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Abstract
Using a metric based on solutions for the scalar  of  a 5-dimensional  Kaluza model  in the Einstein field
equations allows to derive a convergent series of particle energies, to be quantized as a function of the fine-
structure  constant,  α,  with  limits  given  by  the  energy  values  of  the  electron  and  the  Higgs  vacuum
expectation value. The value of α can be given numerically by the gamma functions of the integrals involved,
extending the formalism to N-dimensions yields a single expression for the electroweak coupling constants.
The  series  expansion  of  the  energy  equation  provides  quantitative  terms  for  Coulomb,  strong  and
gravitational interaction. A scalar field term in the field equations gives a value for the cosmological constant
in the correct order of magnitude.
The model can be expressed ab initio without use of free parameters.

1 Introduction 
General  theory  of  relativity  (GTR)  is  a  fundamental  concept  connecting  energy  and  energy  related
phenomena with the geometry of space-time, established by Einstein for gravitational effects in 4 dimensions
[1]. In 1921 Kaluza demonstrated that GTR may be unified with Maxwell's equations of electromagnetism in
a 5 dimensional model [2], mainly known as Kaluza-Klein theory today, including the contributions of Klein
[3] who introduced the idea of compactification and attempted to join the model with the emerging principles
of quantum mechanics. This version became a progenitor of string theory. The classical Kaluza model was
developed further  as  well  [4],  Wesson and coworkers  elaborated a  general  non-compactified  version  to
describe phenomena extending from particles to cosmological problems. The equations of 5D space-time
may be separated in a 4D Einstein tensor and metric terms representing mass and the cosmological constant,
Λ. Particles are photon-like in 5D, traveling on time-like paths in 4D. This version is known as space-time-
matter theory [5]. Both successor theories focus more on general relationships than providing quantitative
results for specific phenomena such as particle energies.
The model described in the following evolved from a heuristic approach and does not attempt to give a
complete solution for a 5D theory but to demonstrate that Kaluza's ansatz provides very  simple, parameter-
free and in particular quantitative solutions for a wide range of phenomena. The basic equations will be
picked from the existing literature. The main innovation will be to interpret the equations in their entirety as
related  to  electromagnetism which  essentially  means  using  an  electromagnetic  constant  in  place  of  the
gravitational term, G/c0

4, in the field equations. The framework of Kaluza's equations suggests to use either
or and while Kaluza noticed the incompatibility of the constant  G with the energy scale of particles he
seemingly did not inquire thoroughly into the alternate possibility. This shift  in order of magnitude will
create a space-time curved strong enough to fit the effects of electromagnetism and to localize a photon in a
self trapping kind of mechanism. Gravitational phenomena will be recovered via a series expansion of the
energy equation.
GTR provides a flexible system of 2nd order differential equations which may reproduce quantum mechanical
expressions such as the Klein-Gordon-equation for spinless particles [5]. To include rotation /spin, the basic
theory has to be extended, examples are Einstein-Cartan or Twistor models. Spin is implicitly introduced in
Kaluza's ansatz as well, since electrodynamics allows solutions for circular polarized light.
For the model presented here it might be helpful to use the following visualization: a photon with its intrinsic
angular momentum interpreted as having its E-vector rotating around a central axis of propagation 1 will be
transformed into an object that has the - still rotating - E-vector constantly oriented to a fixed point, the
origin of the local coordinate system used, resulting in an SO(3) object with point charge properties 2.  The
vectors E, B and V of the propagation velocity are supposed to be locally orthogonal and subject to the
standard Maxwell equations, however, on the background of an appropriately curved space-time.  
The use of an electromagnetic constant in natural units in the field equations of the GTR / Kaluza framework

1 Angular momentum J = 1, symmetry SO(2) as projected in propagation direction;
2 Neutral particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector 
orientation and opposite polarity.
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and the assumption that the objects considered retain photon-like properties will be the only fundamental
assumptions needed in this model. 
The basic proceeding will be as follows:
Kaluzas 5D equations may be arranged to give
1.) Einstein-like equations for space-time curved by an electromagnetic stress-energy tensor plus a scalar
field term, Φ, (equ. (5)),
2.) Maxwell equations where the source depends on the scalar field,
3.) a wave-like equation connecting the scalar with the electromagnetic tensor (equ. (6)).
Using solutions for  the scalar  Φ of 3.) as ansatz in a general 4D metric will  yield electroweak coupling
constants  as geometric coefficients in 2,  3 and 4 spatial  dimensions and a convergent  series of particle
energies quantized as a function of the  fine-structure constant,  α, with its limits given by  electron and the
Higgs VEV energy. The series expansion of the incomplete Γ-function in the energy expression for a point
charge will include a term which at short range yields effects associated with strong interaction, at long range
gives a quantitative term for gravitational interaction. The scalar field term of 1.) may be considered to be a
natural candidate for the cosmological constant, Λ, which will give a result in a correct order of magnitude if
the basic coefficients of this model will be used.
The relation of the masses e, µ, π with α was noted first in 1952 by Y.Nambu [6]. M.MacGregor calculated
particle mass and constituent quark mass as multiples of α and related parameters [7].
To focus on the more fundamental relationships some minor aspects of the model, including topics such as
mean life time and magnetic moment, are exiled to an appendix, related topics to be marked as [A]. Typical
accuracy of the calculations presented is in the order of 0.001-0.0001 3. QED corrections are not considered
in this model.

2 Calculation
2.1 System of natural units
It is common to define natural electromagnetic units by referring them to the value of the speed of light. The
same will be done here, thus subscript c will be used. The freedom in defining the units will be used to obtain
a constant appropriate to replace G/c0

4 in the Einstein field equations (EFE). Retaining SI units for length,
time and energy the electromagnetic constants may be defined as:

c0
2  = (εc μc)-1 (1)

 with εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 

From the Coulomb term b0 = e2/(4πε0) = ec
2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary

charge: ec
2 = 9.671E-36 [J2]. In the following ec

 = 3.110E-18 [J] and ec/εc = 9.323E-10 [m] or related terms
(including 4π) may be used as natural unit of energy and length. 
The constant G/c0

4 [m/J] in the EFE will be replaced by:

(8 π )G /c0
4      =>     ≈   − 1

εc

    (2)

in an accordingly modified field equation:

  Gαβ  = Rαβ  - 1
2

gαβ R  = − 1
εc

T αβ   (3)

2.2 Kaluza theory
Kaluza theory is an extension of general relativity to 5D space-time with a metric given as  [5, equ. 2.2]:

g AB  = [(gαβ−κ2 Φ2 Aα Aβ ) −κ Φ2 Aα

−κ Φ2 A β −Φ2 ]     (4)

In (4) roman letters correspond to 5D, greek letters to 4D,  (ct, r, ϑ, φ, 5 th coord.)  = (x0, x1, x2, x3, x4), κ2

corresponds to the constant in the field equation (3) 4, A is the electromagnetic potential. In the context of the

3 Including e.g. errors due to the numerical approximation of Γ-functions.
4 κ2 = 16 πG/c0

4   => κc
2  ≈  -2/εc; the unit system of 2.1 gives e.g. terms 1/εcTEM

 ~ 1/εc(εcE2 + B2/µ) = (E2 + c0
2B2)[m-2];
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static approach of this model A will  be assumed to be represented by the electric potential, φ(r) ~  ρ/r ~
ec/(4πεcr). Assuming 5D space-time to be flat, i.e. RAB = 0, gives for the 4D-part of the field equations [5,
equ. 2.3]:

Gαβ  = 
κ2 Φ2

2
T αβ

EM  - 
1
Φ

(∇ α(∂αΦ)  - gαβ □ Φ)     (5)

From R44 = 0 follows:

□ Φ  = − κ2 Φ3

4
Fαβ Fαβ     (6)

In the following only the diagonal part of (4) and only derivations with respect to r of a spherical symmetric
coordinate system will be considered.  Equation (6) will be used to obtain an ansatz for a metric to get a
solution of the 00-component in (3).
 A function ΦN

 ΦN  ≈ ( ρ
r )

N−1

eν  = ( ρ
r )

N−1

exp (-( ρ
r )

N

)              with   ν  = −( ρ
r )

N

(7)

yields solutions for an equation of general type of (6), where  the term of highest order of exponential N,
given by Φ'', ~ ρ3N-1 /r3N+1 may be interpreted to provide the terms for A' ~ φ' ~ ρ/r2 (using [5, equ. 6.76] for
the 2nd term in (8), g00 ~ e2v (see [A4], [A5])):

ΦN ' '   ~  ( ρ3 N−1

r3N +1 )eν  ~ ΦN
3 e−2ν( A0 ')2  ≈ [( ρ

r )
N−1

eν ]
3

e−2 ν( ρ
r2)

2

   =   ( ρ
r )

3 N−3

eν  ( ρ
r2)

2

(8)

R44 = 0 does not have to be obeyed strictly and is secondary to condition  RAB = 0. The significance of (8) lies
in providing the relation of exponential  and pre-exponential  factor and first  of all  in the requirement to
contain A ~ ρ/r in the terms for ΦN. 5

2.3 Example for metric, point charge energy
In the following equ. (7) with N = 3, which is supposed to represent 3 spatial dimensions, see chpt. 2.6, will
be used as ansatz in a general metric. 
There are a lot of possible solutions using such an ansatz and one may choose the one that fits experimental
observations best. The following specific examples are intended to serve as proof of concept, some aspects
considered for choosing them include:
a) a spherical symmetric coordinate system and metric will be used, with opposite sign of time and radial
component, yet some additional freedom in angular components,
b) in particular, since rotation (SO(3)) of an E-vector with extension in angular direction will result in some
kind of self interaction increasing with r ->0 unless space(-time) is curved in such a way as to prevent this,
the r2-term in the angular coordinates has to be canceled, implying positive curvature and an expansion of
curved space-time with r2 at any given r, i.e. R(r) ~ - 1/r2, has to hold for the Ricci scalar,
c) it might be necessary to differentiate between ρ in the exponent and the prefactor, resulting in terms  
(ρ*/r)N-1exp(-(ρ/r)N),  ρ* ≠  ρ ,
d) simplicity 6.
In [A4] the solution for G00 of two examples of a metric of type

gαβ  = [(ρ *
r )

2

exp(−a(ρ
r )

3

)] p
,   −[(ρ *

r )
2

exp(−b(ρ
r )

3

)] p
,   −/+[(ρ *

r )
2

(−c(ρ
r )

3

)] q
r2 ,

  −/+[(ρ*
r )

2(−c(ρ
r )

3)] q

r2sin2 ϑ

(9)

will be given in detail for p = 1, q = 0 and p = 2, q = 1 7. 

