

Arctic Impact on Weather and Climate

UNDERSTANDING THE IMPACT OF A CHANGING ARCTIC ON NORTHERN HEMISPHERE WEATHER AND CLIMATE.

Steffen M. Olsen

Arctic Workshop of the Transatlantic Ocean Research Alliance Brussels on 29 and 30 March 2017

www.blue-action.eu

Coordination

Steffen M. Olsen (DMI) Daniela Matei (MPI)

Non-EU Partners

- USA
- Canada
- Russia
- China
- Korea

The 'Arctic Cluster'

Why?

- To actively improve our ability to describe, model, and predict Arctic climate change and its impact on Northern Hemisphere climate.
- To develop new methods to characterise climate conditions where hazardous weather system forms across the Northern Hemisphere and establish their link to Arctic climate change.
- To enable robust and reliable forecasting and deliver better predictions at sub-seasonal to decadal scales.

How?

 Through synthesising observations, assessing model performance, designing and performing coordinated multi-model sensitivity experiments, developing innovative bias reduction and initialization strategies.

Specific Outputs and Outcomes

- Co-design a series of case studies with organisations and industries that rely on accurate weather and climate forecasting
- To apply new modelling techniques to cutting-edge climate services
- Embed scientific developments and improved model capacity within international programmes including Copernicus C3S, IPCC AR6 and PPP-YOPP

Oceanic anomalies of predictive potential

- 55% of variance explained
- Propagation speed: 3 cm/s
- Period: 14 years
- Similar propagation characteristics for salinity and tracers imply ocean circulation

Complex EOF on 5-year low-pass filtered data

Onarheim et al., Skillful prediction of Barents Sea ice cover. *GRL*, 2015

SST [°C]

Arthun and Eldevik, On Anomalous Ocean Heat Transport toward the Arctic and Associated Climate Predictability. *J. Clim.*, 2016

Connected Ocean Observatories

Extreme Arctic Marine Weather

We cannot forecast individual polar lows more than a couple of days in advance.

But maybe we can forecast the environment in which they form?

Warm Ocean - Cold Air

Extreme Arctic Marine Weather

Test dynamical models to see if marine cold air outbreaks can be forecast, and on what time scales (10–100 days)

Combine dynamical forecasts with empirical forecasts of northward-propagating SST anomalies and sea ice extent

Integrate these forecasts into a tool for risk management in the Arctic

Polar Low in Barents Sea

Safety Risk Map

Contact us

Project Coordinators:

Steffen Olsen, smo@dmi.dk and Daniela Matei, daniela.matei@mpimet.mpg.de

Project Office:

Chiara Bearzotti, chb@dmi.dk

Communication, Dissemination, Engagement, and Exploitation officer:

Raeanne Miller, Raeanne.Miller@sams.ac.uk

www.blue-action.eu

The Blue-Action project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727852