank

Shuman’s “Solar Engine One” in Maadi, 1912-1913)

* Chomsky hierarchy?

https://doi.org/10.1016%2FS0019-9958%2859%2990362-6 1959 “On

certain formal properties of grammars” (though Chomsky himself is

still alive)

* Aristotle (dates unknown)

* Brahmagupta (dates unknown)

* Something about Knuth? The publication date of TAOCP volume

1?

* Stephen A. Cook’s SAT paper establishing NP-completeness?

http://www.cs.toronto.edu/~sacook/homepage/1971.pdf

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.395

* something to memorialize the Mohists and the other scholars who

fell to Qin Shi Huang?

» something to memorialize the Library of Alexandria?

* something to celebrate Euclid

* al-Khwarizmi’s book

https://en.wikipedia.org/wiki/The Compendious Book on_Calculo
oation by Completion _and Balancing?

* something to celebrate Aryabhata and the Aryabhatiya?

* publication of the break of Merkle’s knapsack algorithm (date

unknown)

» something about the Nine Chapters on the Mathematical Art

e the release of the first version of Haskell (dates unknown)

* July 1562: the burning of the Maya codices by Bishop Diego de

Landa (date unknown)

* the publication of Alice in Wonderland

* the founding of Sun

* the going on sale of the Altair 8800

» founding of the University of Leipzig

* burning of the last copy of the Yongle Encyclopedia

* Cornelis Drebben

* Jaquet Droz?

* Inauguration of the EDVAC?

* Alexander Humboldt?

* the defeat of Kasparov

* something about Prometheus

* the rescue of the library of Timbuktu

* Mozart?

* Haskell released

* THERAC-25

* Ariane §

* Chernobyl

* Lavoisier’s execution

* Linux announced

* 4.4BSD-Lite released

* Jean Bartik? May have made ENIAC a stored-program computer.

» Kalashnikov?

* April 1962: Spacewar]!

* James Watt?

* the Cultural Revolution

https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/S0019-9958(59)90362-6
http://www.cs.toronto.edu/~sacook/homepage/1971.pdf
http://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.395
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.395
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing

* McCarthyism

* Alonzo Church?

* Ctesibius?

* Genesis Block mined?

* Morse’s first telegraph message sent?
* Santos Dumont’s first flight?

* Fred Fish?

Of secondary importance:

* February 13, 180s: Dirichlet born
* October 30, 1632: (O.S. October 20) Christopher Wren born (died
March 8, 1723 (O.S. February 25))
* Rudolf Carnap
* August 6, 1667 (O.S. July 27): Johann Bernoulli born (died January
1, 1748)

Rejected:

» Kathleen Booth? no, she’s still alive

* Michael Rabin (no, he’s still alive)

* September 10, 1839: Charles Sanders Peirce born (died April 19,
1914) (but he supported racism-based slavery, and wasn’t as important
as other significant hackers in the history of logic)

* Ed Fredkin (no, he’s still alive)

¢ Ivan Sutherland (no, he’s still alive)

Topics

* History (p. 800) (17 notes)
* Utopias (p. 917) (2 notes)

Trying to drive a speaker with a
buck converter

Kragen Javier Sitaker, 02020-06-29 (4 minutes)

This circuit doesn’t work:

603.419 mV

$ 1 5e-9 5.692113234615338 60 5 43

R 416 432 352 432 0 4 80000 2.5 2.5 0 0.5

170 272 464 208 464 1 20 50000 2.5 0.01

v 272 464 320 464 0 0 40 2.5 0 0 0.5

a 416 448 544 448 9 5 0 1000000 0.6034186806095027 1.5999999949944597 100000
0 544 448 544 384 1

x 349 395 478 398 4 12 Input\sPWM\sgenerator

0 416 464 416 544 1

174 320 464 352 624 0 1000 0.8762000000000001 Input attenuator
g 320 624 320 656 0

w 352 544 362 464 0

w 352 464 416 464 0

t 608 443 640 448 0 1 -3.5804133275459917 0.692890403465214 100
w 640 464 640 624 0

g 640 624 640 656 0

1 640 432 640 256 0 0.000047 -0.04307177750648704

r 608 448 544 448 0 10000

R 640 256 640 208 0 040 50 0 0.5

¢ 784 432 784 624 0 0.000001 6.171399381263317

g 784 624 784 656 0

w 784 432 944 432 0

r 944 432 944 624 0 3200

g 944 624 944 656 0

d 640 432 784 432 2 1N6711

0 6 1024 0 4354 8.183476519740355 9.765625000000001e-155 0 1 input\sv
020 1024 0 4099 10 0.8 02 20 3

The first problem is that this isn't a buck converter as intended; it's
a boost converter!

Here the 32009 resistor represents an 8CQ speaker seen through a
20:1 audio output transformer. You put an AC volt across it, you get
310 WA, which on the output is supposed to be so millivolts and 6.2
mA, which is 8Q. The quadratic way transformers transform
impedances always confuses me!

The input comparator generates a PWM signal that shorts the
coil-diode junction to ground periodically through an NPN
transistor. (Probably using a MOSFET would be a better idea.) The
idea is that when the coil is shorted to ground, it builds up energy in
the form of a magnetic field with a progressively growing current,
and then when the transistor turns off, that energy is delivered to the
load, with the current progressively dropping until the next cycle. At
the extreme where the transistor is always off, the 5V power supply is
simply connected through to the output through a diode and an
inductor. At the extreme where the transistor is always on, the
current through the coil and the transistor will progressively increase
until the transistor burns out.

Near that extreme, there is a short time when the transistor turns
off, and the enormous current through the coil must flow instead to
the load, charging up the capacitor very rapidly. This can produce, in
theory, an arbitrarily high voltage.

Managing voltages on the order of 5 volts, cycle times on the order
of 10 ps, and currents on the order of 1 mA, we probably want an
inductance that produces about s volts with a slew rate of about 1 mA
per 10 ps. This would be about so mH, three orders of magnitude
larger than the 47uH inductor I have here. At these speeds and
impedances, this inductor looks like a wire; inductive reactance is just
wL, so a s0 mH inductor would be 25 kQ, while this 47uH inductor
is 24Q, which is a wire in comparison to the 320002 load.

The output capacitor serves to keep the voltage from rippling too
much. Again, in the 5V 10ous 1mA regime, we want a capacitor that is
large compared to one that would discharge completely in that time,
which would be 2 nF. The 1pF cap I have in there will take 500
cycles to discharge, or charge. So probably I want something on the
order of 47 nF.

Changing the components to these values does indeed make the
circuit sort of work, although it’s still a boost converter.

Topics

* Contrivances (p. 790) (44 notes)
* Electronics (p. 792) (42 notes)

* Facepalm (p. 820) (9 notes)

* Analog (p. 840) (6 notes)

* Audio (p. 910) (3 notes)

Using Numpy for non-numerical
computation: what would a good
example be?

Kragen Javier Sitaker, 02020-06-29 (updated 02020-06-30)
(3 minutes)

I saw someone saying they’d never needed to use Numpy, and so
never learned it, because it was for a specific use case that wasn’t
theirs. This seemed to me like maybe they didn’t appreciate its
versatility, so I thought I'd try out some non-numerical or
semi-numerical computation with Numpy, and maybe Pandas.

Counting words in a string

The usual approach for counting words in Python, of course, is
len(s.split()). But we can do things with Numpy too. First, let’s get
some text into a Numpy array:

>>> import numpy as np
>>> text = "This isn't anything more than a text string, with some words. Let's ©

ocount them all"
>> ta = np.array(list(' ' + text))

Now let’s find the spaces and the non-space things following them:

>»>gp=(ta=="")

>> ta[l:][sp[:-1] & ~sp[1:]]

array([I l | Ial7 Iml’ ltl’ la|, Itl7 ISI, lwl’ ls|, IW', ILI’ ICI,
'tl, |a|],
dtype='[S1")

>>> ' join(tal[l:] [sp[:-1] & ~sp[1:]1])

'Tiamtatswswlcta'

That seems to have worked; we can count the words just by
summing the boolean vector:

»> (spl:-1] & ~sp[1:]).sun()
15

Let’s use this approach to count the words in the King James Bible:

>>> b = np.memmap('bible-pgl0.txt', '[S1', 'r')

»sp=(b="")
>> (spl:-1] & ~sp[1:]).sun()
749219

>>> len(open('bible-pgl0.txt').read().split())
824146

Hmm, what happened?

$ wc bible-pgl0.txt
100222 824146 4452069 bible-pgl0.txt

So wc agrees with .split().

$ grep -P '"\3' bible-pgl0.txt | wc
74927 823934 4400033

So it seems like there are 74927 lines beginning with a
non-whitespace character, which precisely accounts for the difference.
We want to treat newlines as whitespace as well, and also, if the file
starts with a word (which it does), we want to count that word too.

Current Numpy contains an isin function to test set membership,
but my old version doesn’t. No matter! We can use .any() as a
substitute:

»> sp=(b==[[""], ["\n'], ["\r']]).any(axis=0)

>>> blsp[:100]]

memmap([‘ |’ | 1’ | |7 [l, | |’ | 1’ | |7 [l, |\rl, '\Il', '\I"I, '\Ill, | |,
||’||’||’||’||’||’||]’
dtype="[S1")

>>> ' join(b[:100])

"\xef\xbb\xbfThe Project Gutenberg EBook of The King James Bible\r\n\r\nThis eBooo
ok is for the use of anyone anywhe'
»> ws = (spl:-1] & ~sp[l:])
>> ws[0] = True
>>> blus[:100]]
memmap(['\xef', "', "ttt g e
P
dtype="S1")
>> ' join(b[1:] [ws[:100]])
'\xbbPCEOTKBTei ftuoaa

That seems pretty reasonable. So how many words are there?

>>> ws.sum()
824146

Good! That takes 307 ms on this laptop, says IPython:

Thktime

b = np.memmap('bible-pgl0.txt', '[S1', 'r')
sp=(b=="[[""], ["\n'], ["\r']]).any(axis=0)
ws = (spl:-1] & ~sp[1:])

ws[0] = True

print (ws.sum())

How fast is the standard approach?

ktime
len(open('bible-pgl0.txt').read().split())

147 ms, twice as fast! So this is not a very compelling example!

Topics

* Programming (p. 808) (13 notes)
* Python (p. 860) (4 notes)

* Arrays (p. 912) (3 notes)

* Numpy (p. 941) (2 notes)

Modelica notes

Kragen Javier Sitaker, 02020-07-06 (updated 02020-07-07)
(9 minutes)

I haven’t found a good explanation of what Modelica is, so here’s
my effort. It’s a multi-domain textual language for numerical simulation
of models of continuous-time systems hierarchically composed of lumped
elements whose behavior is specified through acausal equations. It is
particularly suited for designed physical systems such as machines or
chemical plants. (Sometimes the term “cyber-physical systems” is
used to emphasize the importance of control systems.) Also, it has
aspects to facilitate graphical display of the models as block-and-line
diagrams, and comes with a large library of standard components. Its
fundamental basis is ordinary differential algebraic equations of finite
dimensionality, but it also supports hybrid simulation with discrete
events.

Here’s my effort to explain my understanding of what this means,
bearing in mind that I've never used Modelica, so some of this may be
laughably wrong.

Multi-domain

The aspects of interest of a machine such as a bicycle commonly
span domains such as the mechanical, electrical, thermal, hydraulic,
and even digital, with interactions between them. A bicycle may have
mechanical aspects such as the transmission of power from the pedals
to the wheels through the sprockets, electrical aspects such as the
generation of power for lights from wheel hub generators and its
storage in batteries, thermal aspects such as the generation of heat in a
braking disc, hydraulic aspects if the braking system is hydraulic, and
digital aspects if there are sensors like a speedometer or actuators like a
brushless hub motor.

Modelica can describe models that cross these different domains;
however, typically each component only exists in one or two
domains. For example, a copper pipe might have mass,
three-dimensional orientation, electrical resistance, thermal mass, and
hydraulic roughness and diameter, thus crossing several domains; but
typically is only modeled in one or two of these domains. I think this
is because Modelica simulators typically refuse to simulate if there are
some variables whose values they cannot determine, so using such a
multi-domain component is a nuisance, since it obligates you to
describe all the domains at once.

Consequently there is, for example, a Resistor component in the
standard library, and also a cross-domain HeatingResistor component,
which has a temperature and a thermal port. I think that if you use
the HeatingResistor component you end up having to connect the
thermal port.

This also brings up a potentially larger issue, which is the
closed-world assumption of Modelica models: more or less inevitably
they assume that you have included all the important aspects in your
model.

Numerical simulation

Given a model written in Modelica, implementations such as
OpenModelica can run one or many simulations of the model over
some time period from specified initial conditions. These simulations
can be quite precise; for example, the standard Berkeley SPICE3 set
of components, is included in the standard library, and its accuracy has
been validated to some extent against SPICE3 itself.

However, there are a number of other things you might want to do
with a model other than simulate it. You might want to do “model
identification” to estimate the model’s parameters from
measurements of a real system; you might want to validate some
behavior of the model for all possible scenarios rather than just one
(for example, showing that the model is unconditionally stable); you
might want to optimize the model to find out what parameter settings
are in some sense “best”; you might want to rigorously prove that
two models are equivalent, or show how they differ; and so on. As
far as I can tell, Modelica implementations do not typically support
these other possible operations, or give them much lower priority.
Even operations on the differential-equation system other than
initial-value problems are generally unsupported.

The nature of the simulation is fundamentally numerical; although
discrete-time systems are supported, it’s not really the focus of
Modelica, and I’'m not clear that you’re going to be able to write a
compiler or something in it. I don’t think there’s any way to create
new objects during the course of the simulation.

Continuous-time

Fundamentally Modelica reduces your model, or at least the
continuous-time part of it, to a set of differential algebraic equations
which it can then numerically integrate with methods like
Runge—Kutta. So most of your model variables theoretically take on
an infinite number of values during the simulation. This separates
your model from the solver, allowing you to apply different solvers to
the same model.

Hierarchical

A Modelica model can be used as an element in another, larger
model; many models consist only of interconnected smaller models,
containing no explicit equations of their own. So, for example, a
hydroponic system might contain an irrigation system as an element,
which contains pumps, pipes, and a feedback control subsystem; the
control subsystem might contain a power supply, sensors, a
microcontroller, and actuators; the power supply might contain
diodes, inductors, optoisolators, transformers, resistors, and a buck
controller; the buck controller might contain transistors, diodes, and
resistors. Modelica can in theory model at all of these levels, reducing
them all to a single system of differential algebraic equations for
simulation.

I haven’t quite seen any Modelica models with that level of detail,
but I've seen people describe a number that come close to it.

Lumped

Although Modelica models are continuous in time, they are not
continuous in space; the elements of the system are idealized to
points. So Modelica cannot model a continuous heat distribution
throughout a tank of water, a waveform moving through an electrical
transmission line, or the stress distribution in a strut, although if you
discretize these things yourself you can get it to simulate the
discretized approximation.

In particular, I think there isn’t even a way in Modelica to model a
delay of a continuous-time signal, such as you might get from an
improperly terminated cable.

(However, I've seen people simulating, for example, the
water-hammer effect in a pipe with the proprietary Modelica
simulator SimulationX; I assume they’re using a discretized
approximation of the pressure waves.)

Acausal equations

Modelica models are composed of (possibly differential) equations
rather than causal relationships in which effects result from causes;
the standard example of this is the equation V = IR for a resistor,
from which you can calculate the current if you know the voltage,
the voltage if you know the current; if you know neither a priori, you
may still be able to incorporate it into a system of equations that
eventually allow you to determine both, the simplest example being
two resistors in series with a battery.

This is pretty essential not only in circuit analysis but in a variety of
different domains: mechanical force and displacement are similarly
interdependent in a steady-state spring, as is flow rate and pressure
drop in a hydraulic system, for example.

Etc.

Modelica supports compile-time units checking, but I'm not yet
clear that its units support extends to full vector-space dimensional
analysis.

Could you get faster simulation results with interval arithmetic,
affine arithmetic, or especially reduced affine arithmetic?

I wish there was a way to describe an object like a hollow copper
cylinder of such-and-such dimensions and have all of its properties
potentially available — but only if you ask for them. For example:
electrical resistance, flow resistance, cost, mass, stiffness, tensile
strength, effective RF resistance with skin effect, volume,
temperature, thermal insulation, and so on. I don’t think there’s a
way to do this kind of thing in Modelica itself, but you could do it in
a higher-level language that compiles to Modelica.

The other thing is that Modelica suffers a bit from the
assembly-language disease where you have to invent a name for every
intermediate value, worsened by the COBOL problem of DATA
DIVISION. PROCEDURE DIVISION. A model or other class is
divided into a section of variable declarations (which can instantiate
other classes used as components — a circuit model, for example,
might instantiate resistors and op-amps) and a section of equations,
which can include connections between components. (There are

some other miscellaneous sections that are sometimes present as well.)
So, for example, in a circuit model you must give a name to every
circuit component, even if it’s something like “R37”. The standard
rebuttal to this complaint is that you should be using the graphical
model editor anyway, which I do not find convincing.

Topics

* HCI (human-computer interaction) (p. 801) (17 notes)
* Calculation (p. 838) (6 notes)

* End-user programming (p. 850) (s notes)

* Physical system simulation (p. 880) (3 notes)

* Modelica

Ultra machining

Kragen Javier Sitaker, 02020-07-06 (updated 02020-07-18)
(s minutes)

I’ve been watching a lot of videos of people explaining and
demonstrating how they machine metal parts with modern CNC
lathes and mills, as well as more exotic tooling like wire EDM and
SLS machines. It occurred to me that they’re still mostly not taking
much advantage of the possibilities of what CNC machines could do.

First, a lot of vertical milling is done with cylindrical endmills.
Cylindrical endmills have to be unreasonably long and slender in
order to be able to reach a reasonable depth. For a given end
diameter, tapered endmills offer a much better tradeoft of reach
versus rigidity than cylindrical endmills do. But they have the
disadvantage that, with three-axis milling, they don’t permit milling
vertical walls. But that’s obviously fixable with five-axis milling.

However, it’s even possible with four-axis milling, if your axes are
Y, Z, A, and B. The X-axis can be fixed at the center of rotation of
the B-axis; it need not move. This also eliminates the heavy and
finicky serial-kinematics prismatic joint upon prismatic joint of a
standard gantry, which I think may be a leftover from manual
machining.

We pay way too much for rigidity. Machine tools are
conventionally built out of iron and steel, which are pretty rigid, but
also pretty expensive — even to buy, but especially to shape. Other
materials are nearly as rigid and a hell of a lot cheaper, so you can use
far more of them. Above I mentioned granite, but other candidates
include concrete, brick, and even plaster. Building machine tools out
of concrete is a fascinating and underexplored area.

Aside from that, I think rigidity is perhaps overrated. Hermle is
building their best machines, not out of granite, but out of a
granite-epoxy composite, as I understand it because it damps
vibration better. In manual machining, rigidity (and taking up the
backlash) was the only way to get an accurate reading on where your
cutting tool was relative to the workpiece, because you didn’t have
any feedback --- the machinist might not be running open-loop but
the machine tool was. Nowadays we could use closed-loop feedback
on relative tool-workpiece positioning, which would also stop a lot of
crashes, but we don’t.

When you're filing a part by hand, the file is held in your hand,
which is about a hundred times more compliant than the floppiest
machine tool frame. But, if you hold the file firmly, it cuts cleanly
and doesn’t chatter; and you can file your parts down to
single-micron tolerances if your micrometer is that good. That’s
because you’re damping chatter instead of just resisting it, and because
you’re using closed-loop feedback on when you’re cutting, when
you’re not, and how much you’ve cut.

The standard cure for chatter in a machine tool is to add rigidity:
to your setup, to your tool, to the tool frame, whatever. But
increased rigidity doesn’t eliminate vibrational modes; it increases

their frequency, decreases their displacement, and increases their
force. What eliminates vibrational modes is nonlinearity, like the
viscoelastic behavior of your hand meat on a file,

or — ironically — metal parts banging together and moving energy
from a lower-frequency vibration to a higher-frequency vibration.
The more rigid and linear a system is, the higher its Q factor!

So I'd like to see more about other approaches to chatter that don’t
depend on rigidity. Damp vibrations with sand and gravel. Actively
cancel chatter with piezoelectric actuators instead of passively resisting
it. Cut with files with randomly-spaced teeth, perhaps made with
carbide inserts. I don’t know what will work.

As for closed-loop feedback, it’s possible for interferometric
systems like ERIM’s HoloMapper from 1997 to get submicron
measurements at millions of pixel locations across the surface of a part
at once, without making contact. (At the time the latency was four
minutes, but there’s no reason it needs to take that long now.) Using
this in real time as you’re machining would mean sacrificing flood
coolant, but modern carbide tools can cut steel pretty well dry.

I’ve previously written about geometric-optics sparkle feedback,
where a sparkle pattern from sparkle glued to a rigid body indicates
simultaneously its position and attitude to a camera at a known
location with a point-source light at a known location. Combined
with a reference mask that obscures some of the sparkles, this should
be capable of giving relatively precise feedback,

sparkle feedback

kinematic mounts plus clutches

Topics

* Materials (p. 788) (51 notes)

* Metrology (p. 798) (17 notes)

* Manufacturing (p. 799) (17 notes)
* The future (p. 825) (7 notes)

* Control (p. 853) (s notes)

* Sensors (p. 859) (4 notes)

Importing the WHO'’s
COVID-19 data into SQLite

Kragen Javier Sitaker, 02020-07-10 (2 minutes)

I downloaded the WHO CSV of covid data and imported it into
SQLite to query it as follows:

$ sqlite3 covid-data.sqlite3
SQLite version 3.11.0 2016-02-15 17:29:24
Enter ".help" for usage hints.
sqlite> .mode csv who
sqlite> .1import WHO-COVID-19-global-data.csv who
sqlite> .schema
CREATE TABLE who(
"Date_reported" TEXT,
" Country_code" TEXT,
" Country" TEXT,
" WHO region" TEXT,
" New cases" TEXT,
" Cumulative cases" TEXT,
" New deaths" TEXT,
" Cumulative deaths" TEXT
);
sqlite> select sum(deaths) from (
...> select " Country", max(cast(" Cumulative deaths" as decimal)) as deaths
...> from who
...> group by " Country"
L)
508456
sqlite> select " Country", max(cast(" Cumulative deaths" as decimal)) as deaths
..> from who
..> group by " Country"
..> order by deaths desc
...> limit 8;
"United States of America",126573
Brazil,b8314
"The United Kingdom",43730
Italy,34767
France, 29760
Spain, 28752
Mexico,27121
India, 17400
sqlite> select max(Date reported) from who;
2020-07-01

The cast is necessary because otherwise the sorting is performed
ASClIbetically, producing the wrong answer. Here’s Argentina:

sqlite> select Date reported, " Cumulative deaths", " Cumulative cases" from who

...> where Date reported in ('2020-05-01', '2020-05-15', '2020-06-01', '2020-0c
o6-15", '2020-07-01")

https://covid19.who.int/WHO-COVID-19-global-data.csv
https://stackoverflow.com/questions/1045910/how-to-import-load-a-sql-or-csv-file-into-sqlite
https://stackoverflow.com/questions/1045910/how-to-import-load-a-sql-or-csv-file-into-sqlite

...> and " Country" = 'Argentina';

2020-05-01,215,4304

2020-05-15,345,6973

2020-06-01,530, 16214

2020-06-15,819,30295

2020-07-01,1283,62268

sqlite> select Date reported, " Cumulative deaths", " Cumulative cases" from who
...> where (Date reported like '%-01" or Date reported like '}-15')
...>and " Country" = 'Argentina';

2020-03-15,2,45

2020-04-01,24,966

2020-04-15,101,2336

2020-05-01,215,4304

2020-05-15,345,6973

2020-06-01,530,16214

2020-06-15,819,30295

2020-07-01,1283,62268

For Derctuo I want to be able to do queries like this interactively
and easily (more easily than SQL) and plot the results. The CSV in
question is 1.07 megabytes, but gzips to 191kB, and I suspect would be
under 100kB with a simple column-oriented database doing
delta-compression.

