Escaping helicopters

Certain species of trees produce a type of dry fruit known as a samara. It has a winged structure that allows the seeds to be carried by the wind over large distances. How does the terminal speed of a samara depend on the relevant parameters? Is it more efficient than a parachute?

Description of the fall:

When the seed is droped it falls in a chaotic way. Then the drag on the seed makes a touge on it, causing it to spin. The spin in a sweeping motion creates lift like a plane wing.

Droping different seeds

- Setup:
 - A white background.
 - A high speed camera
- The procedure:
 - Drop the seed
 - Measure length, width and mass
- Results:
 - Terminal velocity

Analizing data

Results

Uncertainties

Results

Results

What can we learn from this

- Correlation between data -> new method must be used
- The seeds balence out their weight with increased length and width.

Forces

The forces on the seed is:

$$\vec{F}_L = \frac{1}{2} \rho A C_L V_{rel}^2 \vec{n}_{rel} \qquad \qquad \vec{F}_D = \frac{1}{2} \rho A C_D V_{rel}^2 \vec{e}_{rel}$$

$$\vec{F}_D = \frac{1}{2} \rho A C_D V_{rel}^2 \vec{e}_{rel}$$

$$\vec{F}_g = -mg\vec{e}_x$$

In steady state the sum of forces are zero:

$$0 = \vec{F}_L + \vec{F}_D + \vec{F}_g$$

Blade element momentum theory

$$\vec{F}_{D,L} = \frac{1}{2} \rho A C_{D,L} (V_t^2 + V_{rot}^2) \vec{e}_{D,L}$$

The blade is divided into smaller parts:

$$d\vec{F}_{D,L} = \frac{1}{2}\rho \ c(r)dr \ C_{D,L}(r)(V_t^2 + \omega^2 r^2)\vec{e}_{D,L}$$

The force on the center of mass:

$$\int dF_{D,L} = \int_0^L \frac{1}{2} \rho \ c(r) \ C_{D,L}(r) (V_t^2 + \omega^2 r^2) dr$$

Blade element momentum theory

Wind tunnel

Wind tunnel

Wind tunnel

3D-scaned and printed maple seed maple seed

Parachute vs Seed

	Seed	Square parachute	Circle Parachute
Area wing	4.7cm ² ±0.1cm ²	32cm ² ±1cm ²	32cm ² ±1cm ²
Weight seed	152mg±1mg	150mg±5mg	150mg±5mg
Weight wing	36mg±1mg	40mg±5mg	40mg±5mg
Weight rope		0.01 <u>±</u> 2mg	0.01 <u>±</u> 2mg

Parachute vs Seed

Conclusion

- The parachute and the seed are about the same, efficiency wise.
- The seed is more robust but requires that the seed has a certain mass distribution.
- The parachute is easy to upscale, but it requires lighter/thinner fabric.
- Our experiments show that the terminal velocity of the maple seed is independent mass, length and width.

The end

