
Technical debt as an indicator of software security
risk: a machine learning approach for software
development enterprises

Miltiadis Siavvas , Dimitrios Tsoukalas , Marija Jankovic , Dionysios Kehagias
& Dimitrios Tzovaras

Technical debt as an indicator of software security risk:
a machine learning approach for software development
enterprises
Miltiadis Siavvas a, Dimitrios Tsoukalas a,b, Marija Jankovica, Dionysios Kehagiasa

and Dimitrios Tzovaras a

aCentre for Research and Technology Hellas, Information Technologies Institute, Thessaloniki, Greece;
bDepartment of Applied Informatics, University of Macedonia, Thessaloniki, Greece

ABSTRACT
Vulnerability prediction facilitates the development of secure soft-
ware, as it enables the identification and mitigation of security risks
early enough in the software development lifecycle. Although sev-
eral factors have been studied for their ability to indicate software
security risk, very limited attention has been given to technical debt
(TD), despite its potential relevance to software security. To this
end, in the present study, we investigate the ability of common TD
indicators to indicate security risks in software products, both at
project-level and at class-level of granularity. Our findings suggest
that TD indicators may potentially act as security indicators as well.

ARTICLE HISTORY
Received 27 January 2020
Accepted 11 September 2020

KEYWORDS
Software engineering;
technical debt; software
security; vulnerability
prediction; decision making

1. Introduction

A software vulnerability is a weakness in the specification, development, or configuration
of software such that its exploitation can violate a security policy (Krsul 1998). The
exploitation of a single vulnerability may lead to far-reaching consequences to the
owing enterprise of the compromised software, including financial losses and reputation
damages. For instance, Equifax Breach (CVE-2017-56381) (Luszcz 2018) allowed criminals
to expose the personal data of more than 143 million Equifax customers, leading to a total
cost of $1.35 billion according to the company’s financial results of the first quarter of
20192. Hence, in order to avoid potential damages, software development enterprises are
seeking mechanisms able to assist them in identifying and removing vulnerabilities as
early in the development cycle as possible.

Vulnerability prediction is a technique that enables the early detection of security risks
in the software development lifecycle (SDLC) (Siavvas et al. 2018a). Research endeavours
in vulnerability prediction focus primarily on analysing the ability of particular software-
related factors (e.g. software metrics) to detect vulnerabilities in software, as well as on
developing vulnerability prediction models based on these factors, e.g. (Shin et al. 2011;
Scandariato et al. 2014; Dam et al. 2018). Vulnerability prediction facilitates decision
making during the SDLC, leading to the production of more secure software.

CONTACT Miltiadis Siavvas siavvasm@iti.gr Centre for Research and Technology Hellas, Information
Technologies Institute, Thessaloniki, Greece

http://orcid.org/0000-0002-3251-8723
http://orcid.org/0000-0001-9986-0796
http://orcid.org/0000-0001-6915-6722

One interesting software-related factor that may indicate software security risks is
Technical Debt (TD) (Cunningham 1993). TD, a notion inspired by the financial debt, is
utilised as a quality metric. More specifically, it is used to quantify long-term software
quality problems that are caused by quality compromises that provide short-term bene-
fits. In fact, it is used to quantify the effort that is required for fixing design and code
quality issues (i.e. code smells and violations of coding rules and best practices), which are
introduced by the developers due to sacrifices they make to the quality of the code they
produce usually in an attempt to meet strict production deadlines. As a result, an
increased value of TD indicates that the corresponding software product contains an
increased number of quality issues, which, in turn, indicates poor overall quality.

Recently, several researchers have started theoretically examining the feasibility of
using TD as an indicator of security risk (Rindell, Bernsmed, and Jaatun 2019; Rindell and
Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019). Since most of the software
vulnerabilities are caused by coding and design errors (McGraw 2006; Chess and McGraw
2004; Howard, LeBlanc, and Viega 2010), it is reasonable to expect TD indicators to also
indicate security issues. However, although a multitude of highly diverse software-related
factors have been empirically examined for their ability to indicate software security risk,
including software metrics (Shin and Williams 2008a, 2008b; Siavvas, Kehagias, and
Tzovaras 2017), text features (Neuhaus et al. 2007; Scandariato et al. 2014; Pang, Xue,
and Wang 2017; Dam et al. 2018), product popularity (Siavvas et al. 2018b) or even firm’s
financial records (Roumani, Nwankpa, and Roumani 2016), very limited attention has been
given on TD. In fact, although various software metrics (e.g. CK Metrics (Chidamber and
Kemerer 1994)), which are occasionally treated as quality indicators, have been widely
studied for their relevance to software security, actual low-level TD indicators (e.g. bugs,
code smells, duplicated code, etc.), as well as actual high-level TD indicators (e.g. SQALE
Index) have not been studied yet. The only known attempt can be found in a study by
Siavvas et al. (2019), in which we empirically evaluated the relationship between SQALE
Index and software security risk, showing that a statistically significant relationship may
exist.

To this end, in the present paper, based on the preliminary findings of our previous
work (Siavvas et al. 2019), we investigate the ability of common TD indicators to indicate
software security risk. More specifically, in this study, we examine the predictive perfor-
mance of TD indicators in predicting software security risks both at project-level and at
class-level of granularity, by building different machine learning (ML) models. As far as
project-level analysis is concerned, we examine the ability of TD indicators to predict the
security risk level of a software project, based on the results of static analysis. To do so, we
initially constructed a large repository comprising 210 open-source Java applications
retrieved from GitHub,3 which were analysed using a popular static analysis platform in
order to calculate their TD indicators, as well as their security risk, measured in terms of
vulnerability density. The security risk was then discretised in security risk levels based on
a set of data-driven thresholds in order to be suitable for the construction of the
classification models. Based on the produced dataset, several ML models were built
considering both the cases of binary (i.e. two security risk levels) and 3-class (i.e. three
security risk levels) classification, in order to cover different enterprise needs. The

2 M. SIAVVAS ET AL.

produced ML models were evaluated based on popular performance metrics, which were
also used for selecting the best model in each case.

Subsequently, emphasis was given on class-level of granularity, and particularly on the
ability of various carefully selected TD indicators to predict the existence of actual
vulnerabilities in software classes. For this purpose, a highly balanced vulnerability dataset
was constructed based on OWASP Benchmark,4 which is a popular dataset of vulnerable
and clean classes. Based on this dataset, both correlation and discriminant analysis were
conducted with the purpose to detect potential relationships between the studied TD
indicators and the existence of vulnerabilities, whereas the performance of these indica-
tors in class-level vulnerability prediction was examined through the construction of ML
models.

The results of the project-level analysis revealed that TD indicators could potentially
predict the security risk level of a software project with sufficient accuracy, with the
Logistic Regression algorithm to be the best performing model. On the other hand, the
class-level analysis highlighted the capacity of TD indicators to discriminate between
vulnerable and clean software classes, and, in turn, the feasibility of constructing relatively
accurate class-level vulnerability prediction models based on these indicators, with
Random Forest demonstrating the best predictive performance. The results of our study
suggest that TD indicators may indicate software security risks, and therefore they could
potentially be used as part of a security assessment process.

The rest of the paper is structured as follows. Section 2 provides a state-of-the-art
analysis focusing on the open issues that the present work attempts to address. In Section
3, the project-level analysis is described in detail, whereas Section 4 is dedicated to the
class-level analysis. In Section 5 we present the validity threats of the present paper and
how we are trying to mitigate them. In Section 6 the implications of the present work to
researchers and practitioners are discussed. Finally, Section 7 concludes the paper and
discusses directions for future work, whereas a discussion of how the present paper is
related to the Software Development Enterprises is also provided.

2. Related work

There is a multitude of research attempts in the field of software security aiming at
identifying security risk indicators. In fact, specific emphasis has been given in the related
literature on the ability of software-related factors to predict the existence of potential
vulnerabilities in software products or components, which are identified either from
actual vulnerability reports (e.g. Shin et al. 2011; Chowdhury and Zulkernine 2011), or
through static analysis (e.g. Scandariato et al. 2014; Pang, Xue, and Wang 2017; Dam et al.
2018).

More specifically, the capacity of common software metrics to indicate the existence of
software vulnerabilities has been extensively studied. The first attempts were made by
Shin and Williams (2008a, 2008b) and Chowdhury and Zulkernine (2010) who observed
that common complexity, coupling, and cohesion (CCC) metrics may have a significant
(albeit weak) relationship to the existence of vulnerabilities in software components.
Based on this observation, they also investigated the predictive performance of these
metrics, i.e. their performance in predicting the existence of vulnerabilities in software

3

components, which was found to be promising. The ability of software metrics to be used
as vulnerability indicators (i.e. predictors) has been supported by numerous follow-up
studies (e.g. Moshtari and Sami 2016; Siavvas, Kehagias, and Tzovaras 2017; Ferenc et al.
2019; Jimenez et al. 2019). Along with CCC metrics, these studies investigated additional
software metrics.

Significant attention has been given also on information retrieved directly from source
code, either through static analysis or through text mining. Regarding static analysis,
Gegick et al. (2008) observed that a close correlation may exist between the static analysis
alerts density and the actual vulnerabilities that a program contains. This observation was
supported by the results of relatively recent empirical studies, e.g. (Walden, Stuckman,
and Scandariato 2014; Yang, Ryu, and Baik 2016). As far as text mining is concerned, the
first known attempt was made by Neuhaus et al. (2007), who examined the ability of
tokens (i.e. keywords directly retrieved from the product source code) to indicate the
presence of vulnerabilities in software artefacts. A notable attempt was made by
Scandariato et al. (2014), who managed to built text mining-based vulnerability predictors
with sufficient predictive performance. Recently, there is a shift in the related literature
towards adopting deep learning in an attempt to improve the predictive performance of
text mining-based vulnerability predictors, e.g. (Pang, Xue, and Wang 2017; Dam et al.
2018).

Factors non-directly related to the product source code have recently started gaining
the attention of the research community. For example, Roumani, Nwankpa, and Roumani
(2016) found a strong correlation between the financial records of the software develop-
ment enterprises (e.g. sales, financial performance, etc.) and the number of vulnerabilities
that their products may contain. Recently, Siavvas et al. (2018b) investigated whether
open-source software products’ popularity can be used as an indicator of their security
level, concluding that popularity may not constitute a reliable security indicator.

Despite the multitude of research endeavours focusing on the ability of highly diverse
factors to indicate security risks in software products, almost no research attempts exist
explicitly focusing on dedicated TD indicators, such as code smells and code duplication.
Software metrics are the only indicators indirectly related to TD that have been studied so
far, which have demonstrated only weak correlation to software security. However, study-
ing only the indirect indicators is not sufficient for generalising these findings to the TD
itself. Recently, several researchers have started examining the feasibility of quantifying
software security indirectly through the notion of TD. More specifically, Rindell et al.
(Rindell, Bernsmed, and Jaatun 2019; Rindell and Holvitie 2019) provided guidelines on
how the concept of TD can be extended to support software security, whereas Izurieta
et al. (Izurieta et al. 2018; Izurieta and Prouty 2019) presented ways for prioritising security
bugs as TD items (i.e. quality issues). However, these studies provide only theoretical
evaluation of the feasibility of TD to be used as a security indicator, without providing
empirical evidence for the relationship between TD and software security. The only
known attempt can be found in (Siavvas et al. 2019). In this study, we empirically
evaluated the relationship between TD and software security based on a repository of
50 open-source software products, showing that a statistically significant and strong

4 M. SIAVVAS ET AL.

correlation exists between these two factors. This work provides preliminary evidence for
the inter-relationship between TD and software security risk.

In the present paper, we extend our previous work with the purpose to reach safer
conclusions regarding the potential relationship between TD and software security. More
specifically, the project-level analysis of our present work is based on a much larger code
base comprising 210 open-source software applications. In addition, contrary to our
previous work in which we focused exclusively on TD Principal (i.e. SQALE Index), in this
study we consider 12 TD indicators, providing in that way finer-grained analysis. Moreover,
in the previous study the analysis was focused exclusively on project-level of granularity. In
the present study, we also examine the ability of TD indicators to indicate security risks at
lower levels of granularity and specifically on class-level. In addition, contrary to previous
studies in which only some indicators with indirect relevance to TD were considered (i.e.
software metrics), in the present work previously uninvestigated factors with direct relation
to TD are studied including code smells, bugs, and code duplication. Finally, in our previous
work, we focused only on the correlation between the values of TD and software security
(i.e. vulnerability density). On the contrary, in the present study, we focus on the predictive
performance of TD indicators, i.e. on their ability to predict security risk levels (i.e. project-
level analysis) or actual vulnerabilities in software classes (i.e. class-level analysis), leading to
the construction of actual predictors. To the best of our knowledge, this is the first study
that specifically investigates the predictive performance of dedicated TD indicators, such as
code smells, bugs, and code duplication, in indicating software security risk.

3. Project-level analysis

In the present section we investigate the ability of TD indicators to indicate security risks in
software projects at project-level of granularity. More specifically, we examine whether TD
indicators can be used as the basis for predicting the security risk level of software
products, measured in terms of the security-related static analysis alerts density. This
information would be very useful both for developers and project managers, since poor
TD would also indicate questionable security, and therefore, the accumulation of TD
liabilities would indicate possibly the accumulation of security-related issues (i.e. potential
vulnerabilities), allowing them to make early decisions about code testing and refactoring.

3.1. Experiment setup and methodology

3.1.1. Overview of the methodology
In Figure 1, a high-level overview of the overall approach that is adopted in the present
paper for examining the ability of common TD indicators to predict software security risk
at project-level of granularity is illustrated. As can be seen in Figure 1, the overall approach
comprises five steps, which are briefly described below:

1. Data Definition. The first step of the study is to define the structure of the dataset that will
be used for the construction of the ML models. This involves the selection of the input
variables (i.e. TD indicators), as well as of the class attribute (i.e. Security Risk Levels) of the
predictors. Regarding the input variables, apart from common software metrics (e.g. com-
plexity), numerous previously uninvestigated TD indicators were considered for their ability

5

to predict software security. The class attribute was defined by discretising the values of
a popular security risk indicator into three security risk levels, namely Low, Medium, and High.

2. Data Collection. The purpose of this step is to retrieve a sufficient number of real-world
open-source software products and to analyse them using a popular static analysis platform
in order to calculate their TD indicators and their software security risk levels, leading to the
construction of the dataset defined in the previous step.

3. Data Pre-processing. This step is responsible for cleaning the data and bringing the
dataset in a form ready to be used for training purposes. More specifically, this step involves
all the required pre-processing actions, including feature selection, data resampling, and
hyper-parameter tuning.

4. Selection of Classification Techniques. In this step, the most suitable classification
techniques are selected, taking into account the specific characteristics of the dataset that
is produced by the previous steps of the approach.

5. Model Training. This final step of the overall approach is responsible for building and
evaluating classification models using the dataset that was constructed in the previous steps.
More specifically, it is responsible for building classifiers able to classify a given software
application into the correct security risk level, based on the values of its TD indicators. Proper
model evaluation techniques are applied in order to ensure that the best classifier is selected
in each case.

It should be noted that in the final step we consider both the cases of binary (i.e. 2-class)
and 3-class classification. In the case of the 3-class classification, which we term General
approach, the produced models focus on assessing whether the security risk level of
a given application is Low, Medium or High according to the values of its TD indicators
and previous knowledge (i.e. retrieved from popular open-source repositories). These
models provide fine-grained security assessments, allowing developers and project man-
agers to track the security risk level of their applications throughout their overall SDLC.

In the case of the binary classification, the three security risk levels are reduced into
two, by merging the Medium category either with the Low or with the High risk level
accordingly. Hence, two approaches are considered, namely (i) a Conservative approach, in
which we built models that are able to predict the Low | Medium+High classes, and (ii)
a Loose approach, in which we build models that are able to predict the Low+Medium |

Figure 1. High-level overview of the overall model construction approach for the project-level
analysis.