Topics

* Practical (p. 810) (12 notes)

* Derctuo (p. 822) (9 notes)

* Covid (p. 903) (3 notes)

* Web scraping (p. 915) (2 notes)
*SQL

Migrating app snapshots

Kragen Javier Sitaker, 02020-07-10 (updated 02020-07-11)
(14 minutes)

Consider the problem of migrating a running program on demand
to whatever computer you have handy. Perhapsa “master” copy of
the program’s running image lives on a “home server”, and when you
want to use a device, you take out a “lease” on the application’s image
and start downloading it to the device and using it.

As a sort of reference case, I have a newly installed Ubuntu virtual
machine (p. 209) which consumes 11 gigabytes on disk and is
configured with 2 gibibytes of RAM, and I'm using a 20Mbps
Argentine internet connection at the moment. Downloading these 13

gigabytes of data to a local machine would take about an hour and a
half.

However, you might be able to reduce this time in a number of
ways:

* You might be able to demand-page it to some extent, prioritizing
the transfer of blocks of the memory or disk image that the
application is blocking on to download first. This way you might be
able to use the virtual machine considerably earlier than an hour and a
half. (Of course, some kind of prefetch strategy could make
demand-paging work a lot better.)

* You might be able to cache it. If the image is organized as a
(materialized) Merkle tree, then you can download only the blocks
that aren’t already present locally; moreover, the rsync algorithm
(ideally with a zsync-like precomputed index) may offer further
benefits, allowing typical filesystem changes to be transferred very
rapidly. Merkle-tree storage implies indexing the blocks of the image
by a secure hash, which will automatically deduplicate them. After
the base Ubuntu install, for example, I installed a bunch of
development tools and some software projects in a derived image,
which used only 2 gigabytes in the derived disk image, which would
take only 13 minutes to transmit. (Probably some things changed in
RAM, too, but I don’t have a good way to measure them.)

* You can compress the transferred data, using an algorithm like gzip
(LZ77) or LZSS. For example, the 11-gigabyte Ubuntu install
mentioned above gzips to only 4.2 gigabytes, reducing the initial setup
time to about 40 minutes (including RAM); the 2-gigabyte derived
image — the deltas to set up a development environment

— compresses to 1.03 gigabytes, about seven minutes.

* You can run the app on the server while the transfer is happening,
transmitting screen images and input events over the network in
parallel with the streaming of the memory image. This of course
means that the image is being partly invalidated while it’s being
transferred, but this measure may be enough to reduce the pause by
orders of magnitude. If the app’s rate of invalidating pages is lower
than the available bandwidth, for a long enough period of time for the
previously invalidated pages to be transferred, the pause will be
reduced to zero.

* You can get a faster internet connection. For example, if you have a
400Mbps connection instead of 20Mbps, the same transfer would take
s minutes instead of an hour and a half.

* You can use less storage. For example, the Emacs process I'm
typing this note in has a virtual memory size of 308 megabytes, of
which 16 megabytes is resident; the 308 megabytes includes all of its
shared libraries and Lisp code, though 250 megabytes of it is two
mappings of the 12§MB /usr/share/icons/hicolor/icon-theme.cache,
which hasn’t changed in eight months and gzips to only 17 megabytes.
So a full app snapshot of this Emacs process would take two minutes
rather than an hour and a half, or 30 seconds with gzip, and if only the
16 megabytes were needed, it would take only six seconds.

* You can flush caches. Most in-memory application state is not vital
and can be regenerated from other, more compact state — a
decompressed image in BGRA can be regenerated from its JPEG, for
example. If the application can be notified to flush caches in
preparation for checkpointing, then everything gets easier. It
probably isn’t necessary to have a special case for the Linux disk
cache, though, since indexing by hash takes care of that already.

Leases, stealing, and committing

How would you get state back onto the home server? Unless you
want to require every app to be written in terms of CRDTs or event
sourcing, you need some kind of concurrency control, specifically
mutual exclusion.

The most reasonable solution is to acquire a lease, a time-limited
lock, on the application state you’re “checking out”. So when you
start snarfing the dirty pages into your tablet, the tablet might acquire
a three-hour lease it renews every hour. As long as it holds that lease,
any attempt to check out the application state on another machine
will fail, telling you to close it on your tablet first. When you close
the application on the tablet, it releases its lease, so the lease terminates
earlier than the three-hour deadline, which simply serves as a timeout
to permit automatic recovery in case of device failure.

Periodically the tablet checkpoints the local state of the application
locally, then (if still connected to the internet) begins streaming the
dirty pages of that checkpoint back up to the server as a possible
future commit. Once that checkpoint finishes streaming, it optionally
commits it on the server, then makes a new checkpoint and starts
streaming that one to the server. Since the checkpoint isn’t modified
while it’s streaming, the streaming process is guaranteed to finish in
finite time, however slow the connection, although it might take a
long time on a slow connection. The state that is committed is always
a consistent checkpoint from a single point in time, but it may be
somewhat out of date.

So if your local device fails, you only lose the last few minutes of
work; the rest, up to the last committed checkpoint, is saved on the
server.

This approach permits internet-disconnected operation for a
limited period of time as well, for which purpose you might want a
longer lease, maybe a day or two up to a month or two. This poses
the problem of what happens if the device owning the checkout is

lost, stolen, or broken; in such a case you will want to steal the lease,
so any state on the lost device becomes orphaned and cannot be
committed to the original application image, though it can perhaps be
committed as a new image that branched from the original.

“Read-only checkouts” are also useful: checkouts of the
application image that succeed even if a lease is outstanding, acquire
no lease themselves, and cannot commit, used for consulting data in
the app without making (persistent) modifications to it.

Committing from an expired or orphaned lease or a read-only
checkout can be allowed if no other commits have happened since the
checkout and there is no lease outstanding.

Reasons for migrating

The main reasons for wanting to migrate a running app to the
computer in your hand are (a) interaction latency, (b) disconnected
operation, and (c) experimentation you might not want to deploy.
The main reasons for wanting to migrate it to a server are (a) greater
compute resources, (b) higher bandwidth and lower latency to the rest
of the internet, (c) making it available to interact with other people,
and (d) potential recovery from device failure.

So you could, for example, check out a website onto your netbook,
modify some things about its setup while disconnected, test it locally
to ensure it’s working as desired, then commit it to the server once
you reconnect to the internet. Or you could stream checkpoints of
your digital audio workstation to your home server so that if it breaks
or gets stolen you suffer minimal interruption to your work. Or you
could interactively edit a 3-D scene on your laptop in Blender, then
migrate your Blender session to your rendering cluster to run faster
overnight. Or your could periodically checkpoint a long-running
compute job on a cluster, on individual machines or cluster-wide,
saving the snapshots to a different machine in order to recover from
partial failures.

An interesting special case is where the device you’re running on
doesn’t have enough space for a whole snapshot, so it needs to
occasionally demand-page in bits of the image while it’s running.
This could make it feasible to run memory-hungry applications like
Slack on machines with relatively little RAM, although swapping
over the network like that can be slow.

Another sort of special case is where the “home server” is just a
local disk, and effectively you’re just implementing checkpointing
and software suspend. This should give you quicker boots (if you can
circumvent slow BIOS/UEFI/Linux anyway) and, if you run out of
battery, you’ll recover to the latest consistent checkpoint when you
come back up.

More generally, you can have topologies other than a simple
client-server topology; you could write out checkpoints to a local
disk, which is streaming them to another server elsewhere, or you
could have a distributed net of servers for block storage, leases, and
commits, with some kind of quorum system for things that require
consensus. Multiple clients on the same LAN can promiscuously
share new blocks that might be useful for migration. And so on.

Security issues

Cloning a machine containing secrets, including entropy pool data,
can lead to the inadvertent disclosure of secrets with many
cryptosystems; for example, it can lead to nonce reuse, or the
computation of multiple RSA keys containing common factors. It
would be advisable to consider any such random numbers to be
nonrandom after a checkpoint. Moreover, host-based security
measures like retry limits and sleeps between wrong-password retries
are entirely circumvented if the attacker can snapshot and replicate
the host, but of course in that case the attacker owns the hardware
and the game is over anyway.

The migrated state is subject to corruption from whatever host it’s
been migrated to, so in effect the running application is trusting every
host that has ever committed to it in the past; any of them can have
inserted arbitrary malicious code into the imge. In theory a defender
might be able to detect this, but in practice probably would not.

In the form described above, the application state is also entirely
vulnerable to the server; a malicious server can steal information and
make arbitrary modifications to it. If you were willing to give up the
possibility of executing applications on the server, you could reduce
this vulnerability to some extent by signing and encrypting the
application state on the clients, perhaps even limiting the server’s
powers to mere denials of service; you’d have to be careful about
replay attacks, and it might not be possible to stop them entirely, and
of course the amount and pattern of encrypted data blocks read and
written might provide a malicious server with access to information
we would prefer to conceal from it.

Concrete implementation approaches

QEMU’s CLI has “stop”, “cont”, “savevm” and “loadvm”
commands that might be a sufficient hook to implement such a
system, reducing the problem to a problem of synchronizing qcow2
images (or, possibly, snapshots thereof). QEMU also has a live
migration feature (I don’t know how this works) and the ability to
create a “copy-on-read” image with a remote “backing file”, which is
awtfully similar to the features described above; however, VM
snapshotted states from the backing file are not available in the
derived image.

QEMU now has a machine type called “microvim” intended for
booting single-application virtual machines.

I wrote about a user-level virtual-memory system that would
facilitate this kind of copy-on-write thing (p. 166).

WebAssembly is an obvious implementation technology to try,
both in that the client apps could be web browsers and in that
WebAssembly runtimes are likely to support the kinds of isolation
and snapshotting that would be useful for this kind of thing, as well as
often being more manageable than entire Linux installations.

Docker of course is commonly used for running single (server)
applications in an isolated environment, and it extensively uses
copy-on-write to keep its disk space usage somewhat manageable. A
typical Docker image using Alpine Linux might be 700 MB, five

minutes. (I thought it was a lot smaller, but the ones I have here are
that big.) It would be interesting to try replicating Docker instances
around.

Topics

* Performance (p. 794) (25 notes)

* Systems architecture (p. 807) (13 notes)
* Security (p. 811) (11 notes)

* Protocols (p. 813) (10 notes)

* Caching (p. 832) (7 notes)

* Latency (p. 837) (6 notes)

* Virtual machines (p. 876) (3 notes)

* Distributed systems (p. 898) (3 notes)
* QEMU (p. 929) (2 notes)

* Docker (p. 967) (2 notes)

* Copy on write (p. 969) (2 notes)

* Containers

* App migration

Virtual machine setup

Kragen Javier Sitaker, 02020-07-10 (updated 02020-07-14)
(17 minutes)

I set up a virtual machine this week using the virtual-machine
emulator QEMU with KVM under Ubuntu 20.04.

Objectives

I want to have a cloud development server. A problem with this in
the past has been upgrades: if I don’t upgrade the machine’s software,
it gets out of date and progressively more painful to do things on. But
when I do upgrade it, I'm at risk of the machine not booting any
more, perhaps requiring a crash cart to visit it, or even plugging the
disks into another machine (that still boots) to recover their data.

Amazon AWS allows you to snapshot an EC2 volume before
trying an upgrade, so you can roll it back if things go badly. Other
virtualization and paravirtualization systems have similar capabilities.
The simplest solution is just to use QEMU running under a popular
system with good support; Ubuntu 20.04 is supported until 2025, for
example. Then the “hypervisor” operating system installed on the
physical hardware can remain relatively untouched by whatever
development activities I'm doing, while the guests can evolve at will.

It would also be nice to be able to use a sandbox with some chance
of containing potential attacks to a single more or less disposable
virtual machine.

Also, there are some experiments I've been wanting to try for a
while involving incremental snapshots of virtual machines (p. 204),
and this might be a nice stepping stone.

Initial setup procedure

In order to get KVM working, first we had to enable
“Virtualization Technology” in the Dell PowerEdge R610 machine’s
BIOS; it was disabled by default, as indicated by the kvn-ok command,
although enabled by default in Ubuntu 20.04’s kernel and present in
the CPU, which /proc/cpuinfo says is an “Intel(R) Xeon(R) CPU
Es649 @ 2.5s3GHz”.

I was having a hard time setting up Debian inside QEMU, so I
snarfed the Ubuntu install ISO (SHA256
esb72e9cfe20988991cgcd87bdeq3cob691e3b67bo1f76d23f8150615883c0

oe11) instead. This is a reconstruction of what would have had the
right effect (I mistakenly used QED instead; see “Escaping QED”
below):

qemu-img create -f gcow2 ubuntu-base.qcow2 32G
kvm -hda ubuntu-base.qcow2 -cdrom Downloads/ubuntu-20.04-desktop-amd64.iso -m 2G

kvn is the command installed by the gemu-kvn package which is just
equivalent to qemu-systen-x86_64 -enable-kvn. (Older versions of gemu-kvn
were actually a separate branch of QEMU I think, but it’s still more
convenient to invoke it this way.)

At first I made the mistake of making the disk too small; Ubuntu
20.04 claims to need at least 8.6 GB to install, and in fact used 8.8 GB.
(The QCOW?2 format is allocate-on-write, so even though the
virtual disk is 32 GB, the ubuntu-base.qcow? file it’s stored in is only 8.8
GB, since it’s mostly unused.) Also, QEMU’s default memory size
turns out to be 128 MiB, which is too small, and Ubuntu’s installer
“reported” this fact by displaying a blank text-mode screen with a
blinking cursor and never doing anything else; -n 26 or something is
needed.

At first I was having trouble with keyboard focus in QEMU,
which I think may be a matter of using the obsolete and buggy
window manager w2; I worked around this by running QEMU with
-vnc :2. QEMU by default has no authentication on its VNC
interface; rather than fixing this (see below about the options to fix
that) I just packet-filtered VNC on the machine hosting QEMU and,
for good measure, X-Windows too:

iptables -A INPUT -s 127.0.0.0/24 -p tcp --dport 5900:6100 -j ACCEPT
iptables -A INPUT -s 192.168.0.0/24 -p tcp --dport 5900:6100 -j ACCEPT
iptables -A INPUT -p tcp --dport 5900:6100 -j REJECT

(A little additional work was needed to get this to take effect at
every boot.)

This is a little dodgy given that network traffic from the virtual
machine itself appears to come from localhost, since it’s using the user
networking type (Slirp), so different virtual machines have free rein
to connect to VNC and X servers.

To connect remotely to the server from outside its local network,
I’'m tunneling over ssh, which works pretty well:

ssh -C -L 5902:1ocalhost:5902 server

That way I can run xvncviewer :2 on the machine I'm sshing from,
and ssh encrypts and compresses the data over the network, as well as
(implicitly) authenticating me by making the connection to the VNC
server come from localhost.

Once I had Ubuntu installed, I could run the virtual machine
without the CD-ROM:

kvm -hda ubuntu-base.qcow2 -m 2G

But rather than running directly from there, I used it as a base for
cloning further copy-on-write disk images, which is a feature of the

QCOW, QCOW2, and QED virtual disk formats:

gemu-img create -b ubuntu-base.qcow2 -f qcow2 ubuntu-dev0.qcow2
gemu-img create -b ubuntu-base.qcow2 -f qcow2 ubuntu-devl.qcow2
chmod 444 ubuntu-base.qcow?

Now ubuntu-base.qcow2 is what Proxmox calls a “template”: you
can’t start it but you can create and start clones of it.

And I wrote a script to launch virtual machines with these cloned

disk images:

$ cat devl
#!/bin/sh
kvm -hda ubuntu-dev0.qcow2 -smp 12 -m 2G "$@"

This approach allows me to clone new virgin virtual disks at a cost
of some 200 kB (plus whatever is used thereafter, typically tens of
megabytes to gigabytes) and 250 milliseconds. That way I won’t have
to install Ubuntu again.

Escaping QED
Initially I used the deprecated disk image format QED (-f qed)

because I misunderstood the QEMU documentation to be saying that
it had some extra features; to fix it, I did this:

gemu-img convert ubuntu-base.qed -0 qcow2 ubuntu-base.qcow?2

This took 4-6 minutes and shrank the file to 8.8 GB. Then I
needed to recreate the dev child image and reinstall the things that I
had installed in it previously.

Making a backed QCOW 2 image is actually significantly slower
than doing it with QED, but not enough to matter for my purposes;
doing this with QED took 10—11 milliseconds:

$ time gemu-img create -b ubuntu-base.qcow2 - gcow2 ubuntu-dev0.qcow2

Formatting 'ubuntu-dev0.qcow2', fmt=qcow2 size=34359738368 backing file=ubuntu-bao
ose.qcow2 cluster size=65536 lazy refcounts=off refcount bits=16

real Om0.244s

The resulting derived file is only 197kB; after spending ten minutes
installing stuff in it, it’s 1 GB.

Interestingly, both QCOW 2 and QED can use a file in a different
format or even accessed over HT'TP as the backing file, so I could put
that base image (or the QED one) up on a web site and remotely
lazily clone it!

Recovering disk space used by deleted VM
snapshots

After I used savevn a couple of times, qemu-ing reported, at one point:

$ qemu-img info ubuntu-dev0.qcow?

image: ubuntu-dev0.qcow2

file format: qcow2

virtual size: 32 GiB (34359738368 bytes)

disk size: 5.67 GiB

cluster_size: 65536

backing file: ubuntu-base.qcow?

Snapshot list:

ID TAG VM SIZE DATE VM CLOCK

1 tetrisl 1.5 GiB 2020-07-10 16:40:17 00:01:43.207

2 ready 1.5 GiB 2020-07-10 16:59:52 00:11:43.959
Format specific information:
compat: 1.1

lazy refcounts: false
refcount bits: 16
corrupt: false

So it seems like the VM-state snapshots show up as disk-state
snapshots. I have deleted them:

gemu-img snapshot ubuntu-dev0.qcow2 -d tetrisl
qemu-img snapshot ubuntu-dev0.qcow2 -d ready

But this does not reduce the size of the QCOW?2 file all the way
back down; du -h and gemu-ing info show that it's still occupying 3.9 GB
of real space, and its file size in 1s -1h is still 5.7 GB (so it’s somewhat
sparse).

I thought maybe gemu-ing convert might solve the problem, but it
seems that qemu-ing convert produces an image without a backing
file — so it’s ten gigs. It turns out that the way to avoid this is using
qemu-ing rebase, as explained in the gemu-img man page:

gemu-img create -b ubuntu-dev0.qcow2 -f qcow2 ubuntu-dev0-copy.qcow2 # 92 ms
gemu-img rebase -b ubuntu-base.qcow? ubuntu-dev0-copy.qcow2 # 76773 ms

This produces a 2.4-gigabyte copy which qemu-ing compare reports is
identical to ubuntu-dev0.qcow2. (I'm not sure but I think I have about 2.4
GB of devtools stuff installed in this image, above and beyond what’s
in the base image.)

Results

So far everything seems reasonably okay except that screen redraws
are painfully slow.

In single-CPU user-level compute performance, QEMU with
KVM seems to only cost on the order of §%, if anything: ./fib 40
inside QEMU takes 632—663 ms, while on the host machine it takes
619—641 ms. However, the host machine has 12 CPUs with
hyperthreading, thus 24 “CPUs”, while the QEMU-emulated
machine initially had only a single virtual CPU.

It turns out QEMU has an -smp flag that’s just off by default.
Running ./dev0 -sup 12 (or later adding -smp 12 in the dev0 script) and
building Yeso with nake takes 9.3—10.2 seconds. make -j 12, to run up to
12 compilation processes in parallel when possible, takes 1.8—2.2
seconds; that’s more than a §X speedup. On the host machine, the
corresponding numbers are 7.4—8.4 seconds and 1.41—1.45 seconds,
suggesting that QEMU’s overhead for system things like file I/O and
process management is more like 30%. And on the host machine nake
-j 30 is even faster, at 1.35—1.40 seconds, but unsurprisingly provides
no additional speedup on the 12-CPU virtual machine.

Over my high-latency internet connection to the server, graphical
user interfaces are a bit slow, perhaps in part because of bandwidth

https://gitlab.com/kragen/bubbleos/tree/master/yeso

limits; repainting a full 1024X768 virtual screen takes s—15 seconds.
However, browsers typically load pages a lot faster; they’re just
slower to scroll. It might be worthwhile trying XPra or Spice to see if
I can get faster screen updates, or just using ssh and/or Mosh when
possible.

Running with -vnc :11 can get a console in my terminal window
with -monitor stdio. This is apparently how to use the set_password
command to require a password on the VNC server (required with
-vnc :1,password supposedly). (SASL is also an authentication option.)
Also apparently -vnc localhost:1 would also only allow connections
from localhost, though without any real authentication.

By using saven tetrisl at the monitor prompt (qemu) I can save a
virtual machine image that I can later revive with kvn ... -loadvm
tetrisl, thus returning to a particular point in the Tetris game I was
playing. Doing this bloats the .qcow2 file from 1 GB to 2.6 GB,
presumably with a RAM image, and takes about 15 seconds, during
which time the VM is paused, which is pretty disruptive. Reloading
from this image is, I think, faster than saving (or booting), but it still
takes 15 seconds to repaint my screen over this slow internet
connection.

A lazy clone of a disk image (QCOW 2 at least) doesn’t share the
snapshots of its backing file. Presumably I could clone an
already-booted virtual machine (with the booted state ina VM
snapshot) by cp foo.qcow2 bar.qcow2.

XPra

I decided to try XPra to see if I could get a more usable remote
display for graphical things than VNC, which was too slow. On my
outdated Linux Mint laptop, I installed XPra 0.15.8 (from 2015):

sudo apt install xpra python-rencode python-gtkglextl

I installed the last two packages listed because, without them,
though XPra worked, it complained as follows about missing Python
libraries:

2020-07-14 21:28:33,437 rencode import error: No module named rencode
2020-07-14 21:28:33,987 Warning: 'rencode' packet encoder not found
2020-07-14 21:28:33,988 the other packet encoders are much slower
2020-07-14 21:28:33,988 xpra gtk2 client version 0.15.8 (r11211)
2020-07-14 21:28:34,044 OpenGL support could not be enabled:
2020-07-14 21:28:34,044 cannot import name gdkgl

On the Ubuntu 20.04 server, I installed XPra 3.0.6:

sudo apt install xpra

Then I was able to launch a remote xterm displaying on my local

display via

xpra start ssh:serverhost --start=xterm --remote-xpra=xpra

https://www.qemu.org/docs/master/qemu-doc.html#vm_005fsnapshots

and later reattach to the session containing the xterm with

xpra attach ssh:serverhost --remote-xpra=xpra

Within the xterm I could then run

./dev0

in order to launch the QEMU K VM virtual machine as described
previously.

