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ABSTRACT
Vulnerability prediction facilitates the development of secure soft-
ware, as it enables the identification and mitigation of security risks 
early enough in the software development lifecycle. Although sev-
eral factors have been studied for their ability to indicate software 
security risk, very limited attention has been given to technical debt 
(TD), despite its potential relevance to software security. To this 
end, in the present study, we investigate the ability of common TD 
indicators to indicate security risks in software products, both at 
project-level and at class-level of granularity. Our findings suggest 
that TD indicators may potentially act as security indicators as well.
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1. Introduction

A software vulnerability is a weakness in the specification, development, or configuration 
of software such that its exploitation can violate a security policy (Krsul 1998). The 
exploitation of a single vulnerability may lead to far-reaching consequences to the 
owing enterprise of the compromised software, including financial losses and reputation 
damages. For instance, Equifax Breach (CVE-2017-56381) (Luszcz 2018) allowed criminals 
to expose the personal data of more than 143 million Equifax customers, leading to a total 
cost of $1.35 billion according to the company’s financial results of the first quarter of 
20192. Hence, in order to avoid potential damages, software development enterprises are 
seeking mechanisms able to assist them in identifying and removing vulnerabilities as 
early in the development cycle as possible.

Vulnerability prediction is a technique that enables the early detection of security risks 
in the software development lifecycle (SDLC) (Siavvas et al. 2018a). Research endeavours 
in vulnerability prediction focus primarily on analysing the ability of particular software- 
related factors (e.g. software metrics) to detect vulnerabilities in software, as well as on 
developing vulnerability prediction models based on these factors, e.g. (Shin et al. 2011; 
Scandariato et al. 2014; Dam et al. 2018). Vulnerability prediction facilitates decision 
making during the SDLC, leading to the production of more secure software.
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One interesting software-related factor that may indicate software security risks is 
Technical Debt (TD) (Cunningham 1993). TD, a notion inspired by the financial debt, is 
utilised as a quality metric. More specifically, it is used to quantify long-term software 
quality problems that are caused by quality compromises that provide short-term bene-
fits. In fact, it is used to quantify the effort that is required for fixing design and code 
quality issues (i.e. code smells and violations of coding rules and best practices), which are 
introduced by the developers due to sacrifices they make to the quality of the code they 
produce usually in an attempt to meet strict production deadlines. As a result, an 
increased value of TD indicates that the corresponding software product contains an 
increased number of quality issues, which, in turn, indicates poor overall quality.

Recently, several researchers have started theoretically examining the feasibility of 
using TD as an indicator of security risk (Rindell, Bernsmed, and Jaatun 2019; Rindell and 
Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019). Since most of the software 
vulnerabilities are caused by coding and design errors (McGraw 2006; Chess and McGraw 
2004; Howard, LeBlanc, and Viega 2010), it is reasonable to expect TD indicators to also 
indicate security issues. However, although a multitude of highly diverse software-related 
factors have been empirically examined for their ability to indicate software security risk, 
including software metrics (Shin and Williams 2008a, 2008b; Siavvas, Kehagias, and 
Tzovaras 2017), text features (Neuhaus et al. 2007; Scandariato et al. 2014; Pang, Xue, 
and Wang 2017; Dam et al. 2018), product popularity (Siavvas et al. 2018b) or even firm’s 
financial records (Roumani, Nwankpa, and Roumani 2016), very limited attention has been 
given on TD. In fact, although various software metrics (e.g. CK Metrics (Chidamber and 
Kemerer 1994)), which are occasionally treated as quality indicators, have been widely 
studied for their relevance to software security, actual low-level TD indicators (e.g. bugs, 
code smells, duplicated code, etc.), as well as actual high-level TD indicators (e.g. SQALE 
Index) have not been studied yet. The only known attempt can be found in a study by 
Siavvas et al. (2019), in which we empirically evaluated the relationship between SQALE 
Index and software security risk, showing that a statistically significant relationship may 
exist.

To this end, in the present paper, based on the preliminary findings of our previous 
work (Siavvas et al. 2019), we investigate the ability of common TD indicators to indicate 
software security risk. More specifically, in this study, we examine the predictive perfor-
mance of TD indicators in predicting software security risks both at project-level and at 
class-level of granularity, by building different machine learning (ML) models. As far as 
project-level analysis is concerned, we examine the ability of TD indicators to predict the 
security risk level of a software project, based on the results of static analysis. To do so, we 
initially constructed a large repository comprising 210 open-source Java applications 
retrieved from GitHub,3 which were analysed using a popular static analysis platform in 
order to calculate their TD indicators, as well as their security risk, measured in terms of 
vulnerability density. The security risk was then discretised in security risk levels based on 
a set of data-driven thresholds in order to be suitable for the construction of the 
classification models. Based on the produced dataset, several ML models were built 
considering both the cases of binary (i.e. two security risk levels) and 3-class (i.e. three 
security risk levels) classification, in order to cover different enterprise needs. The 

2 M. SIAVVAS ET AL.



produced ML models were evaluated based on popular performance metrics, which were 
also used for selecting the best model in each case.

Subsequently, emphasis was given on class-level of granularity, and particularly on the 
ability of various carefully selected TD indicators to predict the existence of actual 
vulnerabilities in software classes. For this purpose, a highly balanced vulnerability dataset 
was constructed based on OWASP Benchmark,4 which is a popular dataset of vulnerable 
and clean classes. Based on this dataset, both correlation and discriminant analysis were 
conducted with the purpose to detect potential relationships between the studied TD 
indicators and the existence of vulnerabilities, whereas the performance of these indica-
tors in class-level vulnerability prediction was examined through the construction of ML 
models.

The results of the project-level analysis revealed that TD indicators could potentially 
predict the security risk level of a software project with sufficient accuracy, with the 
Logistic Regression algorithm to be the best performing model. On the other hand, the 
class-level analysis highlighted the capacity of TD indicators to discriminate between 
vulnerable and clean software classes, and, in turn, the feasibility of constructing relatively 
accurate class-level vulnerability prediction models based on these indicators, with 
Random Forest demonstrating the best predictive performance. The results of our study 
suggest that TD indicators may indicate software security risks, and therefore they could 
potentially be used as part of a security assessment process.

The rest of the paper is structured as follows. Section 2 provides a state-of-the-art 
analysis focusing on the open issues that the present work attempts to address. In Section 
3, the project-level analysis is described in detail, whereas Section 4 is dedicated to the 
class-level analysis. In Section 5 we present the validity threats of the present paper and 
how we are trying to mitigate them. In Section 6 the implications of the present work to 
researchers and practitioners are discussed. Finally, Section 7 concludes the paper and 
discusses directions for future work, whereas a discussion of how the present paper is 
related to the Software Development Enterprises is also provided.

2. Related work

There is a multitude of research attempts in the field of software security aiming at 
identifying security risk indicators. In fact, specific emphasis has been given in the related 
literature on the ability of software-related factors to predict the existence of potential 
vulnerabilities in software products or components, which are identified either from 
actual vulnerability reports (e.g. Shin et al. 2011; Chowdhury and Zulkernine 2011), or 
through static analysis (e.g. Scandariato et al. 2014; Pang, Xue, and Wang 2017; Dam et al. 
2018).

More specifically, the capacity of common software metrics to indicate the existence of 
software vulnerabilities has been extensively studied. The first attempts were made by 
Shin and Williams (2008a, 2008b) and Chowdhury and Zulkernine (2010) who observed 
that common complexity, coupling, and cohesion (CCC) metrics may have a significant 
(albeit weak) relationship to the existence of vulnerabilities in software components. 
Based on this observation, they also investigated the predictive performance of these 
metrics, i.e. their performance in predicting the existence of vulnerabilities in software 
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components, which was found to be promising. The ability of software metrics to be used 
as vulnerability indicators (i.e. predictors) has been supported by numerous follow-up 
studies (e.g. Moshtari and Sami 2016; Siavvas, Kehagias, and Tzovaras 2017; Ferenc et al. 
2019; Jimenez et al. 2019). Along with CCC metrics, these studies investigated additional 
software metrics.

Significant attention has been given also on information retrieved directly from source 
code, either through static analysis or through text mining. Regarding static analysis, 
Gegick et al. (2008) observed that a close correlation may exist between the static analysis 
alerts density and the actual vulnerabilities that a program contains. This observation was 
supported by the results of relatively recent empirical studies, e.g. (Walden, Stuckman, 
and Scandariato 2014; Yang, Ryu, and Baik 2016). As far as text mining is concerned, the 
first known attempt was made by Neuhaus et al. (2007), who examined the ability of 
tokens (i.e. keywords directly retrieved from the product source code) to indicate the 
presence of vulnerabilities in software artefacts. A notable attempt was made by 
Scandariato et al. (2014), who managed to built text mining-based vulnerability predictors 
with sufficient predictive performance. Recently, there is a shift in the related literature 
towards adopting deep learning in an attempt to improve the predictive performance of 
text mining-based vulnerability predictors, e.g. (Pang, Xue, and Wang 2017; Dam et al. 
2018).

Factors non-directly related to the product source code have recently started gaining 
the attention of the research community. For example, Roumani, Nwankpa, and Roumani 
(2016) found a strong correlation between the financial records of the software develop-
ment enterprises (e.g. sales, financial performance, etc.) and the number of vulnerabilities 
that their products may contain. Recently, Siavvas et al. (2018b) investigated whether 
open-source software products’ popularity can be used as an indicator of their security 
level, concluding that popularity may not constitute a reliable security indicator.

Despite the multitude of research endeavours focusing on the ability of highly diverse 
factors to indicate security risks in software products, almost no research attempts exist 
explicitly focusing on dedicated TD indicators, such as code smells and code duplication. 
Software metrics are the only indicators indirectly related to TD that have been studied so 
far, which have demonstrated only weak correlation to software security. However, study-
ing only the indirect indicators is not sufficient for generalising these findings to the TD 
itself. Recently, several researchers have started examining the feasibility of quantifying 
software security indirectly through the notion of TD. More specifically, Rindell et al. 
(Rindell, Bernsmed, and Jaatun 2019; Rindell and Holvitie 2019) provided guidelines on 
how the concept of TD can be extended to support software security, whereas Izurieta 
et al. (Izurieta et al. 2018; Izurieta and Prouty 2019) presented ways for prioritising security 
bugs as TD items (i.e. quality issues). However, these studies provide only theoretical 
evaluation of the feasibility of TD to be used as a security indicator, without providing 
empirical evidence for the relationship between TD and software security. The only 
known attempt can be found in (Siavvas et al. 2019). In this study, we empirically 
evaluated the relationship between TD and software security based on a repository of 
50 open-source software products, showing that a statistically significant and strong 

4 M. SIAVVAS ET AL.



correlation exists between these two factors. This work provides preliminary evidence for 
the inter-relationship between TD and software security risk.

In the present paper, we extend our previous work with the purpose to reach safer 
conclusions regarding the potential relationship between TD and software security. More 
specifically, the project-level analysis of our present work is based on a much larger code 
base comprising 210 open-source software applications. In addition, contrary to our 
previous work in which we focused exclusively on TD Principal (i.e. SQALE Index), in this 
study we consider 12 TD indicators, providing in that way finer-grained analysis. Moreover, 
in the previous study the analysis was focused exclusively on project-level of granularity. In 
the present study, we also examine the ability of TD indicators to indicate security risks at 
lower levels of granularity and specifically on class-level. In addition, contrary to previous 
studies in which only some indicators with indirect relevance to TD were considered (i.e. 
software metrics), in the present work previously uninvestigated factors with direct relation 
to TD are studied including code smells, bugs, and code duplication. Finally, in our previous 
work, we focused only on the correlation between the values of TD and software security 
(i.e. vulnerability density). On the contrary, in the present study, we focus on the predictive 
performance of TD indicators, i.e. on their ability to predict security risk levels (i.e. project- 
level analysis) or actual vulnerabilities in software classes (i.e. class-level analysis), leading to 
the construction of actual predictors. To the best of our knowledge, this is the first study 
that specifically investigates the predictive performance of dedicated TD indicators, such as 
code smells, bugs, and code duplication, in indicating software security risk.

3. Project-level analysis

In the present section we investigate the ability of TD indicators to indicate security risks in 
software projects at project-level of granularity. More specifically, we examine whether TD 
indicators can be used as the basis for predicting the security risk level of software 
products, measured in terms of the security-related static analysis alerts density. This 
information would be very useful both for developers and project managers, since poor 
TD would also indicate questionable security, and therefore, the accumulation of TD 
liabilities would indicate possibly the accumulation of security-related issues (i.e. potential 
vulnerabilities), allowing them to make early decisions about code testing and refactoring.