5 Using terms of ΦN for canceling of similar terms of other Rαβ components may in fact increase the resources to obtain 
a specific solution.
6 including dimensionality: a 5D solution should refer to a flat 5D space-time [5], thus a 4D metric might be sufficient 
as solution;
7 Terms with p = 2 correspond to Φ being squared in g44 of (4).
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Coefficients ρ will be defined as ρ*= ec/(4πεc), ρ ~ α(n) ρ* (cf. equ. (22)).
For both cases the Einstein tensor component G00 will be (with av = 2v = (ρ/r)3):

G00 = -/+ ρ*2/r4 e2v  (10)

and using equ. (2)f will give (w = energy density):

-/+
ρ *2

r 4 e2v  ≈ -
w
εc

     =>     
ε c ρ *2

r4 e2v  ≈ +/- w     (11)

The volume integral over (11) gives the particle energy according to:

W n  = εc ρ *2  ∫
0

rn

e2v

r4
 d3 r  = 4 π ε c ρ *2  ∫

0

rn

e2v

r2
 dr (12)

Solutions for integrals over ev times some function of r can be given by:

∫
0

rn

exp(−(ρn /r)
3)r−(m+1) dr  = Γ (m/3 ,(ρn /rn)

3)  
ρn
−m

3
  =  ∫

(ρn/rn)
3

∞

t
m
3

 −1
e− t dt  

ρn
−m

3
(13)

with m = {..-1;0;1;..}. The term Γ(m/3, (ρn/rn)3) denotes the upper incomplete gamma function, given by the Euler
integral of the second kind 8. In the range of values relevant in this work, for m ≥ 1 the complete gamma function
Γm/3 is  a  sufficient  approximation,  for  m  ≤  0  the  integrals  have  to  be  integrated  numerically,  requiring  an
integration limit, see 2.4. Equation (12) will give: 

W n, elstat  = 4 π ε c ρ *2  ∫
0

rn

e
2v

r2
 dr =  b0 Γ(1/3, (ρn/rn)3) ρn

-1/3 ≈  b0 Γ1/3 ρn
-1/3    (14)

resulting in  the integral  for  the energy of  a point  charge term modified by e2v.  Particles  are  supposed to  be
electromagnetic objects possessing photon-like properties, thus it will be assumed that particle energy has equal
contributions of electric and magnetic energy, i.e.

Wn = 2Wn,,elstat = 2Wn,mag = Wn,elstat + Wn,mag ≈  2 b0 Γ1/3 ρn
-1/3 . (15)

2.4 Angular momentum, coefficient σ 
Euler integrals of (13) with  m ≤ 0 require a  lower  integration limit,  (ρn/rn)3 that may be derived from the
condition for angular momentum |J| = 1/2 [ħ]. 
A simple relation with angular momentum J for spherical symmetric states will be given by applying a semi-
classical approach using 

J  = r 2 x p(r1)  = r 2 W n(r1)/c 0 (16)

with Wkin,n = 1/2 Wn , using term 2b0 of equ. (15) as constant factor, integrating over a circular path of radius
|r2| = |r1| and particle radius, rn, or for the Euler integral, (rn/ρn)3, as integration limit. Equation (13) will give
for m = 0:

|J| = ∫
0

rn

∫
0

2 π

J n(r)dφ dr  = 4 π
b0

c0

 ∫
0

rn

e2 v r−1 dr  = 4 π αħ∫
0

rn

e2 vr−1 dr  = 4 π
3

b0

c0
∫

(ρn /rn)
3

∞

t -1 e-t dt ≡ 1/2 [ħ] (17)

to obtain J=1/2 the integral over e2vr-1 of (17), has to yield α-1/8π.

∫
0

rn

e2 v r−1 dr  = 1/3 ∫
(ρn /rn)

3

∞

t-1 e-t dt  ≡  α−1

8 π
 ≈ 5.45  (18)

Relation (18) may be used for a numerical calculation of the integration limit, (ρn/rn)3, representing spherical
symmetry and J = 1/2 9.
The existence of an integration limit implies a differential equation of a general type: 

−r d2 ev

dr2  +  
ρ3

r3

de v

dr
 −  

ρ3

σ  r 4 e v  =  0  (19)

8 Euler integrals yield positive values, the absolute sign used for e.g. |Γ-1/3| is due to the sign convention of Γ-functions.
9 The geometric expression of σ0 as given in (23), [A6] may conversely used as starting point to define J, see 2.6 as 
well. 
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with a solution

ev  = exp(−( ρn
3

r3
+[( ρn

3

r3 )
2

– 4
ρn

3

σ r 3]
0.5

)/2)       (20)

in place of the simple exponential of (7). From (20) follows:

rn = (σρn
3/8)1/3 (21)

For higher angular terms, l -> ∞, σ will approach ≈1, (20) will approximate ev of equ. (7)ff. Equation (7) may
serve as an excellent approximation of (20) for any σ if σ will be included in the parameter ρn:

2v = -(ρn /r)3 ≈ -2σα(n)(ec/(4πεCr))3      (22)

Coefficient α(n) will be a particle specific term, coefficient σ an integration limit term related to symmetry
that may be given in various useful expressions for spherical symmetry as σ0 (see [A1]):

σ0 = 8 (rn/ρn)3
 = (1.5133 α-1 2/3 |Γ-1/3|)3  = 1.51333 σ* = 8(4 π|Γ-1/3|

3

3 )
3

= 1.772E+8 [-]       (23)

2.5 Photon energy
In the following a term for length expressed via the Euler integral of (13) will be introduced for λC,n: 

λC,n = ∫
0

λC , n

e2 v dr  = ρn /3 ∫
(ρn/ λC ,n)

3

∞

t -4/3 e-t dt ≈ Γ(-1/3, (ρn/λC,n)3)  ρn/3 (24)

In the limit (ρx/rx)N ->0

Γ(-1/N, (ρx/rx)N) = ∫
(ρ x /r x )

N

∞

t−(1 /N+1 )e−t dt ≈ N (ρx/rx)-1           (25)

holds.  Equation  (25) inserted  in  the  right  side  of  (24) gives  back  λC,n,  however,  (24) may  be  seen  as
expressing λC,n in terms useful for this model, i.e. ρn and Γ-functions, if equ. (25) is used for calculation of the
incomplete Γ-function, using the integration limit (ρn/rn)3 = 8/σ according to chpt. 2.4 in the Euler integral.
This gives in good approximation: 

λC,n  ≈ 36π2  ρn/3 |Γ- 1/3|       (26)

With (26) energy of a photon can be expressed by:

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

e2 v dr

=
3hc0

36 π 2|Γ−1/3|ρn

(27)

2.6 Fine-structure constant, α
The energy of a particle  is assumed to be the same in both photon and point charge description. Equating
(15) with (27) and rearranging to emphasize the relationship of α with the gamma functions (Γ1/3 = 2.679;
|Γ-1/3| = 4.062) gives as first approximation (note: h => ħ):

4 π Γ 1/3|Γ−1/3|
0.998

 = 
9 hc0

18 π b0

=
ħ c0

b0

= α-1                  (28)

The agreement may be improved by using better approximations of the incomplete Γ-functions involved.
The concept for calculating the fine-structure constant  α may be extended directly to 4 and - with some
additional assumptions - to 2 dimensions, based on the integral over the N-dimensional point charge term
modified by a generalized exponential term, ΨN, with N ={2; 3; 4}:

Ψ N (r)  = exp(−( x
r )

N

)                (29)

This will give a point charge term (SN = geometric factor for n-dimensional surface, in case of 3D: 4π):

∫
0

r

Ψ N (r)r−2(N−1) dN r  = SN∫
0

r

Ψ N(r)r−(N−1) dr  ~ S N∫
0

r

ΦN d r (30)
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that will be multiplied by a complementary integral 

∫
0

r

Ψ N (r)r(N−3)dr      (31)

to yield a dimensionless constant. This results in (see [A6]):

α N
−1  =  

(2π )δ(N−2)

(2π )(N−2)  ∫
0

r

Ψ N (r)r−(N−1)dr∫
0

r

Ψ N (r) r(N−3) dr (32)

with N = {2; 3; 4} or in terms of the Γ-functions:

α N
−1  =  Sn

Γ+(Ψ N )Γ -(Ψ N)

N2  arg(Γ (Ψ N ))2
(33)

with Γ+/- (ΨN) being the positive and negative Γ-functions attributed to the integrals over ΨN and arg(Γ(ΨN))
being the argument of the Γ-functions attributed to ΨN  10, i.e. the three coupling constants of the electroweak
charges g', e and g can be combined in a single function of spatial dimension only 11.

Table 1: Values of electroweak coupling constants

The ratio of αe and αg represents the Weinberg angle, θW, and may be expressed as:

sin2θW  = 
αe

αg

 = 
π2

4 Γ1/3|Γ−1/3|
 = 0.2263   (34)

(Experimental values: PDG [8]: sin2θW = 0.2312, CODATA [9]: sin2θW = 0.2223). The mass ratio of the W-
and Z-bosons will be given by cos θW,calc = (mW/mZ)calc = 0.8796 = 0.998  (mW/mZ)exp  [10]. 

2.7 Quantization with powers of 1/3n over α
In a general case ρn may be given as product of ρ*= ec/(4πεc) [m], factor 2σ and a partial product of particle
specific dimensionless coefficients, αn, of succeeding particles representing the ratio ρn+1 / ρn (cf. (22)): 

ρn  ~ ρ 'Πk=1
n αk  = ρ 'Πn            n = {1;2;..}      (35)

Index n will  indicate spherical symmetric solutions and serve in the following as equivalent of  a radial
quantum number. For the angular terms of  Φ(r, ϑ, φ), to be indicated by index l, only rudimentary results
exist,  their contribution has to be incorporated in parameter σ.  Inserting (35) in the product of the  point
charge and the photon expression of energy, (15) and (27), gives for the square of energy Wn

2 = Wpc,n Wphot,n: 

W n
2  = 2b0 hc0  

∫
rn

e2 v r−2 dr

∫
λC , n

e2 v dr

~
1

ρn
2 ~

α1
1 α2

1 .....α n
1

α 1
3 α2

3 ....α n
3                     (36)

The last expression of (36) is obtained by expanding the product Πn
 2 included in ρn

 2 of (35) with Πn
1. 