Without the --remote-xpra=xpra option, I was getting failures with this
error:

bash: /home/user/.xpra/run-xpra: No such file or directory
2020-07-14 21:31:30,499 failed to receive anything, not an xpra server?
2020-07-14 21:31:30,500 could also be the wrong username, password or port

2020-07-14 21:31:30,500 or maybe this server does not support 'unknown' comprese
osion or 'bencode' packet encoding?
2020-07-14 21:31:30,500 Connection lost

There’s still highly noticeable lag, but it seems dramatically more
usable than VNC. And VNC had more trouble with my
keymapping. XPra is reportedly using peaks of up to about 16
megabits per second. My initial impression of XPra: this is fucking
awesome.

It might be more reasonable to run XPra within the guest instead
of on the host (that way copy and paste would work, for example,
and I wouldn’t be limited to the screen space of the virtual machine’s
emulated graphics card), but this was an easier way to get started, and
it allows me to handle the guest bootup process as well.

With this combination of XPra versions, I do get this error
message, but everything graphical except setting cursors seems to
work:

2020-07-14 21:27:06,962 error creating cursor: object of type 'int' has no len() ©
o(using default)
Traceback (most recent call last):

File "/usr/lib/python2.7/dist-packages/xpra/client/gtk base/gtk client base.py"o
o, line 329, in set windows_cursor
cursor = self.make cursor(cursor data)

File "/usr/lib/python2.7/dist-packages/xpra/client/gtk base/gtk client base.py"o
o, line 359, in make cursor
if len(pixels)<wh#4:
TypeError: object of type 'int' has no len()

Unknowns to probe/things to try

What’s the most reasonable way to enable ssh into these virtual
machines? I'd need to disable password authentication and do some

kind of port forwarding. By default QEMU does its networking with
Slirp, but it can alternatively use TUN/TAP or L2TPv3. There used
to be a -redir tcp:2222::22 option that looks like it will work, which I
think is now spelled -net user,hostfud=tcp::2222-:22.

How about Mosh?

Is there some way to save VM state snapshots in a copy-on-write
way so that I can journal aggregated machine state changes out over a
network for point-in-time recovery? Even cooler would be if I could
unfreeze from such a snapshot when an ssh connection came in.

Can I get Ubuntu or Debian to boot in QEMU with KVM with
-nographic?

What’s the easiest way to do copy-paste in and out of QEMU,
when not using ssh? Am I better off using spice (see also) or curses?
Apparently Spice makes it easier.

Is my window manager really what’s at fault in the keyboard focus
problem?

How insecure is KVM?

How about accessing files on the guest’s filesystem? There are
-fsdev and -virtfs flags to QEMU, but I'm not sure what they do.

Is there an advantage to kvm -M pc-q3s5-focal? The default is
pc-igqofx-focal.

What do Bonnie++ and Imbench think? Does using the virtio
block controller instead of emulated IDE help? The Proxmox dox
say:

It is highly recommended to use the virtio devices whenever you can, as they
provide a big performance improvement. Using the virtio generic disk controller
versus an emulated IDE controller will double the sequential write throughput, as
measured with bonnie++(8). Using the virtio network interface can deliver up to
three times the throughput of an emulated Intel E1000 network card, as measured
with iperf(1). [1]

Can I do KVM Inception, running QEMU with KVM inside of
QEMU with KVM? I think the answer is yes, Android Studio says
the answer is yes, for testing Android apps inside the virtual machine
it would be extremely convenient for the answer to be yes, but
kvm-ok in the virtual machine says no.

Topics

* Performance (p. 794) (25 notes)

* Programming (p. 808) (13 notes)

* Practical (p. 810) (12 notes)

* Latency (p. 837) (6 notes)

* Virtual machines (p. 876) (3 notes)
* Linux (p. 891) (3 notes)

* QEMU (p. 929) (2 notes)

https://askubuntu.com/questions/924913/how-to-get-to-the-grub-menu-at-boot-time-using-serial-console/1110209#1110209
https://askubuntu.com/questions/924913/how-to-get-to-the-grub-menu-at-boot-time-using-serial-console/1110209#1110209
https://askubuntu.com/questions/924913/how-to-get-to-the-grub-menu-at-boot-time-using-serial-console/1110209#1110209
https://wiki.archlinux.org/index.php/QEMU#SPICE
https://www.linux-kvm.org/page/SPICE
https://askubuntu.com/questions/858649/how-can-i-copypaste-from-the-host-to-a-kvm-guest
https://askubuntu.com/questions/858649/how-can-i-copypaste-from-the-host-to-a-kvm-guest
https://discourse.ubuntu.com/t/virtualization-qemu/11523
https://pve.proxmox.com/wiki/Qemu/KVM_Virtual_Machines#_emulated_devices_and_paravirtualized_devices
https://pve.proxmox.com/wiki/Qemu/KVM_Virtual_Machines#_emulated_devices_and_paravirtualized_devices

Long distance radio

Kragen Javier Sitaker, 02020-07-17 (19 minutes)

I've previously written about ultraslow radio for decentralized
global digital communication, but since then I've read a bit more
about the topic, including a little bit of the ample literature on
amateur radio DX, QRP, and contesting.

Due to skywave propagation, hams using MF and HF radio
routinely communicate 1000 km or more with transmit powers on the
order of one watt (there’s a “thousand-miles-per-watt” award);
under exceptional conditions, transmissions of 1000 km on 1 mW of
transmitted power have been reported. Typical transmission modes
include (very slow “QRSS”) CW and the WSJT modes, many of
which are around one bit per second.

So now I see how to build infrastructure that permits global data
communication at hundreds of kilobits per second when the
ionosphere is favorable, without emitting a noticeable amount of
radio interference, and without requiring more power than is easily
available by energy harvesting. A global network of low-power
kilometer-scale phased arrays can speak ultrawideband MF and HF to
each other, but ultrawideband at higher frequencies internally and to
nearby mobile radios.

Power levels

A Wi-Fi card might emit 200 milliwatts, although the little FM
radio transmitters you might plug into your MP3 player, legal since
2006 in the EU and longer in the US and Canada, are only about a
microwatt, 10 nW in the US, so nW in the UK, 2§ microwatts in
Japan. The US allows 100 mW unlicensed narrowband AM radio
transmitters, so I think 10 milliwatts per transmitter site ought to be
reasonable.

In a memory-holed YouTube video, Naomi Wu recently reviewed
the Ulefone Armor 3WT FRS cellphone, which includes a 2W FRS
walkie-talkie. She reports that in Shenzhen she can get several blocks
of range, which is to say, several hundred meters. FRS and GMRS
radios commonly transmit at such powers; GMRS is permitted up to
so watts, though WP says 1-5 watts is more common in practice, and
FRS in the US was limited to 500 mW until 2017; FRS commonly
gets a kilometer or so of range, though (again, WP says) tens of
kilometers are possible “under exceptional conditions...such as hilltop
to hilltop”. 3G mobile phones also transmit 2 W. So if there’s no
regulatory or interference problem, it’s reasonable for even a handheld
device to transmit at 1-2 watts. (Most cellphones are, I think, up to 1
watt.)

Handheld ferrite loopstick antennas are capable of transmitting and
receiving MF signals like those used for AM radio, but their antenna
efficiency is fairly low. A better approach for mobile stations is
probably to use higher frequencies to connect handheld devices to
large, fixed infrastructure like a long-distance phased array, which
then handles the long-range communication. Still, these short-range

https://www.mail-archive.com/kragen-tol@canonical.org/msg00303.html
https://www.mail-archive.com/kragen-tol@canonical.org/msg00303.html
https://en.wikipedia.org/wiki/QRP_operation
https://en.wikipedia.org/wiki/QRP_operation
https://en.wikipedia.org/wiki/DBm
https://en.wikipedia.org/wiki/DBm
https://en.wikipedia.org/wiki/GMRS

links might be able to reach many kilometers. (LoRa at 915§ MHz can
reach 10 km in rural areas, though fewer km in cities; one-watt GSM
cellphones can talk to a base station 35 km away, and a “timing
advance limit” has been hacked into some GSM equipment to extend
that range further.)

A handheld device is inevitably a point source of interference, with
the unavoidable inverse-square interference pattern that implies. A
kilometer-scale phased array is, by contrast, a diffuse source, so it can
emit at a much higher power before it starts to become a nuisance to
neighbors.

GPS

GPS receivers cost a few dollars and receive signals at -125 dBm or
less; some can lock in a signal at -142 dBm, which is quite impressive
considering that the thermal noise on a 2-MHz-wide GPS channel is
about -111 dBm. They are made cheaper by the fact that they run at
over 1 GHz, so they don’t need large antennas. Acquiring these
signals is feasible because they are perfectly uncorrelated over long
periods of time, like an LESR. Ultrawideband techniques have the
same virtue.

Ultrawideband and frequency bands

Modern impulse radio (“ultrawideband”) should be able to
essentially eliminate interference with the nearly orthogonal
narrowband signals conventionally used. A commercial AM radio
station, for example, might transmit at 10 to 100 kW over a
bandwidth of 20 kHz, on the order of 1 W/Hz. A 1omW impulse
radio whose pulses are evenly spread across the whole medium-wave
AM broadcast band from 526.5 kHz to 1606.5s kHz would average 9
nW/Hz, eight orders of magnitude quieter, easily below the noise
floor, although it might become (faintly) audible if it were 30 dB
higher in a particular compass direction because of (see below)
phased-array directional transmission.

This 1080 kHz bandwidth gives a temporal precision of about a
microsecond, suggesting a few hundred kilobits per second of possible
transmission speed.

Transmitting over the shortwave band from 2.3 to 26.1t MHz would
permit multi-megabit transmissions, though of course subject to
ionospheric conditions; there used to be 500-kW Voice of America
broadcasting on this band, though I’'m not sure there still is, but
Wikipedia tells me there are 1200-kilowatt shortwave broadcasters,
and I think their bandwidth may be 10 kHz.

(Commercial FM radio typically also transmits at a few tens of kW,
but it’s in the 87-105 MHz range, where there’s no significant
ionosphere propagation.)

Chirping and wider bands

Chirping the transmitted pulses, like LoRa or chirped radar, would
avoid the need for high peak-to-average power ratios that might
otherwise pose a difficulty, and would also reduce the time-domain
artifacts that would otherwise appear to unintentional wideband
receivers. Straightforward chirping wouldn’t help to avoid

https://en.wikipedia.org/wiki/International_broadcasting
https://en.wikipedia.org/wiki/International_broadcasting

narrowband receivers, though; if you were to chirp from 526.5 kHz
up to 1606.5 kHz in 1.08 milliseconds, you’re only chirping 1 kHz per
microsecond, so you only spend 20 microseconds in each
20-kHz-wide AM station. This would only attenuate the part of the
impulsive noise added to AM above 50 kHz, which the humans can’t
hear anyway.

You could imagine doing several simultaneous chirps, though,
which might help more; one that sweeps from $26.5 kHz up to 548.1
kHz over that millisecond, while another sweeps from §48.1 kHz up
to §69.7 kHz, and so on. Effectively each chirp would be a single AM
station wide, and spread over the whole millisecond, thus strongly
attenuating the parts of the impulse above about 1 kHz, making it
considerably less audible. Presumably this waveform still retains the
time-domain precision deriving from its >1MHz bandwidth.

A more effective way to reduce interference might be simply
spreading the signal over a wider bandwidth by using shorter pulses.
If the pulses were 30 ns instead of 1000 ns, for example, going up to 33
MHez instead of 1.5 MHz, you’d have 15 dB less power in any given
station’s 20 kHz band, 0.3 nW/Hz, about 95 dB quieter than AM
broadcasters --- 63 dB because of transmitting at 63 dB lower power,
plus 32 dB because it’s spread across 17000 times as much bandwidth.

Phased-array transceivers

Directional transmission at MF (300 kHz to 3 MHz) and HF (3 to
30 MHz) would seem to require impractically large antennas: even 30
MHez is 10 meters, and 300 kHz is 1 km. However, phased-array
transmission and reception from an antenna array distributed over a
significant geographical area should be possible, and with practical
numbers of transceivers (10 to 1000 transceivers) significant degrees of
directionality should be possible; without understanding the math,
I’'m guessing it would be 10 to 30 dBi, with the additional advantage
(for skywave propagation) that most of the energy would propagate
horizontally. (My intuitive reasoning is that in the direction of the
wave, all 1000 transmitters are in phase, so the amplitude is 1000 times
higher than the wave from a single transmitter, while in other
directions, it’s only 32 times higher, so it’s 32 times higher in the
direction of transmission, which means 1000 times higher power.)

How would you coordinate a phased array of radio transceivers to
transmit data? It’s a bit like the firing-squad problem in cellular
automata; they can use lower-power, higher-bandwidth,
higher-frequency local radio among themselves to compute precise
relative geolocations, synchronize their clocks, and buffer up bits to be
sent in a phased-array fashion, or after being received in a
phased-array fashion. They could use, for example, the 1800 MHz
GSM spectrum, or the 2.4 GHz unlicensed spectrum. Time-domain
signaling across a GHz of bandwidth should permit baseline
measurements with a precision of a few centimeters.

Of course the same phased-array correlation approach can be used
for reception. Probably MIMO techniques to augment bandwidth
are not directly applicable over such long distances due to diffraction.

However, such a phased array could easily transmit to several
destinations at once, or receive from several senders at once. If there

are multiple relay stations available, it may be possible to augment the
point-to-point bandwidth between two phased arrays by relaying the
information in parallel over geographically diverse routes, like
Ethernet channel bonding.

Diffraction

For the diffraction limit to be better than 30 dBi, so the phased
array is limited by the number of transmitters rather than the
aperture, the diffraction beam divergence needs to be less than 4
pi/1000 steradians, very crudely, which I think means less than about
110 milliradians, 6 degrees. Suppose we’re using 1.2200/D, the Airy
limit for a circular aperture, as an approximation, and we use 1 MHz
for : 300 m. So we want 1.220 300 m/D = 0.11, so D = 1.220 300 m
/ 0.11 = 3.3 km, like, a transmitter every 100 m. Or 10 km if we want
to get all the way down to 300 kHz. Normally we’d worry about
sidelobes from spreading the transmitters too far apart, but I think
that problem disappears with ultrawideband signals, since the
sidebands for all the different frequencies are in different places.

However, if the transceivers are all on the ground, which is nearly
planar, we're still going to have massive diffraction in the vertical
direction, as our energy is spread across 30 degrees or more, even after
half of it is reflected from the ground.

If your energy is spread evenly over 6 degrees, then after traveling a
quarter of the way around Earth, what is left of it will be spread over
some 700 km of width; this is perhaps 200 times the distance it was
spread over originally, if the original phased array was 3.3 km, and of
course it is also spread out vertically in a nonuniform way between
the surface and the ionosphere. 200 times is a surprisingly modest -23
dB, although of course that’s not the attenuation from the
transmitter; it’s the attenuation from the open spaces in the tens of
meters between the transmitters to the place a quarter of the way
around the world.

It might be necessary to confine the beam to a narrower horizontal
angle than 6 degrees to compensate for the unavoidable vertical

spread.

Energy harvesting

Running transceivers on harvested RF energy may permit
embedding them in concrete or underground, or hanging them from
trees. But it probably would not permit average transmitted power of
10 milliwatts or more; 100 microwatts might be more reasonable.

Passive reflection instead of transmission

Passive reflection by disconnecting an energy-harvesting antenna
might be the most efficient way to produce pulses, and might also be
more regulatorily acceptable. In urban areas, energy-harvesting
researchers have found 1 to 100 microwatts per square centimeter in
each of several different bands, including AM radio, digital TV, and
especially the GSM and 3G bands. A simple calculation suggests that
an MF AM radio loop antenna enclosing 10 m”2 at 2 km from a 50
k'W broadcasting station intercepts about 10 m”2 50 kW / 4 pi (2
km)”*2 = 10 mW, although probably in practice the number is
somewhat larger. Such an antenna might be illuminated by several

such stations. By selectively making the antenna open-circuit at
certain moments, those 10 mW will be reflected instead of absorbed at
those moments, across all the frequencies that efficiently couple to the
antenna.

Such passive reflection avoids the necessity to convert RF energy to
stored voltage and then back again, with its attendant losses of
probably some 20 dB, and since it does not transmit any energy, it
might avoid regulatory entanglements; moreover it will not produce
any energy on any frequencies that are not already in use. However,
it makes it impossible to harvest energy on one band (such as GSM)
and transmit it on another, and it makes chirping impossible. For
communication on higher frequencies, antenna directivity might also
be relevant; your antenna system might reasonably be organized to
reflect the incoming illumination toward the destination.

Harvested solar energy

Worth noting is that 10 milliwatts of full sunlight is 0.1 cm®, or
about 0.7 cm”® of a commonplace solar cell. So even a few square
centimeters of PV cells would provide much more power on average
than all this RF energy-harvesting stuff, even in areas brightly
illuminated by cellphone towers. They might be able to produce
alternating magnetic fields that transfer power wirelessly to a larger,
less visible transceiver, perhaps embedded in a wall.

Low-duty-cycle communication

Lower-duty-cycle communication might reduce the degree of
interference with other systems, and would surely reduce the energy
transmitted per bit. As I understand it, there’s no floor on energy
transmitted per bit with a given noise floor, if you transmit slowly
enough. If you’re doing pulse-position modulation with
100-nanosecond timeslots, then you can transmit one bit in 2
timeslots, two bits in 4 timeslots, three bits in 8 timeslots, etc.; at
some point your timing synchronization between the transmitter and
receiver will start to suffer, but a regular quartz crystal has drift of
about 10 ppm, while a temperature-compensated crystal oscillator
(TCXO) is typically around 1 ppm. So you could imagine, for
example, transmitting one pulse every 65536 timeslots (6.55 ms) to
represent a 16-bit symbol. To get the same error probability per
symbol, you’d need to send it at a higher amplitude than if you were
sending one pulse every other timeslot, but I think only something
like 6 times higher, assuming AWGN. (XXX make this rigorous, or
at least do some experiments)

If that’s correct, you get about sx the energy efficiency per bit by
using such a low-duty-cycle system, but you transmit 4096 times
slower. However, it might increase interference with existing
licensed uses of the spectrum, for example introducing more audible
impulsive noise into AM radio.

Low-duty-cycle communication has an interesting relationship
with chirping, since the effect of chirping is precisely to extend the
duty cycle. On one hand, if the underlying signal you’re trying to
transmit isn’t low-duty-cycle, chirping it won’t do any good --- your
chirps will overlap, and so you won’t get the PAPR improvement you
normally get from chirping. On the other hand, that PAPR is

precisely what allows you to leave your radio turned off most of the
time and save power, so if you “improve” it too far, you will exceed
your power budget.

Encoding

Of course you want to use error-correction coding so that no one
pulse is strong enough to be received clearly at the destination; you
want the pulses to be tens of dB below the noise floor so that
substantial coding gain is needed to detect them, even near the source.
The best way to ensure non-interference is non-detectability.

Estimating potential results at 1-100
megabaud

It’s already commonplace for QRP hams to reach 1 bit per second
transmitting 1000 km on 1 watt. Conservatively, phased-array
transmission should buy you 20 dB, while phased-array reception
should buy you another 20 dB. Supposing that those hams are not in
the bandwidth-limited regime of the Shannon limit, using
ultrawideband may not buy you any extra bandwidth, just keep you
from slamming into a narrowband bandwidth ceiling. 1000
transmitters at 10 mW each works out to 10 watts rather than 1 watt,
giving you another 10 dB, for a total of so dB, or 100 kilobaud, per
phased-array-to-phased-array link. If you can talk to ten phased
arrays at once, that should give you a megabaud. But if the phased
arrays miraculously work out to buy you 30 dB instead of 20, you'd
have 100 megabaud.

Alternative communication media

Earth-moon-earth or “moonbounce” communication is already
commonplace among hams and sometimes is high enough bandwidth
to hold voice conversations over. Doing the equivalent using passive
MEO satellites would require more precise and dynamic tracking, to
the point that it’s probably only practical at microwave frequencies,
but would suffer the d* loss of the moonbounce path over a much
shorter distance, and still would cover most of a terrestrial
hemisphere. LEO satellites have an even shorter path loss and larger
cross-section, but only cover a thousand km or so. Meteor-trail
communication is an existing well-known technique for
high-bandwidth opportunistic communication at a similar range.
And the ocean’s SOFAR channel, though it has only a few kHz of
bandwidth, has better attenuation characteristics, more consistency,
and lower noise than the ionosphere route.

Topics

* Physics (p. 796) (18 notes)

* Independence (p. 819) (9 notes)

« Communication (p. 831) (7 notes)
* Radio (p. 834) (6 notes)

* Solar (p. 843) (s notes)

* Photovoltaic (p. 862) (4 notes)

* Energy harvesting (p. 868) (4 notes)
* Coding (p. 870) (4 notes)

* Naomi Wu

A generic universal
entity-component simulatorium

Kragen Javier Sitaker, 02020-07-18 (1 minute)

What's the minimal core of something like a MOO, but using an
entity-component system? You need to handle incoming telnet
connections, do some kind of parsing on those connections, have a
player object, and have a room object. You need some way to define
new verbs, to identify objects in commands, to produce descriptions
of rooms and their contents, and to create new rooms, doors, and
other entities. And you need some kind of scheduling system for
future scheduled events. You need to be able to checkpoint the world
to disk and to load such a checkpoint at startup.

Components decompose attributes of entities along hypothetically
orthogonal dimensions, like location, description, door connectivity,
and so on.

It's not immediately apparent that there's a best way to resolve
verbs with multiple possible definitions. Maybe the best way is to
associate methods with components, and when a verb is invoked on
an object with multiple components, activate all the methods. For
example, rooms might belong to the description component, but also
the room component, and when you describe a room, it should also
list its contents' names. But I guess that needs to come in a
well-defined sequence.

But maybe I'm overcomplicating things at first, and I could just
make objects be dicts or something. Or an edge-labeled graph.

Topics

* Systems architecture (p. 807) (13 notes)
* Programming (p. 808) (13 notes)
* MUDs

Line-numbered ISAM buffers

Kragen Javier Sitaker, 02020-07-18 (updated 02020-07-23)
(14 minutes)

Darius and I have talked occasionally over the years about the
problem of text editor buffers. Editor buffers, like the ones in Emacs,
need to support a few operations efficiently:

* Traversing the text sequentially, for example to repaint the screen or
search for a string or regular expression.

* Adding markers to the text.

* Determining what markers are present at a given location.

* Jumping to a marker.

* Inserting and deleting text anywhere in the buffer.

From the point of view of the beginning of the buffer, text moves
when you insert and delete things before it. The tricky part is that the
markers need to move with the text; it isn’t good enough to just store
a byte offset for each marker.

Ideally we’d like all of these operations to be sublinear in the size of
the buffer, and we’d like the buffer to be able to be at least nearly as
big as RAM, if not the disk, and we might have many markers per
line, for example to store syntax-highlighting properties of the text,
so the number of markers also grows linearly as the text grows. If any
of these operations take linear time instead of, say, logarithmic or at
least square-root time, then they will become unbearably slow when
we open a gigabyte-sized file, much less a terabyte-sized one.

I think Raph Levien has come up with a design for this in Xi based
on ropes, but I don’t know what it is.

I was lying in bed thinking about G-code and BASIC interpreters
and the HP 3000, and I realized that you can more or less solve this
with an ISAM approach, and this is probably what Darius and I had
come up with before I forgot it until tonight. You represent the
buffer as an (in-RAM) ISAM file with synthetic, meaningless keys.
ISAM supports the following operations efficiently:

* Go to the first record whose key is equal to or following a given key.