3.1. Experiment setup and methodology

3.1.1. Overview of the methodology
In Figure 1, a high-level overview of the overall approach that is adopted in the present 
paper for examining the ability of common TD indicators to predict software security risk 
at project-level of granularity is illustrated. As can be seen in Figure 1, the overall approach 
comprises five steps, which are briefly described below:

1. Data Definition. The first step of the study is to define the structure of the dataset that will 
be used for the construction of the ML models. This involves the selection of the input 
variables (i.e. TD indicators), as well as of the class attribute (i.e. Security Risk Levels) of the 
predictors. Regarding the input variables, apart from common software metrics (e.g. com-
plexity), numerous previously uninvestigated TD indicators were considered for their ability 
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to predict software security. The class attribute was defined by discretising the values of 
a popular security risk indicator into three security risk levels, namely Low, Medium, and High.

2. Data Collection. The purpose of this step is to retrieve a sufficient number of real-world 
open-source software products and to analyse them using a popular static analysis platform 
in order to calculate their TD indicators and their software security risk levels, leading to the 
construction of the dataset defined in the previous step.

3. Data Pre-processing. This step is responsible for cleaning the data and bringing the 
dataset in a form ready to be used for training purposes. More specifically, this step involves 
all the required pre-processing actions, including feature selection, data resampling, and 
hyper-parameter tuning.

4. Selection of Classification Techniques. In this step, the most suitable classification 
techniques are selected, taking into account the specific characteristics of the dataset that 
is produced by the previous steps of the approach.

5. Model Training. This final step of the overall approach is responsible for building and 
evaluating classification models using the dataset that was constructed in the previous steps. 
More specifically, it is responsible for building classifiers able to classify a given software 
application into the correct security risk level, based on the values of its TD indicators. Proper 
model evaluation techniques are applied in order to ensure that the best classifier is selected 
in each case.

It should be noted that in the final step we consider both the cases of binary (i.e. 2-class) 
and 3-class classification. In the case of the 3-class classification, which we term General 
approach, the produced models focus on assessing whether the security risk level of 
a given application is Low, Medium or High according to the values of its TD indicators 
and previous knowledge (i.e. retrieved from popular open-source repositories). These 
models provide fine-grained security assessments, allowing developers and project man-
agers to track the security risk level of their applications throughout their overall SDLC.

In the case of the binary classification, the three security risk levels are reduced into 
two, by merging the Medium category either with the Low or with the High risk level 
accordingly. Hence, two approaches are considered, namely (i) a Conservative approach, in 
which we built models that are able to predict the Low | Medium+High classes, and (ii) 
a Loose approach, in which we build models that are able to predict the Low+Medium | 

Figure 1. High-level overview of the overall model construction approach for the project-level 
analysis.
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High classes. The binary models are useful for developers and project managers that are 
not interested in having fine-grained security assessment, but instead to be notified when 
the security risk of their applications is expected to exceed a specific threshold in order to 
act promptly. The Conservative approach is more suitable for software development 
enterprises that built security-critical applications, as in these enterprises the security 
risk should be minimised as much as possible. Other enterprises may opt for the Loose 
approach, in order to reduce the burden caused by frequent notifications by the models.

The above analysis suggests that the proposed approach can be tailored to satisfy the 
needs of different enterprises. A more detailed description of the steps presented above is 
provided in the rest of this section.

3.1.2. Selected indicators
3.1.2.1. Technical debt. The majority of TD indicators proposed in the literature dis-
cover TD items that are linked with software aspects (Tsoukalas et al. 2018; Li, Avgeriou, 
and Liang 2015; Alves et al. 2016), which enables the evaluation of different software 
artefacts’ characteristics. With respect to object-oriented software, object-oriented struc-
tural properties (Chidamber and Kemerer 1994; Li and Henry 1993), such as the widely 
known complexity, coupling, and cohesion, have been widely utilised for predicting the 
maintenance effort and, in turn, the maintainability of software (Riaz, Mendes, and 
Tempero 2009; Van Koten and Gray 2006; Fioravanti and Nesi 2001; Zhou and Leung 
2007; Zhou and Xu 2008), a quality attribute that is closely related to TD. For instance, with 
respect to the property of complexity, various studies have addressed the impact of 
Cyclomatic Complexity, i.e. the number of linearly independent paths through 
a program’s source code, as a predictor of the maintainability of a software project 
(Giger, Pinzger, and Gall 2012; Bruntink and van Deursen 2006; Singh and Saha 2012). In 
a similar manner, coupling metrics, such as the Coupling Between Objects (CBO) or the 
Coupling Between Methods (CBM), and cohesion metrics, such as the Lack of Cohesion in 
Methods (LCOM), have been considered by a multitude of researchers for their ability to 
measure and predict (Eski and Buzluca 2011; Shatnawi and Wei 2008; Zhou et al. 2012; 
Zhou and Leung 2007; Van Koten and Gray 2006; Shatnawi and Wei 2008; Elish and Elish 
2009). Therefore, since TD is closely related to the maintainability quality attribute, the 
aforementioned software metrics are usually being treated as indirect TD indicators or 
a subset of TD indicators (Kosti et al. 2017; Tsoukalas et al. 2020; Alves et al. 2016; Siebra 
et al. 2014).

Besides OO metrics, assessment tools used in the industry that employ well-known 
models, such as the ISO/IEC 25022–25023 standard or the SQALE (Letouzey and Ilkiewicz 
2012) methodology, all gather their atomic data by calculating various software factors 
(i.e. measures). Some of these measures upon which assessment tools estimate code-level 
TD are code duplication, and code coverage, among others. There exist various studies 
that relate each of these metrics with TD (Griffith et al. 2014; Nugroho, Visser, and Kuipers 
2011; Marinescu 2012). In addition, there are various studies that explore the involvement 
of code smells in the presence of TD (Alves et al. 2016; Palomba et al. 2018). Code smells 
can be described as code or design patterns that often violate one, or more than one 
programming principle (Fowler 2018), thus leading to deeper problems in further devel-
opment and maintenance of the software. These problems may impede the software 
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maintenance process and impose the need for code refactoring. Finally, various static 
code analysers manage to identify TD through source code analysis, which aims in 
locating bugs or violations that can cause quality decay (Xuan, Hu, and Jiang 2017; 
Griffith et al. 2014; Digkas et al. 2017). These code-level issues are normally eliminated 
through the application of code refactoring (Zazworka et al. 2013).

SonarQube5 is the world’s leading static analysis platform for continuous inspection of 
code quality that provides analysis functionalities and a wide range of metrics for 
measuring quality attributes of code, tests, and design. As of today, it has been adopted 
by more than 120 K organisations including nearly more than 100 K public open-source 
projects.6 In this study, SonarQube has been used as proof of concept for research 
purposes, since according to two recent studies on TD Management (Li, Avgeriou, and 
Liang 2015; Ampatzoglou et al. 2015), it is the most frequently used tool for estimating TD 
principal. To do so, SonarQube checks code compliance against a set of classified coding 
rules and if the code violates any of these rules, it considers it a violation or a TD item. For 
each of the identified TD items, SonarQube computes the remediation time (i.e. estimated 
effort) needed to refactor it and considers it as TD. Therefore, in the present work, we 
opted for the TD-related metrics (computed both on the project- and class-level of 
granularity) that are provided by SonarQube, as our primary TD indicators to predict 
software security risk. In fact, SonarQube has been used to statistically analyse the 
selected 210 software applications (see Section), as well as the 2740 software classes of 
the OWASP Benchmark (see Section 4.2). A more detailed definition of the selected 
metrics is provided in Section.

3.1.2.2. Security.
3.1.2.2.1. Software security risk score. Similarly to our previous study (Siavvas et al. 
2019), we chose the Static Analysis Vulnerability Density (SAVD) (Walden et al. 2009) 
metric as our main software security indicator. In fact, the Vulnerability Density metric is 
‘the total number of vulnerabilities that a software product contains per thousand lines of 
code’ (Alhazmi, Malaiya, and Ray 2007). The vulnerability density metric is quantified 
based either on the number of vulnerabilities reported on vulnerability databases (Shin 
and Williams 2008a; Chowdhury and Zulkernine 2010) or based on the results of static 
analysis (Walden and Doyle 2012; Siavvas, Kehagias, and Tzovaras 2017; Siavvas et al. 
2019). The SAVD is actually the Vulnerability Density metric that is computed based on the 
security-related results of static analysis tools (i.e. vulnerabilities identified through static 
analysis). The SAVD metric is a popular security risk indicator widely used in the related 
literature (Walden et al. 2009; Walden and Doyle 2012; Siavvas, Kehagias, and Tzovaras 
2017; Siavvas et al. 2018b; Walden and Doyle 2012), whereas it has been also extensively 
used for vulnerability prediction purposes (Gegick et al. 2008; Yang, Ryu, and Baik 2016).

For quantifying the SAVD of the selected software applications, similarly to the case of 
TD indicators, we used SonarQube in order to extract security-relevant issues (i.e. poten
tial vulnerabilities). In fact, SonarQube has been used for calculating the SAVD of the 
selected 210 software applications (see Section). To detect potential vulnerabilities, 
SonarQube uses various popular analysers (such as FindBugs7 and PMD8) under the 
hood and aggregates their reports, giving additional value by incorporating also its 
own technologies and custom security rules tailored to each supported programming 
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language. These security-related rules are based on well-established security-standards, 
such as CWE, SANS, and OWASP. In fact, SonarQube, by making use of these rules, it is 
capable of detecting important security issues that reside in the source code, and also 
tries to reduce the number of the produced false positives to the greatest possible 
extent.9

In the context of the present experiment, to compute the SAVD of each project, we 
divided the total number of potential vulnerabilities identified by SonarQube for that 
software product with the lines of code of the project, also computed by SonarQube. The 
result was multiplied by 1000, to express SAVD per thousand lines of code. For better 
understanding, the SAVD of a given software application is given by the following 
formula: 

SAVD ¼ 1000
Nvuln

LOC
(1) 

where:
Nvuln: The total number of potential vulnerabilities that the software application con-

tains as reported by SonarQube
LOC: The total Lines of Code of the software application as reported by SonarQube
The SAVD value denotes how many potential vulnerabilities the software application 

contains per thousand lines of code according to SonarQube. As a result, the higher the 
SAVD of a software application, the higher its security risk, as it contains more (on 
average) security-related static analysis alerts (i.e. security issues), which are likely to 
manifest themselves as vulnerabilities. Hence, in the present study, the value of SAVD is 
used as the value of the Security Risk Score (SRS) of a given software application. It should 
be noted that the normalisation of the metric by the LOC of the software product is 
necessary, for making the measure independent of the product size, and therefore able to 
be used for the direct comparison of different software products.
3.1.2.2.2. Software security risk levels. During software development, developers and 
project managers are interested in knowing the security risk level of their software 
applications in order to better plan their testing and refactoring activities. In fact, they 
would like to be notified when the security risk level of their application is high in order to 
act promptly. Although SAVD is a sufficient indicator of software security risk, due to the 
fact that its value is numerical, it does not provide information about whether its value can 
be considered high or low. Hence, a discrete indicator of software security risk is necessary 
to facilitate decision making. In fact, a discrete security risk indicator is more sufficient for 
communicating assessment results even to non-technical stakeholders (e.g. managers) 
since the human brain can better perceive linguistic values compared to actual numbers.

For this purpose, we decided to create a discrete security risk indicator by discretising 
the SAVD into different Security Risk Levels (SRLs). In order to achieve this, a set of thresh-
olds needs to be defined. We decided to use three thresholds for the discretisation of the 
SAVD, namely tl , tm, tu, which correspond to the lower, middle, and upper threshold of the 
SAVD respectively. The values of these thresholds could be determined either based on 
expert judgements, or based on real-world data. The latter approach was selected in order 
to avoid the subjectivity that underlies expert judgements and therefore leads to a more 
reliable set of thresholds. Among the existing threshold derivation approaches, we 
decided to use the benchmarking approach since it is the most widely used in the related 
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literature, e.g. (Heitlager, Kuipers, and Visser 2007; Wagner et al. 2012; Siavvas, 
Chatzidimitriou, and Symeonidis 2017).

The benchmark repository of 210 open-source software applications (described in 
Section 3.1.3) based on which the ML models of the present study are constructed was 
used for the calculation of these thresholds. More specifically, SonarQube was applied to 
each one of the applications of the selected repository and their SAVDs were computed 
by applying Equation (1). Subsequently, the three thresholds were calculated based on 
the distribution of the SAVDs, by applying the following formulas, which were proposed 
by Wagner et al. (2012): 

tl ¼ minðfs : s � Q25%ðs1; . . . ; snÞ � 1:5 � IRQðs1; . . . ; snÞgÞ

tm ¼ medianðs1; . . . ; snÞ

tu ¼ maxðfs : s � Q75%ðs1; . . . ; snÞ þ 1:5 � IRQðs1; . . . ; snÞgÞ

(2) 

where:
si denotes the SAVD value of the i-th product of the benchmark repository
Qp denotes the p-percentile
n denotes the size of the selected benchmark repository
IRQðs1; . . . ; snÞ denotes the inter-quartile-range
In simple words, the minimum, median, and maximum values of SAVD were selected as 

its lower, middle, and upper thresholds respectively (after removing the outliers). The final 
thresholds and the SRLs that were produced from the above procedure are illustrated in 
Table 1.