6 M. SIAVVAS ET AL.

High classes. The binary models are useful for developers and project managers that are
not interested in having fine-grained security assessment, but instead to be notified when
the security risk of their applications is expected to exceed a specific threshold in order to
act promptly. The Conservative approach is more suitable for software development
enterprises that built security-critical applications, as in these enterprises the security
risk should be minimised as much as possible. Other enterprises may opt for the Loose
approach, in order to reduce the burden caused by frequent notifications by the models.

The above analysis suggests that the proposed approach can be tailored to satisfy the
needs of different enterprises. A more detailed description of the steps presented above is
provided in the rest of this section.

3.1.2. Selected indicators
3.1.2.1. Technical debt. The majority of TD indicators proposed in the literature dis-
cover TD items that are linked with software aspects (Tsoukalas et al. 2018; Li, Avgeriou,
and Liang 2015; Alves et al. 2016), which enables the evaluation of different software
artefacts’ characteristics. With respect to object-oriented software, object-oriented struc-
tural properties (Chidamber and Kemerer 1994; Li and Henry 1993), such as the widely
known complexity, coupling, and cohesion, have been widely utilised for predicting the
maintenance effort and, in turn, the maintainability of software (Riaz, Mendes, and
Tempero 2009; Van Koten and Gray 2006; Fioravanti and Nesi 2001; Zhou and Leung
2007; Zhou and Xu 2008), a quality attribute that is closely related to TD. For instance, with
respect to the property of complexity, various studies have addressed the impact of
Cyclomatic Complexity, i.e. the number of linearly independent paths through
a program’s source code, as a predictor of the maintainability of a software project
(Giger, Pinzger, and Gall 2012; Bruntink and van Deursen 2006; Singh and Saha 2012). In
a similar manner, coupling metrics, such as the Coupling Between Objects (CBO) or the
Coupling Between Methods (CBM), and cohesion metrics, such as the Lack of Cohesion in
Methods (LCOM), have been considered by a multitude of researchers for their ability to
measure and predict (Eski and Buzluca 2011; Shatnawi and Wei 2008; Zhou et al. 2012;
Zhou and Leung 2007; Van Koten and Gray 2006; Shatnawi and Wei 2008; Elish and Elish
2009). Therefore, since TD is closely related to the maintainability quality attribute, the
aforementioned software metrics are usually being treated as indirect TD indicators or
a subset of TD indicators (Kosti et al. 2017; Tsoukalas et al. 2020; Alves et al. 2016; Siebra
et al. 2014).

Besides OO metrics, assessment tools used in the industry that employ well-known
models, such as the ISO/IEC 25022–25023 standard or the SQALE (Letouzey and Ilkiewicz
2012) methodology, all gather their atomic data by calculating various software factors
(i.e. measures). Some of these measures upon which assessment tools estimate code-level
TD are code duplication, and code coverage, among others. There exist various studies
that relate each of these metrics with TD (Griffith et al. 2014; Nugroho, Visser, and Kuipers
2011; Marinescu 2012). In addition, there are various studies that explore the involvement
of code smells in the presence of TD (Alves et al. 2016; Palomba et al. 2018). Code smells
can be described as code or design patterns that often violate one, or more than one
programming principle (Fowler 2018), thus leading to deeper problems in further devel-
opment and maintenance of the software. These problems may impede the software

7

maintenance process and impose the need for code refactoring. Finally, various static
code analysers manage to identify TD through source code analysis, which aims in
locating bugs or violations that can cause quality decay (Xuan, Hu, and Jiang 2017;
Griffith et al. 2014; Digkas et al. 2017). These code-level issues are normally eliminated
through the application of code refactoring (Zazworka et al. 2013).

SonarQube5 is the world’s leading static analysis platform for continuous inspection of
code quality that provides analysis functionalities and a wide range of metrics for
measuring quality attributes of code, tests, and design. As of today, it has been adopted
by more than 120 K organisations including nearly more than 100 K public open-source
projects.6 In this study, SonarQube has been used as proof of concept for research
purposes, since according to two recent studies on TD Management (Li, Avgeriou, and
Liang 2015; Ampatzoglou et al. 2015), it is the most frequently used tool for estimating TD
principal. To do so, SonarQube checks code compliance against a set of classified coding
rules and if the code violates any of these rules, it considers it a violation or a TD item. For
each of the identified TD items, SonarQube computes the remediation time (i.e. estimated
effort) needed to refactor it and considers it as TD. Therefore, in the present work, we
opted for the TD-related metrics (computed both on the project- and class-level of
granularity) that are provided by SonarQube, as our primary TD indicators to predict
software security risk. In fact, SonarQube has been used to statistically analyse the
selected 210 software applications (see Section), as well as the 2740 software classes of
the OWASP Benchmark (see Section 4.2). A more detailed definition of the selected
metrics is provided in Section.

3.1.2.2. Security.
3.1.2.2.1. Software security risk score. Similarly to our previous study (Siavvas et al.
2019), we chose the Static Analysis Vulnerability Density (SAVD) (Walden et al. 2009)
metric as our main software security indicator. In fact, the Vulnerability Density metric is
‘the total number of vulnerabilities that a software product contains per thousand lines of
code’ (Alhazmi, Malaiya, and Ray 2007). The vulnerability density metric is quantified
based either on the number of vulnerabilities reported on vulnerability databases (Shin
and Williams 2008a; Chowdhury and Zulkernine 2010) or based on the results of static
analysis (Walden and Doyle 2012; Siavvas, Kehagias, and Tzovaras 2017; Siavvas et al.
2019). The SAVD is actually the Vulnerability Density metric that is computed based on the
security-related results of static analysis tools (i.e. vulnerabilities identified through static
analysis). The SAVD metric is a popular security risk indicator widely used in the related
literature (Walden et al. 2009; Walden and Doyle 2012; Siavvas, Kehagias, and Tzovaras
2017; Siavvas et al. 2018b; Walden and Doyle 2012), whereas it has been also extensively
used for vulnerability prediction purposes (Gegick et al. 2008; Yang, Ryu, and Baik 2016).

For quantifying the SAVD of the selected software applications, similarly to the case of
TD indicators, we used SonarQube in order to extract security-relevant issues (i.e. poten
tial vulnerabilities). In fact, SonarQube has been used for calculating the SAVD of the
selected 210 software applications (see Section). To detect potential vulnerabilities,
SonarQube uses various popular analysers (such as FindBugs7 and PMD8) under the
hood and aggregates their reports, giving additional value by incorporating also its
own technologies and custom security rules tailored to each supported programming

8 M. SIAVVAS ET AL.

language. These security-related rules are based on well-established security-standards,
such as CWE, SANS, and OWASP. In fact, SonarQube, by making use of these rules, it is
capable of detecting important security issues that reside in the source code, and also
tries to reduce the number of the produced false positives to the greatest possible
extent.9

In the context of the present experiment, to compute the SAVD of each project, we
divided the total number of potential vulnerabilities identified by SonarQube for that
software product with the lines of code of the project, also computed by SonarQube. The
result was multiplied by 1000, to express SAVD per thousand lines of code. For better
understanding, the SAVD of a given software application is given by the following
formula:

SAVD ¼ 1000
Nvuln

LOC
(1)

where:
Nvuln: The total number of potential vulnerabilities that the software application con-

tains as reported by SonarQube
LOC: The total Lines of Code of the software application as reported by SonarQube
The SAVD value denotes how many potential vulnerabilities the software application

contains per thousand lines of code according to SonarQube. As a result, the higher the
SAVD of a software application, the higher its security risk, as it contains more (on
average) security-related static analysis alerts (i.e. security issues), which are likely to
manifest themselves as vulnerabilities. Hence, in the present study, the value of SAVD is
used as the value of the Security Risk Score (SRS) of a given software application. It should
be noted that the normalisation of the metric by the LOC of the software product is
necessary, for making the measure independent of the product size, and therefore able to
be used for the direct comparison of different software products.
3.1.2.2.2. Software security risk levels. During software development, developers and
project managers are interested in knowing the security risk level of their software
applications in order to better plan their testing and refactoring activities. In fact, they
would like to be notified when the security risk level of their application is high in order to
act promptly. Although SAVD is a sufficient indicator of software security risk, due to the
fact that its value is numerical, it does not provide information about whether its value can
be considered high or low. Hence, a discrete indicator of software security risk is necessary
to facilitate decision making. In fact, a discrete security risk indicator is more sufficient for
communicating assessment results even to non-technical stakeholders (e.g. managers)
since the human brain can better perceive linguistic values compared to actual numbers.

For this purpose, we decided to create a discrete security risk indicator by discretising
the SAVD into different Security Risk Levels (SRLs). In order to achieve this, a set of thresh-
olds needs to be defined. We decided to use three thresholds for the discretisation of the
SAVD, namely tl , tm, tu, which correspond to the lower, middle, and upper threshold of the
SAVD respectively. The values of these thresholds could be determined either based on
expert judgements, or based on real-world data. The latter approach was selected in order
to avoid the subjectivity that underlies expert judgements and therefore leads to a more
reliable set of thresholds. Among the existing threshold derivation approaches, we
decided to use the benchmarking approach since it is the most widely used in the related

9

literature, e.g. (Heitlager, Kuipers, and Visser 2007; Wagner et al. 2012; Siavvas,
Chatzidimitriou, and Symeonidis 2017).

The benchmark repository of 210 open-source software applications (described in
Section 3.1.3) based on which the ML models of the present study are constructed was
used for the calculation of these thresholds. More specifically, SonarQube was applied to
each one of the applications of the selected repository and their SAVDs were computed
by applying Equation (1). Subsequently, the three thresholds were calculated based on
the distribution of the SAVDs, by applying the following formulas, which were proposed
by Wagner et al. (2012):

tl ¼ minðfs : s � Q25%ðs1; . . . ; snÞ � 1:5 � IRQðs1; . . . ; snÞgÞ

tm ¼ medianðs1; . . . ; snÞ

tu ¼ maxðfs : s � Q75%ðs1; . . . ; snÞ þ 1:5 � IRQðs1; . . . ; snÞgÞ

(2)

where:
si denotes the SAVD value of the i-th product of the benchmark repository
Qp denotes the p-percentile
n denotes the size of the selected benchmark repository
IRQðs1; . . . ; snÞ denotes the inter-quartile-range
In simple words, the minimum, median, and maximum values of SAVD were selected as

its lower, middle, and upper thresholds respectively (after removing the outliers). The final
thresholds and the SRLs that were produced from the above procedure are illustrated in
Table 1.

From Table 1 it is clear that, since the lower threshold has a value of 0, three SRLs are
defined. A software application is assigned to one of these SRLs based on the value of
SAVD as determined by SonarQube. This discretisation enables the construction of
classification models able to predict the risk level of a software application based on its
TD Indicators, which will be presented in the rest of this section. It should be noted that,
although here we present three SRLs, as already mentioned, binary classification is also
feasible, by merging two risk levels into one (see Section 3.1.1). As stated previously,
binary classification is useful in case that the developers and project managers just want
to be notified when the security risk of their applications is above a specific threshold.

Table 1. The Security Risk Levels (SRLs)
along with their corresponding values
of SAVD. The thresholds of the SAVD
that determine each SRL were com
puted based on a benchmark reposi
tory of 210 open-source software
applications that were retrieved from
GitHub.

Security Risk Level SAVD Range

Low ½0; 0:515Þ
Medium ½0:515; 4:068Þ
High ½4:068; infÞ

10 M. SIAVVAS ET AL.

At this point, it should be noted that the Security Risk Score (SRS) is a relative security
indicator, which actually compares a given software product to other real-world software
products that are available on the market with respect to ‘how well it avoids security
issues (reported through static analysis)’. A High SRS (in fact, SRL) suggests that the project
contains much more security-relevant static analysis alerts (i.e. security issues) on average
compared to a baseline of real-world projects that are available on the market, and
therefore, it is more likely to contain an actual vulnerability than the others.

3.1.3. Dataset
For the execution of this study, we aimed at combining different TD and security-related
indicators into a common dataset with the purpose of investigating if and to what extent
TD can be used in order to accurately predict the security risk level of a software applica-
tion. To start the dataset construction process, we initially selected 210 popular open-
source applications from the GitHub repository. The selected 210 applications have
different sizes and belong to different application domains. The selection criteria were
based on software popularity, activity level, data availability, and the Java programming
language. A sufficiently large number of applications are fundamental to reach
a conclusion that does not depend on a specific dataset, allowing to generalise the
obtained results.

3.1.3.1. Data definition. After fetching the source code (i.e. latest commit) of each
application, we proceeded to the next step, i.e. using SonarQube to perform static analysis
on each codebase in order to retrieve both, TD and security indicators described in the
previous Section 3.1.2. In Table 2, the 12 metrics that were selected as (direct and indirect)
TD indicators and therefore used as the initial independent variables set are presented
along with a short description.

Our final dataset comprises a table with 210 rows (the number of analysed applica-
tions) and 13 columns, where each one of the first 12 columns holds the value of a specific
TD indicator, while an extra column at the end of the table holds the value (class) of the
SRL (i.e. SAVD level). Since the purpose of the project-level analysis is to investigate the
ability of TD indicators to act as security risk level predictors of a software application, the
columns that refer to TD metrics will play the role of independent variables, while the last
column that refers to SRL (i.e. SAVD level) will play the role of the dependent variable, i.e.

Table 2. The initial set of technical debt (TD) indicators considered by the present analysis.
Metric Description

bugs Total number of bug issues of a project.
code_smells Total number of code smell issues of a project.
comment_lines Total number of lines that correspond to comments.
open_issues Total count of issues in the Open state.
ncloc Total number of lines that are not part of a comment.
uncovered_lines Total number of code lines that are not covered by unit tests.
duplicated_blocks Total number of lines that belong to duplicated blocks.
complexity Total Cyclomatic Complexity calculated based on the number of paths through the code.
sqale_index Total effort (measured in terms of minutes) to fix all the identified issues.
classes Total number of classes.
functions Total number of functions.
cognitive_complexity Total Cognitive Complexity, measuring the degree to which the code’s control flow is

understandable.

11

the security risk level that we try to predict. This format helped us during the classification
model construction phase described in Section 3.2.

3.1.3.2. Descriptive statistics. In order to provide insights regarding the selected data
set, its descriptive statistics need to be presented. These statistics (e.g. mean, median,
standard deviation, variance, minimum and maximum values, etc.) provide simple sum
maries about the sample and about the observations that have been made. After analys
ing and extracting the metrics of each application, we present the descriptive statistics of
our dataset in Table 3.

Metrics that vary little are not likely to be useful predictors. In our case, from Table 3 we
observe that for all metrics there are significant differences between the lower 25th
(lower) percentile, the median, and the 75th (upper) percentile, thus showing strong
variations. Therefore, all metrics were selected to be used for subsequent analysis.

In Figure 2, we present a histogram of the distribution of SRL (i.e. SAVD level) class
among the 210 applications of our dataset. As we can see, most software applications fall
under the Low SAVD level class (105 instances). In the second place, there is the Medium
class (83 instances), whereas the High class is the class with the least occurrences (22
instances). This observation implies that our dataset is imbalanced, especially when it
comes to the High SAVD level class, where the total count of software application
instances is considerably lower than the other two classes. To investigate if this issue
will affect the performance of the examined classifiers, i.e. make a classifier biased towards
Low or Medium classes, we will employ resampling techniques and compare the results
with those obtained without data resampling. More details on this are presented in
Section.