* Go to the next record by key (or report failure).

* Go to the previous record by key (or report failure).
* Read the key and value of the current record.

* Delete the current record.

* Insert a new key-value pair into the file.

All of these take at most logarithmic time; 2 and 3 are typically
constant time. (It’s common for ISAM systems to support an update
operation as well, but in the absence of concurrency, this can be
synthesized from read, delete, and insert.) There are a variety of ways
to implement this, though B*-trees and LSM-trees are the most
popular.

How does this give us buffers? Well, when we read a file into a
buffer, we break it into blocks of; say, 256 bytes, and assign each one a

sequential string ID to serve as its key; perhaps AAA, AAB, AAC,
and so on, or if the file is a terabyte, AAAAAAA, AAAAAAB,
AAAAAAC, and so on. When you add a marker in a block, you
update the block to include a pointer to the marker, and you store the
block key and the byte offset in the marker.

When you change text within a block, you must keep the block
from growing too large; you may need to split the block, perhaps
splitting block AAB into AAB and AABA. This requires updating
the key stored in each marker that has moved to the new block. If
you don’t split the block, you must update the byte offset stored in
each marker that would have moved to the new block.

To ensure that traversal remains fast, you might also have to keep
blocks from becoming pathologically small, perhaps merging what
little remains of block AAD into the end of block AAC and removing
AAD if both of them have shrunk a lot.

Because traversing the blocks sequentially is fast, traversing the
buffer sequentially is fast. Adding a marker is very fast, requiring only
an update interaction. Finding what markers are present at a given
location is fast because it only involves inspecting the current block,
which is never very large. Jumping to a marker is fast because the
marker contains the key to the block, which permits navigating to it
via ISAM. Inserting and deleting may involve ISAM operations.

But why ISAM? Undo and incremental

monoids

Why ISAM rather than just a doubly-linked-list piece table? You
could include memory pointers to the pieces in the marker objects
instead of ISAM keys. Inserting and deleting into a doubly-linked list
is easy; you have to update all the markers concerned, but that is true
with ISAM as well. And ISAM adds a logarithmic slowdown to the
jump-to-a-marker operation, which would instead be constant-time
with pointers to pieces. So is there any advantage of ISAM here?

Well, ISAM can provide FP-persistence. Ropes are “persistent” in
the FP sense: a reference to a rope refers to a given state of that rope,
so an undo history can be implemented simply as a list of pointers to
ropes that share structure. You can implement ISAM in an
FP-persistent way, and if the references from the buffer blocks to the
markers are indirected through an FP-persistent dictionary data
structure (whether some variant of ISAM or just a hash table) then
the whole buffer structure can be FP-persistent.

Ropes don’t have an obvious way to handle markers, though. Rope
nodes are immutable. If you store markers in an immutable rope
node, you can copy them to a new node if you make modified
versions of it, easily supporting operation #3 --- but how do you
support operation #4, jumping to a marker? Storing a pointer to a
rope node in a marker doesn’t help --- even if that rope node is in the
version of the buffer of interest, you can’t traverse the graph to its
parent, because it may have many parents, some of which are in the
version of interest and some of which are not.

The ISAM approach provides FP-persistence, like ropes, without
losing the ability to track down a marker; its compensating drawback

is that copying text from one buffer to another, or from one place to
another in the same buffer, requires copying all the text’s characters. (
Cut and paste can avoid this.)

Monoidal computations
(See also Monoid prefix sum (p. 105).)

Aside from simple undo, there’s another set of operations
commonly required in text editors which can be supported efficiently
by ISAM or ropes, but not in any way I can see with a simple
linked-list piece table: things like syntax highlighting, line numbers,
and display column, which are generically a monoidal computation
on the sequence of characters from the beginning of the file to a given
point.

Basically the problem is that whether, say, a given line in a buffer is
line 123 or line 124 depends on all the bytes before that line; inserting
a single newline early in the buffer increments the line numbers of
everything after it, but if this takes time proportional to the number
of lines in the buffer, then it will be unusable on sufficiently large
buffers. On the other hand, if you don’t store any line-number
information, then going to a given line number will be unusably slow
on sufficiently large bufters. (It’s okay for that to require a full buffer
scan the first time, since there’s no way to avoid that, but not every
time.)

Parallel prefix sums

The parallel prefix-sum algorithm offers a solution to this problem
for general monoids. If your buffer is made up of some kind of tree
with text in its leaves, and traversing the tree left to right gives you
the order of the text in the buffer, you can cache the monoid value
for just the text within the subtree rooted at each node. Then, to
calculate the monoid value for some prefix of the buffer, you use the
monoid operation to combine the values in the tree nodes within that
prefix, which is linear in the tree depth and thus logarithmic in the
buffer size. Updating a leaf similarly merely requires invalidating and
potentially recalculating the cached monoid values in its logarithmic
number of ancestors. In the case of monotonic values like line
numbers, you can also efficiently do a search for a given value using
binary chop.

A gibibyte-sized concrete example

As a concrete example, suppose we have a 1-gibibyte buffer stored
in a 16-way B-tree whose leaves all happen to be 1024 bytes at the
moment, and we want to calculate what the line number is at a
typical position like byte 474,340,006. Each lowest-level internal
node embraces 16384 bytes; each node at the next level is 256
kibibytes; each node at the next level is 4 mebibytes; at the next
level, 64 mebibytes; and the single top-level node is the whole
gibibyte.

* The first 7 64-mebibyte children of the root node are entirely before
that position, and we can use a cached number of newlines stored in
the root node for each of those children to add up the number of lines
in the first 469,762,048 bytes of the file, leaving 4,577,958 bytes.

* Those bytes contain a single full 4-mebibyte block at the next level;

we can add in its number of newlines, cached in its parent block,
leaving 383,654 bytes over.

* Those bytes contain a single full 256-kibibyte block at the next
level; we can add in its number of newlines, cached in its parent
block, leaving 121,510 bytes over.

* Those bytes contain 7 full 16-kibibyte blocks at the next level; we
can add in their numbers of newlines, cached in their common parent
block, leaving 6822 bytes over.

* Those bytes contain 6 full 1024-byte leafnodes; we can add in their
numbers of newlines, cached in their common parent block, leaving
678 bytes over.

* Finally, we can iterate over those 678 bytes to count the newlines in
them, and we have our answer.

So, in total, we had to add up 22 numbers, found in five blocks, and
examine 678 bytes of text, totaling about 1 us; and the worst case is
only about three times more operations, and the same number of
random memory accesses, so about the same time. This is about four
or five orders of magnitude faster than just iterating over all the text.

If you insert or delete a newline in this buffer, you need to revise
five of those numbers. You can alter the tradeoft slightly — for
example, within each node you can cache the prefix sums of its
children rather than their raw values, resulting in faster queries and
slower updates (worst case with tree height § and 16-way blocks, s
reads and 80 updates), or you can use a binary-tree structure within
each block (worst case 20 reads and 20 updates). But the number of
random memory accesses stays the same.

Monoidal incremental tokenization

It may not be obvious that syntax highlighting can be incrementally
handled in the same efficient way. Syntax highlighting is typically
mostly a function of tokenization, which is typically regular except in
exceptional cases, such as here-documents in shell or Perl. Regular
expressions can be handled by an NFA; the elements of the monoid
in question are mappings from sets of NFA states to sets of NFA
states, and the monoidal operation is composition of such mappings.
Typically any block of text of more than a few hundred bytes has
only a few NFA states possible at its end, sometimes only one.

Monoidal incremental layout

Typically the column at which you display a character depends on
the font you’re using, your wrap width, the kind of wrapping you’re
using (character, word, or hyphenated, say), and the characters before
it on the (logical) line, which may be arbitrarily long. As described in
Monoid prefix sum (p. 105), you can efficiently compute this
incrementally in the same way. (Occasionally it also depends on the
rest of the characters in the physical on-screen line, if you are
justifying, or the layout choices of the rest of the paragraph, if you are
doing some kind of TeX-like layout optimization.)

Topics

* Performance (p. 794) (25 notes)

* History (p. 800) (17 notes)

* Algorithms (p. 803) (17 notes)

* Text editors (p. 857) (4 notes)

* Layout (p. 865) (4 notes)

* Ropes (the data structure) (p. 882) (3 notes)

* Emacs (p. 895) (3 notes)

* Prefix sums (p. 932) (2 notes)

* Monoids (p. 943) (2 notes)

* FP-persistent data structures (p. 958) (2 notes)
* B-trees (p. 984) (2 notes)

Retro teletext

Kragen Javier Sitaker, 02020-07-18 (updated 02020-07-23)
(18 minutes)

Reading Sowing the Wasteland I thought the TICCET idea of
using color TVs and, in the absence of a keyboard, touch-tone
telephones as time-shared minicomputer terminals was pretty
interesting. But driving a TV isn’t trivial; black-and-white is 3 MHz
of bandwidth, and a DG Nova isn’t really up to synthesizing that in
software like an AVR ATMega328 is, much less color. (And this was
before VHS and Betamax; even Ampex videotape machines were
huge, expensive things that couldn’t freeze-frame.) Similarly,
recognizing DTMEF tones isn’t that trivial to do in software either.

And it seems like the system didn’t really work out that well:

But in the event, the Reston system failed to live up to expectations. For all the
rhetoric of bringing on-demand education and social services to the masses, the
Reston TICCIT system offered nothing more than the ability to call up pre-set
screens of information on the television (e.g., a2 bus schedule, or local sports scores)
by dialing into the MITRE Data General computers. It was a glorified
time-and-temperature line. By 1973, the Reston system went out of operation, and
the Washington D.C. cable system was never to be. One major obstacle to
expansion was the cost of the local memory needed to continually refresh the
screen image with the data dispatched from the central computer.

But what could it have been? Is there a plausible way that a 1972

computer system could have provided computation on demand to 128
TV-screen terminals?

Sharing character generators among TV's

First, let’s reduce the problem a little bit by allowing party-line
collaboration. You’d have 128 terminals, but only 32 separate screen
images, so when the system was fully used, most people would be
sharing a screen with a group of others.

Now let’s suppose the screens are each displaying 12 lines of
40-column ASCII text; 40 columns is about the limit of what you
can fit into NTSC, and 12 lines (like the VT-50) is about the
minimum window that’s useful for reading and writing text,
although some machines like the original BlackBerry, the TRS-80
Model 100, and Motorola two-way pagers have gotten away with less.
If those 12 lines of text are 8 scan lines each, each screen needs 96 scan
lines of text. (The other scan lines could be colored with color bars or
something.)

Now, NTSC has 483 visible scan lines (out of 525 total), so you
have almost precisely one fifth of the vertical span of the screen with
text drawn on it. This means that you can reasonably timeshare a
single font ROM between five screens, so you only need seven font
ROMs to draw 32 screen images. When the font ROM is being read
by the character generator for one screen, the other four screens in its
group are painting color bars. (They can have staggered VBIs if it’s
desirable to display the text in the same vertical position on every
screen.)

This reduces our screen-painting memory requirements to:

https://technicshistory.com/2020/04/19/the-era-of-fragmentation-part-2-sowing-the-wasteland/

» 7 single-ported font ROMs of 96 sx8-pixel character glyphs, for a
total of 26880 bits of font ROM;

* 32 40x12 buffers for the 7-bit characters on each screen, for a total of
107520 bits of RAM;

* some registers for which TV was viewing which of the 32
“channels” and where the cursors are and so forth. A hardware
base-address register for the screen buffer might be useful for quick
scrolling and quick page-flipping, at least if the page you want to flip
to is already in video RAM.

The ROMs and RAMs need to be read very quickly while painting
the screen. An NTSC frame is 33.37 milliseconds, so each scan line is
64 microseconds, so each of the 200 pixels across the screen is 318 ns.
However, we can transfer five pixels at a time from the ROM, so we
have 1.59 microseconds to do it, and we can pipeline that with the
following read from the RAM.

40x12 is close to the 40x24 the failed 1979 Prestel system delivered
in England, nearly a decade later, but with color, using a set-top box.

This works out to 210 bits of ROM and 840 bits of RAM for each
of the 128 concurrent users, or 840 bits of ROM and 3360 bits of
RAM for each of the 32 channels. You also need shift registers for the
bits of the codepoints on the current text line for each five-screen
group, and logic for demuxing the pixels from the character generator
to the right NTSC channel, and things like that, but basically the
summary is that this is a design that would have been dramatically
more economical than VT-52s and things like that.

Generating the rest of an NTSC signal --- the front porches, back
porches, and timing --- is of similar complexity to a black-and-white
TV set. It’s something you can do with a couple dozen transistors,
maybe less.

You do need a separate 3-MHz-bandwidth channel for each of the
32 channels, but cable companies were already in the business of
multiplexing 32 or 64 or 96 channels onto shitty coax, then filtering
and demodulating them at individual TVs. In fact, TVs at the time
didn’t have the option to take “composite” baseband video input; in
the 1980s, my TI 99-4/A came with a cheap RF modulator to
modulate its baseband video output onto either VHF channel 3 or 4,
and we had to use it. Modulating each of these channels onto a
separate frequency wouldn’t have added much to the cost.

The 1969 Nova cost US$3995, but US$7995 once you added 8
kilowords of RAM (131072 bits). It had a 1200-nanosecond cycle
time, though ROM took only 300 ns; the 1970 SuperNova had not
only a 16-bit parallel ALU (four 74181s) but also a 80oo-ns cycle time,
and once it had semiconductor RAM (later in 1970) the RAM cycle
time was also 300 ns. This is plenty fast enough to meet the deadlines
described above.

This gives us a reasonable guess as to what the required 107 kilobits
of character code memory would have cost: about US$3500, about
US$110 per channel or US$27 per user. This would have been about
two orders of magnitude cheaper than a 1975 not-yet-available V52,
which sold for US$1350 even in 1980 (according to terminals-wiki,

anyway).

But would it have been responsive and usable? Touch-tone has a
lot of latency, and the Nova wasn’t a super powerful machine
anyway. If we figure on five memory cycles for an average
instruction (typical of microprocessors a few years later) 800 ns per
cycle gives us 4 microseconds per instruction, 250,000 instructions per
second, a little slower than an 8080. (Wikipedia says the Nova 1200,
the original Nova, executed loads and stores in 2.55 us, accumulator
instructions like ADD in 1.55 us, DIV in 3.75 us (if present), so this is
probably not too far wrong.) If we figure that handling a keyboard
interrupt might take 100 instructions, it should still be able to do 2500
interrupts a second, although that seems a bit high for a machine of
that vintage. So it might be rough to do, say, interactive word
processing on it, but simple calculations and programming ought to
be within grasp.

With 32 channels, each channel gets only about 8,000 instructions
per second on average, which is not nearly enough; even operations
like scrolling the screen would take a noticeable part of a second if the
machine were fully loaded. But if most users are idle most of the
time, it might be feasible.

8 kilowords of memory divided among 32 channels only gives you
256 words of memory per channel, or maybe 128 words once system
software takes up a bunch of space. This is not very much; for
example, it’s less than the text on the screen. In practice you probably
need a full 32 kilowords of memory, a kiloword per user, if you’re
going to have them pair-programming BASIC or making
(not-yet-invented) spreadsheets or something. And that’s probably a
US$20k machine, plus the US$3500 terminal driver system:
US$23500 to drive 32 channels to serve 128 users, US$700 per
channel or US$180 per user. With a little thought, the machine could
easily have included a bulletin-board system and electronic mail,
though entering text on a touch-tone phone is no picnic, especially
since this was 27 years before Tegic To.

I think this would have been a total steal, though I guess it’s
possible inflation is tricking me.

Suppose you wanted to make it actually cool? Square-wave music
like the IBM PC wouldn’t have been hard to add, but recording and
playing back PCM was probably not in the cards. Broadcasting your
phone voice to whoever else was in your group, though, would have
been doable in the analog domain. Per-character color would, I
think, have been a poor tradeoff, but maybe per-line color would
have been adequate.

A light pen would have needed only about microsecond resolution
to identify a given letter on the display, but it isn’t entirely clear how
it would go about transmitting this information over a regular phone
line. If there was a way to feed it the front and back porches from the
NTSC signal, there might be some hope, but otherwise it seems like
whatever internal timing reference it had would drift hopelessly.
(This was before the quartz watch revolution.) Encoding its position
in a pair of audible tones would not be unreasonable. Nowadays, of
course, the whole prospect of a light pen is hopeless with LCD panels.
A tone-generating mouse, however, would be entirely usable, both
then and now.

Modern AVRs

You could probably build something like this today with an
ATMega328 (about 20 times the speed of a Nova but with only 8 KiB
of RAM) and the Arduino TVout library for a group of five displays.
You could use an analog demultiplexer chip and some 10MHz
op-amps (these exist now, though maybe not in 1972) as buffers to
put each line onto the right output video signal, and probably bitbang
the PS/2 protocol on five keyboards, although it might be hard to
meet the PS/2 deadlines when you’re stuck in a timer interrupt
handler for most of the 64 microseconds.

Slower scanning

Suppose you could use a long-persistence phosphor like the ones
conventionally used on analog oscilloscopes, and commonly used on
computer terminals at the time (which is why the screens were green.)
(This would also make light pens impossible.) Then you wouldn’t
have to repaint the screen thirty times a second; you could repaint it,
say, every two seconds, even without exotic and finicky direct-view
bistable storage tubes (DVBSTs) like the Tek 4014 used.

If you try to apply this in a simple way, by sharing the character
generator circuitry and ROM between more screens, it doesn’t really
help, because the main cost of the system described above is really the
RAM. But we can use it instead to reduce the amount of RAM
needed and increase the system’s flexibility, because we don’t need
special video RAM to feed the character generator at reliably high
speeds; we can generate scan lines, vector paths, or at least text lines
on the fly from application data. If the computer system runs at
200,000 instructions per second and can devote half of this to
generating video signals, and we need to repaint every two seconds,
then we only have about 6,300 instructions available per screen
repaint (if we are generating 32 channels).

At such a low speed, perhaps the best we could do would be to use
a character generator that reads from a specified position in main
memory. If we shoot for 12 lines of 80 §x8 characters, like a VT'so,
per two-second screen, but continue with the 64 microsecond line
scan time, then our single character generator can drive 325 slow
screens, which greatly exceeds the memory capacity of the computer
to do anything useful with.

Suppose instead we shoot for 1-second updates of 32 24-line
screens. That’s 6144 total scan lines, one every 0.163 ms; once every 8
scan lines (1.3 ms, 260 instructions) we need to update the character
generator’s line-start pointer. That’s still probably too much load on
such a slow computer as the original Nova, but it’s within the bounds
of plausibility. It would be straightforwardly achievable on the
300-ns-cycle 1970 SuperNova if using SRAM instead of core.

Memory access contention might be another issue: if the character
generator doesn’t have its own internal buffer for one line of bytes, it
has to read a character from main memory every s pixels, generating
8x as much memory traffic. If it only reads 8o bytes every 1.3 ms, at
300 ns per 16-bit word (which I said you probably need anyway) it
would need to use memory for 12 microseconds out of the 1300 to
read them, and even with 1200 ns core it would only need 48

microseconds. Without the internal buffer these numbers go up to 96
microseconds and 384 microseconds respectively, the second one
amounting to about a third of the total memory bandwidth and thus
having a significant, highly undesirable impact on the CPU’s speed.
Moreover, it would also need strong guarantees of timeliness — it
wouldn’t be able to tolerate any extra memory latency, so it would
need to have priority over the CPU. The 80 bytes of memory would
cost about US$39 if they cost the same as the core memory add-on
for the Nova described earlier, but probably in practice you’d have to
use semiconductor memory, which would cost a few times more.
This would clearly be a good tradeoff for 7% of the whole computer’s
performance.

It’s probably worthwhile actually to stick the whole array of
line-start pointers in main memory instead of trying to update a
character generator register from an interrupt handler thousands of
times a second. There are 768 of them, which would amount to 1536
bytes if they were in an array, some 1% of all of RAM, which is
reasonable. (If all of the monitors had unique text on all of their lines,
we could dispense with the pointers, but that would be 61 kilobytes,
47% of RAM. So it’s probably necessary to have some degree of
sharing in order to free up space for application data; the array of
pointers is the easiest way to do this. This could be as simple as some

blank lines.)

The modern inversion

So much for 1972. Now it’s 2020, 48 years later, and TS-80P
soldering irons routinely have STM32F microcontrollers in them:
48—72 MHz, a 32-bit parallel ALU, RISC with nearly one instruction
per clock, 32-128 KiB of Flash, maybe 20 KiB of RAM, hardware
multiply, hardware floating point in some cases, 1500 pJ per
instruction; maybe US$2 in quantity 1. That’s about the same
amount of Flash as the Nova’s typical RAM, plus a somewhat smaller
additional amount of RAM. What can we do with that?

Well, there’s no need to use character generators, that’s for sure.
You can bitbang NTSC no problem: a 64-microsecond scan line is
2000—5000 32-bit instructions instead of, like, 13 16-bit instructions.
You can bitbang color NTSC, which is beyond the capacity of an
AVR. You can bitbang multiple NTSC composite signals in parallel.

If we crudely estimate that US$180 per user in 1972 is equivalent to
about US$3600 today — reasonable based on gold and petroleum
prices, though the CPI would suggest more like US$1800 — then we
can afford some 1000—2000 microcontrollers per user, tens of
megabytes of SRAM, tens of billions of operations per second. You
could reasonably dedicate a microcontroller per scan line on an NTSC
or even megapixel screen, if that would be a helpful thing to do,
which it probably isn’t.

Probably a more useful approach is, instead of only interfacing to
humans through the physical objects that are easiest to interface
through, such as televisions, to attempt to interface though objects
that are more difficult, compensating for the difficulty to some extent
through software. This involves using control systems with the
available actuators to structure the objects so they are usable as further

transducers. Digital fabrication, including both shaping processes
(subtractive, additive, deformation) and assembly processes (welding,
soldering, screwing), enables the creation of objects with enormously
more transducers than the simple vacuum tube that is a 1972
television.

Computation and control have become cheap; we need to leverage
that into cheap actuation and cheap sensing.

Topics

* Contrivances (p. 790) (44 notes)

* Electronics (p. 792) (42 notes)

* Performance (p. 794) (25 notes)

* History (p. 800) (17 notes)

* Microcontrollers (p. 805) (14 notes)

The orbital drive and stepped
planetary drive

Kragen Javier Sitaker, 02020-07-28 (updated 02020-08-02)
(10 minutes)

I recently saw an amusing YouTube video of something called an
“orbital drive”, by “Skyentific”; it’s a sort of differential planetary
pulley without a ring gear, where a motor spins a planet cage around
two sun gears of different sizes, which are connected to the planet
idlers with belts. The sun gears are planar, coaxial, and in parallel
planes, while the planet gears span both planes. One sun pulley is held
fixed, while the other is free to rotate, one tooth per cage revolution
if the two suns differ by one tooth (and the planets don’t change tooth
count between sun planes). It’s claimed to be backlash-free (because
it uses pulleys, I suppose) and of course because it is differential it has
a high reduction ratio, in the neighborhood of 100:1.

The Wikipedia article on epicyclic gearing points out that, if you
use gears instead of pulleys, you can use two rings instead of two suns,
both simplifying hooking up the assembly and reducing its size,
though perhaps at the cost of requiring the planets to change size
between the sun planes. (“During World War II, a special variation
of epicyclic gearing was developed for portable radar gear...”)

