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Abstract—We study programs which operate in the presence of
possible failures and which must be restarted from the beginning
after each failure. In such systems checkpointsare introduced
to reduce the large costs of program restarts when failures
occur. Here we suggest that checkpoints should be introduced
in a manner which assures effective reliability, while reducing
both the computational overhead as much as possible, but
also to save energy. We compute the total average program
execution time in the presence of checkoints so as to limit
the re-execution time of the program from the most recent
checkpoint. We also study the total energy cnsumption of the
program under the same conditions, and formulate an opti-
mization problem to minimize a wighted sum of both average
computation time and energy. This approach is placed in the
context of Application Level Checkpointing and Restart (ALCR).
We then focus on checkpoints placed at the beginning of a loop,
and derive the optimum placement of checkpoints to minimize
a weighted combination of the program’s execution time and
energy consumption. Numerical results are presented to illustrate
the analysis. Finally we describe a software tool with a graphical
interface that has been designed to assist a system designer
in choosing the optimum checkpoint for a given program as
a function of different failure rates and other parameters.

Index Terms—Optimum checkpoints; Program loops; Software
reliability; Energy saving; Application Level Checkpoints and
Restart (ALCR); Time optimization; Toolbox; User interface

I. INTRODUCTION

Reliability has long been important to many applications,
including for long-running software that performs computa-
tionally expensive or critical tasks [1]. Indeed, a single failure
may lead to the need to re-execute a large number of instruc-
tions, resulting in significant overhead, reduction in effective
performance performance and increase in energy consumption.
The lack of reliability can also have dire consequences for
time-critical software programs that have to provide their
results within a specific time frame [2]-[4], as well as for
smaller applications that have to ensure energy efficiency of
their operation [5]. For all such applications, fault tolerance
mechanisms that avoid the complete program re-execution in
case of failures have long been studied [6], [7].

In particular, the Checkpoint and Restart (CR) technique
[8] is widely used to keep a sequence of safe copies (or
checkpoints) of the program execution state so that the pro-
gram may be restarted from a recent checkpoint so as to

This research was supported by the European Commission through the
H2020 SDK4ED Project under Grant Agreement No. 780572. The contents
of this paper represent the opinion of the authors, and do not engage the
responsibility of the European Commission.

Erol Gelenbe is with the Institute of Theoretical & Applied Computer
Science, IITIS-PAN, 44-100 Gliwice, PL and the Université Cote d”Azur.

Pawel Boryszko and Joanna Domanska are with the Institute of Theoretical
& Applied Computer Science, IITIS-PAN, 44-100 Gliwice, PL.

Miltiadis Siavvas is with the Information Technologies Institute, Centre for
Research and Technology Hellas, 6th km Harilaou - Thermi, Thessaloniki
57001, GR

avoid re-executing the whole program in case of failures.
Checkpointing schemes are also popular in high performance
computing systems [9]-[12], and have also been implemented
in operating systems such as Unix or Linux [13]-[15], and
to insure the consistency of distributed systems [16]-[18].
Multiple level checkpointing introduced in [19], [20] was also
recently studied in [21].

The Application-level Checkpoint and Restart (ALCR) tech-
nique [22], [23] is an efficient approach to checkpointing
which requires a relatively small memory footprint which
is limited to a single application. However, implementing
checkpoints requires programming skills, as well as expertise
in selecting the locations in the application where addi-
tional checkpointing code will be inserted, and a judicious
choice of the checkpoint intervals. Existing ALCR tools and
libraries facilitate the programming aspects by helping to
insert checkpoints within ong-running loops [24], [25], but
typically do not offer guidelines to determine the interval
betweeen checkpoints. Nevertheless checkpoint optimization
applications using ALCR have been recently studied [26], [27].

While placing checkpoints increases the overhead for both
execution time and energy for program execution, it can help
save both time and power consumption during the recovery
from when failures. This trade-off has been studies in several
papers over the years using analytic models for transaction
processing systems [28]-[30] and techniques that anlalyze a
system’s robustness under failures or attacks [31]-[34].

The checkpoint interval has often been used to maximize
a system’s availability for transaction processing systems or
databases [35]-[39]. In addition, energy consumption mini-
mization for computer systems is now recognized as a valid
issue [40]-[44] with regard to the sustainability of information
technology [45], [46]. However despite the importance of
energy consumption in systems for reasons of economic cost
and sustainability [47], [48], less work has been undertaken on
judicious checkpointing to reduce the energy that is consumed
by a system [49].