3.1.4. Data pre-processing and model construction
3.1.4.1. Classification models. The purpose of the project-level analysis is to examine
the feasibility of using classification for predicting the SRL of software applications based
on TD indicators. To do so, we applied an arsenal of ML classification models and
compared their results in order to select the best model. We decided to omit Artificial
Neural Network models from our experiments, as the size of our dataset (210 instances)
does not suffice to train such models. Below, the selected models are briefly described:

Table 3. Descriptive statistics of TD indicators of the 210 open-source real-world software applications
used for the project-level analysis.

Metric
Mean
value

Standard
deviation

Min
value

Lower
quartile

Median
value

Upper
quartile

Max
value Skewness Kurtosis

bugs 29.665 61.148 0 3 9 30 585 5.286 37.601
code_smells 858.660 2095.092 2 94 235 732 16442 5.551 35.262
comment_lines 5113.780 15587.257 1 387 1381 3889 170698 8.203 77.661
open_issues 927.144 2235.457 3 102 264 777 18625 5.631 36.678
ncloc 19524.278 37253.222 175 2655 7068 20438 357664 5.262 38.091
uncovered_lines 9815.507 17856.102 32 1302 3297 10288 137326 3.905 19.212
duplicated_blocks 110.177 429.327 0 0 12 47 4219 7.771 67.183
complexity 3914.024 7420.959 11 421 1352 4284 61862 4.275 23.544
sqale_index 9143.732 24074.250 10 951 2755 7540 250449 7.027 59.265
classes 250.172 529.702 1 40 94 281 6453 8.391 92.196
functions 1933.144 4033.357 7 248 725 2053 45852 7.234 70.777
cognitive_complexity 3244.833 7100.924 5 271 859 3201 59109 4.667 26.822

12 M. SIAVVAS ET AL.

• Logistic Regression is a classifier that predicts the probability of a categorical target
variable Y belonging to a certain class by employing a logit function. Although the logit
function makes logistic regression suitable for binary classification where there are two
classes, it can be extended to support classification where multiple classes are present (see
Section 3.2.3 for more information).

• K-Nearest Neighbours is a simple algorithm that initially keeps all available labeled data
points in the memory. Once a new data point comes in, it gets classified based on the
majority label of the k data points closest to it. The closeness between data points is
computed by using a distance function (e.g. Euclidean distance).

• Naïve Bayes is a probabilistic classifier that is based on the Bayes’ theorem. To make
classifications, it computes the odds of a data point to belong into a specific class. Although
Naive Bayes is simple and intuitive, it works under the assumption that all features are
independent and they not affect the other, which is rarely the case in real-life classification tasks.

• Support Vector Machine is a classifier that tries to find the optimal N-dimensional hyper-
plane (i.e. support vectors) that maximises the margin between the data points, thus making
them distinctly separable. To achieve this, it tries to learn a non-linear function by linearly
mapping the data points into high-dimensional feature space.

• Random Forest is a classifier that is constructed based on multiple decision trees. For the
classification, the new instance (i.e. input vector) is fed as input to each one of the decision
trees of the Random Forest, which predict its class. Then the Random Forest collects all the
votes that are produced by its decision trees and provides a final classification. Usually the
class that was selected by the majority of the decision trees is chosen as the final class of the
new instance.

• XGBoost is a decision-tree-based ensemble ML algorithm that uses multiple decision trees
to predict an outcome based on a gradient boosting framework.

For the conduction of our experiments, we used the Python programming language and
more specifically the scikit-learn10 ML library that contains the implementation of all the
above algorithms.

Figure 2. SAVD class distribution.

13

The scale of the input data is known to affect some of the models that we investigated,
namely the KNN and SVM algorithms. To address this issue, we applied standardisation to
the dataset before experimenting with these algorithms.

3.1.4.2. Feature selection. The selection of independent (i.e. input) variables before
designing or experimenting with an ML algorithm is a task that needs to be treated with
special attention. A large number of input features, i.e. a high-dimensional feature space,
may lead to the ‘curse of dimensionality’ (Bellman 2003). According to this phenomenon,
the increasing number of the model’s inputs leads to a degradation in its predictive
performance. Features that are not associated (or they are partially associated) with the
class attribute can also negatively affect model performance. Thus, after constructing our
dataset, the next step is to provide a clear understanding of the statistical attributes of our
variables, and then to apply feature selection techniques for reducing the number of the
model’s inputs by keeping only the TD indicators (described in Section) that are highly
significant for SRL prediction.

In order to study the statistical significance of each TD indicator over the security
quality, we applied four different feature selection methods. More specifically, we used
two filter-based methods, namely Spearman Correlation and Chi-Squared, one wrapper-
based method named Recursive Feature Elimination (RFE), and finally one embedded
method named Tree-based Elimination (TBE). In general, filter-based methods try to filter
the features based on some metrics, while wrapper-based methods consider the selection
of a set of features as a search problem. Embedded methods use algorithms that have
built-in feature selection methods (e.g. Lasso and Random Forest). More details on the
four different feature selection methods used for keeping only the TD indicators that are
highly significant for SRL prediction are provided below.

• The Spearman correlation is a non-parametric technique used to measure the monotoni
city of the relationship between the values of two datasets. Similarly to other correlation
techniques (e.g. Pearson), Spearman correlation coefficients vary between −1 and +1.
However, as a non-parametric test, Spearman correlation does not assume any distribution
for the studied data. A coefficient of −1 or +1 implies an exact monotonic relationship, while
a coefficient of 0 implies no correlation at all. In our case, we examine the absolute values of
the Spearman correlation coefficients between the independent (TD Indicators) and depen
dent (SRL) variables in our dataset, and we rank the former based on these values. Then, we
keep the top N features based on this criterion.

• The Chi-Squared method is a statistical hypothesis test used to determine whether there is
a statistically significant relationship between a non-negative feature and a class, by calculat
ing the chi-square statistic. A small chi-square test statistic means that there is a relationship
between the studied variables, while a large chi-square test statistic means there is no
relationship. Since the Chi-Squared method measures the dependency between a feature
and a class, it can be used to filter out the features that are most likely to be independent of
this specific class and therefore, not suitable for classification. In our case, we calculate the
chi-square statistic between the independent (TD Indicators) and dependent (SRL) variables
in our dataset, and we rank the former based on these values. Then, we keep the top
N features based on this criterion.

• The Recursive Feature Elimination (RFE) method, as its name suggests, is a feature
selection technique that recursively eliminates features based on an estimator model trained
on the initial set of features. Depending on the nature of the model, the importance of each

14 M. SIAVVAS ET AL.

feature is determined either by a coefficient attribute (e.g. Logistic Regression) or by
a feature-importance attribute (e.g. Random Forest). During this process, the least important
features are recursively filtered out until the final set contains only the desired number of
features. In our case, we select Logistic Regression as the estimator model. As a result, the RFE
assesses the importance of each feature based on the coefficient in the decision function of
the Logistic Regression object and prunes the initial set until it contains only the top
N features in terms of importance.

• Tree-based Elimination (TBE) is an Embedded method, meaning that it uses models that
have built-in feature selection methods to eliminate the initial features’ number. In this case,
contrary to the RFE method, we use the Random Forest model to calculate feature impor-
tance based on node impurities in each decision tree. Then, we keep the top N features based
on the average of all feature importance values calculated by each decision tree.

We applied each method described above independently on the feature set and retained
the top N ¼ 5 features that were selected by each method. We set N ¼ 5 mainly due to
the fact that both RFE and TBE methods stopped the feature elimination process when
the feature subset reached five features. As a result, selecting the top five features from
each independent method allowed us to directly compare the selected features’ subsets
among the four methods. Then, we aggregated the results by ranking each feature based
on the number of times it was selected to be in the top five of a particular method. Table 4
displays the features ranked by the number of times they were selected by each method.
A value of True in a specific column indicates that the feature of that specific row has been
selected to be in the top five features of the algorithm of this column.

By having a look at Table 4, we can see that bugs and open issues features are in the top
five set of every feature selection method. Moreover, code smells and complexity are also
high in the list since they were selected by three out of four methods. Finally, sqale index is
selected by two out of four methods. As our final feature set, we decided to keep only the
features that were selected to be within the top five set of at least two different methods.
This means that features ranked below sqale index in the table will be excluded from the
final set. To conclude, among the initial 12 features (TD indicators) under investigation,
five of them were found to have statistically significant effects on SRL, by more than one
feature selection algorithms. It should be noted at this point that every feature selection
method described above performs a statistical test to reach a decision regarding which
features to eliminate and which to retain during the selection process. As a result, the
aforementioned statistically significant effects of the final set of features with respect to

Table 4. Results of the four feature selection methods.
Feature Spearman Chi-2 RFE TBE Total

bugs True True True True 4
open_issues True True True True 4
code_smells True True True False 3
complexity False True True True 3
sqale_index True False False True 2
functions False False True False 1
comment_lines False False False True 1
uncovered_lines False True False False 1
duplicated_blocks True False False False 1
classes False False False False 0
cognitive_complexity False False False False 0
ncloc False False False False 0

15

the target variable (i.e. SRL) are the outcome and the aggregation of the individual
statistical tests performed by each feature selection method. Therefore, the TD indicators
that were found to be the most promising SRL predictors according to our feature
selection approach are bugs, open issues, code smells, complexity, and sqale index. These
metrics will be considered as input to the classification models described in Section . At
this point it should be noted that in our previous work (Siavvas et al. 2019), which was
based only on sqale index, a statistically significant and strong correlation was observed
between the sqale index and the SAVD calculated based on another static code analyser,
providing more support regarding the relevance of this TD indicator to software security.

3.1.4.3. Training configuration. Once our dataset is ready for supervised learning, the
next step is to train and validate the performance of the selected classification algorithms.
The dataset contains a total of 210 project entries. To evaluate our model performance,
we initially used the Train-Test split approach, where we randomly split the dataset into
two sets: 75% for training and 25% for test. However, since our data is limited there is
a possibility of high bias, because there is a high chance that the models may miss some
information about the data which is not used in the training set.

To overcome this challenge and ensure that every observation from the original
dataset has the chance of appearing in training and test set, we also used the K-Fold cross-
validation approach (Mosteller and Tukey 1968), which generally results in a less biased
model compare to other methods. Using K-Fold cross-validation will result in more
models being trained, and in turn, a more accurate estimate of the performance of the
models on unseen data. In this approach, we set K = 10 and the training was conducted
over the entire dataset. This means that the dataset was randomly split into 10 folds,
where the K-1 folds were used to train the model, while the remaining Kth fold was used
to test the model. The whole process was repeated until each of the K-folds has served as
the test set. We recorded the errors on each of the predictions for each of the K-Folds and
computed the average of the K recorded errors (i.e. the cross-validation error) that served
as our performance metric for the model.

Before the learning process begins, a hyper-parameter tuning process must take place
in order to increase models’ predictive performance. A model hyper-parameter is an
external attribute of the model that cannot be estimated from data during the training
process. In order to tune our models in the best possible way, we used GridSearchCV,11

a Python implementation of the Grid-search method (Feurer et al. 2015). Grid-search is
commonly used to find the optimal hyper-parameters of a model that result in the most
accurate predictions, by performing an exhaustive search over specified parameter values
for an estimator. We chose F1 score as the objective function of the estimator to evaluate
a parameter setting. We performed hyper-parameter selection on every classifier under
investigation during the 10-Fold cross-validation described above to avoid overfitting and
ensure that the selected models have a good degree of generalisation.

Classification problems having multiple classes with imbalanced dataset generally
oppose a challenge, as the skewed distribution makes many conventional ML algorithms
less effective, especially in predicting minority class examples. As described in Section, our
dataset is imbalanced due to the fact that it contains considerably more samples for the
Low and Medium SRL classes than for the High SRL class. This can make a classifier biased
towards the one or two classes, i.e. learn the classes with more samples better (Low and

16 M. SIAVVAS ET AL.

Medium class) and remain weak on the smaller (High) class. In order to investigate if this
issue affects the performance of our classifiers, we used the Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al. 2002) to augment the dataset with artificial
data. We repeated the experiments twice, once with applying SMOTE and once without
SMOTE and compared the results (see Section 3.2). It is worth mentioning that SMOTE was
applied only to the training set, as over-sampling on test data imposes a bias on the
findings.

3.1.4.4. Performance evaluation. We evaluated and compared the classification per-
formance of the investigated models using Precision, Recall and F1 score metrics. Given
a class C that we try to predict, Precision is the ratio of instances correctly predicted as
class C, i.e. True Positives (TP), to the total number of predictions with class C, i.e. True
Positives (TP) + False Positives (FP). The formula for calculating Precision is as follows:

Precision ¼
TP

TPþ FP
(3)

Recall, on the other hand, is the ratio of instances that are correctly predicted as class C, i.e.
True Positives (TP), to the total number of instances with an actual class of C, i.e. True
Positives (TP) + False Negatives (FN).

Recall ¼
TP

TPþ FN
(4)

Finally, F1 score is the harmonic mean of Precision and Recall and reaches its best value at
1 and worst at 0. The relative contribution of Precision and Recall to the F1 score is equal.
The formula for the F1 score is:

F1score ¼ 2 �
Precision � Recall
Precisionþ Recall

(5)

3.2. Experimental results

Three experiments were made for three independent approaches: a Loose approach using
2-class classification for predicting the SRL between Low+Medium|High, a Conservative
approach using 2-class classification for predicting the SRL between Low|Medium+High,
and finally a General approach using 3-class classification for predicting the SRL between
Low|Medium|High. These approaches have been described in detail in Section 3.1.1.

3.2.1. Predicting security risk level using the loose approach
As discussed in the previous section, F1 score is selected as the main evaluation metric for
classification since it combines both Precision and Recall. Table 5 shows Precision, Recall
and F1 cross-validation scores for all models, while the experiments were repeated two
times, one using SMOTE for data resampling and one without SMOTE.

From Table 5 we can clearly see that Logistic Regression is by far the best model in
terms of average Precision, Recall and F1 score. More specifically, in the case of classifica-
tion performance without applying SMOTE, the F1 score of Logistic Regression is 0.863,
while the second best model is XGBoost with an F1 score of 0.581. Respectively, after

17

applying SMOTE on the training set, the F1 score of Logistic Regression is 0.889, while
the second best model is Random Forest with an F1 score of 0.644. Besides Logistic
Regression, Random Forest and XGBoost, the performance scores of the rest of the
models are too low to be further investigated.

Table 6 shows the confusion matrix of the best performing model, Logistic Regression.
Cross-validation approach is not suitable for producing an overall confusion matrix, as
different confusion matrices are produced at each evaluation run. For that reason, we
used the Train-test split approach, i.e. we randomly split the dataset into two sets: 75% for
training the Logistic Regression model and 25% for testing the model, and then calculated
the confusion matrix. In this case, we did not use a resampling approach, as we wanted to
investigate the performance of the model in dealing with data imbalance between
classes.

As can be seen in the confusion matrix, there is only one misclassified instance for the
Low+Medium class that was predicted as High, while the remaining 48 instances were
correctly predicted as Low+Medium. For the High class, all four instances were correctly
classified, indicating again that the algorithm is able to perform very well, even for the
minority classes and without any resampling. Averaged Precision, Recall and F1-score for
the Train-test split approach are 0.90, 0.99 and 0.94 respectively.