From Table 1 it is clear that, since the lower threshold has a value of 0, three SRLs are 
defined. A software application is assigned to one of these SRLs based on the value of 
SAVD as determined by SonarQube. This discretisation enables the construction of 
classification models able to predict the risk level of a software application based on its 
TD Indicators, which will be presented in the rest of this section. It should be noted that, 
although here we present three SRLs, as already mentioned, binary classification is also 
feasible, by merging two risk levels into one (see Section 3.1.1). As stated previously, 
binary classification is useful in case that the developers and project managers just want 
to be notified when the security risk of their applications is above a specific threshold.

Table 1. The Security Risk Levels (SRLs) 
along with their corresponding values 
of SAVD. The thresholds of the SAVD 
that determine each SRL were com
puted based on a benchmark reposi
tory of 210 open-source software 
applications that were retrieved from 
GitHub.

Security Risk Level SAVD Range

Low ½0; 0:515Þ
Medium ½0:515; 4:068Þ
High ½4:068; infÞ
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At this point, it should be noted that the Security Risk Score (SRS) is a relative security 
indicator, which actually compares a given software product to other real-world software 
products that are available on the market with respect to ‘how well it avoids security 
issues (reported through static analysis)’. A High SRS (in fact, SRL) suggests that the project 
contains much more security-relevant static analysis alerts (i.e. security issues) on average 
compared to a baseline of real-world projects that are available on the market, and 
therefore, it is more likely to contain an actual vulnerability than the others.

3.1.3. Dataset
For the execution of this study, we aimed at combining different TD and security-related 
indicators into a common dataset with the purpose of investigating if and to what extent 
TD can be used in order to accurately predict the security risk level of a software applica-
tion. To start the dataset construction process, we initially selected 210 popular open- 
source applications from the GitHub repository. The selected 210 applications have 
different sizes and belong to different application domains. The selection criteria were 
based on software popularity, activity level, data availability, and the Java programming 
language. A sufficiently large number of applications are fundamental to reach 
a conclusion that does not depend on a specific dataset, allowing to generalise the 
obtained results.

3.1.3.1. Data definition. After fetching the source code (i.e. latest commit) of each 
application, we proceeded to the next step, i.e. using SonarQube to perform static analysis 
on each codebase in order to retrieve both, TD and security indicators described in the 
previous Section 3.1.2. In Table 2, the 12 metrics that were selected as (direct and indirect) 
TD indicators and therefore used as the initial independent variables set are presented 
along with a short description.

Our final dataset comprises a table with 210 rows (the number of analysed applica-
tions) and 13 columns, where each one of the first 12 columns holds the value of a specific 
TD indicator, while an extra column at the end of the table holds the value (class) of the 
SRL (i.e. SAVD level). Since the purpose of the project-level analysis is to investigate the 
ability of TD indicators to act as security risk level predictors of a software application, the 
columns that refer to TD metrics will play the role of independent variables, while the last 
column that refers to SRL (i.e. SAVD level) will play the role of the dependent variable, i.e. 

Table 2. The initial set of technical debt (TD) indicators considered by the present analysis.
Metric Description

bugs Total number of bug issues of a project.
code_smells Total number of code smell issues of a project.
comment_lines Total number of lines that correspond to comments.
open_issues Total count of issues in the Open state.
ncloc Total number of lines that are not part of a comment.
uncovered_lines Total number of code lines that are not covered by unit tests.
duplicated_blocks Total number of lines that belong to duplicated blocks.
complexity Total Cyclomatic Complexity calculated based on the number of paths through the code.
sqale_index Total effort (measured in terms of minutes) to fix all the identified issues.
classes Total number of classes.
functions Total number of functions.
cognitive_complexity Total Cognitive Complexity, measuring the degree to which the code’s control flow is 

understandable.
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the security risk level that we try to predict. This format helped us during the classification 
model construction phase described in Section 3.2.

3.1.3.2. Descriptive statistics. In order to provide insights regarding the selected data
set, its descriptive statistics need to be presented. These statistics (e.g. mean, median, 
standard deviation, variance, minimum and maximum values, etc.) provide simple sum
maries about the sample and about the observations that have been made. After analys
ing and extracting the metrics of each application, we present the descriptive statistics of 
our dataset in Table 3.

Metrics that vary little are not likely to be useful predictors. In our case, from Table 3 we 
observe that for all metrics there are significant differences between the lower 25th 
(lower) percentile, the median, and the 75th (upper) percentile, thus showing strong 
variations. Therefore, all metrics were selected to be used for subsequent analysis.

In Figure 2, we present a histogram of the distribution of SRL (i.e. SAVD level) class 
among the 210 applications of our dataset. As we can see, most software applications fall 
under the Low SAVD level class (105 instances). In the second place, there is the Medium 
class (83 instances), whereas the High class is the class with the least occurrences (22 
instances). This observation implies that our dataset is imbalanced, especially when it 
comes to the High SAVD level class, where the total count of software application 
instances is considerably lower than the other two classes. To investigate if this issue 
will affect the performance of the examined classifiers, i.e. make a classifier biased towards 
Low or Medium classes, we will employ resampling techniques and compare the results 
with those obtained without data resampling. More details on this are presented in 
Section.

3.1.4. Data pre-processing and model construction
3.1.4.1. Classification models. The purpose of the project-level analysis is to examine 
the feasibility of using classification for predicting the SRL of software applications based 
on TD indicators. To do so, we applied an arsenal of ML classification models and 
compared their results in order to select the best model. We decided to omit Artificial 
Neural Network models from our experiments, as the size of our dataset (210 instances) 
does not suffice to train such models. Below, the selected models are briefly described:

Table 3. Descriptive statistics of TD indicators of the 210 open-source real-world software applications 
used for the project-level analysis.

Metric
Mean 
value

Standard 
deviation

Min 
value

Lower 
quartile

Median 
value

Upper 
quartile

Max 
value Skewness Kurtosis

bugs 29.665 61.148 0 3 9 30 585 5.286 37.601
code_smells 858.660 2095.092 2 94 235 732 16442 5.551 35.262
comment_lines 5113.780 15587.257 1 387 1381 3889 170698 8.203 77.661
open_issues 927.144 2235.457 3 102 264 777 18625 5.631 36.678
ncloc 19524.278 37253.222 175 2655 7068 20438 357664 5.262 38.091
uncovered_lines 9815.507 17856.102 32 1302 3297 10288 137326 3.905 19.212
duplicated_blocks 110.177 429.327 0 0 12 47 4219 7.771 67.183
complexity 3914.024 7420.959 11 421 1352 4284 61862 4.275 23.544
sqale_index 9143.732 24074.250 10 951 2755 7540 250449 7.027 59.265
classes 250.172 529.702 1 40 94 281 6453 8.391 92.196
functions 1933.144 4033.357 7 248 725 2053 45852 7.234 70.777
cognitive_complexity 3244.833 7100.924 5 271 859 3201 59109 4.667 26.822
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• Logistic Regression is a classifier that predicts the probability of a categorical target 
variable Y belonging to a certain class by employing a logit function. Although the logit 
function makes logistic regression suitable for binary classification where there are two 
classes, it can be extended to support classification where multiple classes are present (see 
Section 3.2.3 for more information).

• K-Nearest Neighbours is a simple algorithm that initially keeps all available labeled data 
points in the memory. Once a new data point comes in, it gets classified based on the 
majority label of the k data points closest to it. The closeness between data points is 
computed by using a distance function (e.g. Euclidean distance).

• Naïve Bayes is a probabilistic classifier that is based on the Bayes’ theorem. To make 
classifications, it computes the odds of a data point to belong into a specific class. Although 
Naive Bayes is simple and intuitive, it works under the assumption that all features are 
independent and they not affect the other, which is rarely the case in real-life classification tasks.

• Support Vector Machine is a classifier that tries to find the optimal N-dimensional hyper-
plane (i.e. support vectors) that maximises the margin between the data points, thus making 
them distinctly separable. To achieve this, it tries to learn a non-linear function by linearly 
mapping the data points into high-dimensional feature space.

• Random Forest is a classifier that is constructed based on multiple decision trees. For the 
classification, the new instance (i.e. input vector) is fed as input to each one of the decision 
trees of the Random Forest, which predict its class. Then the Random Forest collects all the 
votes that are produced by its decision trees and provides a final classification. Usually the 
class that was selected by the majority of the decision trees is chosen as the final class of the 
new instance.

• XGBoost is a decision-tree-based ensemble ML algorithm that uses multiple decision trees 
to predict an outcome based on a gradient boosting framework.

For the conduction of our experiments, we used the Python programming language and 
more specifically the scikit-learn10 ML library that contains the implementation of all the 
above algorithms.

Figure 2. SAVD class distribution.
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The scale of the input data is known to affect some of the models that we investigated, 
namely the KNN and SVM algorithms. To address this issue, we applied standardisation to 
the dataset before experimenting with these algorithms.

3.1.4.2. Feature selection. The selection of independent (i.e. input) variables before 
designing or experimenting with an ML algorithm is a task that needs to be treated with 
special attention. A large number of input features, i.e. a high-dimensional feature space, 
may lead to the ‘curse of dimensionality’ (Bellman 2003). According to this phenomenon, 
the increasing number of the model’s inputs leads to a degradation in its predictive 
performance. Features that are not associated (or they are partially associated) with the 
class attribute can also negatively affect model performance. Thus, after constructing our 
dataset, the next step is to provide a clear understanding of the statistical attributes of our 
variables, and then to apply feature selection techniques for reducing the number of the 
model’s inputs by keeping only the TD indicators (described in Section) that are highly 
significant for SRL prediction.

In order to study the statistical significance of each TD indicator over the security 
quality, we applied four different feature selection methods. More specifically, we used 
two filter-based methods, namely Spearman Correlation and Chi-Squared, one wrapper- 
based method named Recursive Feature Elimination (RFE), and finally one embedded 
method named Tree-based Elimination (TBE). In general, filter-based methods try to filter 
the features based on some metrics, while wrapper-based methods consider the selection 
of a set of features as a search problem. Embedded methods use algorithms that have 
built-in feature selection methods (e.g. Lasso and Random Forest). More details on the 
four different feature selection methods used for keeping only the TD indicators that are 
highly significant for SRL prediction are provided below.

• The Spearman correlation is a non-parametric technique used to measure the monotoni
city of the relationship between the values of two datasets. Similarly to other correlation 
techniques (e.g. Pearson), Spearman correlation coefficients vary between −1 and +1. 
However, as a non-parametric test, Spearman correlation does not assume any distribution 
for the studied data. A coefficient of −1 or +1 implies an exact monotonic relationship, while 
a coefficient of 0 implies no correlation at all. In our case, we examine the absolute values of 
the Spearman correlation coefficients between the independent (TD Indicators) and depen
dent (SRL) variables in our dataset, and we rank the former based on these values. Then, we 
keep the top N features based on this criterion.

• The Chi-Squared method is a statistical hypothesis test used to determine whether there is 
a statistically significant relationship between a non-negative feature and a class, by calculat
ing the chi-square statistic. A small chi-square test statistic means that there is a relationship 
between the studied variables, while a large chi-square test statistic means there is no 
relationship. Since the Chi-Squared method measures the dependency between a feature 
and a class, it can be used to filter out the features that are most likely to be independent of 
this specific class and therefore, not suitable for classification. In our case, we calculate the 
chi-square statistic between the independent (TD Indicators) and dependent (SRL) variables 
in our dataset, and we rank the former based on these values. Then, we keep the top 
N features based on this criterion.

• The Recursive Feature Elimination (RFE) method, as its name suggests, is a feature 
selection technique that recursively eliminates features based on an estimator model trained 
on the initial set of features. Depending on the nature of the model, the importance of each 
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feature is determined either by a coefficient attribute (e.g. Logistic Regression) or by 
a feature-importance attribute (e.g. Random Forest). During this process, the least important 
features are recursively filtered out until the final set contains only the desired number of 
features. In our case, we select Logistic Regression as the estimator model. As a result, the RFE 
assesses the importance of each feature based on the coefficient in the decision function of 
the Logistic Regression object and prunes the initial set until it contains only the top 
N features in terms of importance.

• Tree-based Elimination (TBE) is an Embedded method, meaning that it uses models that 
have built-in feature selection methods to eliminate the initial features’ number. In this case, 
contrary to the RFE method, we use the Random Forest model to calculate feature impor-
tance based on node impurities in each decision tree. Then, we keep the top N features based 
on the average of all feature importance values calculated by each decision tree.