In this paper we take a common approach to checkpointing
so as to save both the energy consumed by a program and its
effective execution time. Using first principles, we construct a
probability model that predicts the total average execution plus
energy consumption of a program. Turning specifically to the
case of checpointing with ALCR, we compute the correspond-
ing quantities for a program built around a long repetitive loop.
The analysis offers a way to compute the optimum checkpoint
interval that minimizes the overall average cost, which we
illustrate with several examples. Finally we present a software
tool to implement these results, allowing the end user to select
checkpoint intervals for ALCR equipped programs, without
having to delve deeply into the underlying theory.



II. A SINGLE LOOP PROGRAM WITH CHECKPOINTS

Suupose that some program runs y, instructions starting
from its (n — 1)th untill its nth checkpoint. Here y,, does not
include the repetitions of instruction execution due to failuers,
or the additional code executed for recovering from failures.
At the instant ¢, > 0 when the program creates its n — th
checkpoint llet Y;, be the total number of instructions that the
program up to t,, and Y;, does not include the instructons that
were repeatedly executed due to checkpoints and failures, so
that Y, = Z?:I Yi

If B¢(Y;,) is the time during needed for the creation of the
n — th checkpoint, which depends on memory occupied the
program occupies, and can also depend on Y;, due to data
generated by the program, then B¢(Y,,) = Bf + B{Y, with
constants Bf > 0 and BY > 0. When a failure occurs after the
program has completed y instructions following a checkpoint,
b“(Y,,y) is the time required to start the program from the
most recent checkpoint.

Thus the program successfully executes y < Y, 41 — Y,
instructions after the most recent checkpoint and before the
(n + 1)th checkpoint, where b“(Y,,,y) = b + by with
constants b > 0, b > 0, depending on the total number
of instructions executed since the last checkpoint, i.e.

o The time B¢(Y,,) that is needed for establishing the
n-th checkpoint will depend on the total number of
instructions Y;, executed since the program was launched,
where B(Y;,) = B§ + B{(Y,),

o While the duration b°(Y,,,y) that is needed for failure
recovery posterior to the nlh checkpoint, including related
reloading the state of the system after a failure, depends
ony << Y,41—Y,, where b°(Y,,,y) = b%(y) = b+ biy.

If the energy consumption for creating the nth checkpoint is
B¢(Y,,), while b“(y) is the consumed energy for failure recov-
ery when the total executed instructions is Y;, + y leqY,, 11,
we have B¢(Y,,) = Bf + B{Y,, where b°(y) = b + by and
Bf >0, Bf 20,b; >0, by =0.

Calling o, 8 > 0 the positive constants representing the
relative cost of computation and energy, we characterize the
joint total cost of time and energy through the quantities:

By(Y) = aBj(Y)+ 8B§(Y),
Bi(Y) = aB{(Y)+ 8B{(Y),

by = abf+ Bbf,

by = abj+ Bb], ¢ =ac’ + [

II1. FIXED CHECKPOINT INTERVALS

Age dependent checkpoints [39] have been shown to reduce
the overall cost of checkpointing and failure recovery, when
the failure probability can increase with time, practical check-
pointing generally makes the simple choice of periodically
carrying out a checkpoint each time the program successfully
executes a fixed number of instructions y, = y. We will
now proceed in this mmaner, and assume that checkpoints
are installed after Y7 = y, Y5 = 2y, .. Y,, = ny instructions
are executed. We then need to select the optimum y, or the
optimum 7, that minimizes the composite cost that combines
time and energy. If the program ends when Y = Ny

(]

instructions are successfully executed, we do not need the
(N + 1)th checkpoint, and the first checkpoint is installed
priot to executing the first instruction.

We formulate our problem for a program that executes Y
successfully, and we select y or IV, so that the total overhead in
computation and energy consumption due to failure recovery
and checkpoints is minimized.

C“(y), the total expected execution time including all
restarts due to failures, starting from the most recent check-
point, for an average execution time per instruction ¢ and
failure probability per instruction (1 — a), is then::

C(y) = cya’ + (bo + C(y)(1 —a?),

+1)1)Zra

xr=1

(1—a). (1)

Indeed, with probability a¥ a failure does not occur during the
y instructions, leading to an execution time of ¢“y time units.
However, with probability (1 — a¥) one failure or more will
occur in the y instructions. The first failure that occurs prvokes
the restart of the program which takes time bj, and we add
to it the time C“(y) which includes the needed to restart and
re-execute the program to execute y instructions after possible
future failures.