Among the various ML models that were built having as input the TD indicators and as
output the SRLs, Logistic Regression was found to be the best model, demonstrating high
predictive performance with an average F1 score of 0.889. It should be noted that
regression models (including logistic regression) have demonstrated sufficient perfor
mance in vulnerability prediction in the related literature (Gegick et al. 2008; Roumani,
Nwankpa, and Roumani 2016; Camilo, Meneely, and Nagappan 2015; Shin et al. 2011). The
high predictive performance of Logistic Regression can be attributed mainly to two
factors: i) the possibility that features (i.e. TD indicators) and the target variable (i.e. SRL)
are governed by linear relationships (i.e. linear patterns) and thus, linearly separable

Table 5. Cross-validation averaged scores for all models for loose approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.955 0.891 0.908 0.889
No 0.951 0.926 0.847 0.863

K-NN Yes 0.710 0.553 0.616 0.537
No 0.880 0.498 0.514 0.501

Random Forest Yes 0.852 0.627 0.696 0.644
No 0.904 0.551 0.541 0.533

Gaussian Naïve Bayes Yes 0.396 0.552 0.572 0.334
No 0.814 0.475 0.491 0.470

XGBoost Yes 0.818 0.595 0.691 0.612
No 0.905 0.605 0.578 0.581

SVM(linear) Yes 0.472 0.568 0.661 0.423
No 0.895 0.447 0.500 0.472

Table 6. Train-test split confusion matrix of logistic
regression model for loose approach.

1: Low+Medium 2: High

1: Low+Medium 48 1
2: High 0 4

18 M. SIAVVAS ET AL.

decision boundaries can be easily created, and ii) the fact logistic regression work better in
the absence of features that are unrelated (noise) to the target variable as well as features
that are correlated to each other.

In general, logistic regression performs better when the number of unrelated variables
is significantly less (or zero) compared to the number of related independent variables,
while non-linear algorithms, such as Random Forest, have higher accuracy as the number
of independent variables increases in a dataset. In the case of SRL prediction performed at
project-level, we tried to eliminate unrelated variables and decrease the number of
independent variables as much as possible, by performing and combining various feature
selection techniques (see Section). This process, also known as dimensionality reduction,
resulted in a significantly less-complex dataset, which allowed Logistic Regression to use
its full capabilities, thus confirming in that way the fact that simplicity of linear models can
occasionally lead to providing better results than other more sophisticated models, such
as non-linear or ensemble learners (Kirasich, Smith, and Sadler 2018).

3.2.2. Predicting security risk level using the conservative approach
Table 7 shows cross-validation scores for all models using the Conservative Approach,
while again the experiments were repeated with and without applying the SMOTE
technique. We can observe that similarly to the Loose approach, Logistic Regression is
the model achieving the highest classification scores. When experiments are conducted
without applying SMOTE, Logistic Regression has an F1 score of 0.892, while the F1 score
of the second best model (i.e. XGBoost) is 0.646. The application of SMOTE does not have
an effect on the F1 score of the Logistic Regression whereas XGBoost comes second again,
with an F1 score of 0.661. Besides Logistic Regression and XGBoost, Random Forest is
performing slightly worse than XGBoost, with an F1 score of 0.635 and 0.647 respectively.
Again, F1 score of the remaining models is not considered worthy of further investigation.

In Table 8 the confusion matrix of the best-performing model (i.e. the Logistic
Regression model) is shown. Again, for the calculation of the confusion matrix the Train-
test split approach without any data resampling was used.

While inspecting the confusion matrix, we can observe that there are only two
misclassified instances for the Medium class that were predicted as Medium+High. The
remaining 25 instances were correctly classified as Low. For the Medium+High class, 23
instances were correctly classified, while three instances were misclassified as Low. The

Table 7. Cross-validation averaged scores for all models for conservative approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.893 0.901 0.894 0.892
No 0.893 0.901 0.894 0.892

K-NN Yes 0.603 0.612 0.604 0.596
No 0.603 0.612 0.604 0.596

Random Forest Yes 0.651 0.657 0.651 0.647
No 0.637 0.641 0.637 0.635

Gaussian Naïve Bayes Yes 0.554 0.589 0.556 0.468
No 0.554 0.589 0.556 0.468

XGBoost Yes 0.665 0.676 0.666 0.661
No 0.651 0.662 0.652 0.646

SVM(linear) Yes 0.558 0.617 0.560 0.495
No 0.558 0.617 0.560 0.495

19

average Precision, Recall and F1-score that are computed using the Train-test split
approach are 0.91, 0.91 and 0.91 respectively. For more information about why (according
to the authors) Logistic Regression demonstrated better results than other ML algorithms,
we refer the reader to Section 3.2.1.

3.2.3. Predicting security risk level using the general approach
Most of the selected classification algorithms presented in Section natively support
multiclass problems. Logistic regression, however, is a statistical method for predicting
binary classes, as the outcome of this algorithm is dichotomous in nature. To overcome
this limitation of Logistic Regression to support multiclass predictions, we extended the
model by applying the one-vs-rest scheme (Bishop 2006). One-vs-rest (OvR), also known
as one-vs-all, is a strategy that decomposes the multiclass optimisation problem into
separate binary classifiers that are trained separately for all classes, and then combines
each of the classifiers’ binary outputs to generate multi-class outputs.

In Table 9, cross-validation scores are given for all models, with and without data
resampling. Similarly to the two approaches presented above, Logistic Regression is again
the best model, since its averaged classification scores outperform those of the remaining
models. This performance can be attributed to the OvR scheme that Python’s algorithm
implementation natively supports. In particular, SRL can be predicted with an average of
0.821 Recall, 0.858 Precision, and 0.836 F1 score for the case of classification without
SMOTE. The second best model is XGBoost with an F1 score of 0.502, which is considered
way too low compared to the best performing model. In the case of data sampling, SRL
can be predicted with an average Recall of 0.821, Precision of 0.858 and F1 score of 0.836.
Random Forest classifier comes second with an F1 score of 0.503, a score which again is
considered to be too far from that of Logistic Regression. The F1 score of the remaining
investigated models is below 0.5 and is therefore not worth mentioning.

Table 8. Train-test split confusion matrix of logistic
regression model for the conservative approach.

1: Low 2: Medium+High

1: Low 25 2
2: Medium+High 3 23

Table 9. Cross-validation averaged scores for all models for general approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.832 0.842 0.837 0.814
No 0.836 0.858 0.821 0.817

K-NN Yes 0.513 0.495 0.504 0.473
No 0.532 0.400 0.422 0.403

Random Forest Yes 0.568 0.514 0.525 0.503
No 0.589 0.467 0.486 0.466

Gaussian Naïve Bayes Yes 0.485 0.305 0.355 0.296
No 0.566 0.444 0.457 0.439

XGBoost Yes 0.560 0.483 0.517 0.481
No 0.590 0.501 0.521 0.502

SVM(linear) Yes 0.322 0.413 0.463 0.302
No 0.540 0.343 0.375 0.319

20 M. SIAVVAS ET AL.

In Table 10, the confusion matrix of Logistic Regression, which is the best performing
model of the general approach, is presented by using the Train-test split approach
without any data resampling.

By having a look at the confusion matrix, it can be observed that the number of
misclassified instances is greater for the Medium class, where out of a total of 22 samples,
four instances were predicted as Low and two were classified as High. However, the other
instances were classified correctly as Medium. For the Low class, only one instance was
misclassified as Medium, while the rest 26 instances were classified correctly. Finally, all
the instances that belong to the High class, all four instances were correctly classified. The
above results indicate that the Logistic Regression algorithm is able to correctly classify
a very satisfactory percentage of the instances for both, the majority and the minority
classes, despite the fact that this task deals with a 3-class classification. The averaged
Precision, Recall and F1-score (for the Train-split approach) were found to be 0.82, 0.90,
and 0.84 respectively. For more information about why (according to the authors) Logistic
Regression demonstrated better results than other ML algorithms, we refer the reader to
Section 3.2.1.

4. Class-level analysis

In the previous section we focused on the project-level of granularity. More specifically,
we investigated the ability of TD indicators to indicate security risks at the level of the
broader software application, i.e. whether TD indicators can be used as predictors of SRLs.
This analysis led us to the observation that TD metrics can potentially be used as sufficient
predictors of security-related bugs (i.e. potential vulnerabilities) at project-level, and, in
turn, that poor TD may also indicate questionable security. This observation is important
from a practical perspective, as it can be used by project managers and developers, in
order to get an indication of the security risk that is accumulated to the software
applications under development due to unresolved code-level quality-related issues.

Another interesting from a practical viewpoint question that deserves individual merit
(and which will also enhance the completeness of the present work) is whether the same
observations hold at lower levels of granularity. In simple words, it would be worth
investigating the ability of TD indicators to discriminate between vulnerable and clean
software components (i.e. classes). To this end, in the present section we focus on class-
level of granularity and we examine the capacity of TD indicators to predict the existence
of actual vulnerabilities in software classes.

Table 10. Train-test split confusion matrix of logistic regres-
sion model for general approach.

1: Low 2: Medium 3: High

1: Low 26 1 0
2: Medium 4 16 2
3: High 0 0 4

21

4.1. Experiment overview

Based on the description provided above, the problem is reduced to a typical problem of
vulnerability prediction in software products (Siavvas et al. 2018b; Jimenez et al. 2019).
The research in the field of vulnerability prediction focuses on examining the ability of
several software-related factors (e.g. software metrics) to indicate the existence of vulner
abilities in software components (e.g. packages, classes, etc.), as well as on the construc
tion of vulnerability prediction models (VPMs) based on these factors (Morrison et al.
2015). VPMs are normally built based on ML techniques that use these factors as inputs, to
discriminate between vulnerable and clean software components. This information is very
useful for the construction of more secure software, as knowing the existence of poten
tially vulnerable components will help project managers and developers better plan their
testing and fortification activities by allocating limited resources to high-risk areas (i.e.
security hotspots). Hence, contrary to the previous section in which we focused on
predicting the SRLs of software applications, in this section we focus on identifying the
existence of actual vulnerabilities in software components, and particularly software
classes.

The vast majority of the research attempts in the field of vulnerability prediction follow
the same procedure for investigating the ability of specific software-related factors to
indicate the existence of vulnerabilities in software components. In brief, this involves
three broader steps, namely: (i) the construction of a vulnerability dataset, (ii) the con
duction of correlation and discriminant analysis in order to assess the relevance of the
studied indicators to the existence of vulnerabilities, and (iii) the evaluation of the
predictive performance of the studied indicators (i.e. their ability to predict the existence
of vulnerabilities in software components) through the construction of ML models, e.g.
(Chowdhury and Zulkernine 2011; Shin et al. 2011; Scandariato et al. 2014; Dam et al.
2018). In order to be in-line with the previous research endeavours we adopt a similar
approach. A high-level overview of the approach that we adopt for the purposes of the
class-level analysis that is presented in this section is illustrated in Figure 3.

As can be seen in Figure 3, the overall approach comprises three major steps, which are
briefly described below:

1. Dataset Construction and Preprocessing. Similarly to the project-level analysis, the first
step of our study is the construction of a dataset that will be utilised for the conduction of the
correlation and discriminant analyses, and, in turn, for the construction of the ML models.
Since the present analysis will focus on the ability of TD indicators to predict the existence of
actual vulnerabilities in software classes, a highly balanced repository of clean and vulnerable

Figure 3. High-level overview of the approach followed for the class-level analysis.

22 M. SIAVVAS ET AL.

software classes needs to be constructed and analysed using the selected TD analysis tool (i.e.
SonarQube) (see Section). This step is also responsible for applying appropriate data cleans-
ing techniques (in our case, duplicate removal) in order to bring the data in a form that will be
usable for further analysis. The resulting dataset will form the basis of our analysis.

2. Statistical Analysis. As already mentioned, an important step in vulnerability prediction is
to perform statistical analysis, with the purpose to examine whether a statistical relationship
exists between the studied indicators and the existence of vulnerabilities in software com-
ponents. In order to be in-line with the related literature, two statistical tests are applied.
More specifically, Correlation Analysis is applied in order to examine whether the studied
indicators are correlated with the existence of vulnerabilities in a statistically significant
manner, whereas Discriminant Analysis is applied in order to examine the ability of the studied
indicators to discriminate between vulnerable and clean software classes. The results of these
statistical analyses play a critical role for the selection of the final set of indicators that will act
as inputs of the produced ML models.

3. Predictive Performance and Model Training. The final step of the overall approach is
responsible for building and evaluating ML models, based on the previously constructed
dataset. More specifically, the main purpose is to examine the predictability of the selected
TD indicators, i.e. their ability to predict the existence of actual vulnerabilities in software
classes.

The results of the two final steps of the overall approach will help us assess the ability of
the selected TD Indicators to indicate security risks at the level of software classes.
A positive outcome of this experiment will provide further support to the findings of
the previous section.

4.2. Dataset construction and preprocessing

The first step of the present analysis is the construction of a highly balanced dataset of
vulnerable and clean software components. Despite the multitude of research endea-
vours that can be found in the field of vulnerability prediction (Shin and Williams 2008a;
Chowdhury and Zulkernine 2011; Shin et al. 2011; Scandariato et al. 2014; Siavvas,
Kehagias, and Tzovaras 2017; Moshtari and Sami 2016; Ferenc et al. 2019; Jimenez
et al. 2019; Zhang et al. 2015), current literature lacks a balanced and reliable vulner-
ability dataset. In fact, the vast majority of the vulnerability datasets that are used in the
literature for vulnerability prediction are manually constructed based on reported
vulnerabilities. In particular, the authors manually search vulnerability databases for
reported vulnerabilities and subsequently they mine online open-source repositories
for retrieving the software components (i.e. packages, classes, etc.) that contain these
vulnerabilities.

Although this approach leads to vulnerability datasets containing real-world software
components, they are hindered by a set of important shortcomings that affect their
correctness and their reliability (Siavvas et al. 2018a; Morrison et al. 2015; Jimenez et al.
2019). First of all, not all of the vulnerabilities that a product contains are always reported
on online vulnerability databases, and therefore many components that are considered
clean in these datasets may in fact be vulnerable, affecting in that way the correctness and
reliability of the produced dataset (Morrison et al. 2015; Shin and Williams 2013).
Moreover, existing datasets are highly imbalanced, e.g. (Gegick et al. 2008; Scandariato

23

et al. 2014; Yang, Ryu, and Baik 2016). In fact, the number of vulnerable files that
a software product includes is often too small (approximately 1–5%) (Alhazmi, Malaiya,
and Ray 2007), leading to highly imbalanced datasets, which influence significantly the
accuracy of the produced predictors (Morrison et al. 2015; Shin and Williams 2013). Finally,
the construction of these datasets is a manual process, which is inevitably prone to human
errors.

Hence, for the needs of the present study, and in order to enhance the reliability of its
results, we decided to follow a safer approach and use a well-accepted benchmark. In
particular, a highly balanced dataset of clean and vulnerable components was con
structed based on the OWASP Benchmark.12 OWASP Benchmark is a popular test suite
that is commonly used for the evaluation of static code analysers regarding their ability to
detect vulnerabilities. It is a collection of a large number of software components (i.e.
classes) that contain known vulnerabilities. The reason for selecting this benchmark as the
basis of our study is twofold. Firstly, the software components provided by the benchmark
are Java classes, and therefore they are in the desired level of granularity. Secondly,
contrary to similar test suites (e.g. Juliet Test (Boland and Black 2012)), the selected
benchmark comprises also software components that do not contain actual vulnerabil
ities (i.e. it contains clean classes). In particular, the OWASP Benchmark v1.2 was used
which comprises 2740 software components, of which 1415 contain actual vulnerabilities,
and 1325 contain false positives. The classes containing actual vulnerabilities were
selected as the vulnerable components, whereas those containing false positives as the
clean components of the present analysis.

The 2740 software classes of the OWASP Benchmark were statically analysed using
SonarQube in order to compute the TD Indicators that were described in Section . It
should be noted that from these indicators the classes indicator was not applicable in
the case of class-level analysis, as the number of classes is always 1. The resulting
dataset underwent a pre-processing step, with the main purpose to remove highly
similar classes. More specifically, classes that received exactly the same values in the
computed TD indicators were removed from the dataset as they were considered
identical. After removing duplicates, the dataset consisted of 861 vulnerable and 639
clean classes. In order to construct a highly balanced dataset, 600 observations were
randomly selected from each group of vulnerable and clean components. Hence, this
led to the construction of a highly balanced dataset, comprising 600 vulnerable and 600
clean Java classes. The resulting dataset does not exhibit the aforementioned short
comings of the datasets that exist in the literature as: (i) it is highly balanced, (ii) the
vulnerability status of the classes (i.e. class attribute) is guaranteed to be the one stated,
and (iii) it is curated by experts in the field of Software Security, and widely used as the
basis for checking the ability of static and dynamic analysis tools to detect actual
vulnerabilities.