We applied each method described above independently on the feature set and retained 
the top N ¼ 5 features that were selected by each method. We set N ¼ 5 mainly due to 
the fact that both RFE and TBE methods stopped the feature elimination process when 
the feature subset reached five features. As a result, selecting the top five features from 
each independent method allowed us to directly compare the selected features’ subsets 
among the four methods. Then, we aggregated the results by ranking each feature based 
on the number of times it was selected to be in the top five of a particular method. Table 4 
displays the features ranked by the number of times they were selected by each method. 
A value of True in a specific column indicates that the feature of that specific row has been 
selected to be in the top five features of the algorithm of this column.

By having a look at Table 4, we can see that bugs and open issues features are in the top 
five set of every feature selection method. Moreover, code smells and complexity are also 
high in the list since they were selected by three out of four methods. Finally, sqale index is 
selected by two out of four methods. As our final feature set, we decided to keep only the 
features that were selected to be within the top five set of at least two different methods. 
This means that features ranked below sqale index in the table will be excluded from the 
final set. To conclude, among the initial 12 features (TD indicators) under investigation, 
five of them were found to have statistically significant effects on SRL, by more than one 
feature selection algorithms. It should be noted at this point that every feature selection 
method described above performs a statistical test to reach a decision regarding which 
features to eliminate and which to retain during the selection process. As a result, the 
aforementioned statistically significant effects of the final set of features with respect to 

Table 4. Results of the four feature selection methods.
Feature Spearman Chi-2 RFE TBE Total

bugs True True True True 4
open_issues True True True True 4
code_smells True True True False 3
complexity False True True True 3
sqale_index True False False True 2
functions False False True False 1
comment_lines False False False True 1
uncovered_lines False True False False 1
duplicated_blocks True False False False 1
classes False False False False 0
cognitive_complexity False False False False 0
ncloc False False False False 0
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the target variable (i.e. SRL) are the outcome and the aggregation of the individual 
statistical tests performed by each feature selection method. Therefore, the TD indicators 
that were found to be the most promising SRL predictors according to our feature 
selection approach are bugs, open issues, code smells, complexity, and sqale index. These 
metrics will be considered as input to the classification models described in Section . At 
this point it should be noted that in our previous work (Siavvas et al. 2019), which was 
based only on sqale index, a statistically significant and strong correlation was observed 
between the sqale index and the SAVD calculated based on another static code analyser, 
providing more support regarding the relevance of this TD indicator to software security.

3.1.4.3. Training configuration. Once our dataset is ready for supervised learning, the 
next step is to train and validate the performance of the selected classification algorithms. 
The dataset contains a total of 210 project entries. To evaluate our model performance, 
we initially used the Train-Test split approach, where we randomly split the dataset into 
two sets: 75% for training and 25% for test. However, since our data is limited there is 
a possibility of high bias, because there is a high chance that the models may miss some 
information about the data which is not used in the training set.

To overcome this challenge and ensure that every observation from the original 
dataset has the chance of appearing in training and test set, we also used the K-Fold cross- 
validation approach (Mosteller and Tukey 1968), which generally results in a less biased 
model compare to other methods. Using K-Fold cross-validation will result in more 
models being trained, and in turn, a more accurate estimate of the performance of the 
models on unseen data. In this approach, we set K = 10 and the training was conducted 
over the entire dataset. This means that the dataset was randomly split into 10 folds, 
where the K-1 folds were used to train the model, while the remaining Kth fold was used 
to test the model. The whole process was repeated until each of the K-folds has served as 
the test set. We recorded the errors on each of the predictions for each of the K-Folds and 
computed the average of the K recorded errors (i.e. the cross-validation error) that served 
as our performance metric for the model.

Before the learning process begins, a hyper-parameter tuning process must take place 
in order to increase models’ predictive performance. A model hyper-parameter is an 
external attribute of the model that cannot be estimated from data during the training 
process. In order to tune our models in the best possible way, we used GridSearchCV,11 

a Python implementation of the Grid-search method (Feurer et al. 2015). Grid-search is 
commonly used to find the optimal hyper-parameters of a model that result in the most 
accurate predictions, by performing an exhaustive search over specified parameter values 
for an estimator. We chose F1 score as the objective function of the estimator to evaluate 
a parameter setting. We performed hyper-parameter selection on every classifier under 
investigation during the 10-Fold cross-validation described above to avoid overfitting and 
ensure that the selected models have a good degree of generalisation.

Classification problems having multiple classes with imbalanced dataset generally 
oppose a challenge, as the skewed distribution makes many conventional ML algorithms 
less effective, especially in predicting minority class examples. As described in Section, our 
dataset is imbalanced due to the fact that it contains considerably more samples for the 
Low and Medium SRL classes than for the High SRL class. This can make a classifier biased 
towards the one or two classes, i.e. learn the classes with more samples better (Low and 
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Medium class) and remain weak on the smaller (High) class. In order to investigate if this 
issue affects the performance of our classifiers, we used the Synthetic Minority Over- 
sampling Technique (SMOTE) (Chawla et al. 2002) to augment the dataset with artificial 
data. We repeated the experiments twice, once with applying SMOTE and once without 
SMOTE and compared the results (see Section 3.2). It is worth mentioning that SMOTE was 
applied only to the training set, as over-sampling on test data imposes a bias on the 
findings.

3.1.4.4. Performance evaluation. We evaluated and compared the classification per-
formance of the investigated models using Precision, Recall and F1 score metrics. Given 
a class C that we try to predict, Precision is the ratio of instances correctly predicted as 
class C, i.e. True Positives (TP), to the total number of predictions with class C, i.e. True 
Positives (TP) + False Positives (FP). The formula for calculating Precision is as follows: 

Precision ¼
TP

TPþ FP
(3) 

Recall, on the other hand, is the ratio of instances that are correctly predicted as class C, i.e. 
True Positives (TP), to the total number of instances with an actual class of C, i.e. True 
Positives (TP) + False Negatives (FN). 

Recall ¼
TP

TPþ FN
(4) 

Finally, F1 score is the harmonic mean of Precision and Recall and reaches its best value at 
1 and worst at 0. The relative contribution of Precision and Recall to the F1 score is equal. 
The formula for the F1 score is: 

F1score ¼ 2 �
Precision � Recall
Precisionþ Recall

(5) 

3.2. Experimental results

Three experiments were made for three independent approaches: a Loose approach using 
2-class classification for predicting the SRL between Low+Medium|High, a Conservative 
approach using 2-class classification for predicting the SRL between Low|Medium+High, 
and finally a General approach using 3-class classification for predicting the SRL between 
Low|Medium|High. These approaches have been described in detail in Section 3.1.1.

3.2.1. Predicting security risk level using the loose approach
As discussed in the previous section, F1 score is selected as the main evaluation metric for 
classification since it combines both Precision and Recall. Table 5 shows Precision, Recall 
and F1 cross-validation scores for all models, while the experiments were repeated two 
times, one using SMOTE for data resampling and one without SMOTE.

From Table 5 we can clearly see that Logistic Regression is by far the best model in 
terms of average Precision, Recall and F1 score. More specifically, in the case of classifica-
tion performance without applying SMOTE, the F1 score of Logistic Regression is 0.863, 
while the second best model is XGBoost with an F1 score of 0.581. Respectively, after 
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applying SMOTE on the training set, the F1 score of Logistic Regression is 0.889, while 
the second best model is Random Forest with an F1 score of 0.644. Besides Logistic 
Regression, Random Forest and XGBoost, the performance scores of the rest of the 
models are too low to be further investigated.

Table 6 shows the confusion matrix of the best performing model, Logistic Regression. 
Cross-validation approach is not suitable for producing an overall confusion matrix, as 
different confusion matrices are produced at each evaluation run. For that reason, we 
used the Train-test split approach, i.e. we randomly split the dataset into two sets: 75% for 
training the Logistic Regression model and 25% for testing the model, and then calculated 
the confusion matrix. In this case, we did not use a resampling approach, as we wanted to 
investigate the performance of the model in dealing with data imbalance between 
classes.

As can be seen in the confusion matrix, there is only one misclassified instance for the 
Low+Medium class that was predicted as High, while the remaining 48 instances were 
correctly predicted as Low+Medium. For the High class, all four instances were correctly 
classified, indicating again that the algorithm is able to perform very well, even for the 
minority classes and without any resampling. Averaged Precision, Recall and F1-score for 
the Train-test split approach are 0.90, 0.99 and 0.94 respectively.

Among the various ML models that were built having as input the TD indicators and as 
output the SRLs, Logistic Regression was found to be the best model, demonstrating high 
predictive performance with an average F1 score of 0.889. It should be noted that 
regression models (including logistic regression) have demonstrated sufficient perfor
mance in vulnerability prediction in the related literature (Gegick et al. 2008; Roumani, 
Nwankpa, and Roumani 2016; Camilo, Meneely, and Nagappan 2015; Shin et al. 2011). The 
high predictive performance of Logistic Regression can be attributed mainly to two 
factors: i) the possibility that features (i.e. TD indicators) and the target variable (i.e. SRL) 
are governed by linear relationships (i.e. linear patterns) and thus, linearly separable 

Table 5. Cross-validation averaged scores for all models for loose approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.955 0.891 0.908 0.889
No 0.951 0.926 0.847 0.863

K-NN Yes 0.710 0.553 0.616 0.537
No 0.880 0.498 0.514 0.501

Random Forest Yes 0.852 0.627 0.696 0.644
No 0.904 0.551 0.541 0.533

Gaussian Naïve Bayes Yes 0.396 0.552 0.572 0.334
No 0.814 0.475 0.491 0.470

XGBoost Yes 0.818 0.595 0.691 0.612
No 0.905 0.605 0.578 0.581

SVM(linear) Yes 0.472 0.568 0.661 0.423
No 0.895 0.447 0.500 0.472

Table 6. Train-test split confusion matrix of logistic 
regression model for loose approach.

1: Low+Medium 2: High

1: Low+Medium 48 1
2: High 0 4
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decision boundaries can be easily created, and ii) the fact logistic regression work better in 
the absence of features that are unrelated (noise) to the target variable as well as features 
that are correlated to each other.

In general, logistic regression performs better when the number of unrelated variables 
is significantly less (or zero) compared to the number of related independent variables, 
while non-linear algorithms, such as Random Forest, have higher accuracy as the number 
of independent variables increases in a dataset. In the case of SRL prediction performed at 
project-level, we tried to eliminate unrelated variables and decrease the number of 
independent variables as much as possible, by performing and combining various feature 
selection techniques (see Section). This process, also known as dimensionality reduction, 
resulted in a significantly less-complex dataset, which allowed Logistic Regression to use 
its full capabilities, thus confirming in that way the fact that simplicity of linear models can 
occasionally lead to providing better results than other more sophisticated models, such 
as non-linear or ensemble learners (Kirasich, Smith, and Sadler 2018).

3.2.2. Predicting security risk level using the conservative approach
Table 7 shows cross-validation scores for all models using the Conservative Approach, 
while again the experiments were repeated with and without applying the SMOTE 
technique. We can observe that similarly to the Loose approach, Logistic Regression is 
the model achieving the highest classification scores. When experiments are conducted 
without applying SMOTE, Logistic Regression has an F1 score of 0.892, while the F1 score 
of the second best model (i.e. XGBoost) is 0.646. The application of SMOTE does not have 
an effect on the F1 score of the Logistic Regression whereas XGBoost comes second again, 
with an F1 score of 0.661. Besides Logistic Regression and XGBoost, Random Forest is 
performing slightly worse than XGBoost, with an F1 score of 0.635 and 0.647 respectively. 
Again, F1 score of the remaining models is not considered worthy of further investigation.

In Table 8 the confusion matrix of the best-performing model (i.e. the Logistic 
Regression model) is shown. Again, for the calculation of the confusion matrix the Train- 
test split approach without any data resampling was used.

While inspecting the confusion matrix, we can observe that there are only two 
misclassified instances for the Medium class that were predicted as Medium+High. The 
remaining 25 instances were correctly classified as Low. For the Medium+High class, 23 
instances were correctly classified, while three instances were misclassified as Low. The 

Table 7. Cross-validation averaged scores for all models for conservative approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.893 0.901 0.894 0.892
No 0.893 0.901 0.894 0.892

K-NN Yes 0.603 0.612 0.604 0.596
No 0.603 0.612 0.604 0.596

Random Forest Yes 0.651 0.657 0.651 0.647
No 0.637 0.641 0.637 0.635

Gaussian Naïve Bayes Yes 0.554 0.589 0.556 0.468
No 0.554 0.589 0.556 0.468

XGBoost Yes 0.665 0.676 0.666 0.661
No 0.651 0.662 0.652 0.646

SVM(linear) Yes 0.558 0.617 0.560 0.495
No 0.558 0.617 0.560 0.495

19



average Precision, Recall and F1-score that are computed using the Train-test split 
approach are 0.91, 0.91 and 0.91 respectively. For more information about why (according 
to the authors) Logistic Regression demonstrated better results than other ML algorithms, 
we refer the reader to Section 3.2.1.