The only non-trivial solution for Wn
2 where all intermediate particle coefficients cancel out and Wn becomes

a function of coefficient α1 only is given by a relation αn+1 = αn
1/3 :

W n
2  ~ 

α1 ^(3/3n)

α1
3                                           n = {1;2;..}                12 (37)

10 I.e. in 4, 3 and 2D Γ+/- (ΨN) will be Γ+/-1/2, Γ+/-1/3 and Γ(0, 8/σ2D) = 7.872 ≈ (2π3)0.5 (numerical calculation);  
arg(Γ(ΨN)) will be 1/2, 1/3, and for 2D ad hoc arg(Γ(0)) = 1;
11 As with all calculations in this work the calculation for coupling constants refers to a rest frame and thus corresponds
to an IR limit. The geometric character of the “constants” implies that their values are subject to relativistic effects in 
other reference frames.
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4D

2D

3D 137.036

Dimension - 
space

coupling 
constant

Value of inverse of coupling constant, α
N

-1

α(g) 2π2 Γ+1/2 |Γ-1/2| 4/16  =  π3  = 31.006

α(g') 2π Γ(0, 8/σ2D)2 /4  =  π4  = 97.409

α(e) 4π Γ
+1/3 

|Γ
-1/3

| 9/9 = 4π Γ
+1/3 

|Γ
-1/3

| =



Including the other factors contained in (36) gives the square of (15) (term in square brackets cancels via (28): 

W n
2  = 2b0 hc0  

∫
r n

e2 v r−2 dr

∫
λC , n

e2v dr

 = 
4 π b0

2

   α
 
∫
r n

e2v r−2 dr

∫
λC , n

e2v dr

 = 
4 b0

2 Γ1 /3
2

9 [α 4 π Γ1/3|Γ−1/3|] ρn
2 = 2 b0 Γ1/3 ρn

-1/3 (38)

According to chpt 2.4 ρn has to include additional Γ-, α-terms, suggesting to test such a term as candidate for
α1.  Identifying α1 as α1  = α and comparing with experimental particle data shows that an expression for
particle energies can be given using the muon as reference state, with (37) given as:

(α ^(3 /3n)
α 3 )

0.5

 = 
α ^(1.5/3n)

α 1.5  = Π k=1
n α ^(−3 /3k)                                                 n = {1;2;..}    (39)

and the corresponding term for particle energies relative to the muon state will be:

W n /W µ  = Πk=1
n α ^(−1/3k)              n = {1;2;..}   (40)

The partial product of (40) may be extended to include the electron by inserting ad hoc an additional factor ≈
3/2 to represent an irregularity due to the energy ratio of e, µ, Wµ /We = 1.5088 α-1 (see 2.4, [A1]). In chpt.
2.11 it  will  be demonstrated that  a fundamental  relationship exists  between the electron and the Planck
energy, implying the electron to correspond to a ground state term.  With We as ground state Wn would be
given by (36)ff relative to the electron state as:

Wn /We  ≈
3
2

Πk=1
n α^(-3/3k ) = 

3
2

 Πn
−1     n = {1;2;..}      (41)

for spherical symmetric states, see table 2. The electron coefficient in the exponential v, equ. (22), and the
energy term, equ. (40), would be given as:

v  ~ α e
3  ≈ (3 /2)3 α9      and     W e  ~ αe

−1  ≈ 2 /3  α−3           (42)

2.8 Upper limit of energy
Non-spherical particle states should exhibit lower values of σ (and rn). The variable part in σ is given by the
term (1.5133 α-1)3 in equ. (23), leaving the minimum for σ, defined by the Γ-term in the integral expression
for length, (24)f, and the integers in (23) to be: 

σmin = (2/3 |Γ-1/3|)3 (43)

The maximum angular contribution to Wmax would be:

ΔWmax, angular  = 1.5133 α-1   (44)

The limit of the partial product in (41) for a given l is  α-1.5, the limit term of  ≈  3/2 by 1.5066 [A1], thus
according to (41) and (44), the maximum energy will  be Wmax = We 1.5066*1.5133 α-2.5 = 4.103E-8 [J]
(=1.041 Higgs vacuum expectation value, VEV = 246GeV = 3.941E-8 [J] [11]).
In the simple visualization sketched in the introduction the “rotating E-vector” might be interpreted to cover
the whole angular range in the case of spherical symmetric states while an object with one angular node, as
represented by the spherical harmonic Y1

0 or an atomic p-orbital, might be interpreted as forming a double
cone. Increasing the number of angular nodes would close the angle of the cone leaving in the angular limit
case, l -> ∞, a state of minimal angular extension representing the original vector, however, extending in both
directions from the origin and featuring parity p= -1. Considering only „half“ such a state, extending in one
direction only and having p = +1, would feature an energy of 1.024 WHiggs, the energy value of the Higgs
boson. 

2.9 Other non-spherical symmetric states
Except for the limit case of 2.8 angular solutions for particle states are not known yet and to extend the
model to such states assumptions have to be made.
Assuming the angular  part  to  be related to  spherical  harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1st angular state, Y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 (V = volume) is applicable for non-spherically symmetric states as well, this would give

12 For illustration purposes with α1 = α, n = 4:
α1 α1/3 α1 /9α1 /27

α3 α1α1/3 α1/9
 = α 1/27

α3
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W1
0/W0

0 = 31/3 = 1.44. A second partial product series of energies corresponding to these values (denoted y1
0)

approximately fits the data, see tab. 2. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0  , to
y1

0   which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 

Table 2: Particle energies for y0
0 (bold), y1

0  13; col.2: radial, angular quantum number; col.3: energy values of
[12] except* (see (48)); col. 4: α-coefficient, including (2/3) α-3 of electron (42); col.5: Wcalc calculated using
the slightly more precise [A2 (62)f] in place of (41), (50); ** see 2.8; Blanks in the table are discussed in
[A3].

2.10 Expansion of the incomplete gamma function Γ(1/3, ρn/r3), strong interaction term
The series expansion of Γ(1/3,(ρn/rn)3) in the equation for calculating particle energy (14)f gives [13]:

Γ (1/3 ,  (ρn/ r)3)  ≈ Γ1/3  - 3( ρn

r )+ 
3
4( ρn

r )
4

(45)

and for Wn(r): 

W n(r)  ≈ W n  - 2b0

3 ρn

3 ρn r
 + 2b0

3
4

ρn
4

3 ρn r4  = W n  - 
2b0

r
 + b0

ρn
3

2r 4       (46)

The 2nd term in (46) drops the particle specific factor  ρn and gives twice  14 the electrostatic energy of two
elementary charges at distance r. The 3rd term is an appropriate choice for the 0 th order term of the differential

13 up to Σ'0 all resonance states given in [12] as **** included;  Exponents of -9/2 for Δ and tau are equal to the limit of 
the partial product in (41); rn calculated with (21); 1.5133 approximated by 3/2;
14 Due to adding up the electromagnetic contributions in (15): Wn = 2Wn,el = 2Wn,mag = Wn,el + Wn,mag
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n, l J

Planck 1.0 E+21* - -

0, 0 0.51 1.0001 1/2 1412

1, 0 105.66 1.0001 1/2 6.83

1, 1 139.57 1.0919 0 4.74
K 495 see [A3] 0

2, 0 547.86 0.9934 0 1.32

2, 1 775.26 1.0124 1 0.92

2, 1 782.65 1.0029 1 0.92
K* 894 1

3, 0 938.27 1.0017 1/2 0.76

n 3, 0 939.57 1.0004 1/2 0.76
958 see [A3] 0

1019 see [A3] 1

4, 0 1115.68 1.0107 1/2 0.63

5, 0 1192.62 1.0047 1/2 0.61

Δ 1232.00 1.0026 3/2 0.59
1318 1/2

3, 1 1383.70 0.9797 3/2 0.53

4, 1 1672.45 0.9725 3/2 0.45

N(1720) 5, 1 1720.00 1.0047 3/2 0.43

1776.82 1.0025 1/2 0.40

Higgs 1.25 E+5 1.0230 0 0.006

VEV 2.46 E+5 1.04 0 0.003

Wn,Lit       
[MeV] 

α-coefficient (energy-term)    Πn
-1 

 equ (41) 

Wcalc/ WLit rn [fm] 
equ (21) 

(-1,∞)  (2/3 α-3)3 3/2 α-1 2                    
source term, relative to e ! 

0.9994  

rel. to e ! 

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 31/3 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) 31/3 

ω0  (α-3α-1α-1/3) 31/3 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'

Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ

Σ*0  (α-3α-1α-1/3α-1/9) 31/3 

Ω-  (α-3α-1α-1/3α-1/9α-1/27) 31/3 

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) 31/3 

tau+- ∞, 1  (α-9/2) 31/3

∞,∞ 
**

 (α-9/2) 3/2 α-1 /2

∞,∞ 
**

 (α-9/2) 3/2 α-1 



equation (cf. (19), [A1]) as potential energy term. It is supposed to be responsible for the localized character
of a particle state and may be identified with the “strong force” of the standard model as observable e.g. in
particle scattering.
According to this model it is suggestive to interpret strong interaction as evidenced in scattering events to be
due to  overlap of wave function  Ψ depending on: 1) comparable size and energy of wave functions, 2)
sufficient  net overlap.  Condition  1)  prevents  neutrino  or  electron  to  exhibit  effective  interaction  with
hadrons, condition 2) prevents interaction of the tauon which is at the end of the partial product series for y 1

0

and should exhibit a high, potentially infinite number of nodes, separating densely spaced volume elements
of alternating wave function sign 15. 