A small fragment of the resulting vulnerability dataset is illustrated in Table 11. The
purpose of this fragment is to demonstrate the structure of the dataset used for the
present analysis. The complete dataset is available on the website with the supporting
material of the present work (Online (Last Accessed 29/08/2020)).

M1:bugs;M2:sqale_index;M3:code_smells;M4:uncovered_lines;M5:
duplicated_blocks;M6:comment_lines; M7:ncloc;M8:functions;M9:complexity;M10:
cognitive_complexity;M11:open_issues

24 M. SIAVVAS ET AL.

As can be seen by Table 11, the rows of the dataset are the analysed classes, whereas
the columns are the values of the TD Indicators as computed by SonarQube. It should be
noted that the last column of Table 11 is the vulnerability state of the class, which denotes
whether the corresponding class is vulnerable (i.e. 1), or clean (i.e. 0).

4.3. Statistical analysis

An important step of the present experiment is to conduct statistical analysis in order to
examine whether observable relationships exist between the selected TD Indicators and
the existence of vulnerabilities in the software classes of the selected benchmark. For this
purpose, both correlation and discriminant analysis were applied, which are described in
detail in the rest of this section. The results of these analyses are also important for the
construction of the ML models presented in Section, as they can be used for selecting the
inputs of the produced models.

4.3.1. Correlation analysis
In order to determine the ability of the selected TD indicators to indicate security risks in
software classes, we initially applied correlation analysis, with the purpose to examine the
relationship between the TD Indicators and the existence of vulnerabilities in software
classes. A statistically significant relationship would provide confidence for the ability of
the selected indicators to indicate the existence of vulnerabilities in software classes.

For the purposes of the present analysis, we calculated the correlation between each
one of the computed TD Indicators and the Class attribute of the dataset, which is the
Vulnerability State (see Table 11). More specifically, we decided to use the Point-biserial
correlation coefficient (r), which is commonly used for computing the correlation between
a continuous and a dichotomous (i.e. binary) variable. For the characterisation of the
correlation strength, we used the thresholds suggested by Cohen (2013). According to
Cohen (2013), a correlation less than 0.3 is considered weak, between 0.3 and 0.5 is

Table 11. A fragment of the vulnerability dataset that was used for the class-level analysis, i.e. for the
construction of the class-level vulnerability prediction models. The last column of the dataset denotes
whether the corresponding class is vulnerable (i.e. 1), or clean (i.e. 0). The complete dataset contains
1200 software classes retrieved from the OWASP Benchmark.

Class Name M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Vulnerability State

BenchmarkTest01734 2 178 11 43 10 8 68 3 8 8 13 1
BenchmarkTest01353 0 116 6 39 8 5 68 3 10 7 6 0
BenchmarkTest01764 1 122 5 35 9 4 61 3 6 5 6 0
BenchmarkTest01543 0 195 9 45 13 8 73 3 11 16 9 0
BenchmarkTest01993 1 150 8 52 8 3 83 3 12 15 9 0
BenchmarkTest00065 0 75 3 43 5 2 69 2 7 11 3 1
BenchmarkTest00085 1 110 9 52 4 8 78 2 11 19 9 1
BenchmarkTest00243 0 126 10 56 5 9 86 3 13 20 10 0
BenchmarkTest00859 1 133 9 64 7 7 91 2 5 9 11 1
BenchmarkTest02697 0 72 8 30 2 5 50 3 4 3 8 0
BenchmarkTest01611 0 147 9 49 9 7 79 3 13 19 9 0
BenchmarkTest01657 2 122 6 24 9 5 46 3 6 3 8 1
BenchmarkTest01815 0 92 7 25 5 7 48 3 4 4 7 0
BenchmarkTest00588 0 40 3 25 2 1 44 2 10 14 3 1
BenchmarkTest02014 0 216 14 54 10 9 84 3 13 20 14 0

25

considered moderate, and above 0.5 is considered strong. However, it should be noted
that we do not expect the correlations to be strong. Even a weak correlation, is normally
acceptable in the literature for providing evidence for the potential ability of a factor to
indicate the existence of vulnerabilities (e.g. Shin and Williams (2008a); Shin et al. (2011);
Chowdhury and Zulkernine (2011); Camilo, Meneely, and Nagappan (2015); Moshtari and
Sami (2016)).

The computed Point-biserial correlation coefficients (r) between the TD Indicators and
the vulnerability states are presented in Table 12, along with their p-values, which are
necessary for judging whether the observed correlations are statistically significant. In the
present experiment, a correlation is considered to be statistically significant, if its asso
ciated p-value is found to be lower than the value of 0.05. To facilitate readability, the
statistically significant correlations are marked with an asterisk in Table 12.

From Table 12, we can see that all the selected TD Indicators, with the only exception of
nloc and uncovered_lines, demonstrate a statistically significant correlation with the
Vulnerability State of the dataset. Another interesting observation is that almost all of
the selected TD Indicators demonstrate a weak (according to Cohen (2013)) correlation
with the existence of vulnerabilities. The only indicator that demonstrated a moderate
correlation is the metric named bugs, which is also the only one that is positively
correlated to the existence of vulnerabilities. The positive correlation indicates that the
higher the number of bugs that a class contains, the higher the likelihood of containing an
actual vulnerability. It should be noted that as stated in Section, bugs, open_issues, and
code_smells contain mostly quality-related (and not security-related) issues. SonarQube
reports the security-related issues as vulnerabilities.

The results of the correlation analysis show that the vast majority of the selected TD
indicators demonstrate a statistically significant weak to moderate correlation with the
existence of vulnerabilities in the classes of the selected benchmark repository. This
highlights the potential ability of the selected TD indicators to indicate the existence of
vulnerabilities in software classes, and therefore to be used as the basis for vulnerability
prediction. However, since the observed correlations were not found to be strong,
discriminant analysis is required in order to reach safer conclusions.

Table 12. The results of the correlation analysis. The asterisk
denotes that the associated correlation coefficient is statistically
significant in the 95% confidence interval.

TD Indicator Correlation Coeff p-value

bugs 0.4582* < 2:2� 10� 16

code_smells −0.2396* 0:1887� 10� 4

open_issues −0.2029* 0:0416� 10� 5

duplicated_blocs −0.02254* 0:1530� 10� 10

sqale_index −0.1172* 0:4698� 10� 7

ncloc −0.2241 0.4765
comment_lines −0.2915* 0:4400� 10� 33

uncovered_lines −0.2238 0.06509
functions −0.1044* < 2:2� 10� 16

complexity −0.1169* 2:26� 10� 12

cognitive_complexity −0.1369* 1:4� 10� 22

26 M. SIAVVAS ET AL.

4.3.2. Discriminant analysis
In the previous section we observed that most of the studied TD indicators demonstrate
a statistically significant correlation to the existence of vulnerabilities in software classes.
In order to reach safer conclusions regarding the relationship between TD indicators and
software vulnerabilities, we also applied discriminant analysis. The purpose of discrimi-
nant analysis is to assess whether the TD indicators are able to discriminate between
vulnerable and clean classes. More specifically, the purpose of this analysis is to examine
whether the values of the TD indicators computed for the clean classes are significantly
different in a statistical manner from the values that they receive for the vulnerable
classes. If statistically significant differences are observed, this would suggest that vulner-
able classes tend to receive significantly higher or lower values of TD indicators, and, in
turn, that the values of these indicators could potentially be used for discriminating
between vulnerable and clean classes.

As a first step of our analysis, in Table 13 we present the average values of the
computed TD Indicators both for the clean and for the vulnerable classes of the analysed
dataset. As can be seen in Table 13, the average values tend to be different in each TD
Indicator. In all the cases, the indicators seem to receive a higher value at clean classes
than in vulnerable, with the only exception of the indicator named bugs. This denotes that
clean classes tend to contain fewer bugs than vulnerable classes in the studied dataset.
Another interesting observation is that clean classes exhibit higher values in quality-
related issues (e.g. code_smells), size metrics (e.g. nloc), and complexity metrics (e.g.
complexity) than their vulnerable counterparts. This can be explained by the fact that in
order to remove vulnerabilities, additional code is usually required (e.g. additional checks),
which increases the size and complexity of the class, whereas quality-related issues are
normally added (e.g. violations of naming conventions, etc.).

In order to reach safer conclusions, hypothesis testing was applied. More specifically,
Wilcoxon Rank Sum test was performed between the security scores of vulnerable and
clean software components in order to investigate whether a statistically significant
difference exists between their values. Wilcoxon Rank Sum test is a non-parametric test,
which is not sensitive to outliers and does not assume any distribution for the studied
data. It has been widely used in the related literature for testing the ability of different
factors to discriminate between vulnerable and clean software artefacts (e.g. Shin and
Williams (2008b); Munaiah and Meneely (2016); Jimenez et al. (2019)). In particular, the

Table 13. The results of the discriminant analysis.
TD Indicator Clean Vulnerable Wilcoxon Test (p-value)

bugs 0.3633 0.8167 < 2:2� 10� 16

code_smells 7.44 6.34 1:039� 10� 10

open_issues 7.835 6.81 5:343� 10� 9

duplicated_blocs 7.41 7.26 0.1099
sqale_index 125.71 116.023 0:2089� 10� 3

ncloc 66.18 59.3 1:59� 10� 11

comment_lines 6.965 4.92 < 2:2� 10� 16

uncovered_lines 40.8 35.35 4:026� 10� 12

functions 2.7 2.615 0.01187
complexity 8.43 7.87 0.00151
cognitive_complexity 10.54 9.28 0.0001952

27

following null hypothesis (along with its corresponding alternative hypothesis) was for
mulated and tested with confidence level 95% (i.e. a = 0:05):

H0: No difference exists between the selected TD indicator of vulnerable and clean software
components.

H1: The values of the selected TD Indicator of the clean and vulnerable components are
statistically different.

The above test was performed for each one of the 11 TD indicators that were
considered in our analysis.13 The p-values of the individual tests are reported in the last
column of Table 12. As can be seen by this table, the p-values in all the cases apart from
the duplicated_blocks indicator were found to be lower than the threshold of 0.05. Hence,
in all these cases the null hypothesis is rejected, leading to the acceptance of the
alternative hypothesis. This suggests that a statistically significant difference is observed
between the values of the TD indicators of clean and vulnerable classes, which indicates
that these TD indicators can discriminate between vulnerable and clean classes and can
potentially be used as indicators of vulnerabilities in software classes.

Finally, the results of the discriminant analysis presented in this section provide
preliminary evidence for the ability of the selected TD indicators to be used as the basis
for vulnerability prediction. However, a more elaborate analysis is provided in the next
section.

4.4. Predictive performance and model training

In the previous section, correlation and discriminant analysis were applied with the
purpose to identify whether statistical relationships are observed between the selected
indicators and the existence of vulnerabilities in software classes. The results of these
analyses revealed that TD indicators may also indicate the existence of vulnerabilities in
software classes, as they were found to be able to discriminate between vulnerable and
clean classes. In this section, building on top of the findings of Section 4.3, we focus on the
predictability (i.e. predictive performance) of the selected TD indicators, i.e. their ability to
predict the existence of actual vulnerabilities in software classes. To this end, several ML
models are built using the selected TD indicators as inputs, and their performance in
vulnerability prediction is evaluated based on well-known performance metrics.

For the purposes of the present experiment, the vulnerability dataset presented in
Section 4.2 was used as the basis for the construction of the ML models. The results of the
correlation and discriminant analysis were used for the selection of the subset of TD
indicators that could be considered for the construction of the ML models. More speci
fically, the ncloc and uncovered_lines indicators were excluded from our analysis as they
did not demonstrate a statistically significant correlation with the existence of vulner
abilities (see Section 4.3.1), whereas the duplicated_blocks indicator was also excluded, as
it did not demonstrate statistically significant discriminative power (see Section 4.3.2).
Based on the remaining TD indicators, a set of ML models was constructed, by applying
the same set of ML algorithms that were used in the project-level analysis (see Section).
Similarly to the project-level analysis, the predictive performance of the ML models was
evaluated using the F1 score, based both on the train-test split and on the 10-fold cross-
validation approaches. The results of the 10-fold cross-validation analysis of the produced
models are illustrated in Table 14.

28 M. SIAVVAS ET AL.

As can be seen in Table 14, Random Forest is the best performing model with an F1
score of 0.708, followed closely by linear kernel SVM with an F1 score of 0.702. This is in-
line with the findings of the vast majority of existing research endeavours in the field of
vulnerability prediction (Chowdhury and Zulkernine 2011; Moshtari, Sami, and Azimi
2013; Scandariato et al. 2014; Walden, Stuckman, and Scandariato 2014; Tang et al.
2015; Zhang et al. 2015; Dam et al. 2018), in which Random Forest was also found to be
the best performing ML model. Other model performances that worth mentioning here
are Logistic Regression and XGBoost, with an F1 score of 0.698.

The fact that both linear and non-linear models have demonstrated sufficient and
rather comparable predictive performance can be explained by the fact that obvious
relationships between the selected TD indicators and the existence of vulnerabilities have
been observed. More specifically, as already mentioned, all of the selected TD indicators
that were used as inputs of the produced models demonstrated a statistically significant
correlation with the existence of vulnerabilities (see Section 4.3.1). In addition to this,
statistically significant differences in their values were observed between clean and
vulnerable classes, denoting that they can discriminate between vulnerable and clean
classes (see Section 4.3.2).

Table 15 shows the confusion matrix of the best performing model, i.e. Random Forest.
As mentioned in the system-level analysis, cross-validation approach is not suitable for
producing an overall confusion matrix. For that reason, we used the Train-test split
approach by randomly splitting the dataset into two sets (75% for training – 25% for
testing) and then calculated the confusion matrix.

Based on the confusion matrix, there are only 37 misclassified instances for lean class
that were predicted as Vulnerable, while the remaining 123 instances were correctly
predicted as Clean. For the Vulnerable class, 96 instances were correctly classified, while
the remaining 44 instances were misclassified as Clean. Averaged Precision, Recall and F1-
score for the Train-test split approach are 0.73, 0.73 and 0.73 respectively, indicating that
the predictive performance of algorithm is quite satisfactory.

The results of the present analysis suggest that the construction of relatively precise
and accurate class-level vulnerability prediction models based on TD indicators is feasible

Table 14. Cross-validation averaged scores for all the produced class-level vulnerability
prediction models.

Classifier Accuracy Precision Recall F1 Score

Logistic Regression 0.702 0.710 0.702 0.698
K-NN 0.582 0.583 0.582 0.579
Random Forest 0.710 0.715 0.710 0.708
Gaussian Naïve Bayes 0.658 0.669 0.658 0.652
XGBoost 0.700 0.705 0.700 0.698
SVM(linear) 0.704 0.710 0.704 0.702

Table 15. Train-test split confusion matrix of class-
level vulnerability prediction model using the
Random Forest algorithm.

0: Clean 1: Vulnerable

0: Clean 123 37
1: Vulnerable 44 96

29

and that Random Forest is the best performing ML algorithm for this purpose. Therefore,
this provides us with preliminary evidence for the capacity of TD indicators to indicate the
existence of actual vulnerabilities in software classes (i.e. at class-level of granularity).

5. Threats to validity

In the present section we discuss the validity threats of the present study and how our
work attempts to mitigate these threats. Emphasis is given on three broader categories of
threats to validity, namely (i) External Validity, (ii) Internal Validity, (iii) Construct Validity
and (iv) Reliability Validity.

