13 - STRING SHOOTER

FRANCE - UNIVERSITÉ DE LYON REPORTER - PASCAL WANG

THE STRING SHOOTER

- A loop of string is set in motion by two rotating wheels

THE STRING SHOOTER

- A loop of string is set in motion by two rotating wheels
- Well-defined stationary shape

EXPLAIN THE

OVERALL SHAPE OF THE LOOP AND INVESTIGATE THE PROPAGATION OF WAVES ON THE STRING.

PART I: NAIVE ANALYSIS OF THE SHAPE

Part I: Naive analysis

- Control parameters (elasticity neglected for our strings)
- String velocity \boldsymbol{v}
- String length L

- Linear mass $\boldsymbol{\mu}$
(weight: $\boldsymbol{\mu} \boldsymbol{g} \boldsymbol{L}$)

Dimensionless number comparing inertia and gravity

$$
F r^{2}=\frac{E_{k i n}}{E_{\text {pot }}}=\frac{\mu \cdot v^{2}}{\mu \cdot g \cdot L}=\frac{v^{2}}{g \cdot L}
$$

This inertia-gravity competition idea is too naive!

Part I: Definition

- Scalar quantity that allows quantitative comparison between shapes

Definition of the angle at the furthest point

Part I: Missing ingredient

String of linear density $0.40 \mathrm{~g} / \mathrm{m}$

$$
F r^{2}=\frac{v^{2}}{g \cdot L}
$$

- Strong dependency on the velocity \boldsymbol{v}
- Clear onset of a phenomenon controlled by v and not $F r^{2}$

Missing physical ingredient

Part I: Total disagreement

$$
\underbrace{\mu v^{2} \frac{d \phi}{d s} \vec{n}}_{\text {acceleration }}=\underbrace{\frac{d}{d s}(T(s) \vec{t})}_{\text {tension }}+\underbrace{\mu \vec{g}^{[1]}}_{\text {gravity }}
$$

Momentum budget on a moving piece of string
Equation: catenary with effective tension $T_{e f f}=T-\mu v^{2}$
Solution: The shape depends only on geometrical conditions, not v, μ.
\Rightarrow total disagreement with experiment, a physical ingredient is missing!

PART II: DRAG IS THE SOLUTION

Part II: Drag matters

Sketch of the apparatus in vacuum chamber

Part II: Drag matters

$P=1.0 \mathrm{bar}$

$\mathrm{P}=0.85 \mathrm{bar}$

$\mathrm{P}=0.7 \mathrm{bar}$

Part II: Drag creates torque

- NO LIFT on the string
- $\oint_{C} \overrightarrow{f_{\text {drag }}}(s) d s \simeq \overrightarrow{0}$

Drag induces torque $\Gamma_{d r a g}$ and elevates the string!

Part II: Prediction of the shape

Recall the equation from the preliminary analysis:

The resulting equation on ϕ :

$$
\frac{d \phi}{d s}=\text { const } \cdot \frac{\sin ^{2} \phi}{\quad \text { (catenary equation) }}
$$

Part II: The shape equation

Adding constant drag (per unit length) to the equation:

$$
\underbrace{\mu v^{2} \frac{d \phi}{d s} \vec{n}}_{\text {acceleration }}=\underbrace{\frac{d}{d s}(T(s) \vec{t})}_{\text {tension }}+\underbrace{\mu \vec{g}}_{\text {gravity }}-\underbrace{f_{d r a g} \vec{t}}_{\text {drag }}
$$

The resulting equation on ϕ :

$$
\frac{d \phi}{d s}=\text { const } \cdot \frac{\sin ^{2} \phi}{\tan ^{D} \frac{\phi}{2}}
$$

$$
D=\frac{f_{d r a g}}{\mu g}=\frac{\text { drag per unit length }}{\text { weight per unit length }}
$$

Dimensionless number
[1] A. Dowling, J. Fluid Mech.187, 507 (1988).
[2] P. Williams, D. Sgarioto, and P. M. Trivailo, Aerospace Sci. Technol.12, 347 (2008).

Part II: Shape prediction

Part II: Shape prediction

The value of D predicts the shape very accurately

Part II: Shape prediction

Experimental shapes (fixed μ)

Part II: Drag measurement

When the string rises, $R_{e} \sim 10^{3}$

$$
f_{d r a g}=\frac{1}{2} C_{D}(2 \pi R) \rho \cdot v^{2}
$$

Recap

- Stationary shape:
\checkmark drag creates torque and elevates the string
\checkmark parameter of the problem $\quad D=\frac{f_{d r a g}}{\mu g}$
$\sqrt{ }$ equation and prediction of stationary shape

PART 3. WAVE PROPAGATION

Part III: Striking observations

Wave propagation in a moving string

3 observations:

1) Tapping at the top creates two waves
2) Waves slow down and die at the turning point
3) Top wave propagates downstream, bottom wave goes upstream

Part III: Slow and fast waves

$$
v_{a p p}=-\sqrt{\frac{T}{\mu}}^{[1]}
$$

$$
v_{a p p}=+\sqrt{\frac{T}{\mu}}
$$

Part III: Why two waves?