2.11 Gravitation
2.11.1 Planck scale
Gravitational effects may be recovered via the series expansion of chpt. 2.10, implying that the Coulomb
term b0 will be part of the expression for FG, i.e. the ratio between gravitational and Coulomb force, e.g. for
the electron,  FG,e /FC,e = 2.41E-43, should be a  completely separate, self-contained term. This is equivalent to
assume that gravitational interaction is a higher order effect with respect to electromagnetic interaction and
as such should be of less or equal strength compared to the latter. This suggests to use the expression

b0 = G mPl
2 = G WPl

2 /c0
4               (47)

as definition for Planck terms , giving for the Planck energy, WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αħc0/G)0.5 = 1.671 E+8 [J] (48)

With definition (48) one may express a quantitative relationship for the ratio of We and WPl as:

1.0006
W e

W Pl

 = 
αe

+3

2  ΔWmax ,angular

 = 1.51332 α10/2 = 4.903 E-22  = αo   (49)

i.e. the relation between the electrostatic part of We, elst =  We/2 and the electrostatically defined WPl is given
by αe

+3, i.e. the electron coefficient in ev, (42), corresponding to an extension of relation (41) for spherical
symmetric states beyond the electron, times the angular limit factor according to (44). In the next chapter a
derivation will be given for this relation originating in the third term of the energy expansion (46). 
With equ. (49) ρe

3 of the electron can be approximated by a particularly simple expression:

ρe
3 = 4π σ*α0 ρ*3 = 

σ0 *α 0

(4 π )2 (e c

εc
)

3

 = 1.286E-43 [m3]       16 (50)

Using [A1 (59)] to express factor 1.5133 gives:

( W e

W Pl
)

2

 = ( FG, e

FC , e
)

calc

 ≈ ( 1.51333 α 9

1.5133 α
−1

2)
2

 = ( (4π )2|Γ-1/3|
4 α12

2 )
2

 = 1.0012  (FG ,e

FC ,e
)

exp

 = 
G W e

2

c0
4
b0

 = α 0
2    (51)

Using (28) and [A2 (64)] for calculating We would turn G into a coefficient based on electromagnetic 
constants:

Gcalc  ≈ 
c0

4

4 π ε c
( 1

3 π2 /3  (|Γ−1/3|
Γ1/ 3

)
4

α12)
2

 ≈  
c 0

4

4 π ε c

 
2
3

 α24  = 1.0008G exp    (52)

2.11.2 Virtual superposition states
Within this model particles might interact via direct contact in place of boson-mediated interaction. The
particles are not expected to exhibit a rigid radius. Within the limits of charge and energy conservation a
superposition of many states might be conceivable, extending the particle in space with radius ~ r n, λC,n etc.
appropriate for energy of each virtual particle state (VS)  17, providing a source of energy at a distance rVS

from the  primary particle and in turn contributing to the stress-energy tensor responsible for curvature of
space-time that manifests itself in gravitational attraction.  

15 As for energy density ~ Wm/Wn
4

 : e/p ~ E-13, µ/p ~ 6E-4;  µ/π ~ 1/3, with r of (21) i.e. in case of µ/π  some 
measurable effect should be expected; different symmetry may play an additional role. 
16 Factor 2 of (22) included in α0, see [A2];
17 Superposition states considered here are not virtual in a Heisenberg sense, energy is provided by the primary particle.
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Virtual states are not supposed to consist of analogs of e.g. spherical symmetric states covering the complete
angular range of 4π but  to be an instantaneous,  short  term extension of the E-vector thus requiring the
angular limit factor of (43).
A long range effect of the 3rd, the strong interaction term, of (46) may be exerted via virtual particle states. To
estimate such an effect in first approximation the following will be used:

- the 3rd term of the energy expansion equ. (46) with ρ according to (35)ff, (50), 
- the angular limit state of  σ*min according to (43), σ*min ≈ 1, 
- ρ*3

 = (4π)-2 (ec/εc)3 ≈ (α-1 re)3,  to represent the cube of a natural unit of 
         length with value R.
For any VS at r = α-1  rVS = ΠVS (α-1 re), i.e. the radius of the VS in natural units,  RVS, equ. (53) will hold:

W VS(r)≈ 
b0 ρVS

3 /2
(α−1  rVS)

4
 ≈ 

b0 α0ΠVS
3 (α−1 re)

3

(α−1 rVS)
3(α−1 rVS)

≈ 
b0α0 ΠVS

3 (α−1re )
3

(ΠVS α−1re)
3(α−1rVS)

 = 
b0α0

(α−1 rVS)
 = 

b0

RVS

 (FG ,e

FC ,e
)

0.5
    18 (53)

Considering that the composition of the stress-energy tensor from virtual states is expected to be based on a
much more complex mechanism requiring consideration of all possible virtual states at a particular point and
appropriate averaging, (53) has to be a first approximation. The crucial factor that turns the r -4 dependence of
the strong interaction term into r-1 of gravitational interaction is the proportionality of ρn

3 to the cube of any
characteristic particle length, rn, λC,n etc. which is valid for each particle state subject to the relations of this
model.
Equ. (53) is a representation of the gravitational energy of the electron, terms for other particles may be
obtained by inserting their energy values relative to the electron according to (41)f in (53) which might be
interpreted as the intensity/frequency of the emergence of virtual states being proportional to the energy of
the primary particle.
As a consequence of (53) the highest possible particle energy value will be α0

-1, i.e. the value of the Planck
energy relative to the electron. This is the fundamental cause for equation (49) to relate We and WPl via an α-
term and define the electron as ground state and in turn corroborates the assumption used in the definition of
equ. (47)f.
Such a VS-based model implies curvature of space-time to be in general identical to the presence of energy,
and spatial coordinate and energy to be intertwined inextricably.

2.12 Applicability to cosmological problems
Chapter 2.11 demonstrates that the results of this particle-based model might be applicable on the scale of 
cosmology as well, e.g. concerning problems such as dark energy / cosmological constant or dark matter.
2.12.1 Cosmological constant Λ
The 2nd term on the right side of the full 5D equation (5), ~ 1/Φ (∇α(∂α Φ)  - g αβ □ Φ) , might be considered
to be a natural candidate for the cosmological constant term, gαβΛ. Its exact expression will depend on the
complete 4D or 5D metric used. Nevertheless it will have to contain terms of type gαβΦ''/Φ such as  ρn

3/r5

given e.g. in the bracket part of (65). Referring the resulting expression to the natural unit of length used in
this work, i.e. Ru = ec/εc, will yield approximate values in the order of magnitude of critical, vacuum density,
ρc, ρvac and Λ ~ 1.11E -52 [m-2]  [14]19. Using (50)  will give  Λcalc = 4.4E-49 [m-2], the agreement may be
improved significantly by dropping the symmetry coefficient σ and the angular limit factor originating from
(44), (49). The following equations use the electron coefficient in the exponential, (3/2α3)3: 

Φ ' '
Φ

 ≈ 
ρ3

r5  ≈ 
1

(ec/ εc)
5(3

2
α 3 ec

ε c
)

3

 = (3
2

α 3)
3

 ( εc

ec
)

2

= 0.228 [m-2] (54)

multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (2), 8πεcG/c0
4 

this gives:

(3
2

α3)
3

 
ε c

3

ec
2

8 πG

c0
4  = 7.60E-10[ J

m3 ] 
8 πG

c0
4  ≈ ρc

8 πG

c0
4 = 1.58E-52 [m-2] (55)

18 The term for gravitational attraction, Fm,n; R between two particles, m and n at a distance rm,n, would be obtained by 
using 1/b0 as proportionality constant: Fm , n; R  ≈ W VS( m, r )WVS (n ,r )/b0  ≈ b0  α0

2  Πm Πn Rm ,n
−2

19 Hubble constant H0 = 67.66 [km/s/Mpc]
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2.12.2 Galactic roatation curves
The terms of this model might provide effects associated with dark matter as well. This model as well as the
well known Shapiro delay [15] imply a decrease of c0 in curved space i.e. near a mass, M, which according
to (52) affects the value of the gravitational constant, G. This might result in a lower value of G associated
with large mass, M, such as e.g. present in a glactic center, and consequently underestimation of M in the
product MG for affected regions. 
On the other hand, far from a galactic center a term such as Γ22

1 = Γϕϕ
r =  −/+ 3/2 c ρ3/ρ*2 e(c-2b)v in the solution

of p = 2, q = 1 in equ. (9) (example 1 in [A4]) provides a contribution for centripetal acceleration, ac, 

ac  = Γ ϕϕ
r (dϕ

dt )
2

 = − 3/2c
ρ3

ρ *2 e(c−2b)vω 2  ≈ −3/2c
ρ3

ρ *2 (1+(c−2b)v)ω 2  ~ 
ρ3

ρ *2  
v ϕ

2

r2 [m /s2] (56)

This yields an r-independent rotation velocity, vϕ
2 ~ GMgal, though not the Baryonic-Tully–Fisher relation, 

vϕ
4 ~ GMgal [16]. Obtaining the latter requires an expansion of the ac-term with vϕ

2 and inclusion of the  vϕ
2 of 

the denominator in the a0 term 20.

3 Discussion
Theory of everything is a somewhat ironic and pompous term and maybe an unachievable goal. Theodor
Kaluza developed a unified field theory of gravitation and electromagnetism that produced the formalism for
the field equations of GTR and Maxwell's equations yet met a major obstacle in a mismatch of orders of
magnitude of the predicted results with experimental evidence, such as charge-to-mass ratio of elementary
particles.  The enormous difference  in  the  effects  of  gravitation  and electromagnetism seems to make a
consistent  unification in this way unfeasible,  however,  suggests to interpret  Kaluza's  equations as being
entirely based on electromagnetism and therefore to use an appropriate electromagnetic constant in the field
equations. This is equivalent to considering curvature of 4D space-time not as an effect induced by some
distant source of mass / energy but to be in general identical to (the presence of) energy which may be
interpreted  as  the  5th  coordinate  in  a  flat  5D  space-time,  in  line  with  space-time-matter  theory.  For
gravitation this is implied by the reasoning of chpt. 2.11.2, where virtual particle states provide energy at a
distance  sufficient  to  reproduce  the  effect  of  gravitational  interaction.  Whether  or  not  an  equivalent
mechanism might be considered for electromagnetic fields as well, the electromagnetic field should cause a
respectively stronger effect. The concept of curvature of space being strong enough to trap electromagnetic
radiation, a black hole, is well studied. Curvature of space-time based on electromagnetic energy will be
powerful enough to localize a photon in a self trapping kind of mechanism, yielding energy states in the
range of the particle zoo. 
Apart from the difference in strength of effects, interpreting Kaluza's equations as describing curvature of
space-time  with  the  boundary  condition  that  Maxwell's  equations  have  to  hold,  has  a  second,  equally
important  consequence,  the  introduction  of  phase  and  eventually  spin  in  the  formalism.  The  static
approximation used in this work, focusing on energy levels, does not explicitly implement phase yet it might
be considered to be implied by the photon description assumed to be valid for particles 21.  
Kaluza obtained Maxwell's equations by assuming the scalar field to be constant, which is in conflict with
equ. (6). Using the Φ-terms of this model does not yield standard Maxwell equations but it might be assumed
that the equations have to refer to a description of electromagnetism on a photon level and the exponential
factors in Φ and the imaginary solution of (19)f might describe the field distribution of a photon. For r > ρn,
ev -> 1, the expressions in equations such as (14) (or (46)) turn into the corresponding Coulomb-term.
Gravitation will reenter the scene via a series expansion of the energy expression, reproducing the effects of
the original EFE in the lower order of magnitude of gravitation. The same term in the expansion is supposed
to be responsible for strong interaction at short range, suggesting a somewhat unexpected yet consistent
unification scheme. 

