

13 - STRING SHOOTER

FRANCE – UNIVERSITÉ DE LYON REPORTER – PASCAL WANG

THE STRING SHOOTER

 A loop of string is set in motion by two rotating wheels

THE STRING SHOOTER

- A loop of string is set in motion by two rotating wheels
- Well-defined stationary shape

EXPLAIN THE OVERALL SHAPE OF THE LOOP AND INVESTIGATE THE PROPAGATION OF WAVES ON THE STRING.

PART I: NAIVE ANALYSIS OF THE SHAPE

Part I: Naive analysis

- Control parameters (elasticity neglected for our strings)
 - String velocity $oldsymbol{v}$
 - String length L

• Linear mass μ

(weight: $\mu g L$)

Dimensionless number comparing inertia and gravity

$$Fr^2 = \frac{E_{kin}}{E_{pot}} = \frac{\mu \cdot v^2}{\mu \cdot g \cdot L} = \frac{v^2}{g \cdot L}$$

This inertia-gravity competition idea is too naive!

Part I: Definition

Definition of the angle at the furthest point

 Scalar quantity that allows quantitative comparison between shapes

Part I: Missing ingredient

$$Fr^2 = \frac{v^2}{g \cdot L}$$

- Strong dependency on the velocity $oldsymbol{v}$
- Clear onset of a phenomenon controlled by v and not Fr^2

Missing physical ingredient

Part I: Total disagreement

$$\mu v^{2} \frac{d\phi}{ds} \vec{n} = \underbrace{\frac{d}{ds} (T(s)\vec{t}) + \mu \vec{g}}_{acceleration} + \underbrace{\mu \vec{g}}_{fraction}$$
[1]

Momentum budget on a moving piece of string

Equation: catenary with effective tension $T_{eff} = T - \mu v^2$

Solution: The shape depends only on geometrical conditions, not v, μ .

→ total disagreement with experiment, a physical ingredient is missing!

PART II: DRAG IS THE SOLUTION

Part II: Drag matters

Sketch of the apparatus in vacuum chamber

Part II: Drag matters

P = 1.0 bar

P = 0.85 bar

P = 0.7 bar

Part II: Drag creates torque

- NO LIFT on the string
- $\oint_C \overrightarrow{f_{drag}}(s)ds \simeq \overrightarrow{0}$

Drag induces torque Γ_{drag} and elevates the string!

Part II: Prediction of the shape

Recall the equation from the preliminary analysis:

$$\mu v^2 \frac{d\phi}{ds} \vec{n} = \underbrace{\frac{d}{ds} (T(s)\vec{t})}_{acceleration} + \mu \vec{g}$$

$$\underbrace{mv^2 \frac{d\phi}{ds} \vec{n}}_{acceleration} = \underbrace{\frac{d}{ds} (T(s)\vec{t})}_{tension} + \mu \vec{g}$$

The resulting equation on ϕ :

$$\frac{d\phi}{ds} = const \cdot \frac{\sin^2 \phi}{\cos^2 \phi}$$
 (catenary equation)

Part II: The shape equation

Adding constant drag (per unit length) to the equation:

$$\mu v^2 \frac{d\phi}{ds} \vec{n} = \underbrace{\frac{d}{ds} (T(s)\vec{t})}_{acceleration} + \mu \vec{g} - \underbrace{f_{drag}\vec{t}}_{gravity}$$

The resulting equation on ϕ :

$$\frac{d\phi}{ds} = const \cdot \frac{\sin^2 \phi}{\tan^D \frac{\phi}{2}}$$

$$D = \frac{f_{drag}}{\mu g} = \frac{drag \ per \ unit \ length}{weight \ per \ unit \ length}$$

Dimensionless number

[1] A. Dowling, J. Fluid Mech.187, 507 (1988).

[2] P. Williams, D. Sgarioto, and P. M. Trivailo, Aerospace Sci. Technol.12, 347 (2008).

of the problem!

Part II: Shape prediction

Part II: Shape prediction

The value of *D* predicts the shape very accurately

Part II: Shape prediction

Experimental shapes (fixed μ)

Part II: Drag measurement

When the string rises, $R_e \sim 10^3$ $rac{1}{4}$ [1] $f_{drag} = \frac{1}{2} C_D (2\pi R) \rho \cdot v^2$

[1] Slender structures and axial flow, M. P. Paidoussis

Recap

Stationary shape:

- ✓ drag creates torque and elevates the string
- parameter of the problem $D = \frac{f_{drag}}{\mu g}$
- equation and prediction of stationary shape

PART 3. WAVE PROPAGATION

Part III: Striking observations

Wave propagation in a moving string

3 observations:

- Tapping at the top creates two waves
- Waves slow down and die at the turning point
- Top wave propagates downstream, bottom wave goes upstream

Part III: Slow and fast waves

$$v_{app} = -\sqrt{\frac{T}{\mu}}$$
 [1]

$$fast wave$$
 $v_{app} = v_{string} + \sqrt{r}$

 v_{string}

 $v_{string} \neq 0$

Part III: Why two waves?