Including the execution time and additonal work needed per
executed instruction until occurance of the next failure, intro-
duces the term (¢ + b{) multiplied by z and the probability
that the failure occurs at instruction , i.e. a”~'.a, the whole
being summed over = between 1 to y. Using

L 1—avt!
Ee -t
and & d1—avt! _ 1—ya?(l —a)—a¥
da 1-a (1—-a)? '
results in:

() = bl ~ 1)+ S0 v 1)~ by @)

The total expected energy consumption C“(y) for executing a
number of instructions y after the most recent checkpoint, is
also obtained in the same manner:

¢ + b

O =bila™ — A+ e 1 b )

where ¢“ is the average energy consumption per executed
instruction. therefore:

C(y) aC(y) + BC(y),

b y
f‘+01[ =1 =by. 4

b()[(] y —1]+

IV. THE TOTAL COST

When we include both the time and energy needed to create
each checkpoint, and assuming a fixed number of instructions
y executed between successive checkpoints, we can obtain



the total cost of the program up to and including the last
instruction executed at Y = yN as:

J\r
NBy+ iyBy + NC(y), (5)

=1

N[By + C(y)] +

Kn(y) =

N(N +1)
2
The optimum checkpoint interval y* is then the value of
y that minimises ry(y), the cost per unit of work that is
accomplished, i.e. Ky (y) divided by Y = Ny which is the
total number of useful instructions executed for this total cost:

yBi.  (6)

] _ Kn(y)
kn(y) = Ny
By+Cl(y) (N+1)B;
= - ,
Y 2
By +C =t
- DrCWtrS B
Y 2
since Y = Ny. Defining:
BY @®)

2

we seek the value of y which yields the minimum of (7) , and
compute its first derivative:
dC (1
dr N - Yy d;y) - [B+ C(U)] )
dy y? '
Setting the derivative to zero we have:

o y oy [f?+C( )].

(10)
Y

Then using:

A— b0+(+b1

1—a’

(11

we obtain the expression for yx*, the value of y which optimizes

kN (y):

LAC)
dlj Y=y

"1 1
Y na—ﬁ]—i—A—B,
a¥

— [B+ C(y")],

Al

or y*lna+1=a_y’][1—§] . (12)

If B = A then the unique solution to (12) exists and y* =
—[Ina]=' 0 since a < 1. If B < A, again (12) has a solution
y* > 0 since the equatons LHS decreases linearly from 1,
while the RHS increases for y* > 1, so that the RHS and
LHS will intersect at some value y*. If B > A the RHS
decreases for y* > 1 and will intersect with the LHS at some

point.

A. Showing that y* is a minimum

To check whether y* is a minimum, we derive:

A’k (y) _ y3C" (y) — 2y2C"(y) + 2y[B + C
dy? y! "

(13)

where C'(y), C"(y) ate the first two derivatives of C'(y) with

respect to y. At y* we know that y*C'(y*) = B+ C(y*), and
write: Prr () ()
En\Y Y
T/zb:y' = y ly=y (14)
so that to examine the sign of C"(y*) we obtain:
c+ b _ c+ b
C"(y) =a Y(Ina)?by + —— T ]—a Y1n am. (15)

We see that C"'(y) > 0, so that ky(y) is minimized for y =

*

Y.

V. PROGRAMS WITH A SINGLE OUTER LOoOP

When software that manages a set of sensors and actuators,
it will process data from all sensors, update some variables,
and provide data to actuators and/or forward the data to some
cloud server. This sequence may repeat indefinitely in this
program with one outer loop. Thus the theoretical results we
obtain can be applied to a program with an outer loop with
L instructions, which is executed 7" times with Y = LT.
Depending on y*, we may be constrained to place checkpoints
at the start of a loop or at every few starts of a loop, or several
checkpoints may be inserted in each loop.

Thus we will first apply the results of Section III to com-
pute the optimum number of instructions executed between
successive checkpoints y* that minimize a weighted sum of
execution time and energy consumption, as indicated in the
expression (12) where we write:

~+b
B = By + B/L.T, A:bo+(l+ L (16)

—

Let I(x) be the integer that is closest to the real number z.
Then we obtain the related value:

no= 15 if E e, a7
Y y
- ¥ y
= 1(4), if L >

We will present examples in order to show the effect of
y and hence n on the expected execution time and the total
energy consumption of a program that runs in the presence of
failures.