3.2.3. Predicting security risk level using the general approach
Most of the selected classification algorithms presented in Section natively support 
multiclass problems. Logistic regression, however, is a statistical method for predicting 
binary classes, as the outcome of this algorithm is dichotomous in nature. To overcome 
this limitation of Logistic Regression to support multiclass predictions, we extended the 
model by applying the one-vs-rest scheme (Bishop 2006). One-vs-rest (OvR), also known 
as one-vs-all, is a strategy that decomposes the multiclass optimisation problem into 
separate binary classifiers that are trained separately for all classes, and then combines 
each of the classifiers’ binary outputs to generate multi-class outputs.

In Table 9, cross-validation scores are given for all models, with and without data 
resampling. Similarly to the two approaches presented above, Logistic Regression is again 
the best model, since its averaged classification scores outperform those of the remaining 
models. This performance can be attributed to the OvR scheme that Python’s algorithm 
implementation natively supports. In particular, SRL can be predicted with an average of 
0.821 Recall, 0.858 Precision, and 0.836 F1 score for the case of classification without 
SMOTE. The second best model is XGBoost with an F1 score of 0.502, which is considered 
way too low compared to the best performing model. In the case of data sampling, SRL 
can be predicted with an average Recall of 0.821, Precision of 0.858 and F1 score of 0.836. 
Random Forest classifier comes second with an F1 score of 0.503, a score which again is 
considered to be too far from that of Logistic Regression. The F1 score of the remaining 
investigated models is below 0.5 and is therefore not worth mentioning.

Table 8. Train-test split confusion matrix of logistic 
regression model for the conservative approach.

1: Low 2: Medium+High

1: Low 25 2
2: Medium+High 3 23

Table 9. Cross-validation averaged scores for all models for general approach.
Classifier SMOTE Accuracy Precision Recall F1 Score

Logistic Regression Yes 0.832 0.842 0.837 0.814
No 0.836 0.858 0.821 0.817

K-NN Yes 0.513 0.495 0.504 0.473
No 0.532 0.400 0.422 0.403

Random Forest Yes 0.568 0.514 0.525 0.503
No 0.589 0.467 0.486 0.466

Gaussian Naïve Bayes Yes 0.485 0.305 0.355 0.296
No 0.566 0.444 0.457 0.439

XGBoost Yes 0.560 0.483 0.517 0.481
No 0.590 0.501 0.521 0.502

SVM(linear) Yes 0.322 0.413 0.463 0.302
No 0.540 0.343 0.375 0.319
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In Table 10, the confusion matrix of Logistic Regression, which is the best performing 
model of the general approach, is presented by using the Train-test split approach 
without any data resampling.

By having a look at the confusion matrix, it can be observed that the number of 
misclassified instances is greater for the Medium class, where out of a total of 22 samples, 
four instances were predicted as Low and two were classified as High. However, the other 
instances were classified correctly as Medium. For the Low class, only one instance was 
misclassified as Medium, while the rest 26 instances were classified correctly. Finally, all 
the instances that belong to the High class, all four instances were correctly classified. The 
above results indicate that the Logistic Regression algorithm is able to correctly classify 
a very satisfactory percentage of the instances for both, the majority and the minority 
classes, despite the fact that this task deals with a 3-class classification. The averaged 
Precision, Recall and F1-score (for the Train-split approach) were found to be 0.82, 0.90, 
and 0.84 respectively. For more information about why (according to the authors) Logistic 
Regression demonstrated better results than other ML algorithms, we refer the reader to 
Section 3.2.1.

4. Class-level analysis

In the previous section we focused on the project-level of granularity. More specifically, 
we investigated the ability of TD indicators to indicate security risks at the level of the 
broader software application, i.e. whether TD indicators can be used as predictors of SRLs. 
This analysis led us to the observation that TD metrics can potentially be used as sufficient 
predictors of security-related bugs (i.e. potential vulnerabilities) at project-level, and, in 
turn, that poor TD may also indicate questionable security. This observation is important 
from a practical perspective, as it can be used by project managers and developers, in 
order to get an indication of the security risk that is accumulated to the software 
applications under development due to unresolved code-level quality-related issues.

Another interesting from a practical viewpoint question that deserves individual merit 
(and which will also enhance the completeness of the present work) is whether the same 
observations hold at lower levels of granularity. In simple words, it would be worth 
investigating the ability of TD indicators to discriminate between vulnerable and clean 
software components (i.e. classes). To this end, in the present section we focus on class- 
level of granularity and we examine the capacity of TD indicators to predict the existence 
of actual vulnerabilities in software classes.

Table 10. Train-test split confusion matrix of logistic regres-
sion model for general approach.

1: Low 2: Medium 3: High

1: Low 26 1 0
2: Medium 4 16 2
3: High 0 0 4
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4.1. Experiment overview

Based on the description provided above, the problem is reduced to a typical problem of 
vulnerability prediction in software products (Siavvas et al. 2018b; Jimenez et al. 2019). 
The research in the field of vulnerability prediction focuses on examining the ability of 
several software-related factors (e.g. software metrics) to indicate the existence of vulner
abilities in software components (e.g. packages, classes, etc.), as well as on the construc
tion of vulnerability prediction models (VPMs) based on these factors (Morrison et al. 
2015). VPMs are normally built based on ML techniques that use these factors as inputs, to 
discriminate between vulnerable and clean software components. This information is very 
useful for the construction of more secure software, as knowing the existence of poten
tially vulnerable components will help project managers and developers better plan their 
testing and fortification activities by allocating limited resources to high-risk areas (i.e. 
security hotspots). Hence, contrary to the previous section in which we focused on 
predicting the SRLs of software applications, in this section we focus on identifying the 
existence of actual vulnerabilities in software components, and particularly software 
classes.

The vast majority of the research attempts in the field of vulnerability prediction follow 
the same procedure for investigating the ability of specific software-related factors to 
indicate the existence of vulnerabilities in software components. In brief, this involves 
three broader steps, namely: (i) the construction of a vulnerability dataset, (ii) the con
duction of correlation and discriminant analysis in order to assess the relevance of the 
studied indicators to the existence of vulnerabilities, and (iii) the evaluation of the 
predictive performance of the studied indicators (i.e. their ability to predict the existence 
of vulnerabilities in software components) through the construction of ML models, e.g. 
(Chowdhury and Zulkernine 2011; Shin et al. 2011; Scandariato et al. 2014; Dam et al. 
2018). In order to be in-line with the previous research endeavours we adopt a similar 
approach. A high-level overview of the approach that we adopt for the purposes of the 
class-level analysis that is presented in this section is illustrated in Figure 3.

As can be seen in Figure 3, the overall approach comprises three major steps, which are 
briefly described below:

1. Dataset Construction and Preprocessing. Similarly to the project-level analysis, the first 
step of our study is the construction of a dataset that will be utilised for the conduction of the 
correlation and discriminant analyses, and, in turn, for the construction of the ML models. 
Since the present analysis will focus on the ability of TD indicators to predict the existence of 
actual vulnerabilities in software classes, a highly balanced repository of clean and vulnerable 

Figure 3. High-level overview of the approach followed for the class-level analysis.
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software classes needs to be constructed and analysed using the selected TD analysis tool (i.e. 
SonarQube) (see Section). This step is also responsible for applying appropriate data cleans-
ing techniques (in our case, duplicate removal) in order to bring the data in a form that will be 
usable for further analysis. The resulting dataset will form the basis of our analysis.

2. Statistical Analysis. As already mentioned, an important step in vulnerability prediction is 
to perform statistical analysis, with the purpose to examine whether a statistical relationship 
exists between the studied indicators and the existence of vulnerabilities in software com-
ponents. In order to be in-line with the related literature, two statistical tests are applied. 
More specifically, Correlation Analysis is applied in order to examine whether the studied 
indicators are correlated with the existence of vulnerabilities in a statistically significant 
manner, whereas Discriminant Analysis is applied in order to examine the ability of the studied 
indicators to discriminate between vulnerable and clean software classes. The results of these 
statistical analyses play a critical role for the selection of the final set of indicators that will act 
as inputs of the produced ML models.

3. Predictive Performance and Model Training. The final step of the overall approach is 
responsible for building and evaluating ML models, based on the previously constructed 
dataset. More specifically, the main purpose is to examine the predictability of the selected 
TD indicators, i.e. their ability to predict the existence of actual vulnerabilities in software 
classes.

The results of the two final steps of the overall approach will help us assess the ability of 
the selected TD Indicators to indicate security risks at the level of software classes. 
A positive outcome of this experiment will provide further support to the findings of 
the previous section.

4.2. Dataset construction and preprocessing

The first step of the present analysis is the construction of a highly balanced dataset of 
vulnerable and clean software components. Despite the multitude of research endea-
vours that can be found in the field of vulnerability prediction (Shin and Williams 2008a; 
Chowdhury and Zulkernine 2011; Shin et al. 2011; Scandariato et al. 2014; Siavvas, 
Kehagias, and Tzovaras 2017; Moshtari and Sami 2016; Ferenc et al. 2019; Jimenez 
et al. 2019; Zhang et al. 2015), current literature lacks a balanced and reliable vulner-
ability dataset. In fact, the vast majority of the vulnerability datasets that are used in the 
literature for vulnerability prediction are manually constructed based on reported 
vulnerabilities. In particular, the authors manually search vulnerability databases for 
reported vulnerabilities and subsequently they mine online open-source repositories 
for retrieving the software components (i.e. packages, classes, etc.) that contain these 
vulnerabilities.

Although this approach leads to vulnerability datasets containing real-world software 
components, they are hindered by a set of important shortcomings that affect their 
correctness and their reliability (Siavvas et al. 2018a; Morrison et al. 2015; Jimenez et al. 
2019). First of all, not all of the vulnerabilities that a product contains are always reported 
on online vulnerability databases, and therefore many components that are considered 
clean in these datasets may in fact be vulnerable, affecting in that way the correctness and 
reliability of the produced dataset (Morrison et al. 2015; Shin and Williams 2013). 
Moreover, existing datasets are highly imbalanced, e.g. (Gegick et al. 2008; Scandariato 
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et al. 2014; Yang, Ryu, and Baik 2016). In fact, the number of vulnerable files that 
a software product includes is often too small (approximately 1–5%) (Alhazmi, Malaiya, 
and Ray 2007), leading to highly imbalanced datasets, which influence significantly the 
accuracy of the produced predictors (Morrison et al. 2015; Shin and Williams 2013). Finally, 
the construction of these datasets is a manual process, which is inevitably prone to human 
errors.

Hence, for the needs of the present study, and in order to enhance the reliability of its 
results, we decided to follow a safer approach and use a well-accepted benchmark. In 
particular, a highly balanced dataset of clean and vulnerable components was con
structed based on the OWASP Benchmark.12 OWASP Benchmark is a popular test suite 
that is commonly used for the evaluation of static code analysers regarding their ability to 
detect vulnerabilities. It is a collection of a large number of software components (i.e. 
classes) that contain known vulnerabilities. The reason for selecting this benchmark as the 
basis of our study is twofold. Firstly, the software components provided by the benchmark 
are Java classes, and therefore they are in the desired level of granularity. Secondly, 
contrary to similar test suites (e.g. Juliet Test (Boland and Black 2012)), the selected 
benchmark comprises also software components that do not contain actual vulnerabil
ities (i.e. it contains clean classes). In particular, the OWASP Benchmark v1.2 was used 
which comprises 2740 software components, of which 1415 contain actual vulnerabilities, 
and 1325 contain false positives. The classes containing actual vulnerabilities were 
selected as the vulnerable components, whereas those containing false positives as the 
clean components of the present analysis.

The 2740 software classes of the OWASP Benchmark were statically analysed using 
SonarQube in order to compute the TD Indicators that were described in Section . It 
should be noted that from these indicators the classes indicator was not applicable in 
the case of class-level analysis, as the number of classes is always 1. The resulting 
dataset underwent a pre-processing step, with the main purpose to remove highly 
similar classes. More specifically, classes that received exactly the same values in the 
computed TD indicators were removed from the dataset as they were considered 
identical. After removing duplicates, the dataset consisted of 861 vulnerable and 639 
clean classes. In order to construct a highly balanced dataset, 600 observations were 
randomly selected from each group of vulnerable and clean components. Hence, this 
led to the construction of a highly balanced dataset, comprising 600 vulnerable and 600 
clean Java classes. The resulting dataset does not exhibit the aforementioned short
comings of the datasets that exist in the literature as: (i) it is highly balanced, (ii) the 
vulnerability status of the classes (i.e. class attribute) is guaranteed to be the one stated, 
and (iii) it is curated by experts in the field of Software Security, and widely used as the 
basis for checking the ability of static and dynamic analysis tools to detect actual 
vulnerabilities.