It occurred to me that if you use only a single planet, it can perhaps
be quite large compared to the ring gears, and you can cut a third ring
gear into the center of it which you drive with a small pinion, thus
gaining a further reduction without increasing the size of the
assembly. Because this pinion and ring are subject to much smaller
forces than the other gear teeth, they can be much thinner.

To be concrete, consider the case where the ring gears have 103 and
106 teeth, the two steps on the planet have 69 and 71 teeth, the inner
ring on the planet has so teeth, and the pinion that drives it has 7
teeth. (Using involute teeth the depthing cannot be correct for both
the 69:103 mesh and the 71:106 mesh, but the difference is about
0.014%, s0 it’s tolerable. Hmm, can you even use involute teeth on a
ring gear?) Let’s consider one revolution of the 106-tooth ring in the
rotating frame of reference of the planet “cage”. The 106-tooth ring
and the 71-tooth planet each rotate 106 teeth. The 69-tooth planet
rotates 106%69/71 = 103.014 teeth.

Wow, I didn’t expect THAT. Is that real? Hmm, consider one
rotation of the planet: 71 teeth on one step, 69 on the other, resulting
in 71/106 rotation on the 106-tooth gear and 69/103 rotation on the
103-tooth gear, about 0.009% of a rotation difference between them.
Ratio this up via brute force: 106 rotations of the 71-tooth gear, for a
total of 7526 teeth of rotation in that plane, rotates the 106-tooth ring
71 times; the same 106 rotations of the 69-tooth gear are 7314 teeth,
which work out to 71.0097 rotations of the 103-tooth gear. Let’s
consider 103 times that: 10918 rotations of the 71-tooth gear are
775178 teeth, 7313 rotations of the 106-tooth gear and 10918 rotations
of the 71-tooth gear. Those same 10918 rotations of the 69-tooth gear
give us 753342 teeth of rotation in its plane, driving the 103-tooth

gear through 7314 rotations. Seems legit: a 10918:1 reduction in the
differential rotation! So let’s continue.

But this seems impossible; you would think that the planet would
have to return to its initial position after 106 rotations. Like, if you
mark the most-meshing tooth on it at the beginning, and also mark
the corresponding space between teeth on the 106-tooth ring, then
after 106 rotations you would think it would have to come back to
rest in exactly the same marked place on the ring, which means that
the 69-tooth planet is also in exactly the same place relative to the
106-tooth ring, since it’s rigidly fixed to the 71-tooth planet. So how
could the 103-tooth ring be displaced by a fractional tooth?

Now, each revolution of this planet is 5o teeth on its inner ring,
which is 50/7 rotations of the pinion, coaxial to the outer rings, that
drives it. This provides a further reduction of 7:50, for a total of
7:$45900, or about 1:77985.7.

But that’s in the frame of reference of the planet cage. Let’s switch
to the frame of reference of the 106-tooth ring gear and let the planet
cage spin. Every time the planet rotates through 106 teeth (and
106/71 rotations) in its own frame of reference, the planet carrier
rotates by one revolution in this frame of reference. Its inner ring
rotates by s0*106/71 teeth in its own frame of reference; from this
we must subtract the single rotation of the frame of reference itself, so
50%(-1 + 106/71) teeth, which works out to about 24.64789 teeth.
This is about 3.52113 rotations of the pinion.

Remember that, if the dubious and probably wrong calculations
above are correct, the reduction is only 7314:1 from the perspective of
the 106-tooth ring — that is, every time the 106-tooth ring rotates
7314 times in the frame of reference of the carrier, the 103-tooth gear
rotates 7313 times. So this is the appropriate multiplier for the pinion
relative to the 106-tooth ring: every time the pinion rotates 3.52113
times, the planet cage rotates once, and the 103-tooth gear rotates
1/7314 of a revolution, for a total reduction factor of only about
1:25753.5.

Do the geometries work out? Suppose we use a tooth module of 2
mm for the outer rings and the planet teeth that engage them and 1.5
mm for the inner ring and pinion. Then our circumferences are
respectively 212 mm and 206 mm for the outer rings and 142 mm and
138 mm for the inner rings, so the diameters of the pitch circles are
67.4817 mm, 65.5718 mm, 45.2000 mm, and 43.9268 mm, and their
radii are 33.7408 mm, 32.7859 mm, 22.6000 mm, and 21.9634 mm.

So the center of the 71-tooth planet would ideally be at 11.1408 mm
from the center of the 106-tooth ring, and the center of the 69-tooth
planet at 10.8225 mm from the center of the 103-tooth ring, a
difference of 318.3 microns. This is probably sufficient for reliable
meshing, but will definitely introduce an undesirable amount of
backlash, and only one tooth will be in contact at a time on the 69:103
plane. If this is unacceptable, it might be feasible to have the
103-tooth ring revolve in a circle with that 318-micron radius,
although that would be a lot more reasonable if the difference were in
the opposite direction.

Then the inner ring’s pitch circle is 75 mm in circumference, and
the inner pinion’s 10.s mm, giving pitch circle radii of 11.9366 mm

and 1.67113 mm respectively. This means that the pinion center will
be 10.2655 mm from the planet and inner ring center, which is almost
a full millimeter off the desired outer ring center, which is 11.14 or
10.82 mm from the planet center, as calculated above. This can be
fixed easily enough by using a slightly larger module (this gear with a
ring gear cut into its inner surface will not be a standard part anyway)
or slightly more teeth on the inner ring. With lantern gears (p. 165),
where the teeth of the inner ring are round dowels rather than normal
teeth (feasible since they can be anchored laterally to the bottom of

the 69-tooth planet layer) pinions with as few as three teeth are
feasible.

To keep the edges of spur-gear teeth in different layers from
rubbing on one another, it may be desirable to separate the two
planes, either with a mere spacer or with a solid circle that extends
out past the teeth of either planet. If the circle is large enough, it
could extend out past the teeth of the ring gear as well, preventing
any edge-on-edge contact.

The same differential principle can be applied to get larger
reductions from the original “orbital drive” without sacrificing the
use of toothed pulleys: by increasing and decreasing the planet sizes
nearly in proportion with their respective suns, we can achieve very
large reductions indeed, far less than the one or two teeth per
revolution delivered by harmonic drive (strain-wave drive) or
cycloidal reducers.

The large unbalanced mass of the single planet may be a problem,
as it is in cycloidal drives, where it is conventionally balanced by a
second cycloidal drive in half-phase with the first. However, the
initial 1:3.52 reduction from the pinion reduces this problem; the
angular velocity of the planet is 3.52 times lower than it would be for
a cycloidal drive driven at the same speed, and its acceleration is thus
some 12 times lower than it would be if you drove the planet cage
directly. However, the planet’s center of mass is considerably further
from the center of the ring than the thing that moves around in a
cycloidal-drive system, compensating somewhat for this advantage.

Topics

* Mechanical things (p. 795) (19 notes)
* Gearing (p. 894) (3 notes)

Fossil geothermal

Kragen Javier Sitaker, 02020-08-02 (updated 02020-11-13)
(12 minutes)

In addition to the fossil fuels that powered Song China and the
Industrial Revolution, Earth has stored an even larger amount of
energy as "fossil heat": heat that has been produced in the crust by
crustal radioactivity over its 4.6-billion-year lifespan (so far) that has
not yet had time to escape to the surface. Additionally, an even larger
amount of heat energy is stored in the mantle and core from Earth's
initial formation, produced by the gravitational potential energy of
the matter that formed it.

This fossil geothermal energy, if extracted at an unsustainable rate,
could provide orders of magnitude more power than combustible
fossil fuels ever have; moreover, exploiting it would release no carbon
dioxide, only heat.

Economics and current outlook

Currently photovoltaic power is so inexpensive (€0.17 per peak
watt, working out to about €0.85 per average watt at a typical 20%
capacity factor) that it is uneconomic to build heat engines to produce
power, whether to harness heat from fossil fuels, from nuclear energy,
from solar concentrators, or from such geothermal sources. If new
manufacturing technology or new heat-engine designs can reduce the
cost of heat engines to below the cost of PV cells, it could enable the
exploitation of this fossil energy. Otherwise, it is unlikely to happen
before most of Earth's insolation is being converted to electricity.

There is probably no profit or economic incentive to go
underground other than as a temporary measure. However, it would
provide a measure of security against potential global disasters such as
comet strikes, Carrington-class events, global totalitarian
dictatorships, global thermonuclear war, pandemics worse than covid,
and the like; whatever could survive independently underground
would be relatively safe from such events.

Ultimately available geothermal energy

Historically, geothermal energy has only been available in hotspots
with existing water reservoirs. So-called "hot dry rock" or "enhanced
geothermal systems" geothermal involves hydrofracking of deep
crustal rock and pumping water through it; this can be done
anywhere on Earth.

To give round numbers, the whole mantle is at 1000° or more, has
a specific heat of about 0.7 J/g/K, and weighs about 4 X 102* kg; this
amounts to a thermal energy of some 2.8 X 10 J relative to the
temperature at the surface, and so perhaps 1.1 X 10*°] of energy
practically extractable at 40% Carnot efficiency. (In fact, the
innermost part of the mantle is closer to 3700°, so this is a
conservative estimate.) If extracted over 1000 years, this would
amount to 35 exawatts. By contrast, total terrestrial insolation at the
usual standard "solar constant" of 1000 W/m? is only 0.13 exawatts,

about 250 times smaller.

(The specific heat of the mantle is fairly uncertain. The work I've
been able to find suggests that the specific heat of CaTiO3 perovskite
is in the neighborhood of 0.5 to 1.0 J/g/K depending on temperature,
while CaSiOj3 [calcium metasilicate] and MgSiOj; perovskites, which
compose much of the mantle, have a heat capacity in the range of
75—125 J/mol/K. I figure calcium is 40, magnesium is 24, silicon is
28, and oxygen is 16, so those are 100—-116 g/mol, which is in the
range of 0.7 to 1.25 J/g/K. Regardless, most things have a specific
heat of around 1 J/g/K, water being a bit of an outlier at almost 4.2,
and heavy monatomic gases like xenon being a bit of an outlier in the
opposite direction at about 0.1.)

A heat engine requires a hot reservoir and a cold reservoir, but the
cold reservoir need not be the surface of Earth; a larger volume of
rock at a shallower depth would also suffice.

Enabling human survival underground

So a subterranean civilization, if it existed, could reach Kardashev
Level 1 without going above the surface. But could it exist?

The humans' survival has a number of prerequisites other than
energy. They need cool, oxygen, nutritional compounds, gravity,
water, quiet, sleep, love, beauty, a sense of purpose, a relatively
chemically inert environment (lacking, for example, hydrogen sulfide
or chlorine), waste disposal, space, low pressure, and probably light.

XXX restructure this part

They can only directly harness energy provided chemically, the
most practical form of which is to grow plants, which need most of
the same things, also provide nutritional compounds, and definitely

do need light.

Cool can be provided in an underground chamber by insulating and
refrigerating it, pumping the heat into a cold reservoir elsewhere.
Oxygen can be extracted electrolytically from oxygen-containing
rocks, which is most of them. Gravity is unavoidable on or in Earth.
Water is abundant in the crust down to at least several kilometers;
the Kola Superdeep Borehole found that in that location hydrogen
was abundant even deeper than that, although perhaps that suggests
that oxygen wasn't. Quiet is the default state underground, though
soundproofing might be needed in the vicinity of heavy machinery.
Sleep, love, beauty, and a sense of purpose can be constructed by the
humans themselves. A chemically inert environment might use
nitrogen, which is relatively scarce underground, or helium, which is
abundant.

Space can be provided by producing oxygen from
oxygen-containing rocks, as described earlier, and pumping it closer
to the surface. The oxygen will either oxidize other rocks, if there are
any nearby that aren't already fully oxidized, or bubble to the surface
harmlessly. The reduced rocks will occupy less space than the original
rocks. Alternatively, if there is access to the surface, spoil can be
pushed to the surface, and especially at shallow depths it may be
possible to uplift an area of land to create space beneath it — the
reverse of the subsidence often associated with, for example,

brine-based salt mining.

(Neal Stephenson explored this theme fictionally in his novel
Seveneves, in which he posited that space underground could not be
expanded, so his hypothetical underground civilization had to make
do with the space that had already been excavated before the disaster
the novel is built around.)

Waste can be disposed of by recycling, which is mostly a matter of
separating wastes of unknown composition into their ingredients, or
by isolation, which is mostly a matter of keeping wastes of dangerous
composition away from the humans and their equipment, consuming
space. Aboveground there is no shortage of space; belowground,
generally whatever material is used must first be mined. If the waste
can be melted into fully dense solids, it need occupy no more space
than the original rocks from which it was mined, but that might turn
out to be more difficult than just making more space to store looser
waste in.

Low pressure is scarce underground, and the details depend on the
circumstances, but it can generally be provided by supporting the rock
above a cavern with materials of greater compressive strength than the
other rocks. If they have 10% more compressive strength, they enable
you to fill 9% of the space with air; if twice the compressive strength,
half; if ten times the compressive strength, 90%; and so on. Salt poses
special problems, as it tends to flow horizontally back into open
spaces, but this takes decades or centuries; other rocks will behave
similarly at sufficiently high temperatures.

Light, air purification, food cultivation, air conditioning, cooling,
oxygen production, and rock electrolysis will all consume energy and
require specialized equipment.

Current tech limitations: ~2X the size of
the current economy for a century

Much of the above calculation of geothermal energy abundance
isn't concerned with current technological limitations, but with the
ultimate limitations. What's accessible within current limitations?

The amount of thermal energy in the crust is considerably smaller
than the amount in Earth as a whole; the temperature at the Moho
crust—mantle boundary ranges from 200° to 400°, and the crust is
only some 1% of Earth's mass, so we're talking about maybe 10% J in
the crust. So far, despite 63 years of etfort, the humans have not been
able to drill into the mantle; the Kola Superdeep Borehole
("Kombckas cBepxriryookast ckBaxuH") only reached 12.3 km of
drilling depth before being doomed by the 180° temperature found
there and the collapse of the USSR. (The crust is typically 30—s50 km
thick on continents, s—10 km thick in the ocean.) The KTB
superdeep borehole persevered until reaching 260° at only 9.1 km of
depth. These temperatures are suboptimal for driving heat engines,
since water's critical point is 374° and 22 MPa, but nevertheless
clearly quite feasible.

Suppose we can routinely access the top 11 km of continental crust,
and that it's routinely 210°, in between the Kola numbers (14 km,
180°) and the KTB numbers (9 km, 260°), and that temperature

increases linearly from here to there, which is conservative. Ocean
covers 71% of Earth, so the continents are about 148 million km?, 1.48
X 10 m2. Rock is about 2.4 g/cc so these top 11 km are about 3.9 X
10'® tonnes of rock. If it were all 210° and 0.7 J/g/K, the thermal
energy to drop it to 20° would be 5.2 X 10%°], so a linear increase
gives you half that, 2.6 X 10%° J. Rather than actually calculating the
Carnot efficiency, I'll just assume it's about 25%, giving 6.5 X 10 |
electric. If that were to be extracted over the next century, it would
yield almost 21 petawatts, electric, or 620 ooo "quadrillion BTU per
year" (electric) or 180 million terawatt hours (electric) per year, in the
medieval units used by the IEA.

XXX https://en.wikipedia.org/wiki/World_energy_consumption
say 18 terawatts. That means this is not "about twice world marketed
energy consumption" but rather about 1200 times. Also usually
geothermal people only consider the top 6 km reasonably usable with
modern technology. FEEX

This is about twice current world marketed energy consumption,
but that doesn't include sunlight on fields, which a purely
subterranean civilization would need to include.

This should be sufficient to develop technology for deeper drilling
and/or Dyson-sphere construction.

It's plausible that the amount of available energy with current
technology is a few times larger than this, because the above does not
take hotspots and tectonically active zones into account, nor the ocean
tloor.

Earthquakes

Enhanced geothermal systems projects in Pohang and Basel have
been canceled after causing earthquakes locally; in Pohang no
humans died but more than a hundred were injured, though in both
places the earthquakes were fairly minor. We can expect that
widespread use of EGS would produce widespread minor
earthquakes, even as it depletes the source of energy that drives
volcanism and seismic activity.

Even if it does not pose a risk to surface civilization, for example
because of being located far from surface cities, this induced seismicity
would be clearly detectable from the surface, while the tunnels and
increased oxygen emissions probably would not. In places with little
natural seismic activity, it would be more conspicuous than in places
with a great deal.

Topics

* Energy (p. 812) (11 notes)
* Mole people (p. 944) (2 notes)
* Geothermal

https://en.wikipedia.org/wiki/World_energy_consumption

Pyrolysis 3-D printing

Kragen Javier Sitaker, 02020-08-02 (updated 02020-11-24)
(20 minutes)

I heated up the tip of my zirconia knife to orange heat yesterday.
To my surprise, much of the blade turned black; I guess the knife had
some oil on it, though I thought it was clean. In the hotter parts of
the blade, this carbon deposit burned away, but in the cooler parts it
remained. Steel wool and brass wool proved ineffective at removing
the deposits.

This led me, as most things do, to thinking about 3-D printing.
Suppose instead of depositing a hot liquid onto a cool workpiece
which then freezes the liquid in place, as FDM printers do, we deposit
a cool liquid onto a hot workpiece, which pyrolyzes it into a solid?

Sort of like chemical vapor deposition, but from a liquid so you can
deposit it selectively?

Charring organics into carbon

So, for example, you could deposit warm bitumen and pyrolyze it
to carbon at around 350°.

Almost any organic substance would work; so, for example,
vegetable oil, sugar, starch, and dissolved gelatine would all work, but
possibly other things would work better. Small molecules tend to
volatilize before carbonizing (though any cook can tell you that even
light vegetable oils will carbonize before volatilizing completely,
though perhaps not before migrating to cooler parts of a surface
where you don’t want them), molecules with a lot of oxygen tend to
produce more bubbles, and highly saturated molecules (like the ones
in bitumen) and aromatic molecules are more resistant to pyrolysis, so
perhaps the ideal substance would be a high-molecular weight, highly
unsaturated aliphatic hydrocarbon. (However, aromatic groups tend
to promote cross-linking, which helps to prevent volatilization and
melting before pyrolysis.)

Moreover, it would at least remain viscous at pyrolysis
temperatures, like polycaprolactone (not to be confused with
polycaprolactam, which is common nylon 6 and not viscous at all),
though polycaprolactone itself is saturated and contains oxygen.
Something that solidifies before reaching pyrolysis would be even
better (see below about polymer-derived silicon-based ceramics.)
Somewhat polymerized linseed oil is a good possibility. Nylon 6,6
and nylon 6 are not very viscous or unsaturated but are a good
possibility; their amide bonds could play the role of the unstable
unsaturated bonds. The urethane groups of polyurethanes contain
both double bonds and amide bonds, making them especially
promising, though the popular polyurethanes are highly aromatic.
Polyisoprene, especially if vulcanized into a thermoset with sulfur,
would work perfectly.

Decomposition can be accelerated with additives; PET notoriously
takes up water from humid air and then hydrolyzes rapidly at melt
temperatures if not dried, so ordinary water may be a viable option,

despite its tendency to produce large bubbles. Acids and bases may
also help to accelerate such decomposition — ideally for this process
the additive would itself volatilize or decompose, leaving only carbon.
Ammonia, sulfuric acid, nitric acid, acetic acid, formic acid, and
hydrogen cyanide are possible degradation-enhancing additives.
Cellulose acetate has a well-known autocatalytic degradation reaction
with acetic acid, but this produces a goo which may be too liquid at
pyrolysis temperatures.

Additives like alkali metals and halogens might accelerate
decomposition as well, but would probably remain in the final
product.

Using thermosets such as the aforementioned vulcanizing
polyisoprene has the advantage that you don’t have to worry about
the feedstock melting and running off the workpiece before charring,
so you don’t need to prefer unsaturated aliphatic compounds.
Normally thermoset polymerization is tightly controlled to reduce the
risk of heat degradation of the material produced, but in this context
that ceases to be a problem. So any of the common
thermosets — phenolics, epoxies, polyisocyanurates, urea resins,
thermosetting polyesters like Lucite, melamine resin — should be fine.
Thermosetting is the approach universally taken for preceramic
polymers used for producing silicon-based ceramics.

Charring polymers into silicon carbide,

silicon nitride, and silicon oxynitride

People have already done this since the 1970s, though, until
recently, mostly to produce fibers such as Nicalon and Tyranno, and
coatings. The technique is called “preceramic polymers”, “precursor
ceramics”, or “polymer-derived ceramics”, though typically in that
technique the polymer shape is fully formed before pyrolysis
begins — an approach that can be taken for all of the materials
discussed in this note, including carbon and the metal oxides discussed

below.

Large-molecule silicones are usually thermosets.
Polydimethylsiloxane ((SiO(CHa)2)n) has a 2-to-1 carbon-to-silicon
ratio, which is twice the ideal for producing silicon carbide, so
polymers that have been used instead include carbosilazane resin,
poly(methylsilazane), poly(methylchlorosilane), and poly(carbosilane),
which pyrolyze in nitrogen to silicon carbide, yielding a ceramic
whose mass is some 60—75% of that of the original polymer (the
“ceramic residue yield”).

An excess of silicon is preferable to an excess of carbon for
producing high-temperature ceramics, since silicon melts at “only”
1414°, (XXX Cold Plasma (p. 560) says 1460°) while carborundum is
stable to 2830° and graphite is stable to 3642°. Poly(carbosilane),
(H2SiCHp)n, pyrolyzes in nitrogen to essentially pure carborundum,
but in other precursors some carbon is lost as methane or carbon
monoxide during pyrolysis.

To get silicon nitride instead, an ammonia atmosphere is required
both to supply more nitrogen than can be jammed into the polymer
and to cleave off unwanted methyl groups. It is helpful but not

http://www.ing.unitn.it/~soraru/download/149-FeatureJACS.pdf

necessary for the original polymer to contain nitrogen; in fact,
ammonia pyrolysis can convert Nicalon to silicon nitride.

An attractive aspect of these processes is widely reported to be that
low temperatures, in the 1100°-1300° range, are sufficient to produce
these ceramics by pyrolysis, while the standard sintering processes
require 1800° or more, and additionally contaminates the ceramic
produced with “sintering aids”, in order to avoid even higher
temperatures. So not only can polymer-derived ceramics withstand
higher temperatures than are required for their production, they can
even withstand higher temperatures than the same ceramics when
they’re processed conventionally!

Some of these processes require a “curing” step in between plastic
forming, such as spinning, and the pyrolysis step, in order to keep the
plastic from melting before pyrolysis is complete. This curing may
happen by way of cross-linking, as in rubber vulcanization, or by
evaporation of solvents and other plasticizers. This approach is also
applicable to pyrolytic carbon production described above.

A problem that commonly afflicts these processes is structural
damage due to pyrolytic gas production during pyrolysis, which is a
major reason for requiring high ceramic residue yields. As with
traditional fired-clay ceramics, this is a bigger problem with thicker
material sections (nonexistent below a few hundred microns), and it is
to be expected that an incremental additive process in which the
material is pyrolyzed before more material is laid on top of it should
enable the fabrication of thicker cross-sections.

Another problem that commonly afflicts these processes is
dimensional inaccuracy due to shrinkage during pyrolysis, and
deposition during pyrolysis will also reduce this problem, since the
shrinkage will affect individual beads as they are laid down, not the
fabricated article as a whole, whose dimensional precision will be
determined grossly by the positioning precision of the end-effector
and only finely by shrinkage and wiggle.