5.1. External validity

External Validity refers to the ability to generalise the results of a given study. The results
of the present study are unavoidably subject to external validity threats, due to the fact
that the applicability of the selected ML models to predict either the SRL of a software
project (i.e. project-level analysis) or the existence of actual vulnerabilities in software
classes (i.e. class-level analysis) was examined on specific samples of 210 software projects
and 1200 software classes respectively. It is always possible that another set of software
projects or classes may exhibit different phenomena and characteristics, which may
influence the produced results. However, as far as the project-level analysis is concerned,
the selected software projects are quite diverse with respect to their application domain,
size, etc., which partially mitigates threats to generalisation. Regarding class-level analysis,
the OWASP Benchmark was utilised, which is a well-known vulnerability benchmark used
for assessing the accuracy of actual code analysers. Hence, it can be considered
a representative dataset of vulnerable and clean software components, containing vul
nerabilities that can be found in real-world software applications. In addition, a large part
of the proposed methodology consists of constructing prediction models that learn from
TD indicators and therefore can be easily adapted to any software application, as long as
sufficient and reliable TD-related data are available.

A similar threat stems from the fact that both the dataset used in the project-level
analysis and the vulnerability dataset used in the class-level analysis were constructed
based on open-source code written in Java programming language. However, the process
of building project-level SRL predictors and class-level vulnerability prediction models
that are described in this paper builds upon the outputs of tools used for computing TD-
related metrics (i.e. indicators), which can act as indicators of the quality attribute of
software security. This means that the proposed models can be easily adapted to predict
security issues of applications that are coded in a different programming language, as
long as there are tools that support the extraction of software-related metrics that can act
as TD indicators for the respective language. This also contributes to mitigating threats to
generalisation. However, since the dataset does not include code retrieved from industrial
applications, we cannot make any speculation on closed-source applications. Commercial
systems as well as other object-oriented programming languages can be the subjects of
further research.

Finally, another external validity threat, closely related to the previous ones, refers to
feature selection, and specifically to whether the observed impacts of the selected

30 M. SIAVVAS ET AL.

features are experiment specific. Indeed, as in every ML task, the feature selection process
highly depends on the dataset on which it is applied. However, we believe that this threat
is sufficiently mitigated, for the reasons described in what follows. First of all, as men-
tioned previously, we selected datasets that are highly representative both for the case of
the project-level and for the case of the class-level analysis. Secondly, in both experi-
ments, a large number of statistical tests have been applied for determining the impact of
the selected features on the class attribute, and, in turn, for the selection of the final
feature sets (e.g. Spearman’s rank correlation, Wilcoxon Rank Sum Test, etc.). Hence,
feature selection was based on statistical tests and not on heuristics. This provides us
with confidence that the selected features (i.e. TD indicators) are closely related to the
class attribute (i.e. security risks) in a statistically significant manner, and therefore the
observed relationship is not likely to have been caused by chance.

In addition to this, the observed impacts are in-line with the literature. For instance,
bugs, i.e. the feature which was found to be the predictor with the highest impact in our
analyses, are widely believed to be related to the existence of security issues (Zheng et al.
2006; Austin, Holmgreen, and Williams 2013; Holzmann 2017; Felderer et al. 2016),
whereas the existence of quality issues (e.g. code smells, etc.) in security contributing
commits (and vice versa) is also highly discussed (Mohammed et al. 2017; Johnson et al.
2013; Holzmann 2017). Recently, the close relationship between TD and security has
formally been expressed by several experts in the field (Rindell, Bernsmed, and Jaatun
2019; Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019), whereas
software metrics (which are indirect TD indicators), as already discussed in Section 2, have
been found to have a close relationship with the existence of security issues in software
(Shin and Williams 2008a, 2008b; Chowdhury and Zulkernine 2010; Moshtari and Sami
2016; Siavvas, Kehagias, and Tzovaras 2017; Ferenc et al. 2019; Jimenez et al. 2019; Zhang
et al. 2019). Finally, it should be stated that future replications of the present work on
different datasets and programming languages, apart from examining the generalisability
of the present observations, it would also provide additional feedback with respect to
which of these TD indicators are consistently related to security issues, and which not.

5.2. Internal validity

Concerning the internal validity, i.e. the possibility of having unwanted or unanticipated
relationships between the parameters that might affect the variable that we are trying to
predict, it is reasonable to assume that numerous other metrics that affect TD might have
not been taken into consideration for constructing both our project-level SRL predictors
(see Section 3) and class-level vulnerability prediction models (see Section 4). However,
the fact that we constructed our initial set of TD predictors based on software-related
metrics that have been widely used in the literature as direct or indirect indicators of TD,
such as OO software metrics, code smells and code issues extracted from static analysis
tools, limits this thread.

Regarding the final selection of predictors, in the case of project-level prediction, if we
had limited our feature selection analysis to only correlations between the security risk
levels (SRLs) and TD indicators, then there would have been a threat to internal validity.
However, we attempted to mitigate this threat through the complimentary usage of four
different feature selection methods to further explore the relationships between the

31

dependent and independent variables. Respectively, in the case of class-level vulnerability
prediction, we have applied two statistical tests with the purpose to examine whether
a statistical relationship exists between the studied indicators and the existence of
vulnerabilities in software components. More specifically, we initially applied correlation
analysis in order to examine whether statistically significant relationships exist between
the selected TD indicators and the existence of vulnerabilities in software classes, and,
subsequently, discriminant analysis was employed in order to examine whether the
selected TD indicators are able to discriminate between vulnerable and clean classes.
Based on the results of these statistical tests the final selection of the best features was
performed, providing more confidence that internal validity threats are avoided.

5.3. Construct validity

Construct validity refers to the meaningfulness of measurements and that the indepen
dent and dependent variables are represented correctly. In this study, the main threats
related to construct validity are due to possible inaccuracies in the identification of
software-related metrics acting as TD indicators, as well as inaccuracies in the identifica
tion of security-related issues and vulnerabilities. However, in order to mitigate the risk,
we decided to use a well-known and widely used tool, namely SonarQube, both for the
project-level and for the class-level analysis. As already mentioned in Section, SonarQube
is widely used in the industry for monitoring software quality, whereas it is the most
frequently used tool for measuring TD Principal (Li, Avgeriou, and Liang 2015;
Ampatzoglou et al. 2015). In addition to this, it applies a number of security scanners
for identifying potential vulnerabilities, while it attempts to reduce the number of the
produced false positives. SonarQube is used in the present study as a proof of concept of
the proposed methodologies.

The datasets that were used for the purposes of the present study also play an
important role in the construct validity of the present work. In order to mitigate the
associated risks, for the case of the project-level analysis, a benchmark repository of 210
real-world open-source software applications that were retrieved from GitHub was used
as the basis of the experiment. Regarding the class-level analysis, in order to avoid the
risks described in Section 4.2 concerning the balance and correctness of the produced
vulnerability dataset, the well-accepted OWASP Benchmark test suite was utilised, which
is commonly used for the evaluation of static code analysers regarding their ability to
detect vulnerabilities. These options are believed to sufficiently mitigate the construct
validity threat, as the analysis was based on representative and well-accepted code
repositories. As for the experimented prediction models, we exploited the ML algorithms
implementation provided by the scikit-learn library, which is widely considered as
a reliable tool.

5.4. Reliability validity

Finally, reliability validity threats concern the possibility of replicating this study. To
facilitate such replication studies, we provide an experimental package containing both
the dataset and the scripts that were used for our analysis and prediction model con
struction. This material can be found online (Online (Last Accessed 29/08/2020)).

32 M. SIAVVAS ET AL.

6. Implications to researchers and practitioners

Through our study, we have shown that TD indicators that are commonly used for
assessing the quality of software products may be sufficient predictors of software
security, identified both at project- and class-level of a granularity. More specifically, we
have shown that TD indicators can be sufficient predictors of the SRL of software
products, whereas they can be also used as the basis for the construction of relatively
accurate class-level vulnerability prediction models able to identify software classes that
potentially contain actual vulnerabilities. This work has significant implications for both
researchers and practitioners, despite the limitations noted in the previous section.

6.1. Implications for researchers

The findings of our present study (both project- and class-level) provide empirical
evidence for the capacity of TD to be used as an indicator of software security. This
opens a new area of research in the field of TD, for further investigating the potential
relationship between TD and Software Security, as well as for finding ways of
exploiting the concept of TD for assessing the security of software products. More
specifically, researchers could potentially focus on identifying (i) what kind of secur-
ity implications are imposed by TD, (ii) which TD liabilities are better indicators of
underlying security problems, and (iii) how the concepts of TD could be extended in
order to be used for assessing software security. Regarding the latter point, some
initial attempts for defining the concept of Security Debt have already been made in
the literature (Rindell, Bernsmed, and Jaatun 2019; Rindell and Holvitie 2019; Izurieta
et al. 2018; Izurieta and Prouty 2019), denoting that there is a potential shift towards
extending the concepts of TD into the security realm. It should be noted that the
literature in the field of software security lacks a well-accepted methodology for
assessing software security (Ansar and Khan 2018; Sentilles, Papatheocharous, and
Ciccozzi 2018; Morrison et al. 2018), and TD could be a promising candidate for filling
this void.

Apart from the field of TD, we also believe that the findings of the present work
impose some implications in the field of vulnerability prediction. The class-level
analysis presented in Section 4, and particularly the correlation analysis, discrimi-
nant analysis and predictive performance evaluation, revealed that TD indicators
(such as code smells, open issues, etc.) can potentially highlight the existence of
actual vulnerabilities in software classes. Hence, this opens new research directions
in the field of vulnerability prediction. Firstly, researches could further investigate
the generalisability of the findings of the present work, by replicating the study
using different vulnerability datasets and programming languages. In addition, they
could investigate whether the adoption of more advanced ML techniques (e.g. deep
learning) could lead to better predictive performance. Finally, another interesting
topic would be to investigate whether the performance of existing vulnerability
prediction models that are based on other software factors could be improved by
enriching these models with TD indicators with observed relationship to the exis-
tence of vulnerabilities.

33

6.2. Implications for practitioners

The production of secure software necessitates the continuous monitoring of the security
level of the produced software throughout its overall SDLC and the identification of
security issues early enough in the production cycle. Predicting the security level of the
software products under development, as well as the potential existence of actual
vulnerabilities in their components is critical for the production of secure software, as it
enables developers and project managers to make more informed decisions about the
overall development. The relevance between TD and Software Security that was empiri
cally observed by the findings of the present work, is very important, as it suggests that
quality indicators can potentially be used in order to indicate the existence of security
issues that are hidden in the source code of the system and that require individual care.

As far as the project-level analysis is concerned, the results of our work revealed that
TD indicators can potentially be used to predict the security level of a software project.
In other words, the results of our analysis suggest that TD may also indicate question
able security (i.e. the accumulation of quality issues may indicate the accumulation of
security issues). Hence, project managers and developers, by tracking the TD of their
software applications under development, are indirectly monitoring the accumulation
of potential security risks that reside in software. An approach similar to the one
presented in Section 3, would enable the project manager to verify, based on the
current TD, what is the security risk level of the application under development
compared to real-world applications that are available on the market. This information
could be leveraged for making decisions about the actual development. For instance, if
the security level of a given project is Low (based on its current TD), the project
manager could request an immediate manual security review, in order to detect and
fix potential security issues. On the contrary, if the security risk level is high enough, the
project manager could postpone a planned security review, and request emphasis to be
given on the actual development.

As far as the class-level analysis is concerned, we have shown that TD indicators can
potentially discriminate between vulnerable and clean classes, and predict the existence
of vulnerabilities in software classes with sufficient level of accuracy. In other words, TD
indicators could be used to build prediction models able to highlight security hotspots,
i.e. software classes that are likely to contain vulnerabilities. This information is very useful
for both the developers and project managers of a software application under develop
ment. In fact, this information could be leveraged for better planning their testing and
fortification efforts, by allocating limited test resources to high-risk areas (i.e. potentially
vulnerable classes). For instance, the testing and refactoring activities could start from
those classes that are more likely to contain vulnerabilities. In addition, more exhaustive
security testing could be applied to the classes that are marked as vulnerable, in order to
increase the possibility of identifying and eventually fixing an underlying vulnerability,
and eventually leading to more secure software.

Finally, another benefit that the proposed prediction approaches (both project- and
class-level) can offer to practitioners, is that they can be applied from the early stages of
software development, and, thus, they can enable the early identification and mitigation
of underlying security issues. This can be explained by the fact that they are based on TD
indicators, which are computed through static analysis, a software testing mechanism

34 M. SIAVVAS ET AL.

that (contrary to dynamic analysis) does not require code execution, enabling in that way
its early application (Chess and McGraw 2004; Felderer et al. 2016; Mohammed et al. 2017;
Do et al. 2017; Nunes et al. 2019). Consequently, the fact that an executable version of the
source code is not necessary for the computation of the TD indicators, allows the
produced prediction models to be applied very early in the overall development process,
even from the first commit. Hence, the application of such models in a frequent manner is
expected to help developers detect security risks (e.g. vulnerabilities) in a timely manner
and act promptly, ideally prior to the release of the software products, leading to software
releases that are bundled with much fewer security issues.

7. Conclusion and future work

In the present paper, we investigate the ability of common TD indicators (e.g. bugs, code
smells, etc.) to indicate (i.e. predict) security risks in software products. Emphasis was given
both on project-level and on class-level of granularity. For the case of project-level analysis,
we examined the ability of TD indicators to predict the security risk level of software
projects. For this purpose, a relatively large code repository was constructed, comprising
210 real-world open-source Java applications that were retrieved from GitHub. These
applications were then analysed using a popular static analysis platform, i.e. SonarQube,
in order to calculate a broad set of TD indicators for each one of the applications of the code
repository, as well as their security risk, which was quantified using the Static Analysis
Vulnerability Density (SAVD) metric. Subsequently, the SAVD was discretised into Security
Risk Levels (SRLs), based on a set of thresholds, which were computed based on real-world
data through benchmarking techniques. Several ML models were built having as input the
TD indicators and as output the SRLs, in order to evaluate the ability of TD indicators to
predict software security risk. Both the cases of binary and 3-class classification were
considered, in order to cover different enterprise needs.

In the case of class-level analysis, we examined the ability of TD indicators to predict the
existence of actual vulnerabilities in software classes. Initially, we constructed a highly
balanced dataset of 1200 vulnerable and clean Java classes retrieved from the OWASP
Benchmark, and we analysed these classes with SonarQube in order to compute the studied
TD indicators. Subsequently, correlation analysis was employed in order to investigate
whether significant relationships exist between the TD indicators and the existence of
vulnerabilities, as well as discriminant analysis with the purpose to investigate the ability
of the TD indicators to discriminate between vulnerable and clean classes. Finally, several ML
models were built, in order to evaluate the capacity of the TD indicators to predict the
existence of vulnerabilities in software classes.

Our study led to some interesting observations. In particular, the results of the project-
level analysis highlighted the capacity of TD indicators to predict the SRL of software
products, whereas Logistic Regression was found to be the best model, demonstrating
high predictive performance with an average F1 score greater than 80%. As far as the class-
level analysis is concerned, the majority of the selected indicators demonstrated
a statistically significant correlation with the existence of vulnerabilities, as well as sufficient
power in discriminating between vulnerable and clean software classes. In addition, the
produced ML models demonstrated sufficient predictive performance in predicting the
existence of vulnerabilities in software classes, with the Random Forest to be the best

35

performing model, showing an average F1 score of 70.8%. This suggests that TD indicators
could potentially be used as the basis for the construction of relatively accurate class-level
vulnerability prediction models.