20 A very rough estimation for a0 may be given by assuming p, n being the main contributors to mass, giving in the 
angular limit state Γϕϕ

r  ≈ ρp,n
3/ρ*2 e(c-2b)v ≈ 1E-40[m]. Multiplied by the number of p,n in a milkyway type galaxy, N = 

Mgal/mp,n ≈ 1E+69 gives ≈ 1E+29[m] and with a typical vϕ ≈ 1E+5[m/s] for a0 ≈ vϕ
2/(NΓϕϕ

r) ≈ 1E-19[m/s2], cf  a0 of [16]:  
a0 = 1.2E-10[m/s2].
21 The derivation of σ in 2.4 uses J = ħ/2, However, the relation of electroweak coupling constants with σ indicates that
simple N-D volumes have their own significance within this model and the relation to J may not be required to define 
the integration limits. 
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Weak interaction  has  no  place  in  the  series  expansion,  yet  there  is  evidence  that  the  model  comprises
elements of weak / electroweak interaction from the outset.  The derivation of α from a photon and a point
charge expression implies a rotation of electromagnetic fields and SO(3) symmetry for particles. This link to
electroweak phenomena is further backed by the possibility to extend the derivation to 4D-space, giving the
weak coupling constant, α(g), and the prominent position of the energy levels corresponding to Higgs boson
and vacuum expectation energy at the upper end of the energy series. In a 5D model such as given here or in
space-time-matter theory there is no need for an additional mechanism to create mass. However, it may be
speculated about a relationship of the Higgs-field with the 5th coordinate and the scalar Φ [5]. In this model
SO(3) refers to an actual rotation of a physical object rather than an abstract mathematical group, implying a
center of rotation, a rest-frame and consequently rest-energy. Considerations such as given by point b) of
chpt. 2.3 require curvature of 4D space-time for an SO(3) object to retain photon properties in a flat 5D
space-time. 
Concerning the vacuum state, in this model it is the ground state, the electron state, representing the maximal
particle volume and the minimal curvature of 4D space, that seems to relate to ρc, ρvac and the cosmological
constant, Λ, corresponding to the 4D vacuum as state with minimal spatial curvature. On the other hand, the
energy level equivalent to the Higgs VEV refers to a minimal volume and a maximum in curvature of 4D
space, corresponding to a maximum in the 5th coordinate. 

The formalism of GTR is based on second order differential equations that are a common tool in quantum
mechanics as well and some congruence, concerning e.g. Klein-Gordon equations, is elaborated on in [5].
Features of quantum mechanics that are covered in this work include quantization of energy, wave-character
of particles and non-locality (cf. 2.11.2). Last not least the pivotal constant of quantum mechanics, Plancks
constant, h, may be derived from the electromagnetic constants ec, εc, and geometry as expressed in α and σ.
These features do not emerge from classical GTR alone but rely on Kaluza's unification scheme and the
photon description of particles.

The model presented here is far from being complete and occasionally requires minor assumptions, yet it
provides a coherent, quantitative and parameter-free, Kaluza-based formalism, connecting electromagnetism,
strong force and gravitation as well as phenomena on a particle and on a cosmological scale and thus it may
serve as a step in the development of a theory of a little bit more 22.

Conclusion
Using a metric based on solutions for the scalar  of  a 5-dimensional  Kaluza model  in the Einstein field
equations, using an electromagnetic in place of a gravitational constant, yields

- a consistent and coherent relationship between electromagnetic, gravitational and strong interaction,
- a convergent series of quantized particle energies, with electron and the Higgs VEV energy as lower and 
  upper limit,
- a geometric expression for the values of the electroweak coupling constants, including the fine-structure 
  constant, α
- a term for the cosmological constant, Λ, in the correct order of magnitude.

The model works ab initio without free parameters.
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Appendix
[A1] Coefficient σ, differential equation
Analyzing the components of σ0, in addition to the mandatory term for length, |Γ-1/3| /3, of the integral (13) for m = -1, rn

and σ0 contain a factor ≈1.51 α-1, very close to the  ratio Wµ/We = 206.8 = 1.5088 α-1.  The exact value of 1.5133 for
≈1.51 has been chosen due to a geometrical interpretation of the terms in σ0 :

1.51 α-1 |Γ-1/3| /3 ≈  |Γ-1/3| /Γ1/3  4π |Γ-1/3| Γ1/3/0.998   |Γ-1/3|/3  ≈
4 π|Γ -1/3|

3

3
=  (σ0/8)1/3        23 (57)

and factor 1.5088 of the ratio Wµ/We being subject to a 3rd power relationship of the same kind as the α coefficients:

(1.5133
1.5088) = (1.5133

1.5 )
1/3

(58)

indicating that the radial terms of Πn in ρn and the angular components of σ are not correctly separated yet or may not be
separable even in the case of spherical symmetric states.  Thus it is somewhat ambiguous to include factor 1.51333 in σ
or the particle coefficient, suggesting to use σ* =  σ/1.51333 = 5.112E+7 [-] and α(n)-terms containing factor 1.51333 as
well. The following relation holds:

1.5133  = 0.998|Γ−1/3|/ Γ1 /3  = 4 π|Γ−1/3|
2  α (59)

The limit of a corresponding partial product in the energy expression is given by 1.5133 Π1
∞ (1.5/1.533)^1/3k ≈ 1.5066.

The corresponding term in ρn
3 will be: 1.5133-3 Π1

n(1.533/1.5)^3/3k, n={1;2;..}, for particles above the electron, see [A2].
The value of σ is related to angular momentum / spin and thus may not be representable with a conventional metric.
This might hint at a relationship with quantum mechanics. With the 3rd term in (46) used for potential energy, V:

V(r) = b0 ρe
3/(2 r4) = b0 [ σ* α0 (ec/εc)3 /(4π)2] /(2r4)     (60)

and a corresponding expansion by (ħc0)2α-2 /b0
2 for the 2nd order term of (20), an approximate differential equation for

this model, including σ, may be given that resembles quantum mechanical terms (with ev = Ψ):

−
(ħc0)

2 r

α−2b0

 
d 2Ψ (r)

dr 2
 +  r V (r)  

dΨ (r)
dr

 −  
V (r)

σ
Ψ (r)  = 0 (61)

[A2] Particle parameter ρn

A more detailed expression for ρ than given in (50) will be attempted in the following.
The term (59) will be used within the particle specific factor (square brackets), thus coefficient 1.5133 of σ will be
placed there, giving for the general term (i.e. excluding the electron):

ρn
3  = σ *  1

(4 π)2 (ec

εc
)

3

 2
(2π)3

 1.5133−3 Πk=0
n [α3(1.5133

1.5 )]^( 3
3k )          n = {0;1;2;...}    (62)

23 The term 4π |Γ-1/3|3/3 is used for σ0 in all calculations. 
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factor 1.5133-3 represents ≈3/2 for the ratio of Wµ/We, to be omitted in the term for the electron:

ρe
3  = σ *  1

(4 π)2 (ec

εc
)

3

 2
(2 π)3  [α3(1.5133

1.5 )] 3
 ≈  σ *  1

(4 π )2 (ec

εc
)

3

 α 0          24 (63)

the particle specific factor is given in square brackets (α0 in bold). The other factors are due to
- factor 2: from e2v,
- factor 1/(2π)3 : representing 2π of the integral limit in (17),
- factor 1.5133-3: due to anomalous factor 2/3 in We/Wµ,
- 1/(4π)2: it is unclear why this term appears with power of 2 instead of the power of 3 as for the other components. It
might be related to b0 appearing squared in (61) (where V~b0) or might be related to the term ρ*2 in 2.3.
Using (63) We may be given as:

W e  = 2b0

Γ+1/3

3 (9π 5 /3α
|Γ -1/3| (εc

ec
)[ α−3

1.5133 ])  = 1.5π 2 /3

1.5133
Γ+1/3

|Γ -1/3|
ec

α2 =1.0001 We,exp (64)

[A3] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.
[A3.1] Partial products
Additional partial product series will have to start with higher exponents n in α^(-1/3n) giving smaller differences in
energy while density of experimentally detected states is high. There might be a tendency of particles to exhibit a lower
mean lifetime (MLT), making experimental detection of particles difficult  25. To determine the factor yl

m requires an
appropriate ansatz for the differential equation, including angular terms, yet to be found. 
One more partial product might be inferred from considering d-like-orbital equivalents with a factor of 5 1/3 as energy
ratio relative to η giving the start of an additional partial product series at 51/3 W(η) = 937MeV = 0.98 W(η'), i.e. close to
energy values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial
products can explain all values of particle energies.

[A3.2] Linear combinations 
The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV. They might be
considered to be linear combination states of π-states. The π-states of the y1

0 series are assumed to exhibit one angular
node,  giving a charge  distribution of  +|+,  -|-  and +|-.  A linear  combination of  two π-states  would yield the basic
symmetry properties of the 4 kaons as:

 + -  -   +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

 + - -                  -
providing two neutral kaons of different structure and parity, implying a decay with different parity and MLT values.
For the charged Kaons, K+, K-,  a configuration for wave function sign equal to the configuration for charge of K S

o and
KL

o might be possible, giving two versions of P+ and P- parity of otherwise identical particles and corresponding decay
modes not violating parity conservation.