Of course, there are certain practical difficulties attending the
construction of a “hotend” and manipulator that can function in an
environment that keeps the workpiece at 1100°-1300°. A
combination of liquid-cooling and refractory insulation for a
manipulator arm would probably be necessary. The thermal gradient
near the deposition point poses additional difficulties: the cooler
material being deposited onto the hot workpiece will locally cool and
contract the workpiece, inducing stresses that could produce cracks.

Boron nitride, aluminum nitride, boron carbonitride, silicon
oxycarbide, silicon carbonitride, SICNO, SiBCN, SiBCO, SiAICN,
and SiAICO have also been synthesized by this route. Some of these
ceramics cannot been synthesized in any other known way.

Exposure to reactive substances has been used instead of or in
addition to heating to remove the unwanted moieties. Examples
include ammonia, nitrogen dioxide, reactive plasma, and highly
alkaline solutions. These approaches could likely also be used with
the other materials discussed in this note; incremental deposition of
the feedstock, as by fused deposition modeling, would give the
reactive environment access even to material that is ultimately buried
inside the part.

Of special note here is HRL Laboratories’ high-density
stereolithography resin, which produces almost-fully-dense silicon
oxycarbide when pyrolyzed at 1000° in argon (“Additive
manufacturing of polymer-derived ceramics”, Science, January 2016,
many authors and Tobias Schaedler). Their recipe is mercaptopropyl
methylsiloxane and vinylmethysiloxane (in a 1:1 molar ratio of thiol
to vinyl groups), plus the usual cocktail of stereolithography additives;
pyrolysis resulted in “42% mass loss and 30% linear shrinkage” to
amorphous Si0;.34C;.2550.15 but apparently no porosity or surface
cracks. To reduce porosity and cracking, they limited feature size to 3
mm and heating to 20°/minute (or, according to their supplemental
materials, 1°/minute), but it is not clear to me what the crucial factors
were.

Metal and semimetal oxides

(For the purpose of the following, consider “metals” to include
boron, silicon, and aluminum as well as the usual metals.)

A number of metal oxides form minerals with desirable properties,
and it might be desirable to form them into particular shapes; many
of these metal oxides are themselves refractory and chemically
resistant, so casting or dissolving them is difficult. In particular, the
oxides of aluminum, zirconium, silicon, titanium, chromium,
thorium, and uranium are all hard, refractory ceramics, most
occurring naturally as minerals.

But perhaps salts of the same metals can be formed into the right
shape, whether as an solution (for example in water), a gel, a paste, or
as solid particles; then calcined to yield the oxides? As the preface to
the IUPAC-NIST Solubility Data Series volume on formates said in
2001:

Bivalent metal formates could be used as precursors for the production of catalysts
because they show excellent miscibility in the solid state, i.e., they form mixed
crystals that dissociate at relatively low temperatures (about 300 °C) to form the
respective oxides and mixed oxides. Catalysts for the decomposition of alcohols
have been prepared by the thermal decomposition of Niand Mg formate mixed
crystals, from Cu and Mg formate mixed crystals, and from the double salts
CuS1y(CHO,)-8H,0 and CuBay(CHO,)g:4H,0. ...

For this we need metal salts that decompose on heating, but ideally
are soluble in water (IUPAC-NIST database); moreover, they
probably need to be soluble together so they don’t precipitate in the
nozzle. Basically these are either metal cations with anions that
decompose on heating — nitrate, sulfate, or organic anions — or
ammonium or hydronium with metal-complex anions.
Tetramethylammonium is a possible alternative cation but for now
I'm going to ignore it. Here’s a list of candidates.

| cation | anion | g/100g | decomposition |
| | | water | temperature

| | | (20" if | |
| | | possible) | |
| f } t |
aluminum	nitrate	74	150°
	sulfate	36	900°
	formate	6	
chromiun(III)	nitrate	81	100°

https://en.wikipedia.org/wiki/Solubility_table
https://srdata.nist.gov/solubility/index.aspx

ammonium

(hydronium)

calcium

magnesium

zirconium

titanium

cobalt
copper (1)
iron(II)

iron(III)

lead(II)

lead(IV)

nickel

tin(II)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| yttrium(IIT)
|

|

ferrous ammonium

| sulfate |
| dichromate |
| paratungstate

| boric acid |
| chromic acid |
| alumic acid |
| tungstic acid |
| titanic acid |
| zirconic acid |
| nitrate |
| acetate |
| formate
| sulfate |
| acetate |
| oxalate |
| chromate

| formate
| nitrate |
| sulfate |
| sulfate |
| nitrate |
| acetate |
| formate
| tungstate |
| sulfate |
| nitrate |
| formate
| acetate |
| nitrate |
| sulfate |
| nitrate |
| sulfate |
| formate
| sulfate |
| nitrate |
| sulfate |
| oxalate |
| nitrate |
| sulfate |
| oxalate |
| chromate

| acetate |
| nitrate |
| sulfate |
| acetate |
| |
| acetate |
| nitrate |
| sulfate |
| formate |
| sulfate |
| nitrate |
| acetate |
| formate |
| nitrate |

"readily" | 700" (to acid)

high |
high? |
low |
169 |

|

low |

|

|

|

|

~() ® |
53 |
low |
137 |
14 |
69.5 |
35 |
52.5 |
yes |

slight |
slight |
decomposes |
44 |
54 |

~0 ® |
"reversible |
hydrolysis" |
high? |
9% |
44 |
low? |

600°

500°
160°
| 2007

620°

100°

680

| | sulfate | 7 |
| zinc | formate | 5.2 | I
	nitrate	9	
	sulfate	54	
	acetate	30	
thorium(IV)	nitrate	191	
	sulfate	~) ®	
uranyl	nitrate	122	
	sulfate	21	
	acetate	8	

I can’t find any concrete information about ammonium aluminate;
I suspect it doesn’t exist, although a number of chemical suppliers
have it in their catalogs. Ammonium silicate apparently does exist but
is too finicky to be of any practical use. Ammonium borate also seems
to exist, but information about it is rare.

Tetraethyl orthosilicate is commonly used in a way similar to this
to produce silica gel, but it is itself liquid rather than being
water-soluble, and its decomposition is driven by exposure to water,
not to heat.

Halogen complexes might be another thing to check out: titanium
and zirconium both complex with halogens, and it may be possible to
drive off the halogens with enough heat.

Glasses (frits) of metal oxides melt at lower temperatures; may be
suitable fillers

Titanium, zirconium, aluminum, magnesium, chromium

Aluminum: nitrate (74%, decomposes at 150°) and sulfate (36%,
decomposes below 900° to SO3 and cubic y-alumina) are highly
soluble. Also occurs in soluble aluminates, but there is no aluminate
of ammonia, so you can’t get alumina by calcining it; strontium
aluminate is a glow-in-the-dark pigment and a refractory cement
good to 2000°.

Chromium: ammonium dichromate is fairly soluble.
Chromium(III) nitrate and especially sulfate are highly soluble;
hexavalent chromium oxide too, but we don’t want that.

Boric acid is fairly soluble in water at 100°, nearly half as much at
50° (13% or s0)

Calcium: nitrate is highly soluble, decomposes at 500°; soluble
acetate releases acetone at 160° leaving carbonate; soluble formate
decomposes at 300°, maybe to CaOH and CO, or like NaCOOH to
an oxalate (CaC,Oy, insoluble) and hydrogen (at 360° for Na?), then
to a carbonate releasing carbon monoxide (at 290° for Na, 200° for
calcium oxalate)? Calcium will precipitate lots of things including
sulfate.

Magnesium acetate §3%; chromate 137%; formate 14%; nitrate
69.5%; sulfate 35%.

Zirconium: sulfate §2.5%. Nitrate has been successfully calcined to
produce zirconia: https://pubs.acs.org/doi/10.1021/cmo60883e

Titanium:

cobalt? vanadium? manganese? nickel? copper? zinc? tin?

https://pubs.acs.org/doi/10.1021/cm060883e

bismuth? strontium? barium? lithium?
Cobalt nitrate is 84% soluble in water; sulfate a bit less so.

Copper(II) nitrate is 83.5% soluble in water, substantially more than
sulfate.

Ferrous ammonium sulfate is 27% soluble. Iron(II) nitrate 134%;
sulfate 28%; iron(III) nitrate 138%.

Lead acetate 44%; lead(II) nitrate 54%. Lead(II) will precipitate
sulfate.

Lithium acetate 40.8%; nitrate 70%; sulfate 34.8%; tartrate 27%.

Nickel acetate “easily soluble”, nitrate 94%; sulfate 44%;
everything else pyrolyzable almost insoluble. (Its highly soluble
chloride is not relevant.) Hexaamminenickel chloride is soluble in
anhydrous ammonia and decomposes with heat, presumably to yield
nickel.

Ammonium paratungstate pyrolyzes to tungsten trioxide at 600°,
which is the soft mineral tungstite; the paratungstate ion has a
tendency to precipitate from aqueous solution over time. There’s also
a “metatungstate” oxyanion with 12 tungstens in it which is more
soluble and stable in highly acidic solution.

Tin sulfate 19%; nitrate?

Yttrium: Yttrium(III) acetate 9%, nitrate 123%, sulfate 7%.
Zinc: formate §.2%, nitrate 98%, sulfate $4%, acetate 30%.
Uranium, thorium

Thorium: thorium(IV) nitrate 191%, sulfate almost insoluble.

Uranium: Uranyl nitrate 122%, sulfate 21%, acetate 8%.

Filled systems

A common use for preceramic polymers, apart from the fibers and
coatings mentioned earlier, is as polymeric binders for powdered
ceramic — perhaps the same ceramic that the polymer will pyrolyze
to. Filled systems like this have a variety of advantages:

* The resulting part, if the filler consists of fully-dense particles of the
same ceramic, is denser and therefore stronger than if made entirely
from the polymer.

* The powder may be easier to produce than the polymer, reducing
cost, or even naturally abundant, as with quartz.

* Controlled composites of different materials, or materials of
different morphologies, can be thus produced; this may improve
mechanical properties or simply be cheaper.

* Other filler powders can be used to provide other properties; for
example, early-9os research at MIT (Seyferth et al., 1992))produced
silicon-carbide/metal-carbide composites from poly(methylsilane)
and organometallic polymers, but found it necessary to mix in metal
powder to eliminate free carbon from the pyrolysis result.

* The grain structure of the resulting material can be controlled more
precisely and customizably than that of objects made by liquid casting
or sintering.

* The filler may be adequate to maintain the shape of the material as it
heats up to the pyrolysis temperature, even if the liquid does not

cross-link to form a thermoset.

* The filler may provide egress paths so the gases evolved during
pyrolysis don’t crack the nascent ceramic structure, even if the filler
itself burns out before pyrolysis of the ceramic precursors, thus
forming a porous green structure. This is the “Ceramicore” process
by Weifeng Fei; it’s also a traditional way of making insulating
refractory bricks from fired clay and organic fillers like sawdust, but
Fei’s process infuses a liquid preceramic polymer into a continuous
fibrous matrix.

The point about controlled composites bears further exploration.
For example, pure amorphous carbon is quite weak, but if used in
small quantities to cement iron filings, the composite would achieve
significant strengths. Like cancellous bone, a porous composite made
by pyrolyzing a binder between fully-dense whiskers of a ceramic will
tend to be far more fracture-resistant than the same material if
nonporous. A mixture of different kinds of particles can provide
desirable combinations of properties unachievable in a homogeneous
material, such as high surface hardness along with high crack
resistance — again, like bone. Anisotropic filler orientation can
provide anisotropic mechanical properties — again, like bone, or
wood.

Ferromagnetic fillers like powdered iron can make a ferromagnetic
bulk material with low electrical conductivity, but ceramic binders
can maintain dimensions at different temperatures more precisely than
the usual organic binders used for powdered-iron cores; also, iron’s
Curie temperature is 770°, which many ceramics can withstand easily,
but organic binders can’t even approach. (And cobalt’s is 1115°!)

The cheapest possible combinations would be sugar or flour with
quartz sand or glass fiber, but at least in my low-temperature,
poorly-controlled experiments (up to perhaps 400°—600°) the carbon
resulting from sugar pyrolysis adheres very poorly to glass,
represented by the glazing of stoneware, and to quartz sand. I could
scrub it off easily with steel wool, and even scratch off some with a
fingernail. Surface preparation, for example with plasma (perhaps in a
fluidized bed), could conceivably improve the situation. Carbon
should stick well to carbon fiber, though, and many things stick well
to glass. And, as I said above, to my sorrow carbon sticks beautifully
to zirconia.

Magnesium oxychloride

Boron nitride

in ammonia?

Olivines

Forsterite, including peridot, is Mg,SiO4, while fayalite is Fe;SiOu;
these are the endmembers of the olivine spectrum. Calcium cation
substitutions also occur, modifying the structure and making it softer,
going all the way to larnite, the belite of portland cement.

Mullite

Ordinary clay pottery

Self-propagating high-temperature
synthesis

Other

Titanium carbide? Zirconium carbide (3530°)? Tantalum carbide
(3850+°)? Zirconium diboride? Gallium nitrate (soluble, decomposes
to GaN in flowing ammonia at §00°—1050°)?

Topics

* Materials (p. 788) (51 notes)

* Digital fabrication (p. 802) (17 notes)
* Minerals (p. 814) (10 notes)

* Zirconia (p. 841) (5 notes)

» Composite materials (p. 854) (5 notes)
* Silicone (p. 925) (2 notes)

Machine teeth

Kragen Javier Sitaker, 02020-08-02 (updated 02020-12-31)
(8 minutes)

Yield strengths and ultimate tensile strengths cover a similar-sized,
but lower and narrower, range than Young’s moduli. They generally
correlate, although there is substantial deviation — the plastics have
immense deformations at break, the metals smaller, the ceramics
smaller still.

Material hardness and the tooth principle

Here’s a table of very approximate quantitative figures:

	Young’s	yield	tensile
	modulus	stress	rupture
	(GPa)	(MPa)	(Pa)
diamond	1000	brittle	60000
tungsten carbide	600	brittle	300
sapphire	400	brittle	400
carborundum	400	brittle	120-3000 (?)
cubic zirconia	200	7	700
A36 steel	200	250	500
zircon	200	brittle	300
tooth enamel	80	brittle	20
soda-lime glass	70	brittle	100
6061 aluminum	70	76-370	130-410
quartz	80	brittle	40
concrete	25-50	brittle	4
lead	14	creeps	15
wood (along grain)	9-14	brittle	51
poly(methyl methacrylate)	3	brittle	70
poly(ethylene terephthalate)	317	70	
gypsun plaster	1.4	brittle	3
high-density polyethylene	0.8	?	20
styrofoam	0.005	brittle	0.4

Critters (the technical term) use teeth, claws, and beaks to cut
things, maneuvering them into position with softer tissues. A smallish
tooth can have an even smaller point that digs into the material to cut,
supported by a wider base rooted in a “handle” of material softer than
the tooth itself, which is held in still softer material.

Machines can use the same technique, and sometimes do: lathes,
fly cutters, boring bars, shapers, and D-bits all cut with a single point,
often made of a cermet; it’s common to dress grinding wheels with a
single-pointed diamond mounted at the end of a steel dressing tool; a
woodworking plane commonly uses a steel blade held in a wooden
frame; and a hand file commonly consists of case-hardened steel teeth

on the surface of a piece of softer steel, held in a softer wooden
handle, held in a still softer hand.

For example, you could imagine a tungsten-carbide tooth
(sometimes these are called “teeth”, other times “tools”, “bits”, or

“inserts”; analogous artifacts in archaeological contexts are called
“microliths”) shaving a 100-micron-thick, one-millimeter-wide
shaving (“chip”) as it scrapes along a steel surface. WC (the most
unfortunate chemical formula ever) is several times stronger in
compression, some 1500 MPa, but suppose we limit ourselves to its
300 MPa tensile strength; then the tungsten carbide will keep cutting
as long as the force is less than 30 N. This is enough to get the steel to
yield so that the carbide can propagate a crack under the chip.
(Carbide’s higher compressive strength clearly helps a lot here.)

The carbide can be held in a softer material such as steel or even
aluminum; to keep those 30 N under the 76 MPa worst-case yield
stress of the aluminum, we need at least 0.4 mm? of contact area
between the carbide and the aluminum. So the carbide tooth itself
could be tiny, with a 100-micron-long, 1-millimeter-wide point,
supported on an 8oo-micron-tall pyramid with an
8oo-micron-diameter circular base. In fact, at such a low stress, even
PMMA and PET would be strong enough not to rupture, although
they would certainly creep; a more conservative approach would be
to use a truncated aluminum cone with, say, an 8oo-micron circular
tip, 3 mm height, and a 3-mm-diameter circular base, supported on
wood, HDPE, PMMA, PET, or many other possible materials.

It probably isn’t practical to cut most steels with something much
smaller than that tooth, because the steel is too ductile; you’ll end up
just forming the steel instead of cutting it. The surprising thing is that
0.2 mm? of tungsten carbide, about 7 milligrams, is sufficient to
enable cutting steel. 200 surface feet per minute (in the medieval
units commonly used in machining in the USA) is probably
achievable, which works out to 1.02 m/s in SI units, so this is a
material removal rate of some 102 mm?/s of steel, about 0.8 g/s,
removing the mass of the carbide tooth itself roughly every 4
milliseconds.

Assuming a 15 minute tool life, this means that this tooth can
remove about a quarter of a million times its own mass in steel during
its lifetime.

A single gram of tungsten carbide contains enough material to
make some 300 such teeth.

It is possible to substitute an intermediate-hardness material for the
base of the tooth. Steel, a harder aluminum, or yttrium-stabilized
zirconia would work. (You could try zircon, but I suspect it would
be too fragile.)

As economic context, here in the kitchen I have a cheap zirconia
kitchen knife that’s about 100 mm X 2§ mm X 1. mm, which is
about 2800 mm? of zirconia, enough for some 14000 such teeth; such
a knife costs some US$7, about 0.05¢ (US$0.0005) per tooth. I also
have a high-speed steel hacksaw blade, which is about 310 mm X 12.7
mm X 600 im (300 mm between the mounting-hole centers), about
2400 mm?, which was even cheaper (about US$1.50 per blade), and is
also suitable for cutting unhardened steel.

Alternative metal-cutting tooth materials

Traditionally, steel was cut merely with case-hardened steel, but
this has its limitations. 19th-century advances in steel improved tool

life considerably, but today steel is usually cut with ceramics,
especially the tungsten carbide mentioned above.

Three other hard ceramics mentioned above — sapphire,
carborundum, and zirconia — may be more easily produced from
terrestrial materials than tungsten carbide. Tungsten atoms are
outnumbered by silicon in Earth’s crust about a million to one.
Sapphire is made from aluminum and oxygen; aluminum is very
nearly as common as silicon, while oxygen is even more common.
Carborundum is made from silicon and carbon; carbon is
outnumbered by silicon only about 300 to 1, and of course diamond is
entirely carbon. Zirconium is outnumbered by silicon about 3000 to
1, making it about 300 times as abundant as tungsten. Zirconia is
quite brittle if not stabilized with, for example, 2—3% of yttria, but
fortunately yttrium is only about one order of magnitude rarer than
zirconium itself.

Zirconium has the additional merit of being relatively easy to
concentrate, since it forms separate grains of zircon (jacinth, ZrSiOy)
in many igneous rocks, including most granites, which are easily
separated from sand by their high density (4.6 g/cc); they are also
separable by their refusal to melt at any reasonable temperature
(below 2500°, though they sinter at much lower temperatures).
Zircon itself, perhaps even naturally-occurring crystals, may be usable
as a material for cutting metal; but zirconium is readily, if
expensively, derived from it by calcining with carbon and chlorine,
then reducing the resulting zirconium tetrachloride with magnesium,
the same Kroll process used to reduce titanium; and zirconia is
superior to zircon in almost every way.

Historically carborundum was discovered by Acheson running an
electric arc through a mixture of clay and coke in an iron crucible,
insulated by the granular materials themselves, in 1890; but Despretz
probably made it without knowing in 1849 by joule-heating of a
carbon rod embedded in silica sand, which is essentially the “Acheson
process” used today; sawdust and salt are former additives now little
used. (This is also the first process for making synthetic graphite, by
heating the carborundum until the silicon sublimes at 4150°. XXX
wouldn’t graphite sublime too? Shouldn’t that be 2830°?)

Sapphire is normally refined as an intermediate step in the
production of aluminum, for example by the Bayer process:
low-silica bauxite is digested in 170°~180° lye (or anhydrous 1200°
sodium carbonate and coke, in the Deville process) to obtain sodium
aluminate, from which crystalline aluminum hydroxide is
precipitated (by cooling, by neutralization with CO,, or simply by
evaporation with seed crystals).

Zirconium carbide can be made simply by carbothermic reduction

of zirconia with graphite; it is even harder than zirconia itself (?),

though it has “poor oxidation resistance over 800°”.

Topics

* Materials (p. 788) (51 notes)
* Contrivances (p. 790) (44 notes)

* Mechanical things (p. 795) (19 notes)
* Digital fabrication (p. 802) (17 notes)
* Strength of materials (p. 823) (8 notes)
* Self replication (p. 833) (6 notes)

* Zirconia (p. 841) (5 notes)

* Steel (p. 858) (4 notes)

* Archaeology (p. 874) (4 notes)

* Sapphire (p. 881) (3 notes)

* Carborundum (p. 979) (2 notes)

3-D printing iron by
electrodeposition?

Kragen Javier Sitaker, 02020-08-15 (11 minutes)

Speculation

You can form an arbitrary iron shape by simultaneous
electroforming from a large number of parallel needles? In a
near-boiling, oxygen-starved solution of hydrochloric acid, you can
run current through some needles, but not others, to promote the
deposition of iron on a cathode surface a short distance away
(millimeters or less) around just those needles. By withdrawing the
array of needles as the cathode grows, the inter-electrode distance
remains constant. If the needles are themselves iron, they will dissolve
anodically and be deposited (in electrolytically purified form) on the
cathode, and will need to be fed in through some kind of wire feed
mechanism, but if they are graphite or a noble metal, then iron must
instead be supplied in ferrous form by pumping in more electrolyte to
replace the spent electrolyte; pumping it through the centers of the
needles themselves is one possibility.

If the needles are moved laterally as well as being withdrawn, they
can produce features of finer detail than the spacing between needles.

And, of course, if the current is reversed, the same method
produces local anodic dissolution and becomes selective
electrochemical machining, rather than selective electrodeposition.

By dispersing fine graphite or amorphous carbon particles in the
electrolyte, so that some of it gets included in the iron deposits, it is
possible to deposit iron that can later be converted to steel by heat
treatment, causing the carbon to diffuse; this can be localized to just
certain layers of the workpiece. Alternatively, the iron can be
case-hardened if the softness and ductility of pure iron is undesirable.

Other metals commonly electroplated can be 3-D printed in the
same way; an Argentine savant has already demonstrated this process
with copper, but zinc, tin, chromium, nickel, gold, silver, cadmium,
cobalt, lead, and even some alloys such as bronze and brass can be
shaped in this way. Additionally, layers of different metals can be
alternated, and fillers such as graphite, aluminum oxide, and clay
particles can be included, especially if the cathode voltage is kept
moderate enough to prevent bubbling.

Otbher liquid electrolytes, such as ionic liquids and perhaps even
deep eutectic systems, might permit the use of a wider range of
metals, more rapid electrodeposition of iron, or lower risks than a
near-boiling strong hydrochloric acid solution.