The results of the present study suggest that TD indicators may be sufficient predictors of
software security risk both at project-level and at class-level of granularity. Hence, TD may be
a sufficient indicator of software security, confirming the findings of our previous empirical
study (Siavvas et al. 2019), and providing further support to the recently expressed belief
that TD can potentially be used to indirectly measure software security (Rindell, Bernsmed,
and Jaatun 2019; Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019).

We believe that the findings of the present study, along with the proposed approaches
for TD-based project-level and class-level security risk prediction, are of high importance
for software development enterprises. As already mentioned, software development
enterprises are seeking for mechanisms able to assist them in identifying and removing
potential vulnerabilities early enough in the software development lifecycle, in order to
prevent the financial loses and reputation damages that the exploitation of these vulner
abilities may cause to them and to the enterprises that are actually using their software.
The present study revealed the relationship between TD and software security, and the
ability of TD indicators to also indicate security risks in software, both at project- and at
class-level of granularity. Hence, this information could be leveraged by software devel
opment enterprises, for making more informed decisions during the actual software
development lifecycle, ultimately leading to more secure software.

The project-level analysis suggests that developers and project managers could use TD
indicators to get an indication of the overall security risk level of the software product
under development. This security risk level, which actually denotes how secure the
product is compared to other real-world software products that are available on the
market, could be leveraged by project managers to decide promptly whether additional
security testing and fortification activities should take place. On the other hand, the class-
level analysis suggests that TD indicators could be used to detect security hotspots in
a software product, i.e. classes that are likely to contain actual vulnerabilities. This
information would allow developers and project managers better plan their testing and
fortification activities, by allocating limited test resources (or applying more exhaustive
tests) to high-risk areas, hopefully leading to the detection and elimination of actual
vulnerabilities. Hence, TD indicators could facilitate the elimination of vulnerabilities and
therefore minimise the associated costs that their exploitation may cause.

Accumulated TD is often neglected by project managers, as it is a measure of maintain
ability, which is often treated as an afterthought in the overall development due to the fact
that maintainability issues do not have a visible and immediate impact on the functionality
of the produced software. However, throughout the present work we have shown that TD is
closely related to software security as it may potentially indicate the existence of security
issues (i.e. vulnerabilities) in software. Hence, neglecting TD could potentially lead to the
introduction of vulnerabilities and, in turn, to security breaches with devastating conse
quences for both the software development enterprise and the enterprise that actually uses
the compromised software. Hence, we believe that the results of the present study provide
additive value to the importance of TD, since linking it with the notion of software security
could motivate project managers to change their mindset and hopefully, treat it as an
equally important attribute during the development process.

36 M. SIAVVAS ET AL.

At this point, a statement on the novelty of the present work and specifically on how it
manages to advance the state of the art in relevant fields is considered valuable. As far as the
overall field of Software Security Assessment is concerned, recently, several researchers have
theoretically expressed the relationship between TD and software security and proposed
the adoption of TD as the basis for security assessment (Rindell, Bernsmed, and Jaatun 2019;
Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019), in an attempt to fill
the gap in the field caused by the lack of a well-accepted security measure (Morrison et al.
2018; Ansar and Khan 2018). More specifically, guidelines on how the concept of TD can be
extended to support software security have been provided (Rindell, Bernsmed, and Jaatun
2019; Rindell and Holvitie 2019), whereas ways for prioritising security bugs as technical
debt items (i.e. quality issues) have already been proposed (Izurieta et al. 2018; Izurieta and
Prouty 2019). The present paper extends and complements these research endeavours
(which approached the relationship of TD and software security from a theoretical perspec-
tive) by providing empirical evidence for the close relationship between these two factors,
both at project- and class-level of granularity. The present work also extends them by
showcasing the potential feasibility of using the TD Indicators as security risk indicators in
practice (and not just as theoretical constructs), specifically through the adoption of ML,
opening in that way directions for future experimentation.

Regarding the vulnerability prediction field, as already mentioned, this is the first study
that focuses on the ability of TD indicators (like code smells, bugs, etc.) to indicate the
existence of vulnerabilities and security risks in general. Recent attempts have shown that
other factors, such as text mining (Dam et al. 2018) and software metrics (Yang, Ryu, and
Baik 2016; Zhang et al. 2019), as well as their combination (Zhang et al. 2015; Sultana 2017;
Jimenez et al. 2019), can lead to promising vulnerability prediction models. Hence, the
results of the present study complement previous works, and open new directions for future
experimentation, towards investigating whether the incorporation of TD indicators could
potentially further improve the accuracy of existing models.

Several directions for future work can be identified. First of all, the present study was
based on open-source software applications written in Java programming language. In
order to investigate the generalisability of our results, we are planning to replicate the
present work by considering software applications written in programming languages
other than Java, whereas the case of commercial software applications will be also
considered. In addition, in the present study, the SAVD metric was used as a measure of
software security risk and the SonarQube static analysis platform was used for its quanti-
fication. In the future, we are planning to redo the present analysis using other open-
source or commercial static code analysers for quantifying SAVD, while we are also
planning to consider other software security risk indicators like the Attack Surface
(Howard 2007; Manadhata and Wing 2011). Finally, if the results of the present study
are generalised, we are planning to implement our models in the form of individual tools
(or as part of common IDEs or software quality platforms), which will facilitate decision
making during the overall SDLC, by helping developers and project managers identify and
mitigate security risks early enough in the development process.

Notes

1. https://nvd.nist.gov/vuln/detail/CVE-2017-5638

37

2. https://investor.equifax.com/news-and-events/news/2019/05-10-2019-113504540
3. https://github.com
4. https://owasp.org/www-project-benchmark/
5. https://www.sonarqube.org/
6. https://sonarcloud.io/explore/projects
7. http://findbugs.sourceforge.net/
8. https://pmd.github.io/
9. https://docs.sonarqube.org/latest/user-guide/security-rules/

10. https://scikit-learn.org/stable/index.html
11. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.

html
12. https://owasp.org/www-project-benchmark/
13. As stated in Section 4.2, the TD indicator named classes was not considered in the present

analysis, since it was not applicable in the context of the class-level analysis.

Acknowledgments

This work was partially funded by the European Union’s Horizon 2020 Research and Innovation
Programme through the SDK4ED project under Grant Agreement No. 780572.

Disclosure statement

There are no conflicts of interest or competing interests to report.

Data availability and supporting material

The data that support the findings of the present work along with additional supporting material of
the present study are available at (Online (Last Accessed 29/08/2020)).

Funding

This work was partially funded by the European Union’s Horizon 2020 Research and Innovation
Programme through the SDK4ED project under Grant Agreement No. 780572.

ORCID

Miltiadis Siavvas http://orcid.org/0000-0002-3251-8723
Dimitrios Tsoukalas http://orcid.org/0000-0001-9986-0796
Dimitrios Tzovaras http://orcid.org/0000-0001-6915-6722

References

Alhazmi, O. H., Y. K. Malaiya, and I. Ray. 2007. “Measuring, Analyzing and Predicting Security
Vulnerabilities in Software Systems.” Computers and Security 26 (3): 219–228. doi:10.1016/j.
cose.2006.10.002.

Alves, N. S. R., T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman. 2016.
“Identification and Management of Technical Debt: A Systematic Mapping Study.” Information
and Software Technology 70: 100–121. doi:10.1016/j.infsof.2015.10.008.

38 M. SIAVVAS ET AL.

http://www.sonarqube.org/
https://doi.org/10.1016/j.cose.2006.10.002
https://doi.org/10.1016/j.cose.2006.10.002
https://doi.org/10.1016/j.infsof.2015.10.008

Ampatzoglou, A., A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou. 2015. “The Financial Aspect
of Managing Technical Debt: A Systematic Literature Review.” Information and Software
Technology 64: 52–73. doi:10.1016/j.infsof.2015.04.001.

Ansar, S. A. A., and R. A. Khan. 2018. “A Phase-wise Review of Software Security Metrics.” Networking
Communication and Data Knowledge Engineering.

Austin, A., C. Holmgreen, and L. Williams. 2013. “A Comparison of the Efficiency and Effectiveness of
Vulnerability Discovery Techniques.” Information and Software Technology 55 (7): 1279–1288.
doi:10.1016/j.infsof.2012.11.007.

Bellman, R. E. 2003. “Dynamic Programming.” Dover Books on Computer Science Series. Dover
Publications.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, New York: springer.
Boland, T., and P. E. Black. 2012. “Juliet 1.1 C/C++ and Java Test Suite.” Computer (Long. Beach. Calif.)

45 (10): 88–90.
Bruntink, M., and A. van Deursen. 2006. “An Empirical Study into Class Testability.” Journal of Systems

and Software 79 (9): 1219–1232. doi:10.1016/j.jss.2006.02.036.
Camilo, F., A. Meneely, and M. Nagappan. 2015. “Do Bugs Foreshadow Vulnerabilities? A Study of the

Chromium Project.” In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, 269–279. Florence, Italy: IEEE.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic Minority
Over-sampling Technique.” Journal of Artificial Intelligence Research 16: 321–357. doi:10.1613/
jair.953.

Chess, B., and G. McGraw. 2004. “Static Analysis for Security.” Security & Privacy, IEEE 2: 76–79.
doi:10.1109/MSP.2004.111.

Chidamber, S. R., and C. F. Kemerer. 1994. “A Metrics Suite for Object Oriented Design.” IEEE
Transactions on Software Engineering 20 (6): 476–493. doi:10.1109/32.295895.

Chowdhury, I., and M. Zulkernine. 2010. “Can Complexity, Coupling, and Cohesion Metrics Be Used
as Early Indicators of Vulnerabilities?” In Proceedings of the 2004 ACM symposium on Applied
computing, Sierre, Switzerland.

Chowdhury, I., and M. Zulkernine. 2011. “Using Complexity, Coupling, and Cohesion Metrics as Early
Indicators of Vulnerabilities.” Journal of Systems Architecture 57: 294–313. doi:10.1016/j.
sysarc.2010.06.003.

Cohen, J. 2013. Statistical Power Analysis for the Behavioral Sciences. New York, USA: Academic press.
Cunningham, W. 1993. “The WyCash Portfolio Management System.” ACM SIGPLAN OOPS Messenger

4 (2): 29–30. doi:10.1145/157710.157715.
Dam, H. K., T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and A. Ghose. 2018. “Automatic Feature

Learning for Predicting Vulnerable Software Components.” IEEE Transactions on Software
Engineering, (pp. 1–1).

Digkas, G., M. Lungu, A. Chatzigeorgiou, and P. Avgeriou. 2017. “The Evolution of Technical Debt in
the Apache Ecosystem.” In European Conference on Software Architecture (ECSA), 51–66.
Canterbury, UK: Springer.

Do, L., N. Quang, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill. 2017. “Just-in-time Static
Analysis.” In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 307–317. Santa Barbara, CA: ACM.

Elish, M. O., and K. O. Elish. 2009. “Application of TreeNet in Predicting Object-Oriented Software
Maintainability: A Comparative Study.” In 2009 13th European Conference on Software
Maintenance and Reengineering (CSMR), 69–78, March. ISSN: 1534-5351.

Eski, S., and F. Buzluca. 2011. “An Empirical Study on Object-Oriented Metrics and Software
Evolution in order to Reduce Testing Costs by Predicting Change-Prone Classes.” In 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation (ICST), 566–571,
March. ISSN: null.

Felderer, M., M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner. 2016. “Security Testing:
A Survey.” In Advances in Computers, edited by Atif Memon, Vol. 101, 1–51. Elsevier.

Ferenc, R., P. Hegedüs, P. Gyimesi, G. Antal, D. Bán, and T. Gyimóthy. 2019. “Challenging
Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions.” In

ENTERPRISE INFORMATION SYSTEMS 39

https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2012.11.007
https://doi.org/10.1016/j.jss.2006.02.036
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/32.295895
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1145/157710.157715

Proceedings of the 7th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering, Montreal, Quebec, Canada.

Feurer, M., A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. 2015. “Efficient and
Robust Automated Machine Learning.” Advances in Neural Information Processing Systems,
2962–2970.

Fioravanti, F., and P. Nesi. 2001. “Estimation and Prediction Metrics for Adaptive Maintenance Effort
of Object-oriented Systems.” IEEE Transactions on Software Engineering 27 (12): 1062–1084.

Fowler, M. 2018. Refactoring: Improving the Design of Existing Code. USA: Addison-Wesley
Professional.

Gegick, M., L. Williams, J. Osborne, and M. Vouk. 2008. “Prioritizing Software Security Fortification
through Code-Level Metrics.” Proceedings of the 4th ACM workshop on Quality of Protection,
Alexandria, Virginia, USA, 31–38.

Giger, E., M. Pinzger, and H. C. Gall. 2012. “Can We Predict Types of Code Changes? An Empirical
Analysis.” In 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), 217–226,
June. ISSN: 2160-1852.

Griffith, I., D. Reimanis, C. Izurieta, Z. Codabux, A. Deo, and B. Williams. 2014. “The Correspondence
between Software Quality Models and Technical Debt Estimation Approaches.” In Sixth
International Workshop on Managing Technical Debt (MTD), 19–26. Victoria, BC, Canada: IEEE.

Heitlager, I., T. Kuipers, and J. Visser. 2007. “A Practical Model for Measuring Maintainability.” 6th
International Conference on the Quality of Information and Communications Technology
(QUATIC 2007), Lisbon, Portugal, 30–39.

Holzmann, G. J. 2017. “The Value of Doubt.” IEEE Software 34 (1): 106–109. doi:10.1109/MS.2017.19.
Howard, M. 2007. “Determining Relative Attack Surface.” US Patent 7,299,497, November 20.
Howard, M., D. LeBlanc, and J. Viega. 2010. 24 Deadly Sins of Software Security. NY, United States:

McGraw-Hill.
Izurieta, C., and M. Prouty. 2019. “Leveraging Secdevops to Tackle the Technical Debt Associated

with Cybersecurity Attack Tactics.” In Proceedings of the 2nd International Conference on
Technical Debt, Montreal, Quebec, Canada.

Izurieta, C., D. Rice, K. Kimball, and T. Valentien. 2018. “A Position Study to Investigate Technical Debt
Associated with Security Weaknesses.” In 2018 International Conference on Technical Debt,
Gothenburg, Sweden.

Jimenez, M., R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and M. Harman. 2019. “The
Importance of Accounting for Real-world Labelling When Predicting Software Vulnerabilities.”
In 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Tallinn, Estonia.

Johnson, B., Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. “Why Don’t Software Developers Use
Static Analysis Tools to Find Bugs?” In 2013 35th International Conference on Software
Engineering (ICSE), 672–681. San Francisco, CA: IEEE.

Kirasich, K., T. Smith, and B. Sadler. 2018. “Random Forest Vs Logistic Regression: Binary Classification
for Heterogeneous Datasets.”

Kosti, M. V., A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas, I. Stamelos, and L. Angelis. 2017.
“Technical Debt Principal Assessment Through Structural Metrics.” In 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), Vienna, Austria,
329–333.

Krsul, I. 1998. “Software Vulnerability Analysis.” PhD diss., Department of Computer Sciences, Purdue
University.

Letouzey, J.-L., and M. Ilkiewicz. 2012. “Managing Technical Debt with the Sqale Method.” IEEE
Software 29 (6): 44–51. doi:10.1109/MS.2012.129.

Li, W., and S. Henry. 1993. “Object-oriented Metrics that Predict Maintainability.” Journal of Systems
and Software 23 (2): 111–122. doi:10.1016/0164-1212(93)90077-B.

Li, Z., P. Avgeriou, and P. Liang. 2015. “A Systematic Mapping Study on Technical Debt and Its
Management.” Journal of Systems and Software 101: 193–220. doi:10.1016/j.jss.2014.12.027.

Luszcz, J. 2018. “Apache Struts 2: How Technical and Development Gaps Caused the Equifax
Breach.” Network Security 2018 (1): 5–8. doi:10.1016/S1353-4858(18)30005-9.