Observation 1: Tapping at the top creates a wave at the bottom

The bottom wave is born from a reflection of the fast wave (created at the top) between the wheels!

Slow motion (0.33x) video of the propagation of waves

Part III: Waves die at the tip

Observation 2: Slow waves slow down and die as they reach the tip

Part III: Waves die at the tip

Observation 2: Slow waves slow down as they reach the tip

(1) Momentum equation on \vec{n}

$$T(s) = \mu v_{string}^2 + \frac{\mu g \sin(\phi)}{\frac{d\phi}{ds}}$$

(2) Velocity addition

$$v_{app} = v_{string} - \sqrt{\frac{T}{\mu}}$$

When the string is vertical:
$$\phi=0$$
 $\stackrel{(1)}{\Rightarrow}$ $T=\mu v_{string}^2$ $\stackrel{(2)}{\Rightarrow}$ $v_{app}=0$

The slow waves die when the string is vertical!

Part III: Limit cases

Hanging rope D = 0:

Friction dominated $D \gg 1$:

Part III: Waves die at the tip

$$\begin{cases} T(s) - \mu v^2 \propto (s - s_{tip}), \ D \gg 1 \\ v_{app} = v - \sqrt{\frac{T(s)}{\mu}} \\ v_{app} = \dot{s} \propto (s - s_{tip}) \\ \text{for small } T \\ & \downarrow \\ s(t) \text{ and } v_{app}(t) \text{ relax} \\ \text{exponentially} \end{cases}$$

Part III: Upstream, downstream

Observation 3: Slow waves at the top are downstream, slow waves at the bottom are upstream

(1) Momentum equation on \vec{n}

$$T(s) = \mu v_{string}^2 + \frac{\mu g \sin(\phi)}{\frac{d\phi}{ds}}$$

(2) Velocity addition

$$v_{app} = v_{string} - \sqrt{\frac{T}{\mu}}$$

$$0 < \phi < \frac{\pi}{2} \quad \stackrel{\text{(1)}}{\Rightarrow} \quad T(s) < \mu v_{string}^2 \quad \stackrel{\text{(2)}}{\Rightarrow}$$

$$\stackrel{(1)}{\Rightarrow}$$

$$T(s) < \mu v_{stri}^2$$

$$v_{app} > 0$$

Waves at the top are downstream

At the bottom:
$$-\frac{\pi}{2}$$

$$\frac{\tau}{2} < \phi < 0$$

$$-\frac{\pi}{2} < \phi < 0 \qquad \stackrel{\text{(1)}}{\Rightarrow} \qquad T(s) > \mu v_{string}^2$$

$$\stackrel{(2)}{\Rightarrow}$$

$$v_{app} < 0$$

Waves at the bottom are upstream

Solution summary

Stationary shape:

- ✓ drag creates torque and elevates the string
- parameter of the problem $D = \frac{f_{drag}}{\mu g}$
- μg equation and prediction of stationary shape

Wave propagation:

- ✓ tapping at the top creates a second wave born from reflection
- ✓ upstream (bottom) and downstream (top) waves
- ✓ slow waves slow down exponentially as they die out at tip

Linear mass matters

Linear mass μ matters!

Governing parameter has to include μ .

Drag measurement

When the string rises, $R_e \sim 10^3$

$$f_{drag} = \frac{1}{2} \dot{C}_D(2\pi R) \rho \cdot \mathbf{v^2}$$

Drag coefficient measurement

$$C_D = 0.011 \pm 0.001$$

Air viscosity

Viscosity as a function of pressure [1] (1 Torr = 133.322 Pa)

[1] Viscosité de l'air, Matthieu Schaller and Xavier Buffat

Stationary shape

Momentum budget on a moving piece of string

$$\mu v^{2} \frac{d\phi}{ds} \vec{n} = \underbrace{\frac{d}{ds} (T(s)\vec{t}) + \mu \vec{g}}_{acceleration} + \underbrace{\mu \vec{g}}_{gravity}$$

$$\vec{O} = \frac{d}{ds}(T - \mu v^2)\vec{t} + \mu \vec{g}$$

Solution : catenary with effective tension $T_{eff} = T - \mu v^2$

The shape depends only on geometrical conditions, not v, μ .

total disagreement with experience, a physical ingredient is missing!

EXPONENTIAL DECREASE OF THE WAVE

$$\frac{S_{wf} - S_{tip}}{S_{wheel} - S_0} = e^{-t/\tau}$$

$$\tau = \frac{2\mu v}{f_{drag}}$$

$$\tau = 1.03 \, s$$

Part III: Limit cases

Gravity dominated $D \ll 1$:

Friction dominated $D \gg 1$:

ANNEX

Reynolds number estimation

$$Re = \frac{v_{string} \cdot d_{string}}{\nu_{air}} \sim \frac{10 \cdot 10^{-3}}{10^{-5}} \sim 10^3$$

ANNEX

Tilted at 35° angle

Wave propagation

String at rest

$$v_{app} = \pm c_{wave}$$

String in motion

$$v_{app} = v_{string} \pm c_{wave}$$
 Velocity addition