The needles, if iron, need not be pure iron; they can contain
metallic impurities as long as their standard electrode potential is
significantly more negative than iron's -0.44V. In particular, zinc,
magnesium, aluminum, and the rare earths should not be a problem.
Most other metals, however, would plate out in preference to the
iron, including virtually everything you can electroplate in water

(except zinc and maaybe chromium).

Historical background

In https://www finishing.com/94/56.shtml there is some
discussion of different ways to electroform or electroplate with iron;
Colin Braathen writes:

I agree that ferric chloride is not a good basis for plating; most documents on the
subject stress the importance of keeping iron 3+ levels in the bath low. Air for
agitation is likely to oxidise the ferrous ion to ferric, so I plan to hermetically cover
the bath with clingwrap and agitate using argon... Bath heating will be by quartz
tube with a Nichrome coil inside, salvaged from a cheap radiant room heater,
glanded into the bath walls with silicone. Bath lining will be PVC, heat gun
welded at the seams and bonded to a support shell with air-moisture-curing
polyurethane glue (bath temperature will be uncomfortably close to the glass
transition temperature of PVC).

L, too, have plated iron from a sulphate solution as a tryout. I got about 1 mm
before my power supply burned out (15A on about 0.5 sq.ft, i.e. 30 A/ft). The iron
was brittle to the point of being crumbly I could almost crush it in my fingers, and
I had incipient dendrites. ... Chloride baths are run at higher temperature and,
apparently, can produce a ductile stress-free deposit if done right.

... The bath will be Fisher-Langbein, FeCL2.4H20 300-450 g/1, CaCl2
150-190 g/1, 85 °C, pH 1.5, current density 2 9 A/dm2 (20 85 A/ft2). The low pH
should help to minimize formation of the ferric salt.

See also:

https://ukdiss.com/examples/electrodeposition-iron-co-deposits-des.o

ophp is an academic fraud company ("dissertation writing service")
publishing a purported dissertation on iron electrodeposition in ionic
electrolytes whose author's name has been removed.

https://encyclopediaz.thefreedictionary.com/Iron+Plating:

an electrolyte whose main constituent is ferrous sulfate or chloride. ...
electrodeposition proceeds at room temperature with an insignificant concentration
of acid in the electrolyte at a rate of the order of 1 micron per hr. For repair work,
the temperature and acid concentration are increased. The iron layer is deposited
more quickly, the ferrous chloride solution is more concentrated, and the
temperature is about 100°C.

https://www .scientificamerican.com/article/electro-plating-with-iroo
on/ https://archive.org/details/scientific-american-1869-11-27

Electro-Plating with Iron

Scientific American volume 21, number 22, p. 346

November 27, 1869

The Hon. Cassius M. Clayt, late U. S. Minister to Russia, has recently
returned from St. Petersburg, bringing with him some fine specimens of iron
electrotypes, done after the process of Prof. Jacobi and Klein. We have before
alluded to this important discovery. By its use, nearly all forms of electro-plating,
such as engravings, stereotypes, medallions and ornaments, may be done in iron,
with a fineness of texture which is really surprising.

Its importance and value will be appreciated when we reflect that the iron
electro-plates are about five times more durable than the ordinary copper
electro-plates.

Mr. Clay has presented us with an iron electro-plate copy 'Of a copperplate
engraving of the Prince Imperial of Russia. This plate is six inches square,. and
beautifully done. It is one thirty-second of an inch in thickness, and has a color
closely resembling that of zinc. These iron electrotypes are now used by the
Russian Government with complete success for the printing of bank notes.

The process was patented in this country through the Scientific American Patent

https://www.finishing.com/94/56.shtml
https://ukdiss.com/examples/electrodeposition-iron-co-deposits-des.php
https://ukdiss.com/examples/electrodeposition-iron-co-deposits-des.php
https://ukdiss.com/examples/electrodeposition-iron-co-deposits-des.php
https://encyclopedia2.thefreedictionary.com/Iron+Plating
https://www.scientificamerican.com/article/electro-plating-with-iron/
https://www.scientificamerican.com/article/electro-plating-with-iron/
https://www.scientificamerican.com/article/electro-plating-with-iron/
https://archive.org/details/scientific-american-1869-11-27

Agency, Sept. 29, 1868, and further information can be had by addressing C. M.
Clay & Co., 45 Liberty St., New York.

The following description of the process we copy from the patent specification :

“Our invention consists in the application of a practical galvano-plastic process
as to the deposits of iron on molds, or any other form, for reproducing engravings,
stereotypes, and for other useful or ornamental purposes.

“The galvano-plastic bath we use is composed of sulphate of iron, combined
with the sulphates of either ammonia, potash, or soda, which form, with sulphate
of iron, analagous [sic] double salts.

“The sulphate of iron may also be used, in combination with the chlorides of the
said alkalies, but we still prefer the use of sulphates.

“The bath should be kept as neutral as possible, though a small quantity of a
weak organic acid may be added, in order to prevent the precipitation of salts of
peroxide of iron.

“A small quantity of gelatin will improve the texture of the iron deposit.

“As in all galvano-plastic processes, the elevation of the temperature of the bath
contributes to the uniformity of the deposit of iron, and accelerates its formation.

“For keeping up the concentration of the bath, we use, as anodes, large iron
plates, or bundles of wire of the same metal.

“Having observed that the spontaneous dissolution of the iron anode is, in some
cases, insufficient to restore to the bath all the iron deposited on the cathode, we
found it useful to combine the iron anode with a plate of gas-coal, copper,
platinum, or any other metal being electro-negative toward iron, and which we
place in the bath itself.

“As a matter of course, this negative plate may also be placed in a separate porous
cell, filled with an exciting fluid, as diluted nitric or sulphuric acid, or the nitrates
or sulphates of potash and soda.

“For producing the current, we usually take no more than one or two cells of
Daniels' or Smee's battery, the size of which is proportioned to the surface of the
cathode.

“It is indispensable that the current should be regulated, and kept always
uniform, with the assistance of a galvanometer, having but few coils, and therefore
offering only a small resistance.

“The intensity of the current ought to be such as to admit only of a feeble
evolution of gas-bubbles at the cathode, but it would become prejudicial to the
beauty of the deposit if gas-bubbles were allowed to adhere to its surface.

“The same molds, as employed for depositing copper, may also be used for
depositing iron, only it is advisable, in employing molds made of lead or
gutta-percha, to cover them previously with quite a thin film of galvanic copper,
formed, in a few minutes, in the usual way, and then oring [sic] them, after having
washed the molds with water, immediately in the iron-bath.

“The film of copper may be removed from the deposit either by mechanical
means, or by immersion into strong nitric acid.

“The deposited iron is very hard, and rather brittle, so that some precaution
must be taken in separating it from the mold. By annealing, it acquires the
malleability and softness of tempered steel.

T This is a different Cassius Clay than Muhammad Ali.
https://www .pfonline.com/articles/iron-plating(2)

The iron plating bath is particularly useful for when large build-ups (s0—100
thousand|[th]s of an inch) are required. There are a number of different baths
available: ferrous chloride, ferrous fluorborate, ferrous sulfamate and ferrous
sulfate are common examples. Of these baths, the most common is the ferrous

chloride bath...

Then Kushner gives the recipe: 40—60 oz./gal. of ferrous chloride
dihydrate, 20—35 oz./gal. of calcium chloride, 185—210°F, 20—80
amps per square foot without agitation or up to 200 with agitation
(which must not be air to prevent oxidizing the ferrous ions),
high-quality iron anodes, pH 0.2—1.8 using HCI. There is some
confusion in the recipe.

https://www.pfonline.com/articles/iron-plating(2)

https://patents.google.com/patent/US2745800A/en
By John Poor, 1953.

Topics

* Materials (p. 788) (51 notes)

* Manufacturing (p. 799) (17 notes)

* Digital fabrication (p. 802) (17 notes)
* Electrolysis (p. 830) (7 notes)

https://patents.google.com/patent/US2745800A/en

Peroxide and bleach

Kragen Javier Sitaker, 02020-08-15 (2 minutes)

To my surprise, last night I learned from a chemist friend that
mixing hydrogen peroxide with (sodium hypochlorite) bleach
liberates oxygen, presumably from the decomposition of both
substances, leaving water and sodium chloride as well as the oxygen
gas. How much oxygen should it liberate?

In addition to weight percentages (3% being the usual article of
commerce in pharmacies) H,O, is commonly sold by "volumes": "20
volumes" yields 20 m¢ of O, gas from the decomposition of the H,O,
in 1 m¢ of the solution. Oy's molecules weigh 32 daltons, so a mole of
it weighs 32 g; two moles of HyO, are needed to produce one mole of
O,, and they will weigh 34 g each, 68 g in total. The combined gas
law is that PV = nRT, where [R ~ 8.3144598 kPa £ / mol / K] is the
universal gas constant, so at 20° = 293.15 K a mole of an ideal gas at
101.325 kPa would occupy 8.3144598 X 293.15 / 101.325 ~ 24.055 {.
The density of pure H,O is 1.450 g/cc, thus 21.32 mmol of O, per cc,
which gives 512.85 cc of O, gas per cc of H,O», so pure hydrogen
peroxide would be "512.85 volumes". So "20 volumes" H,O, is only
about 3.900% by weight. (But Dr. Google says it's actually 6%, so my
calculations must be off.)

The common bleaches sold here are 57 g C1/¢€ and 25 g Cl/¢.
Sodium hypochlorite is NaClO, with one atom of oxygen per atom
of chlorine. ...

Topics

* Materials (p. 788) (51 notes)
* Facepalm (p. 820) (9 notes)

https://en.wikipedia.org/wiki/Hydrogen_peroxide

Cyclic fabrication systems

Kragen Javier Sitaker, 02020-08-17 (updated 02020-09-10)
(56 minutes)

“Cyclic fabrication systems” is a term Matthew Moses, Hiroshi
Yamaguchi, and Gregory Chirikjian invented to describe a collection
of materials, tools, and processes capable of reproducing itself. A CFS
is the keystone of economic autarky, of resilience against faraway
catastrophes, and of escaping resource scarcity traps, and its
exponential growth rate has historically been the major limit on
worldwide economic growth; consequently the study of CFSs is, or
should be, central to economics, although it is a relatively neglected
topic, involving as it does cross-disciplinary concerns from
engineering, materials science, chemistry, metrology, and economics.

A programmable, fully automated autotrophic CFS with a growth
rate exceeding that of the economy would eliminate the scarcity of
capital goods that has been the foundation of human economics for
two million years.

With that in mind, I thought it would be worthwhile to survey
historically and potentially existing CFSs. There are various aspects
of cyclicity: there’s the simple geometric question of how a machine
can reproduce the shapes of its own parts in the same materials;
there’s the metrology question of how to measure half a millimeter on
a ruler measured in millimeters; there’s the control question of how a
negative-feedback system can produce another working active
negative-feedback system, there’s the chemistry question of how to
produce a large amount of materials with the necessary degree of
purity, starting from impure and unknown natural materials and a
small amount of known and pure materials; and there’s the energy
question of how such an assemblage of machines can continue
harvesting energy from its environment, for example building an
engine that can harness the available solar or chemical energy.

Geometry

The first category of CFSs to survey are those concerned with
imposing some existing geometry on some existing material. For now
we’re not so concerned with how the geometry or the material is
created.

A feature common to many geometry CFSs is a sort of
rock-paper-scissors dynamic; in a given manufacturing process,
typically one material is stabler than another, so perhaps it can be used
to shape that other material.

For example, you can melt wax into a pewter mold, you can melt
pewter into a steel mold, and you can melt steel into a greensand
mold; but you can’t melt greensand into any kind of mold, both
because it requires unreasonably high temperatures and because it
ceases to be greensand when you melt it. Instead we rely on the fact
that greensand at room temperature is soft enough to be rammed
around patterns, made of materials such as wax, with tools made of
materials such as steel.

Pewter beats wax, steel beats pewter, greensand beats steel, and wax
beats greensand. Thus we form the cycle that makes our fabrication
system cyclic.

Flintknapping

Since the Paleolithic, the humans have shaped tools by banging
rocks together, a process called “knapping”. Arguably this is not a
CFS, because typically the hammerstones and other flintknapping
tools such as antlers and copper pressure-flaking tools are not
themselves shaped by flintknapping or flintknapped tools.

Knapping is somewhat limited in the geometries it can achieve, and
it can only shape materials that break in the right way, such as glass,
obsidian, and flint.

Grinding

A major innovation in manufacturing technology some 3
millennia ago, perhaps in Japan, was shaping stones by grinding them
with abrasives, rather than chipping. It had spread to the Levant and
Europe by some 10-18 millennia ago, where it is considered a
distinguishing mark of the Neolithic. Grinding permits greater
liberty of materials, surface finishes, and geometry; abrasives can
shape any solid material and can achieve arbitrary geometry down to
submicron scales. In particular, in the late Japanese Paleolithic and in
the Mesolithic and Neolithic, polished stone axes were much more
durable than traditional knapped axes; hole-drilling permitted much
more adaptable and secure forms of assembly; and Kebaran mortars
and pestles began to automate the more mechanical aspects of food
digestion.

From a CFS perspective, there are several great features of
grinding. One is that the geometry of the workpiece can be more
precise than the geometry of the tool, because it is determined
primarily by the movement of the tool, as constrained by the workpiece
and other external systems, rather than the tool’s geometry. Another
is that, by grinding three surfaces against each other with abrasive
between, a precisely flat surface can be achieved without any flatness
reference. A third is that some hard materials are relatively easy to
break, so we can get a rock-paper-scissors cycle with only two
materials: a hard, brittle abrasive such as sapphire or quartz and a
softer, tougher hammering material such as copper or iron. A fourth
is that, because of the aforementioned movement feature, it’s actually
possible to get a CFS with just a single material such as sandstone or
concrete; you can dress a grinding wheel with an abrasive dressing
stick just by moving the stick back and forth across the wheel’s face
while spinning it. A fifth is that grinding generally does not require
heat or a minimum tool pressure, so it can be done while the
workpiece is not deformed, providing more precise geometry than
other ways of shaping materials.

Consequently various kinds of grinding, including lapping, play
central roles in all kinds of precision manufacturing even today.
Especially on glass materials, deep submicron precision is feasible.
Grinding is also commonly the only cutting process used for
applications like cutting rebar or concrete on construction sites and
smoothing over weld beads, where its material flexibility and low

equipment cost outweigh its low material removal rate. In modern
machine shops, grinding is used for cutting nearly-finished parts to
final dimensions and for shaping metal-cutting tools out of materials
that are too hard to drill or cut on the mill or lathe.

Pottery

Since the late Paleolithic or early Neolithic, the humans have made
pottery by sintering (“firing”) composites of clays, sintering aids,
fillers, and sand into a sort of ceramic. Sintering in general has the
advantage that the sintered material can remain solid at temperatures
exceeding those necessary to sinter it in the first place (for pottery, in
the 700°—1500° range depending on composition), so if the
temperature remains relatively predictable, a kiln for sintering such
pottery can itself be made of the same pottery. Moreover, it is
possible (and, in historical practice, usual) to sinter the kiln itself in
place, rather than sintering firebricks in a separate kiln and then
assembling them into a kiln.

Clays go through a series of states of plasticity according to their
hydration. Above about 25% water, they are colloidal liquids called
“slips”; around 22%, purely plastic solids or thixotropic liquids,
which shrink substantially as they dry further; around 20%, they
remain plastic over a large range of deformations but become capable
of brittle fracture (“leather-hard”) and almost do not shrink upon
further drying; and below about 18%, they are fragile, brittle solids,
which do not shrink on further drying. (The precise transition points
vary by clay composition, soaking time, and aqueous solute content.)
Firing results in further shrinkage. The other components of the
so-called “clay body” can enhance plasticity and reduce sintering
temperatures, and they tend to decrease shrinkage. The sintered clay
body is much stronger and can be nonporous, especially if sintered a
second time coated with a so-called “glaze” which melts fully rather
than just sintering; typically this results in further shrinkage.

Because fired or even dried clay can plastically deform leather-hard
or fully plastic clay, it is straightforward to use so-called clay “seals”
to reproduce geometry (in negative), and such “bullae” have been a
key security measure for commercial transactions for some 12
millennia, since the beginning of agriculture if not before; recently
metals are more commonly used instead of clay, but this innovation
was unknown until just a couple of millennia ago. This process of
molding can be carried through multiple generations of clay seals,
though not without significant loss of fidelity, including, in particular,
shrinkage.

Such a clay-on-clay “sealing” process is probably responsible for
the oldest instance of movable-type printing, the Phaistos disk; and of
course movable type in Asia was made from pottery long before
Gutenberg.

In the leather-hard state, the clay body is still plastic enough to take
the impressions of seals, but also brittle enough to be cut with blades.
Typically these are made of metal in current practice, but blades made
of fired clay also work. Because most of the shrinkage has already
happened, forming clay in the leather-hard state results in much more
precise dimensions.

Clay is commonly “slipcast” in porous molds made of plaster of
Paris: aslip is poured into a mold, and the absorption of water into
the mold solidifies a layer of the slip in contact with the mold. The
remaining slip is poured out, and the cast piece contracts as it dries
and can then be demolded. Presumably it is possible to make the
molds of porous fired clay instead of plaster, though I have never
heard of it being done and have not attempted it myself.

Dried clay is also friable enough to be easily abraded or carved by
tools, including tools made of fired clay.

The precision of all of these shaping processes is limited by the
shrinkage and deformation of the ceramic during sintering, if
sintering is done; by the grain size of non-clay tempers, such as sand,
in the clay body; and by the shrinkage and deformation of the clay
body to its dry state, for shaping processes that rely on plasticity.

Fired-clay ceramics play a key role in many more elaborate CFSs as
well, because (depending on composition) they can withstand
relatively high temperatures without losing their shape, they can
easily be shaped to complex geometries while plastic (especially if
dimensional precision is not critical), they are themselves relatively
hard and can embed even harder abrasives, and they are very
inexpensive.

Like most ceramics, clay has extremely small elastic deformation in
all states, including the fired state, on the order of 0.01% strain at
failure. This permits relatively high geometric precision, especially
when shaping dried clay, but it complicates the use of fired clay for
springs and other flexures.

Worth mentioning is the standard procedure for foaming pottery,
which is to mix a granular organic material such as sawdust or used
yerba mate into the clay body. In an oxidizing kiln the organic
material burns out completely, leaving voids in the clay which reduce
its weight, impede crack propagation, and improve its thermal
insulating capabilities, and at higher void fractions permit easy fluid
flow through the fired piece. Because of the crack-propagation
improvement, the foamed pottery can be cut to shape almost as if it
were wood. I've tried void fractions from 50% yerba up to 85% yerba,
which last was quite fragile; above 66% yerba, the material permitted
easy airflow. This porosity can be beneficial to the firing process in
allowing the fabrication of thicker shapes without steam explosions.

So, the cycles here are: fired clay shapes plastic clay (by sealing,
slipcasting, or cutting), plastic clay dries into dried clay, and dried clay
is fired into fired clay; and fired clay carves dried clay, and dried clay
is fired into fired clay.

Hot forging

Cold iron is harder than hot iron or even hot steel, so if you press
them together the cold iron will reshape the hot metal without itself
being reshaped. This is common to a number of metal-shaping
processes including hot rolling, hot forging, and wire drawing;
commonly hammering is used to achieve sufficiently high pressures to
deform the hot metal. (It is also the reason the World Trade Center
collapsed, despite the temperatures not being hot enough to melt its
steel beams; the heat softened them.)

However, the metal thus formed deforms during cooling, so these
processes generally cannot achieve tight dimensional tolerances.

So the cycle here is that cold iron forges hot iron, and hot iron cools
into cold iron.

Hardened ferrous tools, cutting and hammering ferrous
metal

Files and other hardened iron and steel tools can be used to cut
unhardened iron and steel, which can then be hardened. Similarly,
hardened iron and steel hammers can be used to cold-forge
unhardened iron and steel.

There are several ways to harden ferrous metals, but nearly all of
them involve a great deal of heat, and so impose a certain amount of
uncontrolled deformation. “Case hardening” by diffusing carbon
(and possibly nitrogen) into the surface of iron is a form of
solid-solution hardening known for two or three millennia;
“quenching”, applicable to carbon steels, is another. In quenching,
the metal is heated until it converts from ferrite to austenite, then
cooled too rapidly for it to reform ferrite at the surface, leaving it in
the metastable state of martensite, which is much harder than ferrite.
(Sometimes the term “case hardening” is also used for quenching only
the surface of a piece of metal.)

Another is “work hardening” by hammering the surface (“cold
working” or “cold forging”), but typically the resulting hardening is
relatively small. Cutting highly work-hardenable metals like copper
is difficult, because work hardening hardens the surface as soon as you
have cut it, and perhaps even before; consequently, the carburization
and quenching processes described above are the ones used for cyclic
fabrication systems. Work hardening plays many critical roles in
metallurgy, but historically not in CFSs.

(Other forms of hardening, such as precipitation hardening, are not
applicable to iron and ordinary steels, though they are applicable to
some other alloys, like 17-4 stainless and beryllium copper.)

So the cycle here is that hardened steel cuts unhardened steel, and
then quenching or carburizing unhardened steel makes hardened steel.

Sandcasting and lost-wax casting

As mentioned above, sandcasting is a common CFS, in the sense
that once you have a pattern for a castable shape, you can ram soft
greensand around the pattern in a flask to make a mold, disassemble
the flask, remove the pattern, reassemble the flask, and pour molten
metal into it to reproduce the shape of the pattern — first perhaps
arsenical bronze, but also copper, and more recently tin bronze, cast
iron, tin, pewter, pot metal, Zamak, pig iron, high-silicon aluminum
alloys, brass, and so on.

Greensand is sand (typically quartz; minerals that outgas at high
temperatures such as calcite or gypsum are forbidden) containing a
small amount of wet clay as a binder. There is little enough clay so
that the mold is very porous, thus permitting easy passage of gas
through the sand, among other things to allow the mold to dry before
casting. Typically the clay used is bentonite, since it can function as a

binder at the lowest levels, and those levels are low enough that its
expansivity is not a problem.

Aside from the raw materials, sandcasting requires minimally a
pattern, a riddle, a ram, a flask, a crucible, and a kiln (called a
“furnace”). The crucible and the furnace are necessarily formed of
refractory materials, and in usual practice must be exposed to air, so
pottery is the traditional material for them, making this CFS
dependent on the pottery CFS when used for ferrous metals; the
non-ferrous metals mentioned above can instead use ferrous crucibles,
and in theory could use ferrous furnaces as well, but pottery is much
more practical. The pattern and flask are traditionally made of wood,
but metal would also work fine. The ram can be made of wood or
metal. The riddle probably cannot be practically cast of metal,
because it needs to have many small holes, and casting is bad at those.
The standard nowadays is to use a riddle of woven wires on a wooden
frame, but I think you could make one of fired clay (though my first
attempt to do so was not very successful) or woven flax sized with
some kind of abrasion-resistant coating.

In sandcasting, although the mold is destroyed when the casting is
shaken out of it, the pattern can be reused many times. Nowadays the
patterns are often 3-D printed, but another bootstrapping option
might be to carve the pattern from foamed pottery.

I think older than sandcasting is lost-wax casting, which is similar,
but with a pattern of wax (traditionally a mix of beeswax and pine
resin, perhaps with some dry powdered clay as a filler) and a mold of
pottery. Rather than removing the pattern from the mold before
firing the mold, the wax is simply left in the pattern, where it melts
and then burns out, just like the organic fillers used for foaming
pottery. This does not permit the reuse of the pattern, but can
reproduce finer details than sandcasting, though with worse
dimensional precision.