Observation 1: Tapping at the top creates a wave at the bottom

The bottom wave is born from a reflection of the fast wave (created at the top) between the wheels!

Part III: Waves die at the tip

Observation 2: Slow waves slow down and die as they reach the tip

Part III: Waves die at the tip

Observation 2: Slow waves slow down as they reach the tip
(1) Momentum equation on \vec{n}

$$
T(s)=\mu v_{\text {string }}^{2}+\frac{\mu g \sin (\phi)}{\frac{d \phi}{d s}}
$$

(2) Velocity addition

$$
v_{a p p}=v_{\text {string }}-\sqrt{\frac{T}{\mu}}
$$

When the string is vertical: $\phi=0 \quad \stackrel{(1)}{\Rightarrow} T=\mu v_{\text {string }}^{2} \quad \stackrel{(2)}{\Rightarrow} \quad v_{a p p}=0$

Part III: Limit cases

Hanging rope $D=0$:

Friction dominated $D \gg 1$:

27

Part III: Waves die at the tip

$$
\begin{gathered}
\left\{\begin{array}{c}
T(s)-\mu v^{2} \propto\left(s-s_{t i p}\right), D \gg 1 \\
v_{\text {app }}=v-\sqrt{\frac{T(s)}{\mu}} \\
\downarrow \\
v_{\text {app }}=\dot{s} \propto\left(s-s_{\text {tip }}\right) \\
\text { for small } T \\
\downarrow
\end{array}\right. \\
\begin{array}{c}
s(t) \text { and } v_{\text {app }}(t) \text { relax } \\
\text { exponentially }
\end{array} \\
\hline
\end{gathered}
$$

Part III: Upstream, downstream

Observation 3: Slow waves at the top are downstream, slow waves at the bottom are upstream
(1) Momentum equation on \vec{n}

$$
T(s)=\mu v_{s t r i n g}^{2}+\frac{\mu g \sin (\phi)}{\frac{d \phi}{d s}}
$$

$$
\text { At the top: } \quad 0<\phi<\frac{\pi}{2} \quad \stackrel{(1)}{\Rightarrow} \quad T(s)<\mu v_{\text {string }}^{2} \quad \stackrel{(2)}{\Rightarrow} \quad v_{\text {app }}>0
$$

Waves at the top are downstream

$$
\text { At the bottom: } \quad-\frac{\pi}{2}<\phi<0 \quad \stackrel{(1)}{\Rightarrow} \quad T(s)>\mu v_{\text {string }}^{2} \quad \stackrel{(2)}{\Rightarrow}
$$

Solution summary

- Stationary shape:
\checkmark drag creates torque and elevates the string
\checkmark parameter of the problem $D=\frac{f_{d r a g}}{\mu g}$ equation and prediction of stationary shape

- Wave propagation:
$\sqrt{\text { tapping }}$ at the top creates a second wave born from reflection
\checkmark upstream (bottom) and downstream (top) waves
$\sqrt{ }$ slow waves slow down exponentially as they die out at tip

Linear mass matters

Linear mass $\boldsymbol{\mu}$ matters!

Governing parameter has to include μ.

Drag measurement

When the string rises, $R_{e} \sim 10^{3}$

$$
f_{\text {drag }}=\frac{1}{2} C_{D}(2 \pi R) \rho \cdot v^{2}
$$

Drag coefficient measurement

$$
C_{D}=0.011 \pm 0.001
$$

Air viscosity

Viscosity as a function of pressure [1]
(1 Torr $=133.322 \mathrm{~Pa})$
[1] Viscosité de l'air, Matthieu Schaller and Xavier Buffat

Stationary shape

Momentum budget on a moving piece of string
Solution : catenary with effective tension $T_{e f f}=T-\mu v^{2}$
The shape depends only on geometrical conditions, not v, μ.
\Rightarrow total disagreement with experience, a physical ingredient is missing !

EXPONENTIAL DECREASE OF THE WAVE

$$
\frac{s_{w f}-s_{t i p}}{s_{w h e e l}-s_{O}}=e^{-t / \tau}
$$

$$
\tau=\frac{2 \mu v}{f_{d r a g}}
$$

$$
\tau=1.03 \mathrm{~s}
$$

Part III: Limit cases

Gravity dominated $D \ll 1$:

Friction dominated $D \gg 1$:

$$
T(s)-\mu v^{2} \propto\left(s-s_{t i p}\right)
$$

36

ANNEX

- Reynolds number estimation

$$
R e=\frac{v_{\text {string }} \cdot d_{\text {string }}}{\nu_{\text {air }}} \sim \frac{10 \cdot 10^{-3}}{10^{-5}} \sim 10^{3}
$$

ANNEX

Wave propagation

String at rest

String in motion