[A4] Metric
(For both examples v = -(ρ/r)3;  +/- signs in ϑ, φ provisional for option to choose sign of R ~ +/-1/r2, see 2.3 b).)
Example 1
The following gives an example with Φ squared for the t and r-part of the metric, Φ2 ~ [(ρ*/r)2 e v]2  The application of a
(ρ/r)2 term in the angular terms as well will cancel their r 2-dependence, implying the same effect as discussed in b) of
2.3.

g µν  = [(ρ*
r )

2

exp(−a(ρ
r )

3

)] 2
,   −[(ρ *

r )
2

exp(−b(ρ
r )

3

)] 2
,   −/+ ρ*2exp(−c(ρ

r )
3

),   −/+ ρ*2exp(−c(ρ
r )

3

)sin 2θ

Γ01
0 = Γ10

0 = - 2/r1 + 3 a ρ3/r4 Γ00
1 = - 2/r1 e 2(a-b)v + 3 a ρ3/r4e 2(a-b)v 

Γ11
1 = - 2/r1  + 3 b ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 3/2 c ρ3/r4 Γ22
1 =  −/+ 3/2 c ρ3/ρ*2 e(c-2b)v  = Γ33

1/sin2 ϑ 
Γ23

3 = Γ32
3 = cot ϑ Γ33

2 = − sin ϑ cos ϑ

R00  =  e 2(a-b)v [ (-2/r2 + 12(a-b) ρ3/r5 + 12a ρ3/r5 - 18a (a-b) ρ6/r8) + 2(Γ01
0 Γ00

1)  - Γ00
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= e 2(a-b)v [ (-2/r2 + 12(2a-b) ρ3/r5 - 18a (a-b) ρ6/r8)   - Γ00

1 ( -Γ10
0 + Γ11

1+ 2Γ12
2)]

= e 2(a-b)v [ (-2/r2 + 12(2a-b) ρ3/r5 - 18a (a-b) ρ6/r8)  +  (+ 2/r1 - 3a ρ3/r4) (+ 3(-a + b + c)ρ3/r4 )]
= e 2(a-b)v  [ (-2/r2 + 12(2a-b) ρ3/r5 - 18a (a-b) ρ6/r8)  + 6(-a + b + c)ρ3/r5  - 9a(-a + b + c)ρ6/r8 )]

24  Note: 2 (2/3)3 /(2π)3  ≈ (1.5133 α-1 2)-1, i.e. indicating a relation to the angular limit factor of chpt. 2.8.
25  Which might explain missing particles of higher n in the y0

0 and y1
0 series as well.
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R00  = e 2(a-b)v [ -2/r2 + 6(+3a -b +c) ρ3/r5 - 9(+a2 -ab +ac)ρ6/r8 )]

R11 = [+2/r2 -12a ρ3/r5  +2/r2 -12b ρ3/r5  -12 c ρ3/r5  -2/r2  +12bρ3/r5 +Γ10
0 Γ01

0 +Γ11
1Γ11

1  +2Γ12
2 Γ21

2  - Γ11
1 (Γ10

0 +Γ11
1 + 2Γ12

2)]
= [+2/r2 - 12a ρ3/r5  - 12 c ρ3/r5  + Γ10

0 Γ01
0  + 2Γ12

2 Γ21
2  - Γ11

1 ( Γ10
0 + 2Γ12

2)]
= [+2/r2 - 12(a + c) ρ3/r5  + 4/r2 + 9a2 ρ6/r8 - 12a ρ3/r5 + 9/2 c2 ρ6/r8  + (+2/r1 - 3b ρ3/r4) (-2/r1 + 3(+a + c) ρ3/r4 )]
= [+6/r2 - 12(2a + c) ρ3/r5 + 9/2(+2a2  + c2 )ρ6/r8  -4/r2 + 6bρ3/r5 + 6(a  + c) ρ3/r5 - 9b(a +c) ρ6/r8]
R11 = [+2/r2 - 6(3a - b + c) ρ3/r5  + 9/2(+2a2+ c2 - 2ab - 2bc) ρ6/r8]

R22  = - 1+  e(c-2b)v [ +/− 9/2 c (c-2b) ρ6/(ρ*2 r4)  +2(Γ21
2 Γ22

1)   - Γ22
1 (Γ10

0 + Γ11
1+ 2Γ12

2)]
= - 1+  e(c-2b)v  [ +/− 9/2 c (c-2b) ρ6/(ρ*2 r4)   - Γ22

1 (Γ10
0 + Γ11

1- Γ12
2 + Γ13

3)]
= - 1+  e(c-2b)v  [ +/− 9/2 c (c-2b) ρ6/(ρ*2 r4)   +/− 3/2 c  ρ3/ρ*2  (-4/r1  + 3(a + b)ρ3/r4 )]
= - 1+  e(c-2b)v  [ +/− 9/2 c (c-2b) ρ6/(ρ*2 r4)  −/+ 6 c ρ3/(ρ*2r1) +/− 9/2c(a + b)ρ6/(ρ*2r4))]
R22 = - 1+  e(c-2b)v  [−/+ 6 cρ3/(ρ*2r1) +/− 9/2(ac -bc +c2)ρ6/(ρ*2r4)]

g00R00 = e-2bv [ -2r2/ρ*4 + 6(+3a  -b +c)ρ3/(rρ*4) – 9(+a2 -ab +ac)ρ6/(r4ρ*4))]
g11R11 = - e-2bv [+2r2/ρ*4  - 6(3a - b + c)ρ3/(rρ*4)  + 9/2(+2a2+ c2 - 2ab - 2bc) ρ6/(r4ρ*4))]
g22R22 + g33R33 = +/−2e-cv /ρ*2 −/+  e-2bv [−/+ 12 c ρ3/(rρ*4) +/− 9(ac -bc +c2)ρ6/(r4ρ*4))]

R = +/− 2e-cv/ρ*2  +   e-2bv [ -4r2/ρ*4 + 6(6a -2b + 4c)ρ3/(rρ*4)  - 9/2(+4a2 + 3c2 -4ab +4ac -4bc) ρ6/(r4ρ*4))]
G00 will be:
G00 = e 2(a-b)v [ -2/r2 + 6(+3a -b +c) ρ3/r5 - 9(+a2 -ab +ac)ρ6/r8 )] −/+ ρ*2/r4 e(2a-c)v +  e 2(a-b)v [ +2/r2 - 3(+6a -2b + 4c) ρ3/r5 +
9/4(+4a2 + 3c2 -4ab +4ac -4bc) ρ6/r8 ]

G00  = =− /+ρ *2

r4 e(2 a−c)v  + e(2a−b)v[−6
cρ3

r5  + 
9
4
(+3c2−4bc ) ρ6

r8 ] (65)

giving a trivial solution for c = 0 

G00 = −/+ ρ*2/r4 e2av  
For chpt. 2.2, 2.3 a = 1 is chosen, giving e2v as exponential term.
The condition  c = 0 is not necessary to give solutions for the integral of (12) since ∫ρn-2/rn d3r ≈ Γ[(n-1)/3] ρn-2/ ρn-3 ≈ ρ
<<  ρ*2/ρ and the integral over the second, square bracket part of (65) may be set to zero by appropriate choice of
parameters a, b and c. Moreover, while the  ρ3/r5-term might be related to Λ, the ρ6/r8 -term may be eliminated by setting
c = 3/4 b.

Example 2
Example 1 is not an exclusive solution for this model, an alternate example is given by e.g.:

g µν  = (ρ *
r )

2

exp(−a(ρ
r )

3

),   −(ρ *
r )

2

exp(−b(ρ
r )

3

),   −/+ r2 ,   −/+ r2 sin2ϑ (66)

Γ01
0 = Γ10

0 = - 1/r1 + 3/2 a ρ3/r4 Γ00
1 = - 1/r1 e (a-b)v + 3/2 a ρ3/r4e (a-b)v 

Γ11
1 = - 1/r1  + 3/2 b ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = −/+ r3/ρ*2 e(c-b)v   = Γ33

1/sin2 ϑ 
Γ23

3 = Γ32
3 = cot ϑ Γ33

2 = − sin ϑ cos ϑ

R00  =  e(a-b)v [(-1/r2 + 3 (a-b) ρ3/r5 + 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8) | 2(Γ01
0 Γ00

1)  - Γ00
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= e(a-b)v [(-1/r2 + (9a -3b) ρ3/r5  - 9/2a(a-b) ρ6/r8 - Γ00

1 ( -Γ10
0 + Γ11

1+ 2Γ12
2)]

= e(a-b)v [(-1/r2 + (9a -3b) ρ3/r5  - 9/2a(a-b) ρ6/r8 +  (+1/r1 - 3/2 a ρ3/r4) (+2/r1)]
= e(a-b)v  [(-1/r2 + (9a -3b) ρ3/r5 - 9/2 a(a-b) ρ6/r8 + 2/r2 - 3aρ3/r5 ]
R00  = e(a-b)v [+1/r2 + (6a -3b)ρ3/r5 - 9/2a(a-b)ρ6/r8]

R11 = [+ 1/r2 - 6a ρ3/r5 + 1/r2 - 6b ρ3/r5 - 2/r2 - 1/r2 + 6bρ3/r5 + Γ10
0 Γ01

0 + Γ11
1Γ11

1  + 2Γ12
2 Γ21

2 - Γ11
1 ( Γ10

0 + Γ11
1+ 2Γ12

2 )]
= [-1/r2 - 6 a ρ3/r5 + Γ10

0 Γ01
0  + 2Γ12

2 Γ21
2 - Γ11

1 ( Γ10
0 + 2Γ12

2)]
= [-1/r2 - 6a ρ3/r5 + 1/r2 + 9/4 a2 ρ6/r8 - 3 a ρ3/r5 + 2/r2 +  (+ 1/r1 - 3/2 b ρ3/r4) (+1/r1 + 3/2 a ρ3/r4 ]
= [+2/r2 - 9a ρ3/r5 + 9/4 a2 ρ6/r8 +1/r2 + 3/2aρ3/r5  - 3/2bρ3/r5 - 9/4 ab ρ6/r8]
R11 = [+3/r2 - (15/2a + 3/2b)ρ3/r5 + 9/4(+a2 -ab)ρ6/r8]     