A small fragment of the resulting vulnerability dataset is illustrated in Table 11. The 
purpose of this fragment is to demonstrate the structure of the dataset used for the 
present analysis. The complete dataset is available on the website with the supporting 
material of the present work (Online (Last Accessed 29/08/2020)).

M1:bugs;M2:sqale_index;M3:code_smells;M4:uncovered_lines;M5: 
duplicated_blocks;M6:comment_lines; M7:ncloc;M8:functions;M9:complexity;M10: 
cognitive_complexity;M11:open_issues
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As can be seen by Table 11, the rows of the dataset are the analysed classes, whereas 
the columns are the values of the TD Indicators as computed by SonarQube. It should be 
noted that the last column of Table 11 is the vulnerability state of the class, which denotes 
whether the corresponding class is vulnerable (i.e. 1), or clean (i.e. 0).

4.3. Statistical analysis

An important step of the present experiment is to conduct statistical analysis in order to 
examine whether observable relationships exist between the selected TD Indicators and 
the existence of vulnerabilities in the software classes of the selected benchmark. For this 
purpose, both correlation and discriminant analysis were applied, which are described in 
detail in the rest of this section. The results of these analyses are also important for the 
construction of the ML models presented in Section, as they can be used for selecting the 
inputs of the produced models.

4.3.1. Correlation analysis
In order to determine the ability of the selected TD indicators to indicate security risks in 
software classes, we initially applied correlation analysis, with the purpose to examine the 
relationship between the TD Indicators and the existence of vulnerabilities in software 
classes. A statistically significant relationship would provide confidence for the ability of 
the selected indicators to indicate the existence of vulnerabilities in software classes.

For the purposes of the present analysis, we calculated the correlation between each 
one of the computed TD Indicators and the Class attribute of the dataset, which is the 
Vulnerability State (see Table 11). More specifically, we decided to use the Point-biserial 
correlation coefficient (r), which is commonly used for computing the correlation between 
a continuous and a dichotomous (i.e. binary) variable. For the characterisation of the 
correlation strength, we used the thresholds suggested by Cohen (2013). According to 
Cohen (2013), a correlation less than 0.3 is considered weak, between 0.3 and 0.5 is 

Table 11. A fragment of the vulnerability dataset that was used for the class-level analysis, i.e. for the 
construction of the class-level vulnerability prediction models. The last column of the dataset denotes 
whether the corresponding class is vulnerable (i.e. 1), or clean (i.e. 0). The complete dataset contains 
1200 software classes retrieved from the OWASP Benchmark.

Class Name M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Vulnerability State

BenchmarkTest01734 2 178 11 43 10 8 68 3 8 8 13 1
BenchmarkTest01353 0 116 6 39 8 5 68 3 10 7 6 0
BenchmarkTest01764 1 122 5 35 9 4 61 3 6 5 6 0
BenchmarkTest01543 0 195 9 45 13 8 73 3 11 16 9 0
BenchmarkTest01993 1 150 8 52 8 3 83 3 12 15 9 0
BenchmarkTest00065 0 75 3 43 5 2 69 2 7 11 3 1
BenchmarkTest00085 1 110 9 52 4 8 78 2 11 19 9 1
BenchmarkTest00243 0 126 10 56 5 9 86 3 13 20 10 0
BenchmarkTest00859 1 133 9 64 7 7 91 2 5 9 11 1
BenchmarkTest02697 0 72 8 30 2 5 50 3 4 3 8 0
BenchmarkTest01611 0 147 9 49 9 7 79 3 13 19 9 0
BenchmarkTest01657 2 122 6 24 9 5 46 3 6 3 8 1
BenchmarkTest01815 0 92 7 25 5 7 48 3 4 4 7 0
BenchmarkTest00588 0 40 3 25 2 1 44 2 10 14 3 1
BenchmarkTest02014 0 216 14 54 10 9 84 3 13 20 14 0
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considered moderate, and above 0.5 is considered strong. However, it should be noted 
that we do not expect the correlations to be strong. Even a weak correlation, is normally 
acceptable in the literature for providing evidence for the potential ability of a factor to 
indicate the existence of vulnerabilities (e.g. Shin and Williams (2008a); Shin et al. (2011); 
Chowdhury and Zulkernine (2011); Camilo, Meneely, and Nagappan (2015); Moshtari and 
Sami (2016)).

The computed Point-biserial correlation coefficients (r) between the TD Indicators and 
the vulnerability states are presented in Table 12, along with their p-values, which are 
necessary for judging whether the observed correlations are statistically significant. In the 
present experiment, a correlation is considered to be statistically significant, if its asso
ciated p-value is found to be lower than the value of 0.05. To facilitate readability, the 
statistically significant correlations are marked with an asterisk in Table 12.

From Table 12, we can see that all the selected TD Indicators, with the only exception of 
nloc and uncovered_lines, demonstrate a statistically significant correlation with the 
Vulnerability State of the dataset. Another interesting observation is that almost all of 
the selected TD Indicators demonstrate a weak (according to Cohen (2013)) correlation 
with the existence of vulnerabilities. The only indicator that demonstrated a moderate 
correlation is the metric named bugs, which is also the only one that is positively 
correlated to the existence of vulnerabilities. The positive correlation indicates that the 
higher the number of bugs that a class contains, the higher the likelihood of containing an 
actual vulnerability. It should be noted that as stated in Section, bugs, open_issues, and 
code_smells contain mostly quality-related (and not security-related) issues. SonarQube 
reports the security-related issues as vulnerabilities.

The results of the correlation analysis show that the vast majority of the selected TD 
indicators demonstrate a statistically significant weak to moderate correlation with the 
existence of vulnerabilities in the classes of the selected benchmark repository. This 
highlights the potential ability of the selected TD indicators to indicate the existence of 
vulnerabilities in software classes, and therefore to be used as the basis for vulnerability 
prediction. However, since the observed correlations were not found to be strong, 
discriminant analysis is required in order to reach safer conclusions.

Table 12. The results of the correlation analysis. The asterisk 
denotes that the associated correlation coefficient is statistically 
significant in the 95% confidence interval.

TD Indicator Correlation Coeff p-value

bugs 0.4582* < 2:2� 10� 16

code_smells −0.2396* 0:1887� 10� 4

open_issues −0.2029* 0:0416� 10� 5

duplicated_blocs −0.02254* 0:1530� 10� 10

sqale_index −0.1172* 0:4698� 10� 7

ncloc −0.2241 0.4765
comment_lines −0.2915* 0:4400� 10� 33

uncovered_lines −0.2238 0.06509
functions −0.1044* < 2:2� 10� 16

complexity −0.1169* 2:26� 10� 12

cognitive_complexity −0.1369* 1:4� 10� 22
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4.3.2. Discriminant analysis
In the previous section we observed that most of the studied TD indicators demonstrate 
a statistically significant correlation to the existence of vulnerabilities in software classes. 
In order to reach safer conclusions regarding the relationship between TD indicators and 
software vulnerabilities, we also applied discriminant analysis. The purpose of discrimi-
nant analysis is to assess whether the TD indicators are able to discriminate between 
vulnerable and clean classes. More specifically, the purpose of this analysis is to examine 
whether the values of the TD indicators computed for the clean classes are significantly 
different in a statistical manner from the values that they receive for the vulnerable 
classes. If statistically significant differences are observed, this would suggest that vulner-
able classes tend to receive significantly higher or lower values of TD indicators, and, in 
turn, that the values of these indicators could potentially be used for discriminating 
between vulnerable and clean classes.

As a first step of our analysis, in Table 13 we present the average values of the 
computed TD Indicators both for the clean and for the vulnerable classes of the analysed 
dataset. As can be seen in Table 13, the average values tend to be different in each TD 
Indicator. In all the cases, the indicators seem to receive a higher value at clean classes 
than in vulnerable, with the only exception of the indicator named bugs. This denotes that 
clean classes tend to contain fewer bugs than vulnerable classes in the studied dataset. 
Another interesting observation is that clean classes exhibit higher values in quality- 
related issues (e.g. code_smells), size metrics (e.g. nloc), and complexity metrics (e.g. 
complexity) than their vulnerable counterparts. This can be explained by the fact that in 
order to remove vulnerabilities, additional code is usually required (e.g. additional checks), 
which increases the size and complexity of the class, whereas quality-related issues are 
normally added (e.g. violations of naming conventions, etc.).

In order to reach safer conclusions, hypothesis testing was applied. More specifically, 
Wilcoxon Rank Sum test was performed between the security scores of vulnerable and 
clean software components in order to investigate whether a statistically significant 
difference exists between their values. Wilcoxon Rank Sum test is a non-parametric test, 
which is not sensitive to outliers and does not assume any distribution for the studied 
data. It has been widely used in the related literature for testing the ability of different 
factors to discriminate between vulnerable and clean software artefacts (e.g. Shin and 
Williams (2008b); Munaiah and Meneely (2016); Jimenez et al. (2019)). In particular, the 

Table 13. The results of the discriminant analysis.
TD Indicator Clean Vulnerable Wilcoxon Test (p-value)

bugs 0.3633 0.8167 < 2:2� 10� 16

code_smells 7.44 6.34 1:039� 10� 10

open_issues 7.835 6.81 5:343� 10� 9

duplicated_blocs 7.41 7.26 0.1099
sqale_index 125.71 116.023 0:2089� 10� 3

ncloc 66.18 59.3 1:59� 10� 11

comment_lines 6.965 4.92 < 2:2� 10� 16

uncovered_lines 40.8 35.35 4:026� 10� 12

functions 2.7 2.615 0.01187
complexity 8.43 7.87 0.00151
cognitive_complexity 10.54 9.28 0.0001952
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following null hypothesis (along with its corresponding alternative hypothesis) was for
mulated and tested with confidence level 95% (i.e. a = 0:05):

H0: No difference exists between the selected TD indicator of vulnerable and clean software 
components.

H1: The values of the selected TD Indicator of the clean and vulnerable components are 
statistically different.

The above test was performed for each one of the 11 TD indicators that were 
considered in our analysis.13 The p-values of the individual tests are reported in the last 
column of Table 12. As can be seen by this table, the p-values in all the cases apart from 
the duplicated_blocks indicator were found to be lower than the threshold of 0.05. Hence, 
in all these cases the null hypothesis is rejected, leading to the acceptance of the 
alternative hypothesis. This suggests that a statistically significant difference is observed 
between the values of the TD indicators of clean and vulnerable classes, which indicates 
that these TD indicators can discriminate between vulnerable and clean classes and can 
potentially be used as indicators of vulnerabilities in software classes.

Finally, the results of the discriminant analysis presented in this section provide 
preliminary evidence for the ability of the selected TD indicators to be used as the basis 
for vulnerability prediction. However, a more elaborate analysis is provided in the next 
section.

4.4. Predictive performance and model training

In the previous section, correlation and discriminant analysis were applied with the 
purpose to identify whether statistical relationships are observed between the selected 
indicators and the existence of vulnerabilities in software classes. The results of these 
analyses revealed that TD indicators may also indicate the existence of vulnerabilities in 
software classes, as they were found to be able to discriminate between vulnerable and 
clean classes. In this section, building on top of the findings of Section 4.3, we focus on the 
predictability (i.e. predictive performance) of the selected TD indicators, i.e. their ability to 
predict the existence of actual vulnerabilities in software classes. To this end, several ML 
models are built using the selected TD indicators as inputs, and their performance in 
vulnerability prediction is evaluated based on well-known performance metrics.

For the purposes of the present experiment, the vulnerability dataset presented in 
Section 4.2 was used as the basis for the construction of the ML models. The results of the 
correlation and discriminant analysis were used for the selection of the subset of TD 
indicators that could be considered for the construction of the ML models. More speci
fically, the ncloc and uncovered_lines indicators were excluded from our analysis as they 
did not demonstrate a statistically significant correlation with the existence of vulner
abilities (see Section 4.3.1), whereas the duplicated_blocks indicator was also excluded, as 
it did not demonstrate statistically significant discriminative power (see Section 4.3.2). 
Based on the remaining TD indicators, a set of ML models was constructed, by applying 
the same set of ML algorithms that were used in the project-level analysis (see Section). 
Similarly to the project-level analysis, the predictive performance of the ML models was 
evaluated using the F1 score, based both on the train-test split and on the 10-fold cross- 
validation approaches. The results of the 10-fold cross-validation analysis of the produced 
models are illustrated in Table 14.
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As can be seen in Table 14, Random Forest is the best performing model with an F1 
score of 0.708, followed closely by linear kernel SVM with an F1 score of 0.702. This is in- 
line with the findings of the vast majority of existing research endeavours in the field of 
vulnerability prediction (Chowdhury and Zulkernine 2011; Moshtari, Sami, and Azimi 
2013; Scandariato et al. 2014; Walden, Stuckman, and Scandariato 2014; Tang et al. 
2015; Zhang et al. 2015; Dam et al. 2018), in which Random Forest was also found to be 
the best performing ML model. Other model performances that worth mentioning here 
are Logistic Regression and XGBoost, with an F1 score of 0.698.