A modern innovation in these processes is “lost foam casting”,
where the pattern is burned out as with lost-wax casting, but the
mold is sand as with sand casting. By making the pattern from an
organic foam such as styrofoam, it produces little enough gas that it
need not be removed from the mold ahead of time, but is instead
burned out by the hot metal; this eliminates the need for a binder and
the need to disassemble the flask, and styrofoam is easier to cut than
the traditional wood or, especially, metal.

Die-sink/ram and small-hole EDM (“electric discharge
machining”)

EDM is capable of holding very tight tolerances (on the order of a
micron, or somewhat higher at larger material removal rates) and
cutting very hard materials, even diamond. You bring an electrically
conductive workpiece together with a tool (“die”) in an insulating
liquid, such as diesel fuel or deionized water, holding a voltage across
them, until a spark occurs, vaporizing some of both the workpiece
and the die. The vapor immediately condenses in the liquid, and
some time later you move them toward each other until a new spark
occurs somewhere else. This repeats, thus eroding both the workpiece
and the die. They never quite make contact, and they never heat up

except in a very thin surface layer, so the deformations that limit the
precision of mechanical cutting processes are absent.

The die can be of the same material as the workpiece. However, to
minimize the necessity to manufacture new dies, it’s desirable to use
die materials that are eroded less than the workpiece because of
having higher boiling points, higher enthalpy of fusion and/or
vaporization, or higher thermal conductivity; graphite, copper, brass,
and tungsten-copper are ideal, but even things like aluminum last
longer than steel (I think?), which in turn lasts longer than stainless
steel, which in turn lasts longer than tungsten carbide and similar
materials.

In particular, copper and graphite electrodes can cut steel with
almost no wear, removing more than 100X as much workpiece as
electrode.

“Small hole EDM” is a variant of this approach, usually categorized
separately, in which the tool electrode is a thin tube used to “drill” a
hole into or through the workpiece. Dielectric fluid is fed through
the tool at high speed. The tool is rotated as it is fed into the hole,
eliminating circumferential variation, and also permitting the hole to
be significantly wider than the tool itself if the center of rotation is
eccentric. EDM drilling can thus produce very accurately cylindrical
holes, even in very hard materials. (And this is a crucial supporting
process for wire EDM, as explained later.)

Small-hole EDM drills are often insulated up to the tip so that the
hole only widens near the tip, enabling it to remain the same diameter
over a long distance.

Hypothetically, if the die were of a shape that can be produced by
helical extrusion, then it could be fed into the cut in the helical path
along which it was extruded. The end of the die might be consumed
in the process, but, especially for through holes, this is unimportant.

An EDM die can also be moved to cut out a shape as if it were an
end mill, known as “orbiting”; if this is done with a die with a thread
profile (“EDM tapping”), it cuts a thread into the hole it’s in with the
same thread pitch as the die’s thread, but a larger diameter. Small pits
in the threads of the die are unimportant, as they will be covered by
the orbital motion.

Hypothetically, you could also move the die in two directions of
motion at once, as if for lapping; although I do not know of this
process being used in practice, the same process could produce three
accurately flat surfaces by translating and rotating them relative to
each other while using them to erode one another via EDM.

EDM is also done at times with dies that are wheels analogous to
grinding wheels; as with grinding wheels, small irregularities in the
wheel surface are inconsequential, so they can make surfaces that are
more accurately cylindrical than they are themselves. Presumably
these EDM wheels must periodically be dressed like grinding wheels,
but using EDM rather than grinding. Vollmer calls this process “disc
erosion”, and their process uses copper-tungsten wheels and an oil
dielectric to sharpen cutting tools made of polycrystalline diamond or
tungsten carbide, while Setco calls it “spark erosion grinding” and
uses cold-rolled steel wheels and I think a water dielectric to cut

delicate metal honeycomb parts for jet engines.

A CFS based on die-sink EDM might be able to use a single
conductive material as both a workpiece and a tool, reorienting the
tool during the cutting process to produce on it the kinds of radii and
edges that will be needed for later features to be cut into the
workpiece.

However, a much more efficient die-sink-EDM-based CFS would
use at least two materials, one harder and easier to cut with EDM,
such as steel or tungsten carbide, and the other softer and more
resistant to spark erosion, such as graphite, brass, or copper. A single
steel cutting tool can cut hundreds of brass electrodes to precise
shapes, and a single brass electrode can erode hundreds of steel
workpieces to precise shapes.

However, an EDM machine cannot be made entirely from metal
parts, because the only electrical path between the cutting tool and
the workpiece must be the cutting arc. Thus some insulating
material, such as a plastic or ceramic, is needed to complete the cycle.

(These accounts of EDM-based CFSs take the electronic servo
control systems necessary to control the EDM motion as given, a
lacuna I will remedy later on.)

In many cases, however, wire EDM supplemented with small-hole
EDM is orders of magnitude faster than die-sink EDM. Normally
die-sinking EDM is only used to finish parts to final dimensions after
cutting them to approximate shape using faster processes.

Wire EDM

Wire EDM removes material from a conductive workpiece
through the same spark-erosion process as other kinds of EDM, but
the tool electrode is a thin brass wire, tens to hundreds of microns in
thickness. This wire passes through a thin kerf in the workpiece,
cutting it to an arbitrary two-dimensional shape with an arbitrary
taper, while running through the workpiece at high speed. Given a
starting hole made by some other process, such as drilling or
small-hole EDM, wire EDM can enlarge the hole to an arbitrary
shape. By cutting a stack of sheets, typically welded together at the
edge, wire EDM can cut the same shape into many sheets at once.

The eroded brass wire must be melted and redrawn before being
used again, since it has spark-erosion pits at unknown places along its
length which could cause it to break if used a second time.

Die-sink EDM can cut arbitrary three-dimensional shapes, while
wire EDM is more restricted in the geometry it can produce. But
die-sink EDM must vaporize and wash away all the negative space of
the desired part, while wire EDM need only vaporize a kerf of tens or
hundreds of microns around its surface, thus potentially permitting a
speedup of a thousand or so.

Wire EDM and small-hole EDM can cut through a meter or more
of material in a single operation, so it’s straightforward to imagine a
sheet-cutting operation producing 20,000 identical parts from
so-um-thick sheet stock in a single operation. (Other sheet-cutting
processes, like waterjet, plasma, oxy-gas, bandsaw, and laser, are not
so flexible; they tend to blow the layers apart.) But it’s not clear that
this would be an especially fast or cheap way to do it.

A CFS based on wire EDM could surely cut most of the parts of
the EDM machine itself from steel or brass stock, then assemble them
using an assembly system made similarly. The wire itself, if not
treated as a “vitamin” provided from outside the system, could be
drawn from brass stock using EDM-cut drawing dies. (These might
even be workable without small-hole EDM.) Again, I will postpone
the question of the necessary control electronics, and again an
insulator is required.

Grinding, grinder dressing, and machining

As mentioned earlier, grinding plays an important role in modern
machining, as does hardening of steels for cutting tools, but its overall
cycle is more complex. Metal is mostly cut with a lathe, drill press,
milling machine, or hand file, using ceramic/cermet (“hardmetal”) or
hardened steel cutting tools (“machining”). These tools are typically
shaped and resharpened with a grinding wheel, which can be silicon
carbide, cubic boron nitride (“borazon” or “gingsongite”), or
diamond, or (for hardened steel tools only) aluminum oxide, garnet,
or zirconiat. Aluminum oxide, zirconia, and silicon carbide are the
usual materials. This grinding wheel wears and loads, and must be
brought back to shape (“dressed”) periodically; Adam Martin of
Helical Solutions explains that a diamond grinding wheel requires
dressing every 500 to 600 tungsten-carbide tools.} Dressing a
diamond or silicon-carbide wheel can be done with another
silicon-carbide wheel, as Helical does; aluminum-oxide wheels can
be dressed with a diamond tool or with a star wheel.

A star wheel is a steel wheel with many points that is free to rotate;
bringing it in contact with a spinning grinding wheel sets it to
rotating, and its points whack into the surface of the grinding wheel,
chipping it and knocking off grains. Moving the star wheel back and
forth as it spins evens out the local variations in its shape, making the
surface of the grinding wheel accurately cylindrical or conical,
depending on whether the movement is parallel to the
grinding-wheel axis.

Star wheels can be made by grinding their parts from steel stock
and assembling them, or more rapidly by cutting the steel stock with
cermet or hardened steel tools.

Grinding wheels are made by casting a mix of abrasive and binder
in a mold, and often then firing the piece to harden the binder. The
mold can be cut from metal; common binders include clay,
magnesium oxychloride, and organic polymer resins including
rubbers, and have historically included sodium silicate and shellac;
but a wide variety of cements work at low speeds. Historically,
grinding wheels were often simply cut from sandstone, whose quartz
grains are hard enough to cut steel but not tungsten carbide; they are
typically bonded together by calcite deposited hydrothermally.
Wheels using the “superabrasives”, diamond and cubic boron nitride,
commonly use metals as binders.

As mentioned above, bonded-abrasive sticks can also be used to
dress bonded-abrasive grinding wheels. They can be made in the
same way as the wheels, but are normally more porous. Traditionally
this porosity is achieved in a similar way to foamed fired-clay pottery,
with a filler that burns out during firing, but, for low-firing binders

https://www.youtube.com/watch?v=rXA4x5Cjfg8
https://www.youtube.com/watch?v=rXA4x5Cjfg8

like rubbers and shellac, a lower-boiling-point filler such as
naphthalene is needed.

Grinding done fast can easily produce temperatures high enough to
dissolve diamond into transition metals like iron, so diamond abrasives
are usually not used on metals. Cubic boron nitride is nearly as hard
and does not suffer from this problem. Also, diamond burns in air at
650°, while boron nitride does not burn at all — it forms an
impermeable boria layer (though this melts at 490° and starts
vaporizing at 1100°, well below its boiling point of 1860°), then begins
to react with transition metals around 1400°.

Silicon carbide abrasives don’t last as long as alumina, accounting
for their lower popularity despite their higher hardness.

Sometimes the ratio between the workpiece wear and the
grinding-wheel wear is called the “G ratio”; the G ratio depends on
the abrasive material, the bond, machining speed, feed rate, and
workpiece material. Typical G ratios are 2—200, but can even be
smaller than unity. This is orders of magnitude smaller than the ratio
between the wear on a machining tool and the chips removed from
the workpiece, which is in the neighborhood of tens of thousands up
to millions (p. 251), so in the machine shop grinding is only used as a
finishing operation, similar to die-sink EDM. This permits a
machining CFS to achieve much higher offspring numbers than a
simpler grinding CFS.

So, among the geometry-production CFSs in modern machine
shops, we find: hardened steel cuts steel, which is then hardened,
then ground with an aluminum-oxide grinding wheel, which in turn
is dressed with a steel star wheel, which was also cut with hardened
steel; tungsten carbide is ground with a diamond wheel, which is
dressed with a silicon-carbide dressing stick, and both the wheel and
the stick were cast in steel molds cut with tungsten carbide;
silicon-carbide grinding wheels are dressed by grinding them with
other silicon-carbide wheels; and many variations.

Tungsten carbide cutters are themselves mostly shaped by other
processes and may not be ground at all; in particular, they are mostly
made by hot isostatic pressing (“HIP”) of tungsten-carbide powder,
cemented with cobalt. This is done mostly with steel equipment
made by the processes described above.

T I’'m not sure whether zirconia can be used to cut tungsten
carbide, why nobody makes grinding wheels out of tungsten carbide,
or why zirconia is usually used together with aluminum oxide instead
of alone.

1 However, in the same video, Martin also claims that tungsten
carbide is made by sintering tungsten with cobalt, so he may not be an
entirely reliable narrator.

Electrochemistry, including ECM (“electrochemical
machining”) and electrodeposition

This involves several different applications of the same process, one
which is somewhat less familiar from daily life than grinding, cutting,
and spark erosion. It involves a current between two electrodes in an
electrolyte; typically the electrolyte is aqueous, although ionic liquids
are possible, including deep eutectic systems.

A paradigmatic case is nickel plating of steel, in which a nickel
anode and steel cathode are immersed in a solution of, for example,
sodium chloride. The power supply sucks electrons out of the nickel
anode, ionizing nickel atoms at the surface of the electrode, which
float freely in the electrolyte as positive Ni?* ions, attracted to the
negatively charged cathode, where they are reunited with electrons
and form metallic nickel again. Thus the anode is gradually dissolved
while metal is deposited on the cathode.

In this case the sodium does not deposit on the cathode because it is
much easier to ionize — its ionization energy is 495.8 kJ/mol, its
reduction potential is -2.71 volts, and its electronegativity is 0.93
Pauling units — not only than the nickel, but even than the water
itself. Nickel’s ionization energy is 737.1 kJ/mol (and its second
ionization energy is 1753.0 kJ/mol), its reduction potential to the
hydroxide is -0.72 volts, its reduction potential to the nickel(II) ion is
-0.25 volts, and its electronegativity is 1.91 Pauling units. Water’s
reduction potential to electrolyze hydrogen is -0.8277 volts. So nickel
precipitates at a lower voltage than is required to produce hydrogen,
and hydrogen is produced at a lower voltage than is required to
produce sodium, although mercury electrodes can change the
situation by amalgamating the produced sodium.

(I’'m not sure about this, for a couple of reasons. Nickel cations go
into the solution, turning it light green, but the bulk solution does not
become positively charged like a positive electret, so either it must be
losing other cations like the sodium, or it must be gaining additional
anions to compensate, which would have to be hydroxyl anions
formed by producing hydrogen gas. But nickel chloride is highly
acidic, not basic.)

Because the nickel’s crystal structure is relatively compatible with
the steel’s, it can form a strongly adherent film on the surface.

This process, and analogous processes using other metals, is used in
seven main ways, three of which are more or less geometry
production:

* Electroplating of a thin film of metal on the surface of some
substrate, which might even be a film of graphite paint. This can be
used for appearance’s sake (as in the case of gold-plating base metals
for costume jewelry) or to modify some other aspect of the object’s
properties. For example, steel thus plated with nickel or chrome is
harder and less prone to corrosion. (I think it might also be less prone
to fatigue.)

* Galvanoplasty of bulk metal shapes, also known as electroforming
or electrotyping, where the electroplating action is continued until it
is much thicker than just a thin film. Historically geometry was
imposed on the resulting shape by depositing it on the inside of a
mold, like slipcasting of pottery, or on the outside of a mandrel in the
shape of the desired object, but nowadays it should feasible to use
electronic control of anode position and current to deposit metal
selectively. Electroforming can hit nanometer tolerances, thus being
suitable for reproduction even of holograms. Sometimes the term
“electroforming” is limited to the case where the mandrel or mold is
conductive and “electrotyping” to the case where it is not.

* Electrochemical machining simply reverses the roles of the

https://en.wikipedia.org/wiki/Electronegativity

electrodes from galvanoplasty: instead of using the cathode as the
workpiece and the anode as the tool, it uses the anode as the
workpiece and removes parts of it using the cathode, much like
EDM. But EDM passes a current between electrodes separated by a
dielectric by producing an avalanche breakdown of that dielectric
which produces plasma hot enough to vaporize part of the workpiece
electrode and, usually, the tool electrode. ECM, by contrast, passes a
current between electrodes separated by an electrolyte, carried by ions.
As with EDM, by positioning the tool electrode, erosion can be
carried out selectively in some places and not others.

The other uses of electrochemistry are corrosion removal, sacrificial
anode corrosion protection, electrochemical batteries, and
electrowinning of metals, which are not geometry-reproduction
processes and so do not concern us here.

There is a gray area between electroforming and electroplating,
“dimensional recovery”, where a film is plated onto a metal part to
enlarge it by microns to hundreds of microns. Since the non-mandrel
side of the electroformed object has relatively uncontrolled geometry,
this is usually preliminary to a later subtractive process such as
grinding which produces the final geometry.

The electrochemical processes, both deposition and erosion, take
place faster at some places and times and slower at others. They can
be limited by ionic availability, especially for deposition, and by
voltage. Generally the deposits are smoother when the limit is from
ionic availability, while voltage limits tend to deposit dendrites (I do
not understand why) so it is common to add organic thickeners to the
water as “leveler brighteners” — originally gelatin and nowadays
mostly secret chemicals, although some people have reported success
with things like dishwashing detergent, vanillin, and corn syrup.
(There are other kinds of “brighteners” also used in electroplating
which work by other means.)

There have been some experiments using electrochemical
machining to shape nonconductive materials such as soda-lime glass;
the idea is that the electric field through the workpiece is balanced by
an accumulation of ions on its opposite surfaces, one of which (in
close proximity to a “cutting” electrode) is attacked by them. Since
this section is dedicated to CFSs that are demonstrated to work, I will
not further consider here these experiments, nor other possibilities
like using anodic dissolution as a source of divalent cations to
precipitate silicates, phosphates, organic anions, and so on.

In cases where dissolution of an anode is unacceptable, for example
because no suitable anode is available, anodes of graphite, amorphous
carbon, platinum, or palladium can be used; these will not dissolve
anodically. I assume this is because they’re held together by covalent
bonds rather than metallic bonds, but I don’t really know.

Deposition of metal onto the cathode is unavoidable — even coal
and graphite can be electroplated, and have been since the very
inception of the process — but if the cathode is not itself vulnerable to
such erosion, the deposits can be removed thereafter simply by
reversing the current.

A simple geometric CFS using electrotyping might make a mold
using wax, paint graphite onto it, electrotype copper onto the

graphite, remove the copper from the mold, then cast a new wax
mold on the copper. A more advanced version that avoids the
dimensional-imprecision problem of wax shrinkage would use a
parting layer, perhaps of graphite dust, to electrotype copper directly
onto copper. My understanding is that this was common practice
from a year after the invention of the process in 1848 until the 1930s.

A more complex geometric CFS using electrotyping and
electrochemical machining would first use moving electrodes to
selectively electrodeposit a metal, such as copper, into a rough
pattern, then use electrochemical machining with moving electrodes
to trim it to the precise shape. Each of these processes is individually
well-explored.

Resin casting

A soft resin such as latex or silicone can form a mold for casting a
hard resin such as a polyester or epoxy, and vice versa. Moreover,
either type of resin can be used to manipulate the other kind in its
semi-polymerized state. Resin polymerization differs from the
liquid—solid phase change of conventional forms of casting in that it
does not necessarily, or indeed normally, involve any change in
dimensions. (Dimensional changes can be achieved by impregnating a
soft resin with a solvent before or after casting, respectively shrinking
or growing the product.) Resin casting is used by the Grating Lab to
mass-produce research-grade diffraction gratings from a single master
grating ruled on glass by a ruling engine.

Resin casting can of course also make molds for many other kinds
of casting, use forms or patterns made by them, or modify the resin
systems with fillers.

Others

There are a lot of other possibilities; I will mention a few of them
here.

Selective etching is widely used in semiconductor and MEMS
manufacturing; for example, hydrofluoric acid removes silicon
dioxide, but not silicon or organic photoresists, while piranha removes
organic photoresists but none of the layers in chips, including silicon
dioxide. But it’s also used in more prosaic ways: hot water with alum
in it, for example, will eat steel but not aluminum, copper, tin, or
zing, a fact commonly used to remove broken drillbits; so you could
imagine a CFS using alum in place of grinding to shape steel cutting
tools for brass. Nonpolar solvents like carbon dioxide, alcohol,
acetone, xylene, or toluene will usually dissolve many nonpolar
organic resins but usually not sugar or ionic solids, while polar
solvents like water, ammonia, glacial acetic acid, and ionic liquids
(including deep eutectic systems) can dissolve many ionic solids like
salt, sugar, or potassium silicate, but usually not nonpolar solids.

Bread dough is easy to shape. Calcining bread in a reducing
atmosphere produces carbon foam, which is refractory to 6000°, more
than hot enough to bake more bread in and even calcine it, or for that
matter for casting metals, carbothermic reduction of iron, or even
carbothermic reduction of aluminum. On Earth such a device may
oxidize on the outside during operation, where it’s exposed to air, but
this can be tolerated in various ways: making it large enough to

survive one or more operations, coating the outside with a layer of
something more resistant to oxidation (but not necessarily heat), or
operating it in deep space or in a nitrogen atmosphere, for example.
At human scales, amorphous carbon foam is a disappointingly weak
material, but this is less of a problem at the micron scale where all the
real action is.

Above I mentioned that clay bodies for pottery form a
single-material CFS because they can be sintered into a kiln suitable
for firing more of the same kind of clay; this is because of a curious
property of sintering, that the material being sintered holds its form
throughout, though not its dimensions. This is a general property of
the sintering process, not limited to clay; granular polymers, glasses,
metals, and other ceramics can all be sintered at temperatures below
their melting points and while holding their shapes, and this is
routinely done in many industrial processes. So in fact nearly any
solid can be granulated and used in place of clay with appropriate
binders, sintering aids, and atmosphere, and adequate temperature
control; thus you can form a furnace capable of doing more of the
same kind of sintering.

I have previously written about the possibility of using
solid-solution “hardening” on sintered objects. The general outline of
the process is that, before sintering, the “green” object contains at
least a low-melting sintering aid and a high-melting filler; during
sintering, the sintering aid solidifies and densifies the object (perhaps
without fully melting, and perhaps partly dissolving the filler). Then
you soak the object at a near-sintering temperature for quite a while
so that the sintering aid diffuses into the still-solid filler. Given
sufficient solubility of the sintering aid in the filler, the interstitial
areas with pure sintering aid will disappear, leaving only solid
solutions of the two (or more) materials, with the expanded solid
grains in intimate contact with one another. For suitable mixtures,
the resulting solid solution will remain stable even up to considerably
higher temperatures.

If you squint hard enough, you could describe the hardening
process of plaster of paris in this way; calcium sulfate hemihydrate is
the “filler”, water is the “sintering aid”, and room temperature is the
“sintering temperature” at which the water dissolves into the plaster,
forming calcium sulfate dihydrate as the solid solution, which then
remains stable up to some 150°. I suspect a similar dynamic is at play
in the well-known use of boron donors as fluxes for soda-lime quartz
glass, which I believe produces a borosilicate glass with a higher
softening point than even the original soda-lime glass. (Boria melts at
only 450°, but laboratory borosilicate glasses like type-7740 Pyrex can
be used up to 500°, soften around 820°, and finally melt at 1648°, a
temperature at which neat boria vaporizes rapidly.)

If the sintering aid forms a eutectic with the filler, it need not even
be lower-melting; for example, a tiny amount of table salt can be
used in this way to stick ice cubes together at temperatures between
the melting points of the eutectic (-21.2°) and pure water ice (0°),
even though salt’s melting point is higher. The eutectic water-salt
solution is initially liquid at the interface between ice and salt crystals,
but after several minutes the salt diffuses into the ice until no salt or
eutectic is left. So you can do this process at -20° and get a solid that

is stable, though weak and creep-plagued, up to o°.

A very large number of binary, ternary, and quaternary
solid-solution systems can be coaxed to perform in this
super-sintering way at the right temperature in the right proportions.
(The need to control the ice—salt reaction described above to within
1+10.6°, i.e., £3.9%, may be atypically demanding.) Moreover, their
properties can be improved further by using the sinterable material
itself as a binder for a different filler that is inert at the process
temperatures; for example, you could thus use salted ice as a binder
for sawdust (pykrete), or brass as a binder for steel (whether in the
form of powder, chopped fiber, hollow spheres, solid sphere