R22  = - 1+  e(c-b)v [(+/−3 r2/ρ*2 +/− 3(c-b) ρ3/(rρ*2) + 2(Γ21
2 Γ22

1)  - Γ22
1 ( Γ10

0 + Γ11
1+ Γ12

2 + Γ13
3)]

= - 1+  e(c-b)v  [(+/−3 r2/ρ*2 +/− 3(c-b) ρ3/(rρ*2) - Γ22
1 ( Γ10

0 + Γ11
1- Γ12

2 + Γ13
3)]

= - 1+  e(c-b)v  [(+/−3 r2/ρ*2 +/− 3(c-b) ρ3/(rρ*2) +/− r3/ρ*2 (-2/r1  + 3/2(a + b)ρ3/r4 )]
= - 1+  e(c-b)v  [(+/−3 r2/ρ*2 +/− 3(c-b) ρ3/(rρ*2)  −/+ 2r2/ρ*2 +/− 3/2(a + b)ρ3/(rρ*2)]
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R22 = - 1+  e(c-b)v  [(+/− 1r2/ρ*2  +/− 3/2(+a -b + 2c)ρ3/(rρ*2)]

g00R00 = e-bv [+1/ρ*2 + (6a -3b)ρ3/(r3ρ*2) - 9/2a(a-b)ρ6/(r6ρ*2)]
g11R11 = - e-bv [+3/ρ*2 - (15/2a + 3/2b)ρ3/(r3ρ*2) + 9/4(+a2 -ab)ρ6/(r6ρ*2)]     

g22R22 + g33R33 = +/− 2/r2 −/+ e-bv [(+/− 2/ρ*2  +/− 3(+a -b + 2c)ρ3/(r3ρ*2)]

The two solutions for R with different sign of R22,33 will be:
R = +/− 2/r2 +  e-bv [(− 4/ρ*2 + (+21/2a + 3/2b - 6c) ρ3/(r3ρ*2)  - 9/4(+3a2 - 3ab)ρ6/(r6ρ*2)]
G00 will be:
G00 = e(a-b)v [+1/r2 + (6a -3b)ρ3/r5 - 9/8(4a2 -4ab)ρ6/r8] −/+ ρ*2/r4 eav +  e(a-b)v [(+ 2/r2 + (-21/4a - 3/4b + 3c) ρ3/r5  - 9/8(-3a2 +
3ab)ρ6/r8] = −/+ ρ*2/r4 eav +  e(a-b)v [(+ 3/r2 + (+3/4a - 15/4b + 3c) ρ3/r5  - 9/8(+a2 - ab)ρ6/r8]
giving a solution 
G00 = −/+ ρ*2/r4 eav  + 3/r2 ≈ −/+ ρ*2/r4 eav 
for   a = b = c. For chpt. 2.2, 2.3 a = 2 is chosen, giving e2v as exponential term.
While higher orders of  ρn-terms in G00 are in general  easy to eliminate by appropriate choice of the factors in the
exponents, a,b..., the lowest order term, i.e. in the metric of example 2: ~1/r2, lacks these factors and needs a metric of
the type of example 1 to be eliminated. However,  with the integral  limits for the particles discussed here volume
integrals over the second term will give negligible contributions to particle energy < 10 -6 and might still be considered a
valid solution. 

[A5] Scalar potential Φ
The solutions for the scalar Φ depend on the complete metric used. As in [A4] the main problem to obtain R44 = 0 is to
eliminate the terms of lowest order in ρ, which lack coefficients in their terms enabling an easy cancellation of them. As
in [A4] solutions can be given by using a metric with squared terms, i.e. p = 2, for either g00 or g11 e.g.:

gµν  = [(ρ
r )

2

exp(−a(ρ
r )

3)] 2
,   −(ρ

r )
2

exp(−b(ρ
r )

3),  −r 2(−c(ρ
r )

3),   −r2(−c(ρ
r )

3)sin2θ,−[(ρ
r )

2

exp(−a(ρ
r )

3)] 2
(67)

Using hyperspherical coordinates in a 5D metric with the line element

ds2  = eaν dt2−e bν dr 2−r2(d ψ2+sin2 ψ(dϑ 2+sin2ϑ dφ2)) (68)

gives a formal solution as well yet r would be supposed to represent the 5th coordinate.

[A6] Coupling constant in 5D
3D case:
Equations (32)f have their origin in the integrals over ev = ΨN, to be recapped and examined in more depth for the 3D
case: 
omitting the dimensioned constants in (14)f and (27), α may be expressed directly via the integral over 1/r2 representing
a point source in 3D times a complementary 2nd integral symmetric in the Γ-function to give a dimensionless term:

2∫
0

r

Ψ 3(r)2r−2 d r∫
0

r

Ψ 3(r)2 dr  =2[ Γ1 /3

3 ][2π 2π 9
|Γ−1/3|

3 ]  = 4 π Γ 1/3|Γ−1 /3| 2 π  = 2 π  αe
−1 (69)

The term of 2*2π may indicate that the volume integral over the square of 1/r2 is involved, as actually used in the
derivation of chpt. 2.6, ∫Ψ 3(r)2 r−4  d3 r  = ∫Ψ 3(r)2r−4 4 π r2  d r . One of the 2π terms originating from the second
integral of equation (69) is required for turning h into ħ. Otherwise this would give a dimensionless constant α(e)' = h c0

4π ε/e2  and it is a matter of choice to include 2π in the dimensionless coupling constant 26.
The exact value of (69) depends on the integration limit of the second integral, i.e. the lower integration limit of the
corresponding Euler integral which can be expressed as 3D volume with |Γ-1/3| as radius (see 2.4):

ρn
3 /λC , n

3  = 8/ (31.5 σ )  = (30.5 4 π
3

 |Γ- 1/3|
3)

−3

     (70)

in the limit ρn
3/λC,n

3 -> 0 to be multiplied by |1/arg(Γ(x))| = 3 according to equ. (25). The additional factor 30.5 gives the
ratio between rn of equ. (21) and λC,n 27as required in the expression for photon energy. 
This limit yields the result of the second integral of (69) as: ∫Ψ3(r)2dr ~ Γ(-1/3, 8/(31.5σ3)) = 30.54π|Γ-1/3|3 ≈ 36π2|Γ-1/3|.
The general N-dimensional version of (70) will be:

8 /σ N  = (30.5δ V N  |Γ (- N )|N )−N
     (71)

VN is the coefficent for volume in N-D, coefficient 30.5 will be omitted in 4D where coordinate r is considered to be
directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n.

26 The term 2π may be traced back to the more detailed expression for ρn, equ. (62)f, including the cube of 2π.
27  λC,n = 3β1/3hc0/(2b0Γ1/3) = 3πβ1/3/(αΓ1/3) , rn = Γ-1/3β1/3/(2α)  =>   λC,n/rn = 6π/(Γ1/3Γ-1/3) = 30.5.
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4D case:
Using Ψ4 according to the definition (29) and (71) for 4D:

ρn
4/ λC, n

4  = 8 /σ 4  = ( π2

2
 |Γ - 1/4|

4)
−4

    (72)

as integration limit the non-point charge integral in 4D will be given by (with factor 4 according to equ. (25)):

∫
0

r

Ψ 4(r)
2r dr  ~ Γ (−1 /4 ,8 /σ 4)  = ∫

8 /σ 4

∞

t−1.25e−t dt  ≈ 4 (π 2/2 |Γ−1 /4|
4)  ≈ 32 π 4|Γ−1 /2| ≈ 1/11390    28 (73)

The 4D equivalent of (69) will be:

∫
0

r

Ψ 4(r)
2r−3dr∫

0

r

Ψ 4(r )2r dr  =[ Γ1 /2

4 ][2π 416
|Γ−1/2|

4 ]  = π 2

2
Γ 1/2|Γ−1/2| 4 π2  = π 34 π2   = αg

−1 4 π2 (74)

The term 4π2 is the square of the 2π term in the last expression of (69) since the integrals in (74) refer to ρn
2 and thus to

the square of energy and h, ħ. 

While the integral  ∫Ψ3(r)2dr in 3D yields the wavelength of one photon,  ∫Ψ4(r)2 r dr may be considered as an integration
over 1/W of all photons within the integration limits, giving a term ∫Ψ4(λ)2  λ dλ ~ 1/W2.

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

Ψ 2(r)2r−1 dr  = Γ (0 , ρn
2/r2

2)  /  2        (75)

features Γ(0, x) and with  Γ(0, x) -> ∞  for x -> 0 the simple relation between integral limit and integral value according
to (25) is not valid. Using nevertheless the 2D equivalent of the integration limit

ρn
2 /λC , n

2  = 8/ (3σ 2)  = (30.5 π  |Γ−1 /2|
2)−2

 ≈ 1 / 4676      (76)

and calculating Γ(0, ρ2
2/r2

2) numerically gives ∫Ψ2(r)2 r-1 dr ≈ Γ(0, ρ2
2/r2

2)/2 = 7.872/2. In the 2D case the complementary
integral would be identical to the point charge integral, giving (∫Ψ2(r)2 r-1 dr)2 ≈ 2π3/4. This will give the expected value
of αg' ≈ π4 if multiplied by a factor 2π. Unlike to the 3D, 4D case 2π will not appear in the denominator of the expression
for α, since the 2D integrals yield dimensionless terms and refer to angular momentum rather than energy. Though the
reason for the appearance of 2π in the nominator of the integral term is not obvious it is possible to include the 2D case
in the unified expressions given by equations (32)f. 29

[A7] Magnetic moment 30

Within  this  model  particles  are  treated  as  electromagnetic  objects  principally  enabling  a  direct  calculation  of  the
magnetic moment, M from the electromagnetic fields.
The magnetic moment M(e) of the electron is given as product of the anomalous g-factor, ga = 1.00116, Dirac-g-factor,
gD = 2, and the Bohr magneton, µB = e ħ/(2me), times the quantum number for angular momentum J = 1/2: 

M(e)  = g a gD µB/2 = ga

2e c 0
2

2W e

 ħ
2

 = ga 9.274E-24[Am2 ] (77)