The fact that both linear and non-linear models have demonstrated sufficient and 
rather comparable predictive performance can be explained by the fact that obvious 
relationships between the selected TD indicators and the existence of vulnerabilities have 
been observed. More specifically, as already mentioned, all of the selected TD indicators 
that were used as inputs of the produced models demonstrated a statistically significant 
correlation with the existence of vulnerabilities (see Section 4.3.1). In addition to this, 
statistically significant differences in their values were observed between clean and 
vulnerable classes, denoting that they can discriminate between vulnerable and clean 
classes (see Section 4.3.2).

Table 15 shows the confusion matrix of the best performing model, i.e. Random Forest. 
As mentioned in the system-level analysis, cross-validation approach is not suitable for 
producing an overall confusion matrix. For that reason, we used the Train-test split 
approach by randomly splitting the dataset into two sets (75% for training – 25% for 
testing) and then calculated the confusion matrix.

Based on the confusion matrix, there are only 37 misclassified instances for lean class 
that were predicted as Vulnerable, while the remaining 123 instances were correctly 
predicted as Clean. For the Vulnerable class, 96 instances were correctly classified, while 
the remaining 44 instances were misclassified as Clean. Averaged Precision, Recall and F1- 
score for the Train-test split approach are 0.73, 0.73 and 0.73 respectively, indicating that 
the predictive performance of algorithm is quite satisfactory.

The results of the present analysis suggest that the construction of relatively precise 
and accurate class-level vulnerability prediction models based on TD indicators is feasible 

Table 14. Cross-validation averaged scores for all the produced class-level vulnerability 
prediction models.

Classifier Accuracy Precision Recall F1 Score

Logistic Regression 0.702 0.710 0.702 0.698
K-NN 0.582 0.583 0.582 0.579
Random Forest 0.710 0.715 0.710 0.708
Gaussian Naïve Bayes 0.658 0.669 0.658 0.652
XGBoost 0.700 0.705 0.700 0.698
SVM(linear) 0.704 0.710 0.704 0.702

Table 15. Train-test split confusion matrix of class- 
level vulnerability prediction model using the 
Random Forest algorithm.

0: Clean 1: Vulnerable

0: Clean 123 37
1: Vulnerable 44 96
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and that Random Forest is the best performing ML algorithm for this purpose. Therefore, 
this provides us with preliminary evidence for the capacity of TD indicators to indicate the 
existence of actual vulnerabilities in software classes (i.e. at class-level of granularity).

5. Threats to validity

In the present section we discuss the validity threats of the present study and how our 
work attempts to mitigate these threats. Emphasis is given on three broader categories of 
threats to validity, namely (i) External Validity, (ii) Internal Validity, (iii) Construct Validity 
and (iv) Reliability Validity.

5.1. External validity

External Validity refers to the ability to generalise the results of a given study. The results 
of the present study are unavoidably subject to external validity threats, due to the fact 
that the applicability of the selected ML models to predict either the SRL of a software 
project (i.e. project-level analysis) or the existence of actual vulnerabilities in software 
classes (i.e. class-level analysis) was examined on specific samples of 210 software projects 
and 1200 software classes respectively. It is always possible that another set of software 
projects or classes may exhibit different phenomena and characteristics, which may 
influence the produced results. However, as far as the project-level analysis is concerned, 
the selected software projects are quite diverse with respect to their application domain, 
size, etc., which partially mitigates threats to generalisation. Regarding class-level analysis, 
the OWASP Benchmark was utilised, which is a well-known vulnerability benchmark used 
for assessing the accuracy of actual code analysers. Hence, it can be considered 
a representative dataset of vulnerable and clean software components, containing vul
nerabilities that can be found in real-world software applications. In addition, a large part 
of the proposed methodology consists of constructing prediction models that learn from 
TD indicators and therefore can be easily adapted to any software application, as long as 
sufficient and reliable TD-related data are available.

A similar threat stems from the fact that both the dataset used in the project-level 
analysis and the vulnerability dataset used in the class-level analysis were constructed 
based on open-source code written in Java programming language. However, the process 
of building project-level SRL predictors and class-level vulnerability prediction models 
that are described in this paper builds upon the outputs of tools used for computing TD- 
related metrics (i.e. indicators), which can act as indicators of the quality attribute of 
software security. This means that the proposed models can be easily adapted to predict 
security issues of applications that are coded in a different programming language, as 
long as there are tools that support the extraction of software-related metrics that can act 
as TD indicators for the respective language. This also contributes to mitigating threats to 
generalisation. However, since the dataset does not include code retrieved from industrial 
applications, we cannot make any speculation on closed-source applications. Commercial 
systems as well as other object-oriented programming languages can be the subjects of 
further research.

Finally, another external validity threat, closely related to the previous ones, refers to 
feature selection, and specifically to whether the observed impacts of the selected 
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features are experiment specific. Indeed, as in every ML task, the feature selection process 
highly depends on the dataset on which it is applied. However, we believe that this threat 
is sufficiently mitigated, for the reasons described in what follows. First of all, as men-
tioned previously, we selected datasets that are highly representative both for the case of 
the project-level and for the case of the class-level analysis. Secondly, in both experi-
ments, a large number of statistical tests have been applied for determining the impact of 
the selected features on the class attribute, and, in turn, for the selection of the final 
feature sets (e.g. Spearman’s rank correlation, Wilcoxon Rank Sum Test, etc.). Hence, 
feature selection was based on statistical tests and not on heuristics. This provides us 
with confidence that the selected features (i.e. TD indicators) are closely related to the 
class attribute (i.e. security risks) in a statistically significant manner, and therefore the 
observed relationship is not likely to have been caused by chance.

In addition to this, the observed impacts are in-line with the literature. For instance, 
bugs, i.e. the feature which was found to be the predictor with the highest impact in our 
analyses, are widely believed to be related to the existence of security issues (Zheng et al. 
2006; Austin, Holmgreen, and Williams 2013; Holzmann 2017; Felderer et al. 2016), 
whereas the existence of quality issues (e.g. code smells, etc.) in security contributing 
commits (and vice versa) is also highly discussed (Mohammed et al. 2017; Johnson et al. 
2013; Holzmann 2017). Recently, the close relationship between TD and security has 
formally been expressed by several experts in the field (Rindell, Bernsmed, and Jaatun 
2019; Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019), whereas 
software metrics (which are indirect TD indicators), as already discussed in Section 2, have 
been found to have a close relationship with the existence of security issues in software 
(Shin and Williams 2008a, 2008b; Chowdhury and Zulkernine 2010; Moshtari and Sami 
2016; Siavvas, Kehagias, and Tzovaras 2017; Ferenc et al. 2019; Jimenez et al. 2019; Zhang 
et al. 2019). Finally, it should be stated that future replications of the present work on 
different datasets and programming languages, apart from examining the generalisability 
of the present observations, it would also provide additional feedback with respect to 
which of these TD indicators are consistently related to security issues, and which not.

5.2. Internal validity

Concerning the internal validity, i.e. the possibility of having unwanted or unanticipated 
relationships between the parameters that might affect the variable that we are trying to 
predict, it is reasonable to assume that numerous other metrics that affect TD might have 
not been taken into consideration for constructing both our project-level SRL predictors 
(see Section 3) and class-level vulnerability prediction models (see Section 4). However, 
the fact that we constructed our initial set of TD predictors based on software-related 
metrics that have been widely used in the literature as direct or indirect indicators of TD, 
such as OO software metrics, code smells and code issues extracted from static analysis 
tools, limits this thread.

Regarding the final selection of predictors, in the case of project-level prediction, if we 
had limited our feature selection analysis to only correlations between the security risk 
levels (SRLs) and TD indicators, then there would have been a threat to internal validity. 
However, we attempted to mitigate this threat through the complimentary usage of four 
different feature selection methods to further explore the relationships between the 

31



dependent and independent variables. Respectively, in the case of class-level vulnerability 
prediction, we have applied two statistical tests with the purpose to examine whether 
a statistical relationship exists between the studied indicators and the existence of 
vulnerabilities in software components. More specifically, we initially applied correlation 
analysis in order to examine whether statistically significant relationships exist between 
the selected TD indicators and the existence of vulnerabilities in software classes, and, 
subsequently, discriminant analysis was employed in order to examine whether the 
selected TD indicators are able to discriminate between vulnerable and clean classes. 
Based on the results of these statistical tests the final selection of the best features was 
performed, providing more confidence that internal validity threats are avoided.

5.3. Construct validity

Construct validity refers to the meaningfulness of measurements and that the indepen
dent and dependent variables are represented correctly. In this study, the main threats 
related to construct validity are due to possible inaccuracies in the identification of 
software-related metrics acting as TD indicators, as well as inaccuracies in the identifica
tion of security-related issues and vulnerabilities. However, in order to mitigate the risk, 
we decided to use a well-known and widely used tool, namely SonarQube, both for the 
project-level and for the class-level analysis. As already mentioned in Section, SonarQube 
is widely used in the industry for monitoring software quality, whereas it is the most 
frequently used tool for measuring TD Principal (Li, Avgeriou, and Liang 2015; 
Ampatzoglou et al. 2015). In addition to this, it applies a number of security scanners 
for identifying potential vulnerabilities, while it attempts to reduce the number of the 
produced false positives. SonarQube is used in the present study as a proof of concept of 
the proposed methodologies.

The datasets that were used for the purposes of the present study also play an 
important role in the construct validity of the present work. In order to mitigate the 
associated risks, for the case of the project-level analysis, a benchmark repository of 210 
real-world open-source software applications that were retrieved from GitHub was used 
as the basis of the experiment. Regarding the class-level analysis, in order to avoid the 
risks described in Section 4.2 concerning the balance and correctness of the produced 
vulnerability dataset, the well-accepted OWASP Benchmark test suite was utilised, which 
is commonly used for the evaluation of static code analysers regarding their ability to 
detect vulnerabilities. These options are believed to sufficiently mitigate the construct 
validity threat, as the analysis was based on representative and well-accepted code 
repositories. As for the experimented prediction models, we exploited the ML algorithms 
implementation provided by the scikit-learn library, which is widely considered as 
a reliable tool.

5.4. Reliability validity

Finally, reliability validity threats concern the possibility of replicating this study. To 
facilitate such replication studies, we provide an experimental package containing both 
the dataset and the scripts that were used for our analysis and prediction model con
struction. This material can be found online (Online (Last Accessed 29/08/2020)).
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6. Implications to researchers and practitioners

Through our study, we have shown that TD indicators that are commonly used for 
assessing the quality of software products may be sufficient predictors of software 
security, identified both at project- and class-level of a granularity. More specifically, we 
have shown that TD indicators can be sufficient predictors of the SRL of software 
products, whereas they can be also used as the basis for the construction of relatively 
accurate class-level vulnerability prediction models able to identify software classes that 
potentially contain actual vulnerabilities. This work has significant implications for both 
researchers and practitioners, despite the limitations noted in the previous section.

6.1. Implications for researchers

The findings of our present study (both project- and class-level) provide empirical 
evidence for the capacity of TD to be used as an indicator of software security. This 
opens a new area of research in the field of TD, for further investigating the potential 
relationship between TD and Software Security, as well as for finding ways of 
exploiting the concept of TD for assessing the security of software products. More 
specifically, researchers could potentially focus on identifying (i) what kind of secur-
ity implications are imposed by TD, (ii) which TD liabilities are better indicators of 
underlying security problems, and (iii) how the concepts of TD could be extended in 
order to be used for assessing software security. Regarding the latter point, some 
initial attempts for defining the concept of Security Debt have already been made in 
the literature (Rindell, Bernsmed, and Jaatun 2019; Rindell and Holvitie 2019; Izurieta 
et al. 2018; Izurieta and Prouty 2019), denoting that there is a potential shift towards 
extending the concepts of TD into the security realm. It should be noted that the 
literature in the field of software security lacks a well-accepted methodology for 
assessing software security (Ansar and Khan 2018; Sentilles, Papatheocharous, and 
Ciccozzi 2018; Morrison et al. 2018), and TD could be a promising candidate for filling 
this void.

