IPT Solar cell characterizer

April 22, 2019

Benjamin L. Larsen Danish Team

International physicists' tournament

Danmarks Tekniske Universitet

Agenda

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Results

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Problem 14: Solar cell characterise

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Results

Propose and implement a method to determine the irradiance and colour temperature of a light source by using solar cell materials? How accurately can they be measured? What are the limitations of your method? What are the relevant parameters?

Colour temperature and black body radiation

IPT Solar cell characterizer B. Larsen

roblen

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

- Colour temperature is defined as the temperature of a black body that emits light of the same colour as the light source:
- Black body radiation: non-reflective, depends only on temperature.
- ► Planck's law for the spectrum:

$$\rho(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp\frac{h\nu}{k_bT} - 1}$$

Planck's law for solar cells

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setu

Solar cell characterisation

Results

▶ Stefan-Boltzmann

$$\int_0^\infty \rho(\nu, T) d\nu = \sigma T^4 \tag{2}$$

- ▶ Irradiance of black body: $I = \frac{P}{A} = \sigma T^4$
- ► Solar cell can only utilise photons with energy above bandgap and only gain this energy

$$I(\nu_g, T) = \eta(T) \frac{2h\nu_g}{c^2} \int_{\nu_g}^{\infty} \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu$$
 (3)

• $\nu_g = \frac{h}{E_{bg}} \approx 2.7 \cdot 10^{14}$ Hz bandgap 1.11 eV for crystalline silicon (real solar cells might have slightly higher bandgap)

Planck's law for solar cells (con.)

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

$$\eta(T) = 1$$

$$\frac{2h\nu_g}{c^2} \int_0^\infty \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu - \frac{2h\nu_g}{c^2} \int_0^{\nu_g} \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu \quad (4)$$

$$= \frac{4\zeta(3)\nu_g k_b^3}{c^2 h^2} T^3 - \frac{2h\nu_g}{c^2} \int_0^{\nu_g} \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu$$
 (5)

Efficiency

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Results

$$\eta(T) = \frac{\frac{2h\nu_g}{c^2} \int_{\nu_g}^{\infty} \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu}{\sigma T^4}$$
 (6)

We can then find the total irradiance from the solar cell

$$I(\nu_g, T) = \frac{\left(\frac{2h\nu_g}{c^2} \int_{\nu_g}^{\infty} \frac{\nu^2}{\exp\frac{h\nu}{k_b T} - 1} d\nu\right)^2}{\sigma T^4}$$
(7)

LED

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell

Results

► Light source and spectrum compared to Planck's with same colour temperature

Darkroom light

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Iridescent filament lamp

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Experimental setup

IPT Solar cell characterizer

B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Solar cell

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisatio

- ► Single crystalline
- ► Area of solar cell: $A_{sol} = 11.0 \text{ mm}^2$, distance d = 105 mm, Area filament $A_{fil} = 46.4 \text{ mm}^2$

Solar cell characteristic

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body

radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

- ▶ Varying resistance
- ► Finding optimal peak power point

Max Power

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Results

► max power at 6.46 mW, irradiance $\frac{PA_{sphere}}{A_{sol}A_{fij}} = 1.67 \cdot 10^5$ W/m²

Results

IPT Solar cell characterizer B. Larsen

Problem

Colour temperature and black body radiation

Planck's law for solar cells

Light sources

Experimental setup

Solar cell characterisation

Results

► Solving:

$$1.67 \cdot 10^{5} \text{W/m}^{2} = \frac{\left(\frac{2h\nu_{g}}{c^{2}} \int_{\nu_{g}}^{\infty} \frac{\nu^{2}}{\exp \frac{h\nu}{k_{b}T} - 1} d\nu\right)^{2}}{\sigma T^{4}}$$
(8)

- ► Gives T = 3837 K
- ► Spectrum measurement gave T = 4100 K
- Most likely due to the iridescent lamp not being black body radiation.
- ▶ Efficiency $\eta(3837K) = 0.117$

Improvements

IPT Solar cell characterizer

B. Larsen

Problem

Colour temperature and black body

Planck's law for solar

Light sources

Experimental setup

Solar cell characterisation

- Assume uniform light emission
- Actual black body
- Several different light sources
- Colour filters
- Band gap dependency

Summary

IPT Solar cell characterizer

B. Larsen

Problem

Colour temperature and black body

Planck's law for solar

Light sources

Experimental setup

Solar cell characterisation

- ▶ No lamps are real black-bodies
- Band gap and efficiency of solar cell is important parameters
- Effective working point
- Colour temperature a lot lower than the spectrum indicates (3837 K and 4100 K)

Thanks for listening! / Any questions?