To differentiate the computation timee from energy con-
sumption, n = n? will represent the value that minimizes the
total computation time, while n = n will referer to the value
minimizing energy consumption. Thus in (??), we have n? for
a =1, 3=0, while n* corresponds to a =0, 3 = 1.

We consider a program with a single loop with checkpoints
placed at the beginning (or at the end) of the loop. The
parameters used are:

B§ =500, B =0, B§=10°, Ble=0, ¢ =1
¢ = 107", b5 = 100,b{ = 10, b = 100, b5 = 10
g=5x10"°% L =100, N =10"".

In Figure 1, a short program is taken with Y = 10%) is
considered. Its expected execution time is shown as a function
of n.
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Fig. 1. Variation of the expected execution time with the number of
checkpoints that are placed in a program with the total number of instructions
executed being Y = 10%.

We define the Gain as the ratio of the exepected execution
In Figure 2 shows the expected Gain in terms of expected
execution time for different values of n. The values that
correspond to the optimum checkpoint interval n° are marked
within a rectangle. It illustrates the fact that the optimum
checkpoint interval n” minimizes the overall execution time
of the application and maximizes the overall expected Gain.

The relationship between n“ and n™, the optimum check-
point interval that minimizes computation time and energy,
are investigated in Figure ??. In Figure ?? we see how the
execution time changes when we the use optimal checkpoint
interval calculated for energy consumption. Similarly Figure
?? shows how energy consumption changes when we use the
checkpoint interval that optimizes execution time.

VI. THE OpTIMUM CHECKPOINTINGING TOOL

In addition to the theoretical work of solving the checkpoint-
ing problem analytically, it has proved very useful to build
a software tool that can help system designers, who are not
performance modeling experts, to install checkpoints in a way
that minimize energy consumption and/or program execution
time, by a judicious choice of the checkpoint interval.

Thus we have developed software consisting of a Dashboard
front-end and back-end, that provides analysis, predictions and
recommendations, in the form of micro-services written in
Java and built into Docker Containers [50]. The recommen-
dations can be triggered by the user, or retrieved from prior
examples in a database built using MongoDB [51].

Gain in terms of expected execution time

T

100 T

—(Gain
0  Maximum Gain

g ||
E 40 L } -
§ I
I
l
20 ‘ 1
0F .
-20 A L ' A ' A " ' A
0 10 20 30 4 5 60 70 8 9 100

n: Number of loop repetitions between Checkpoints

Fig. 2. Gain in the expected execution time he case for a small program with
Y = 104

A graphical interface, which we call the “Dashboard”,
presents itself to the user and displays the analysis in the
form of several display pages. This interface is based on the
JavaScript library React [52] with the free user interface KIT
[?] for building responsive websites and applications [53].

One of these components is the Dependability Toolbox
which consists of three key features. Two of them: (i) Quanti-
tive Security Assessment and (ii) Vulnerability Prediction, are
responsible for maintaining the security of the applications.
The third is responsible for maintaining the reliability of
applications and is based on the assessing (iii) The optimal
checkpoint interval between successive checkpoints. The cal-
culations and predictions are triggered by the user, or can be
retrieved from the database built on top of MongoDB.

One of the pages presents the results for the optimal
checkpoint interval for a given program in terms of execution
time and energy consumption. It is done by identifying the
most demanding loop in the prgram and recommending the
optimal interval between checkpoints to provide the lowest
possible execution time or energy consumption. Calculations
can also be done concerning both of them at the same time
with user specified by relative importance.

The user of platform will first login to her account and
choose the project from the projects page. Next, she can go
to the proper page presenting the optimal checkpoint interval
for her application as presented in Figure 3. It is possible for
the user to see the name of the program and to perform the
analysis using the proper button if there have been changes in
the program. The date of the last analysis is also shown on
the dash page.



After the data is taken from the new analysis or the database,
the user can see the results divided into two sections. One of
them presents the outcome for execution time in Figure 4, and
the other for energy consumption in Figure 5. Both of them
share a similar template. It presents the relevant data to the
user the in the form of the plot, from which the user can see