Apart from the field of TD, we also believe that the findings of the present work 
impose some implications in the field of vulnerability prediction. The class-level 
analysis presented in Section 4, and particularly the correlation analysis, discrimi-
nant analysis and predictive performance evaluation, revealed that TD indicators 
(such as code smells, open issues, etc.) can potentially highlight the existence of 
actual vulnerabilities in software classes. Hence, this opens new research directions 
in the field of vulnerability prediction. Firstly, researches could further investigate 
the generalisability of the findings of the present work, by replicating the study 
using different vulnerability datasets and programming languages. In addition, they 
could investigate whether the adoption of more advanced ML techniques (e.g. deep 
learning) could lead to better predictive performance. Finally, another interesting 
topic would be to investigate whether the performance of existing vulnerability 
prediction models that are based on other software factors could be improved by 
enriching these models with TD indicators with observed relationship to the exis-
tence of vulnerabilities.

33



6.2. Implications for practitioners

The production of secure software necessitates the continuous monitoring of the security 
level of the produced software throughout its overall SDLC and the identification of 
security issues early enough in the production cycle. Predicting the security level of the 
software products under development, as well as the potential existence of actual 
vulnerabilities in their components is critical for the production of secure software, as it 
enables developers and project managers to make more informed decisions about the 
overall development. The relevance between TD and Software Security that was empiri
cally observed by the findings of the present work, is very important, as it suggests that 
quality indicators can potentially be used in order to indicate the existence of security 
issues that are hidden in the source code of the system and that require individual care.

As far as the project-level analysis is concerned, the results of our work revealed that 
TD indicators can potentially be used to predict the security level of a software project. 
In other words, the results of our analysis suggest that TD may also indicate question
able security (i.e. the accumulation of quality issues may indicate the accumulation of 
security issues). Hence, project managers and developers, by tracking the TD of their 
software applications under development, are indirectly monitoring the accumulation 
of potential security risks that reside in software. An approach similar to the one 
presented in Section 3, would enable the project manager to verify, based on the 
current TD, what is the security risk level of the application under development 
compared to real-world applications that are available on the market. This information 
could be leveraged for making decisions about the actual development. For instance, if 
the security level of a given project is Low (based on its current TD), the project 
manager could request an immediate manual security review, in order to detect and 
fix potential security issues. On the contrary, if the security risk level is high enough, the 
project manager could postpone a planned security review, and request emphasis to be 
given on the actual development.

As far as the class-level analysis is concerned, we have shown that TD indicators can 
potentially discriminate between vulnerable and clean classes, and predict the existence 
of vulnerabilities in software classes with sufficient level of accuracy. In other words, TD 
indicators could be used to build prediction models able to highlight security hotspots, 
i.e. software classes that are likely to contain vulnerabilities. This information is very useful 
for both the developers and project managers of a software application under develop
ment. In fact, this information could be leveraged for better planning their testing and 
fortification efforts, by allocating limited test resources to high-risk areas (i.e. potentially 
vulnerable classes). For instance, the testing and refactoring activities could start from 
those classes that are more likely to contain vulnerabilities. In addition, more exhaustive 
security testing could be applied to the classes that are marked as vulnerable, in order to 
increase the possibility of identifying and eventually fixing an underlying vulnerability, 
and eventually leading to more secure software.

Finally, another benefit that the proposed prediction approaches (both project- and 
class-level) can offer to practitioners, is that they can be applied from the early stages of 
software development, and, thus, they can enable the early identification and mitigation 
of underlying security issues. This can be explained by the fact that they are based on TD 
indicators, which are computed through static analysis, a software testing mechanism 
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that (contrary to dynamic analysis) does not require code execution, enabling in that way 
its early application (Chess and McGraw 2004; Felderer et al. 2016; Mohammed et al. 2017; 
Do et al. 2017; Nunes et al. 2019). Consequently, the fact that an executable version of the 
source code is not necessary for the computation of the TD indicators, allows the 
produced prediction models to be applied very early in the overall development process, 
even from the first commit. Hence, the application of such models in a frequent manner is 
expected to help developers detect security risks (e.g. vulnerabilities) in a timely manner 
and act promptly, ideally prior to the release of the software products, leading to software 
releases that are bundled with much fewer security issues.

7. Conclusion and future work

In the present paper, we investigate the ability of common TD indicators (e.g. bugs, code 
smells, etc.) to indicate (i.e. predict) security risks in software products. Emphasis was given 
both on project-level and on class-level of granularity. For the case of project-level analysis, 
we examined the ability of TD indicators to predict the security risk level of software 
projects. For this purpose, a relatively large code repository was constructed, comprising 
210 real-world open-source Java applications that were retrieved from GitHub. These 
applications were then analysed using a popular static analysis platform, i.e. SonarQube, 
in order to calculate a broad set of TD indicators for each one of the applications of the code 
repository, as well as their security risk, which was quantified using the Static Analysis 
Vulnerability Density (SAVD) metric. Subsequently, the SAVD was discretised into Security 
Risk Levels (SRLs), based on a set of thresholds, which were computed based on real-world 
data through benchmarking techniques. Several ML models were built having as input the 
TD indicators and as output the SRLs, in order to evaluate the ability of TD indicators to 
predict software security risk. Both the cases of binary and 3-class classification were 
considered, in order to cover different enterprise needs.

In the case of class-level analysis, we examined the ability of TD indicators to predict the 
existence of actual vulnerabilities in software classes. Initially, we constructed a highly 
balanced dataset of 1200 vulnerable and clean Java classes retrieved from the OWASP 
Benchmark, and we analysed these classes with SonarQube in order to compute the studied 
TD indicators. Subsequently, correlation analysis was employed in order to investigate 
whether significant relationships exist between the TD indicators and the existence of 
vulnerabilities, as well as discriminant analysis with the purpose to investigate the ability 
of the TD indicators to discriminate between vulnerable and clean classes. Finally, several ML 
models were built, in order to evaluate the capacity of the TD indicators to predict the 
existence of vulnerabilities in software classes.

Our study led to some interesting observations. In particular, the results of the project- 
level analysis highlighted the capacity of TD indicators to predict the SRL of software 
products, whereas Logistic Regression was found to be the best model, demonstrating 
high predictive performance with an average F1 score greater than 80%. As far as the class- 
level analysis is concerned, the majority of the selected indicators demonstrated 
a statistically significant correlation with the existence of vulnerabilities, as well as sufficient 
power in discriminating between vulnerable and clean software classes. In addition, the 
produced ML models demonstrated sufficient predictive performance in predicting the 
existence of vulnerabilities in software classes, with the Random Forest to be the best 
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performing model, showing an average F1 score of 70.8%. This suggests that TD indicators 
could potentially be used as the basis for the construction of relatively accurate class-level 
vulnerability prediction models.

The results of the present study suggest that TD indicators may be sufficient predictors of 
software security risk both at project-level and at class-level of granularity. Hence, TD may be 
a sufficient indicator of software security, confirming the findings of our previous empirical 
study (Siavvas et al. 2019), and providing further support to the recently expressed belief 
that TD can potentially be used to indirectly measure software security (Rindell, Bernsmed, 
and Jaatun 2019; Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019).

We believe that the findings of the present study, along with the proposed approaches 
for TD-based project-level and class-level security risk prediction, are of high importance 
for software development enterprises. As already mentioned, software development 
enterprises are seeking for mechanisms able to assist them in identifying and removing 
potential vulnerabilities early enough in the software development lifecycle, in order to 
prevent the financial loses and reputation damages that the exploitation of these vulner
abilities may cause to them and to the enterprises that are actually using their software. 
The present study revealed the relationship between TD and software security, and the 
ability of TD indicators to also indicate security risks in software, both at project- and at 
class-level of granularity. Hence, this information could be leveraged by software devel
opment enterprises, for making more informed decisions during the actual software 
development lifecycle, ultimately leading to more secure software.

The project-level analysis suggests that developers and project managers could use TD 
indicators to get an indication of the overall security risk level of the software product 
under development. This security risk level, which actually denotes how secure the 
product is compared to other real-world software products that are available on the 
market, could be leveraged by project managers to decide promptly whether additional 
security testing and fortification activities should take place. On the other hand, the class- 
level analysis suggests that TD indicators could be used to detect security hotspots in 
a software product, i.e. classes that are likely to contain actual vulnerabilities. This 
information would allow developers and project managers better plan their testing and 
fortification activities, by allocating limited test resources (or applying more exhaustive 
tests) to high-risk areas, hopefully leading to the detection and elimination of actual 
vulnerabilities. Hence, TD indicators could facilitate the elimination of vulnerabilities and 
therefore minimise the associated costs that their exploitation may cause.

Accumulated TD is often neglected by project managers, as it is a measure of maintain
ability, which is often treated as an afterthought in the overall development due to the fact 
that maintainability issues do not have a visible and immediate impact on the functionality 
of the produced software. However, throughout the present work we have shown that TD is 
closely related to software security as it may potentially indicate the existence of security 
issues (i.e. vulnerabilities) in software. Hence, neglecting TD could potentially lead to the 
introduction of vulnerabilities and, in turn, to security breaches with devastating conse
quences for both the software development enterprise and the enterprise that actually uses 
the compromised software. Hence, we believe that the results of the present study provide 
additive value to the importance of TD, since linking it with the notion of software security 
could motivate project managers to change their mindset and hopefully, treat it as an 
equally important attribute during the development process.

36 M. SIAVVAS ET AL.



At this point, a statement on the novelty of the present work and specifically on how it 
manages to advance the state of the art in relevant fields is considered valuable. As far as the 
overall field of Software Security Assessment is concerned, recently, several researchers have 
theoretically expressed the relationship between TD and software security and proposed 
the adoption of TD as the basis for security assessment (Rindell, Bernsmed, and Jaatun 2019; 
Rindell and Holvitie 2019; Izurieta et al. 2018; Izurieta and Prouty 2019), in an attempt to fill 
the gap in the field caused by the lack of a well-accepted security measure (Morrison et al. 
2018; Ansar and Khan 2018). More specifically, guidelines on how the concept of TD can be 
extended to support software security have been provided (Rindell, Bernsmed, and Jaatun 
2019; Rindell and Holvitie 2019), whereas ways for prioritising security bugs as technical 
debt items (i.e. quality issues) have already been proposed (Izurieta et al. 2018; Izurieta and 
Prouty 2019). The present paper extends and complements these research endeavours 
(which approached the relationship of TD and software security from a theoretical perspec-
tive) by providing empirical evidence for the close relationship between these two factors, 
both at project- and class-level of granularity. The present work also extends them by 
showcasing the potential feasibility of using the TD Indicators as security risk indicators in 
practice (and not just as theoretical constructs), specifically through the adoption of ML, 
opening in that way directions for future experimentation.

Regarding the vulnerability prediction field, as already mentioned, this is the first study 
that focuses on the ability of TD indicators (like code smells, bugs, etc.) to indicate the 
existence of vulnerabilities and security risks in general. Recent attempts have shown that 
other factors, such as text mining (Dam et al. 2018) and software metrics (Yang, Ryu, and 
Baik 2016; Zhang et al. 2019), as well as their combination (Zhang et al. 2015; Sultana 2017; 
Jimenez et al. 2019), can lead to promising vulnerability prediction models. Hence, the 
results of the present study complement previous works, and open new directions for future 
experimentation, towards investigating whether the incorporation of TD indicators could 
potentially further improve the accuracy of existing models.

Several directions for future work can be identified. First of all, the present study was 
based on open-source software applications written in Java programming language. In 
order to investigate the generalisability of our results, we are planning to replicate the 
present work by considering software applications written in programming languages 
other than Java, whereas the case of commercial software applications will be also 
considered. In addition, in the present study, the SAVD metric was used as a measure of 
software security risk and the SonarQube static analysis platform was used for its quanti-
fication. In the future, we are planning to redo the present analysis using other open- 
source or commercial static code analysers for quantifying SAVD, while we are also 
planning to consider other software security risk indicators like the Attack Surface 
(Howard 2007; Manadhata and Wing 2011). Finally, if the results of the present study 
are generalised, we are planning to implement our models in the form of individual tools 
(or as part of common IDEs or software quality platforms), which will facilitate decision 
making during the overall SDLC, by helping developers and project managers identify and 
mitigate security risks early enough in the development process.

Notes

1. https://nvd.nist.gov/vuln/detail/CVE-2017-5638
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2. https://investor.equifax.com/news-and-events/news/2019/05-10-2019-113504540
3. https://github.com
4. https://owasp.org/www-project-benchmark/
5. https://www.sonarqube.org/
6. https://sonarcloud.io/explore/projects
7. http://findbugs.sourceforge.net/
8. https://pmd.github.io/
9. https://docs.sonarqube.org/latest/user-guide/security-rules/

10. https://scikit-learn.org/stable/index.html
11. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV. 

html
12. https://owasp.org/www-project-benchmark/
13. As stated in Section 4.2, the TD indicator named classes was not considered in the present 

analysis, since it was not applicable in the context of the class-level analysis.
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