The factor ga arises from the interaction of the electron with virtual photons as calculated in quantum electrodynamics
and should not be part of a calculation of the magnetic moment from the field of the electron itself. Within this model
the factor 2 of gD originates from the fact that particle energy is supposed to be equally divided into contributions of the
electric and magnetic field,  Wel =  Wmag = Wn/2 and only the magnetic field, i.e. Wmag contributes to the magnetic
moment.
Inserting the term for particle energy of (15) in (77) gives: 

M (e)
ga

 = 
e ħc0

2

2W e

 = 
e ħc0

2

2
 

3 β e
1 /3

2b0 Γ 1/3

 = e c0 βe
1 /3  ( Γ  ̶ 1/3

3
 

3
Γ  ̶ 1/3

) 
3 [ħc0/b0]

4 Γ1/3

 = e c0 β e
1/3 Γ  ̶ 1/3

3
 [ 9 [α−1]

4 Γ1/3 Γ  ̶ 1/3
] (78)

The term on the right is expanded by Γ-1/3/3 and turned into a form that will be needed for comparison with a calculation
starting directly from the fields as explained in the following. 
The relation of the values of E and B in an electromagnetic wave is given by B = E/c0.  This gives as first approximation
for the value of Mn  of a particle n:

28 Factor 2 representing electric and magnetic contributions in the 3D equations will be dropped in the 4D case.
29 Inserting a factor 2π in one of the two integrals ∫Ψ2(r)2 r-1 dr would turn this integral into the volume integral over the 
square of 1/r1 in analogy to the derivation of the 3D term.
30 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use          
e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
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Mn  ≈ 
1
μ
∫
0

λC , n/2

B(r )Ψ n(r )2d 3r  = εc0 ∫
0

λC , n /2

E (r)Ψ n(r)2 d3r  = e c0 βn
1/3 Γ  ̶ 1/3

3
 [30.5

2
3
2
[α ]−1] = e c0

λC , n

2
       (79)

As integral limit λC,n/2 is chosen with λC,n given by λC,n ≈ 30.5rn 27. The expression linear in the fields B, E, equ. (79), is in
its major terms identical to equ. (78) originating from W ~ E2, the difference of the bracket terms is exactly 2π due to
the general relation Γ(x) Γ(-x) = π/(x sin(πx) [13], giving Γ(+1/3) Γ(-1/3) = 6π/30.5.
Equation (79) will give a rough approximation for magnetic moment, see tab. 4 col. 4, the term in brackets of (78)f
contains integral terms over Ψ(r)2 and suggests appropriate corrections using such integrals.

In the following, however,  a toy model will be used to calculate the magnetic moments, in particular of the pair p and
n. The energy of the particles p and n differs by only ~ 1E-3 i.e. in the order of QED correction effects. Within this
model this implies an essentially identical distribution of the absolute value of the E-field. Since E appears squared in
the energy equation, this poses no problem for the difference in charge. However, the difference in magnetic moment
rules out an expression of type (78) and requires a solution of type (79) to be based on an identical distribution of
absolute values of the fields of p and n which sets a very severe restriction for possible solutions.

The toy model uses quaternions to describe the rotation of a set of vectors E, B, V under the conditions31:
- E, B, V being orthogonal
- continuous rotation
- in phase, constructive interference 
- in each step rotating angles for E and B are equal and some multiple of V: n ωE = n ωB = ωV 
The average of the B-orientation for a full period, i.e. up to the angle where all E, B, V-orientations are identical to the
starting condition, is examined. The first elements in the series of solutions are given in tab. 3.
The solution for 2ωE = 2ωB = 1ωV which yields the same phase for all 3 components at an angle of 120° with respect to
V might be considered the best suited version for particles considered to be composed of J = 1/2 spin components since
it requires two (E, B) rotation cycles for the V-component to complete full 360 degrees. The volume covered by such a
solution is mainly restricted to an octant sector of a three-dimensional coordinate system suggesting to examine a
combination of orthogonal solutions. Since the coefficient of 2/3 for B_avg is composed of components 4/9, 4/9 and 2/9
in x,y,z-direction, combinations featuring a coefficient (2/3)n for B_avg can be constructed easily, e.g. (((4/9 + 4/9)/2)2 +
0 + 0 )0.5 = (2/3)2.

Table 3: Average values calculated for magnetic moment, Bavg, for varying rotation angle ratios.

Factor 2/3 appears in the equations for ρ as well, see [A1], [A2, (62)f] and the start of the series of magnetic moments
as indicated in tab 4, col 6 gives some indication to apply (2/3)n with the µ having (2/3)1  32  and (2/3)3 giving a precise
value for M(p) . 
While a particle such as µ at the beginning of the series might feature some additional degree of freedom in trajectories
for such a 120° object and thus an additional term of 2π (cf. (78)f), for analyzing the pair p, n orthogonal combinations
of 120° solutions will be used. 
Neutral particles may be constructed from two combinations with opposite direction of the E-field with respect to the
origin, experimental data suggest to use ((2/3)n)2. Based on a relation such as (((4/9 + 4/9)/2)2  + 0 + 0 )0.5 this would
imply the coefficient 1/2 to be given with an exponent of n, to reduce to (1/2)1 necessary for two states (of different E-
orientation) this requires a correction term of (n-1).
The difference of 2π in (78)f for e,  µ indicates that  some additional  factor for geometry might be required in the
expression for M. 
The following modification for equ. (79) will be applied for particles starting with the µ (see 35ff, 49f): 

31 Basic algorithm of type:
dee = dee + de;     uu = Sqr(ex ^ 2 + ey ^ 2 + ez ^ 2);    sih = Sin(de / 2);    qw = Cos(de / 2);    qx = (ex / uu) * sih    qy = (ey / uu) * sih;    qz = (ez / 
uu) * sih;   bx = bbx;    by = bby;    bz = bbz;    
bxx = bx * (qx * qx + qw * qw - qy * qy - qz * qz)  + by * (2 * qx * qy - 2 * qw * qz) + bz * (2 * qx * qz + 2 * qw * qy);    
byy = bx * (2 * qw * qz + 2 * qx * qy)   + by * (qw * qw - qx * qx + qy * qy - qz * qz) + bz * (-2 * qw * qx + 2 * qy * qz);
bzz = bx * (-2 * qw * qy + 2 * qx * qz)  + by * (2 * qw * qx + 2 * qy * qz) + bz * (qw * qw - qx * qx - qy * qy + qz * qz);  

bx = bxx;  by = byy;  bz = bzz;  bbx = bx;  bby = by;  bbz = bz;

The model sets starting values for E, B, V without discerning polarity of E, B; the point of origin is the same for all
vectors, giving an approximation for r >> rn,  see [17] for more details.

32  The identical value of µ with respect to e may be somehow due to the 3/2 anomaly of the latter, cf. chpt. 2.7
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n n^2 B_avg

360 -
1.000 1 270 0.591
1.225 1.5 180 0.612
2.000 4 120 0.667
2.739 7.5 90 0.684

 ωV 

1/∞ 1/∞



Mn  ≈ ec0 λC , n
* 3

2(2
3)

n

[n−1] Xgeo        30 (80)

with 3/2 representing the additional  anomalous electron coefficient  included and λC,n* refering to  a  length ~ Πk=o
n

α^(9/3k)  i.e.  without  the  extra  3/2  term of  e,  the  term  in  square  brackets,  n-1,  refering  to  the  correction  of  the
combination states and Xgeo to some remaining coefficient for geometry.
For the pair p, n this would give coefficients (2/3)3 for p and 4 ((2/3)3)2 for n plus an additional geometry coefficient that
can be given as  30.5/3, i.e. cos(104,5/2°) of a tetrahedron, as indicated in fig. 1. A tetrahedral orientation might be
somewhat unexpected, some 3-fold symmetry and the relation to the orthogonal combinations of above may be obtained
by constructing the tetrahedral branches by 3 combinations along the orthogonal axes as indicated in fig. 1 as well (and
giving an alternate interpretation of the term 30.5/3).

Figure 1: possible combination of 120° solutions for magnetic moment of n, foreground octants
indicated only; 

As required it is thus possible to explain the different magnetic moments of p, n, based on the same (120°) constituent,
with a specific weighted geometric distribution 33 of inversely charged components in case of the n.
Tab. 4 demonstrates that the parameters used to obtain this result are not completely arbitrary but seem to exhibit a
simple pattern, though a more refined quaternion model and analysis will be needed to obtain a more unambiguous
solution.

Table 4: Absolute values calculated for magnetic moment; * relative to Σ  - with factor (2/3)516.

[A8] Values used
π = 3.141592654 
Γ1/3 = 2.678938535
|Γ-1/3| = 4.062353818
α-1 = 137.035999084    
c0 = 2.99792458 [m/s]
e = 1.602176634 E-019 [C]
ε = 8.854187813 E-12 [F/m]
b0 = 2.307077552 E-28 [Jm]
G = 6.67430 E-11 [m5/(Js4)]
We, exp = 8.187105777 [J]  
λC,e = 2.426310239 E-12 [m]  
ec = 3.109751438 E-18 [J]
βdim = 5.131205555 E-30 [m3]
σ = 8(4π |Γ-1/3| 3/3)3 = 177155864 [-]
re   =  1.413269970 E-12 [m]                       

33 which might represent a time average
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Coeff. (2/3) (n-1) M_calc/M_lit
9.285E-24 2.426E-12 5.827E-23 9.274E-24 0.999
4.490E-26 1.170E-14 2.810E-25 4.215E-25 4.472E-26 0.996
0.000E+00
1.411E-26 1.321E-15 3.174E-26 4.760E-26 1.410E-26 1.000

n 9.662E-27 1.321E-15 3.174E-26 4.760E-26 4 √3/3 9.651E-27 0.999
3.096E-27 1.101E-15 2.645E-26 3.967E-26 8 0.25 3.096E-27 1.000
5.859E-27 1.040E-15 2.497E-26 3.745E-26 4.932E-27 0.842
1.241E-26 1.040E-15 2.497E-26 3.745E-26 16 1 1.234E-26* 0.994*

M_lit [Am2] λC,n
ec

0
 λC,n/2 3/2ec0 λ*C,n/2 X

geo M_calc [Am2]
e+- 1/(2π)
µ+- (2/3)^1 1/(2π)
η0 (2/3)^2
p+- (2/3)^3

((2/3)^3)^2
Λ0 ((2/3)^4)^2
Σ- (2/5)^1
Σ+ ((2/3)^5)^2