5{ "field" : "x", "label" : "Number of loop repetitions
between checkpoints" }],

6 "rows" : [

7{ "x" : 1, "y" : 1.308E-9 },

8{ "x" : 2, "y" : 7.0E-10 },

9{ "x" : 200, "y" : 3.658E-9 }] },

10 "calculationSummary" : {

11 "nPlusIndex" : 14,

N N X X 12 "nStarValue" : 6.05E-10,
how the specified metric, the average computation time and the 13 "nstarindex" : 3,
average energy consumption of the program varies concerning :‘: e .
the number of loop repetitions between checkpoints. This is 16 "mode” : "liner,
p repe P
powered by the Plotly library and is located on the left of the |J ;™97 * : e ?0' A B Bl PH 8 el Ng
section. To the right, there is shown to us two smaller sections. 19 "x" : [1, 2, ... 200],
They present the minimum value from the set and also the ?:Z;p;,,[§'§2§aig'erf'lz 3 ocoo BobrIHEN,
corresponding value of the distance between checkpoints in the 22 "autosize” : "true" j7],
form of loop repetitions. Below we can also see the detailed 3] ,<*¢cut tonTinetablet =
. X 24 "columns" : |
table of the values if the user prefers to choose differently than 25 { "fiela” : "y», "label" : "Execution time" },
. 2 wes "o omLmow " o.om 343
opumal value. 26 { fl:el:wee'n ;héck;:?:tls-- .” Number of loop repetitions
To perform the analysis we first need provide the back-end 27 "rows" : |
. . : : 28{ "x" : 1, "y" : 6.85E-10 },
of the dependability loolb(?x w.uh‘ specific parameters 1p the 29( "x* i 2, "y" : 6.1E-10 }, ...
form of the JSON shown in Listing 1 through the available 30 { "x» : 200, "y : 1.04622 8 }] },

APL

Listine 1. Reauest bodv examole
1{ "ProgramType" :"OptimalCheckpoints",
2"g":"0.000005",
3"B0e":"0.00000059",
4"B0Oc":"0.00000347",
s"L":"2826.0",
6"ce":"0.000000000445",
7"cc":"0.000000000074231",

31 "project_name"

38 "type" :
39 "autosize"
40 "username" :
41 "timestamp"
42}

8 Fhi0cmaron
9"blc":"0.
10 "b0e":"0.
11 "ble":"0.

ooooo0077",
0ooo0000007",
000000367",
00000000367",

12"N":"200.0",

13"alfa":"0.0",

14 "beta":"1.0",

15 "Ble™sN0, 0",

16 "Blc":"0.0",
17"Yy":"19782.0",

18 "history_data":"1.0",

19 "project_name":"Neurasmus",
20 "username": "userName" }

This consists mainly of parameters needed to perform the
analysis for selecting the checkpoint interval of the program,
and parameters that distinguish this particular program which
may be selected from data stored in the database. After
retrieving the data through the back-end the new analysis is
performed. The outcome of the calculations is then transferred
to the database to store the newest data, and exhibited on the
particular dashboard page that is dedicated to optimal check-
point interval analysis. Again the data exchanged between
back-end and front-end are sent using the JSON format as
presented in the Listing 2.

Listine 2. Response body example

1 { "_id" : { "$oid" : "5f0ea3d0d60180001080cbcc"” },
2 "energyConsumptionTable" : {

3 "columns" : [

4 { "field" : "y", "label" : "Energy consumption" },

: "Neurasmus",

32 "energyConsumptionOverNumberOf Instructions” : [{

33 "mode" : "line",

34 "margin® : { "r" : 20, "b" : 50, "t" : 50, "1" : 20 },
35 "marker" : { "color" : "red" },

36"x" : [1, 2, . 200],

37"y" : [1.308E-9, 7.0E-10, . 3.658E-9],

"scatter",

: "true” }],

"userName",

: "July 15, 2020 6:36 AM"

VII. CONCLUSIONS

Checkpoints are widely used in databases, operating sys-
tems, high performance computing, and in long-running pro-
grams for real-time applications. They allow a system or a
program to recover from failures whithout having to restart
execution from scratch each time a failure occurs. However
checkpointing has costs both in additional time and energy,
even when no failures occur. Indeed, the placement of check-
points themselves consumes system resources.

Thus, this paper has analyzed the choice of optimum
checkpoint intervals both from the perspective of energy costs
and in terms of execution time, innovating with respect to
previous work that has focused principally on execution time.
Starting from first principles we have derived the optimum
checkpoint for long running programs. We have also detailed
the analysis for programs with a long running outer loop,
which is common to many applications which deal with
real-time systems. Explicit analytic results have been derived
with closed form expressions and have been illustrated with
numerical examples. We have also presented the design and
operation of a tool that incorporates these results.

Future work will consider nested program structures, linking
checkpointing to program structure in a useful and intuitive
manner, similar to what was done in this paper for programs
where a single loop is iterated a large number of times.
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