40 M. SIAVVAS ET AL.

https://doi.org/10.1109/MS.2017.19
https://doi.org/10.1109/MS.2012.129
https://doi.org/10.1016/0164-1212(93)90077-B
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/S1353-4858(18)30005-9

Manadhata, P. K., and J. M. Wing. 2011. “An Attack Surface Metric.” IEEE Transactions on Software
Engineering 37 (3): 371–386. doi:10.1109/TSE.2010.60.

Marinescu, R. 2012. “Assessing Technical Debt by Identifying Design Flaws in Software Systems.” IBM
Journal of Research and Development 56 (5): 9. doi:10.1147/JRD.2012.2204512.

McGraw, G. 2006. “Software Security: Building Security In.” Addison-Wesley Prof.
Mohammed, N. M., M. Niazi, M. Alshayeb, and S. Mahmood. 2017. “Exploring Software Security

Approaches in Software Development Lifecycle: A Systematic Mapping Study.” Computer
Standards & Interfaces 50: 107–115. doi:10.1016/j.csi.2016.10.001.

Morrison, P., K. Herzig, B. Murphy, and L. Williams. 2015. “Challenges with Applying Vulnerability
Prediction Models.” In Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security, Urbana, Illinois, 1–9.

Morrison, P., D. Moye, R. Pandita, and L. Williams. 2018. “Mapping the Field of Software Life Cycle
Security Metrics.” Information and Software Technology 102 (May): 146–159. doi:10.1016/j.
infsof.2018.05.011.

Moshtari, S., and A. Sami. 2016. “Evaluating and Comparing Complexity, Coupling and a New
Proposed Set of Coupling Metrics in Cross-project Vulnerability Prediction.” Proceedings of the
31st Annual ACM Symposium on Applied Computing - SAC ’16, Pisa, Italy, 1415–1421.

Moshtari, S., A. Sami, and M. Azimi. 2013. “Using Complexity Metrics to Improve Software Security.”
Computer Fraud & Security 2013 (5): 8–17. doi:10.1016/S1361-3723(13)70045-9.

Mosteller, F., and J. W. Tukey. 1968. “Data Analysis, Including Statistics.” Handbook of Social
Psychology 2: 80–203.

Munaiah, N., and A. Meneely. 2016. “Beyond the Attack Surface: Assessing Security Risk with
Random Walks on Call Graphs.” Proceedings of the 2016 ACM Workshop on Software
PROtection, 3–14. doi:10.1145/2995306.2995311.

Neuhaus, S., T. Zimmermann, C. Holler, and A. Zeller. 2007. “Predicting Vulnerable Software
Components.” Proceedings of the 14th ACM conference on Computer and communications
security CCS 07, Alexandria, Virginia, USA, 529.

Nugroho, A., J. Visser, and T. Kuipers. 2011. “An Empirical Model of Technical Debt and Interest.” In
Proceedings of the 2nd Workshop on Managing Technical Debt, 1–8. Waikiki, Honolulu HI: ACM.

Nunes, P., I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira. 2019. “An Empirical Study on
Combining Diverse Static Analysis Tools for Web Security Vulnerabilities Based on Development
Scenarios.” Computing 101 (2): 161–185. doi:10.1007/s00607-018-0664-z.

Online. (Last Accessed 29/08/2020). “Supporting Material.” https://sites.google.com/view/technical-
debt-as-an-indicator/main

Palomba, F., G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia. 2018. “On the Diffuseness
and the Impact on Maintainability of Code Smells: A Large Scale Empirical Investigation.”
Empirical Software Engineering 23 (3): 1188–1221. doi:10.1007/s10664-017-9535-z.

Pang, Y., X. Xue, and H. Wang. 2017. “Predicting Vulnerable Software Components through Deep
Neural Network.” Proceedings of the 2017 International Conference on Deep Learning
Technologies - ICDLT ’17, Chengdu, China, 6–10.

Riaz, M., E. Mendes, and E. Tempero. 2009. “A Systematic Review of Software Maintainability
Prediction and Metrics.” In Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 367–377. Lake Buena Vista, FL: IEEE Computer Society.

Rindell, K., K. Bernsmed, and M. G. Jaatun. 2019. “Managing Security in Software: Or: How I Learned
to Stop Worrying and Manage the Security Technical Debt.” In Proceedings of the 14th
International Conference on Availability, Reliability and Security, ARES ’19, Canterbury CA,
United Kingdom.

Rindell, K., and J. Holvitie. 2019. “Security Risk Assessment and Management as Technical Debt.” In
International Workshop on Secure Software Engineering in DevOps and Agile Development,
Oxford, UK.

Roumani, Y., J. K. Nwankpa, and Y. F. Roumani. 2016. “Examining the Relationship between Firm’s
Financial Records and Security Vulnerabilities.” International Journal of Information Management
36: 987–994. doi:10.1016/j.ijinfomgt.2016.05.016.

ENTERPRISE INFORMATION SYSTEMS 41

https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1147/JRD.2012.2204512
https://doi.org/10.1016/j.csi.2016.10.001
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1016/S1361-3723(13)70045-9
https://doi.org/10.1145/2995306.2995311
https://doi.org/10.1007/s00607-018-0664-z
https://sites.google.com/view/technical-debt-as-an-indicator/main
https://sites.google.com/view/technical-debt-as-an-indicator/main
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1016/j.ijinfomgt.2016.05.016

Scandariato, R., J. Walden, A. Hovsepyan, and W. Joosen. 2014. “Predicting Vulnerable Software
Components via Text Mining.” IEEE Transactions on Software Engineering 40 (10): 993–1006.
doi:10.1109/TSE.2014.2340398.

Sentilles, S., E. Papatheocharous, and F. Ciccozzi. 2018. “What Do We Know about Software Security
Evaluation? A Preliminary Study.” In 6th International Workshop on Quantitative Approaches to
Software Quality, Nara, Japan.

Shatnawi, R., and L. Wei. 2008. “The Effectiveness of Software Metrics in Identifying Error-prone
Classes in Post-release Software Evolution Process.” Journal of Systems and Software 81 (11):
1868–1882. doi:10.1016/j.jss.2007.12.794.

Shin, Y., A. Meneely, L. Williams, and J. A. Osborne. 2011. “Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators of Software Vulnerabilities.” IEEE Transactions on Software
Engineering 37 (6): 772–787. doi:10.1109/TSE.2010.81.

Shin, Y., and L. Williams. 2008a. “Is Complexity Really the Enemy of Software Security.”, Proc. the 4th
ACM Workshop on Quality of Protection. Alexandria, Virginia, USA, October.

Shin, Y., and L. A. Williams. 2008b. “An Empirical Model to Predict Security Vulnerabilities Using Code
Complexity Metrics.” In ESEM’08: Proceedings of the 2008 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, Kaiserslautern, Germany.

Shin, Y., and L. Williams. 2013. “Can Traditional Fault Prediction Models Be Used for Vulnerability
Prediction?” Empirical Software Engineering 18 (1): 25–59. doi:10.1007/s10664-011-9190-8.

Siavvas, M., K. Chatzidimitriou, and A. Symeonidis. 2017. “QATCH - an Adaptive Framework for
Software Product Quality Assessment.” Expert Systems with Applications 86: 350–366. doi:10.1016/
j.eswa.2017.05.060.

Siavvas, M., E. Gelenbe, D. Kehagias, and D. Tzovaras. 2018a. “Static Analysis-Based Approaches for
Secure Software Development.” In Security in Computer and Information Sciences, 142–157. Cham:
Springer International Publishing.

Siavvas, M., M. Jankovic, D. Kehagias, and D. Tzovaras. 2018b. “Is Popularity an Indicator of Software
Security?” In 2018 IEEE 9th International Conference on Intelligent Systems (IS), Madeira, Portugal.

Siavvas, M., D. Kehagias, and D. Tzovaras. 2017. “A Preliminary Study on the Relationship among
Software Metrics and Specific Vulnerability Types.” International Conference on Computational
Science and Computational Intelligence (CSCI) 2017, Las Vegas, Nevada, USA, 916–921.

Siavvas, M., D. Tsoukalas, M. Jankovic, D. Kehagias, A. Chatzigeorgiou, D. Tzovaras, N. Anicic, and
E. Gelenbe. 2019. “An Empirical Evaluation of the Relationship between Technical Debt and
Software Security.” 9th International Conference on Information Society and Technology (ICIST)
2019, Kopaonik, Serbia.

Siebra, C. A., A. Cavalcanti, F. Q. B. Silva, A. L. M. Santos, and T. B. Gouveia. 2014. “Applying Metrics to
Identify and Monitor Technical Debt Items during Software Evolution.” In 2014 IEEE International
Symposium on Software Reliability Engineering Workshops, Naples, Italy, 92–95.

Singh, Y., and A. Saha. 2012. “Prediction of Testability Using the Design Metrics for Object-Oriented
Software.” International Journal of Computer Applications in Technology 44 (1): 12–22. Geneva 15,
CHE Publisher: Inderscience Publishers. doi:10.1504/IJCAT.2012.048204.

Sultana, K. Z. 2017. “Towards a Software Vulnerability Prediction Model Using Traceable Code
Patterns and Software Metrics.” In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Urbana-Champaign, IL, USA, 1022–1025.

Tang, Y., F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu 2015. “Predicting Vulnerable Components via
Text Mining or Software Metrics? An Effort-aware Perspective.” In 2015 IEEE International
Conference on Software Quality, Reliability and Security, 27–36. Vancouver, Canada: IEEE.

Tsoukalas, D., D. Kehagias, M. Siavvas, and A. Chatzigeorgiou. 2020. “Technical Debt Forecasting: An
Empirical Study on Open-source Repositories.” Journal of Systems and Software 170: 110777.
doi:10.1016/j.jss.2020.110777.

Tsoukalas, D., M. Siavvas, M. Jankovic, D. Kehagias, A. Chatzigeorgiou, and D. Tzovaras. 2018.
“Methods and Tools for TD Estimation and Forecasting: A State-of-the-art Survey.” In
International Conference on Intelligent Systems (IS 2018). Madeira, Portugal: IEEE.

42 M. SIAVVAS ET AL.

https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1016/j.jss.2007.12.794
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1504/IJCAT.2012.048204
https://doi.org/10.1016/j.jss.2020.110777

Van Koten, C., and A. R. Gray. 2006. “An Application of Bayesian Network for Predicting
Object-oriented Software Maintainability.” Information and Software Technology 48 (1): 59–67.
doi:10.1016/j.infsof.2005.03.002.

Wagner, S., K. Lochmann, L. Heinemann, M. Klas, A. Trendowicz, R. Plosch, A. Seidi, A. Goeb, and
J. Streit. 2012. “The Quamoco Product Quality Modelling and Assessment Approach.” 2012 34th
International Conference on Software Engineering (ICSE), Zurich, Switzerland, 1133–1142.

Walden, J., and M. Doyle. 2012. “SAVI: Static-Analysis Vulnerability Indicator.” IEEE Security & Privacy
10 (3): 32–39. doi:10.1109/MSP.2012.1.

Walden, J., M. Doyle, G. A. Welch, and M. Whelan. 2009. “Security of Open Source Web Applications.”
2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake
Buena Vista, FL.

Walden, J., J. Stuckman, and R. Scandariato. 2014. “Predicting Vulnerable Components: Software
Metrics Vs Text Mining.” Proceedings - International Symposium on Software Reliability
Engineering, Naples, Italy.

Xuan, J., Y. Hu, and H. Jiang. 2017. “Debt-Prone Bugs: Technical Debt in Software Maintenance.”
Computing Research Repository (Corr) abs/1704.04766. http://arxiv.org/abs/1704.04766

Yang, J., D. Ryu, and J. Baik. 2016. “Improving Vulnerability Prediction Accuracy with Secure Coding
Standard Violation Measures.” 2016 International Conference on Big Data and Smart Computing,
BigComp 2016, Hong Kong, China, 115–122.

Zazworka, N., R. O. Spínola, A. Vetro, F. Shull, and C. Seaman. 2013. “A Case Study on Effectively
Identifying Technical Debt.” In Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, 42–47. Porto de Galinhas, Brazil: ACM.

Zhang, M., X. C. de Carné, L. Wang, and A. Ragab. 2019. “Large-Scale Empirical Study of Important
Features Indicative of Discovered Vulnerabilities to Assess Application Security.” IEEE Transactions
on Information Forensics and Security 14 (9): 2315–2330. doi:10.1109/TIFS.2019.2895963.

Zhang, Y., D. Lo, X. Xia, B. Xu, J. Sun, and S. Li 2015. “Combining Software Metrics and Text Features
for Vulnerable File Prediction.” In 2015 20th International Conference on Engineering of Complex
Computer Systems (ICECCS), 40–49. Gold Coast, Australia: IEEE.

Zheng, J., L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk. 2006. “On the Value of
Static Analysis for Fault Detection in Software.” IEEE Transactions on Software Engineering 32 (4):
240–253. doi:10.1109/TSE.2006.38.

Zhou, Y., and H. Leung. 2007. “Predicting Object-oriented Software Maintainability Using
Multivariate Adaptive Regression Splines.” Journal of Systems and Software 80 (8): 1349–1361.
doi:10.1016/j.jss.2006.10.049.

Zhou, Y., H. K. N. Leung, Q. Song, J. Zhao, H. Lu, L. Chen, and B. Xu. 2012. “An In-depth Investigation
into the Relationships between Structural Metrics and Unit Testability in Object-oriented
Systems.” Science China Information Sciences 55: 2800–2815. doi:10.1007/s11432-012-4745-x.

Zhou, Y., and B. Xu. 2008. “Predicting the Maintainability of Open Source Software Using Design
Metrics.” Wuhan University Journal of Natural Sciences 13 (1): 14–20. doi:10.1007/s11859-008-
0104-6.

ENTERPRISE INFORMATION SYSTEMS 43

https://doi.org/10.1016/j.infsof.2005.03.002
https://doi.org/10.1109/MSP.2012.1
http://arxiv.org/abs/1704.04766
https://doi.org/10.1109/TIFS.2019.2895963
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1016/j.jss.2006.10.049
https://doi.org/10.1007/s11432-012-4745-x
https://doi.org/10.1007/s11859-008-0104-6
https://doi.org/10.1007/s11859-008-0104-6

	Abstract
	1. Introduction
	2. Related work
	3. Project-level analysis
	3.1. Experiment setup and methodology
	3.1.1. Overview of the methodology
	3.1.2. Selected indicators
	3.1.2.1. Technical debt
	3.1.2.2. Security
	3.1.2.2.1. Software security risk score
	3.1.2.2.2. Software security risk levels

	3.1.3. Dataset
	3.1.3.1. Data definition
	3.1.3.2. Descriptive statistics

	3.1.4. Data pre-processing and model construction
	3.1.4.1. Classification models
	3.1.4.2. Feature selection
	3.1.4.3. Training configuration
	3.1.4.4. Performance evaluation

	3.2. Experimental results
	3.2.1. Predicting security risk level using the loose approach
	3.2.2. Predicting security risk level using the conservative approach
	3.2.3. Predicting security risk level using the general approach

	4. Class-level analysis
	4.1. Experiment overview
	4.2. Dataset construction and preprocessing
	4.3. Statistical analysis
	4.3.1. Correlation analysis
	4.3.2. Discriminant analysis

	4.4. Predictive performance and model training

	5. Threats to validity
	5.1. External validity
	5.2. Internal validity
	5.3. Construct validity
	5.4. Reliability validity

	6. Implications to researchers and practitioners
	6.1. Implications for researchers
	6.2. Implications for practitioners

	7. Conclusion and future work
	Notes
	Acknowledgments
	Disclosure statement
	Data availability and supporting material
	Funding
	ORCID
	References

